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Abstract: The Regression Conditional Tail Moment (RCTM) is the risk
measure defined as the moment of order b ≥ 0 of a loss distribution above
the upper α-quantile where α ∈ (0, 1) and when a covariate information
is available. The purpose of this work is first to establish the asymptotic
properties of the RCTM in case of extreme losses, i.e when α → 0 is no
longer fixed, under general extreme-value conditions on their distribution
tail. In particular, no assumption is made on the sign of the associated
extreme-value index. Second, the asymptotic normality of a kernel esti-
mator of the RCTM is established, which allows to derive similar results
for estimators of related risk measures such as the Regression Conditional
Tail Expectation/Variance/Skewness. When the distribution tail is upper
bounded, an application to frontier estimation is also proposed. The results
are illustrated both on simulated data and on a real dataset in the field of
nuclear reactors reliability.
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A recurrent problem in actuarial science, econometrics or statistical finance is
to quantify the risk associated with a non-negative loss variable Y . A large vari-
ability of the random variable Y implies a high capital reserve for portfolios or
a high price of the insurance risk. Quantiles are the basic tools in risk manage-
ment and the main quantile-based risk measure in financial institutions is the
Value at Risk with a confidence level 1 − α. It is defined as the αth quantile
of the survival distribution of Y , see [35] for a review. When a covariate in-
formation X is recorded simultaneously with Y , the Value at Risk becomes a
conditional quantile and is referred to as the Regression Value at Risk, denoted
by RVaR(α|X) to emphasize the dependence on the covariate. The estimation
of extreme Regression Value at Risk, i.e. RVaR(α|X) for small probabilities α,
has many important applications, for instance in ecology [45], climatology [20],
biostatistics [38], econometrics [9], finance [48], and insurance [4]. Recently, [11]
extended the classical asymptotic theory on conditional quantiles [5, 44, 46, 47]
further into the tails of the distribution by considering orders α = αn → 0
as the sample size n tends to infinity. The results are based on extreme-value
theory [28], they hold true whatever the nature of the distribution tail. At the
same time, an alternative regression risk measure, the Regression Conditional
Tail Moment (RCTM) [16] was proposed to overcome the limitations of RVaR
which prevent it from being a coherent risk measure [3]. The introduction of the
RCTM permitted to adapt some risk measures to the regression setting, among
them: the Conditional Tail Expectation (CTE) [3], also known as Tail-Value-
at-Risk or Expected Shortfall, the Conditional Tail Variance (CTV) [49], the
Conditional Tail Skewness (CTS) [32], etc. The authors also investigated the
estimation of the RCTM for extreme levels within the context of heavy-tailed
distributions.

The goal of this work is to fill in the gap between the two previous lines
of work. Here, the asymptotic properties of the RCTM are established for ex-
treme levels, and for all kinds of distribution tails. A nonparametric estimator
is also introduced and its asymptotic distribution is derived in this context i.e.
for α = αn → 0 as the sample size n → ∞ and for an arbitrary distribution
tail. As a first application, we obtain the asymptotic properties of the associ-
ated estimators: regression CTE, CTV and CTS. The second application takes
place in the context of frontier estimation. Indeed, when the upper tail of the
distribution of Y given X = x is bounded, the right endpoint y∗(x) is finite
and is often referred to as a frontier. The estimation of x �→ y∗(x) has re-
ceived a lot of attention and various methods have been proposed based either
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on extreme-value estimators [22, 25, 31], projections [34], piecewise polynomial
estimators [29, 30, 37, 39, 40] or linear programming estimators [27]. Here, we
take profit of the properties of the RCTM to propose a new frontier estimator.
Its asymptotic normality is proved and its finite sample properties are compared
to other recent frontier estimators both on simulated and real datasets.

The paper is organized as follows. The definition of the RCTM and its links
with classical risk measures are recalled in Section 1. A nonparametric estima-
tor is introduced. Asymptotic properties are established in Section 2 and two
applications are detailed in Section 3. The efficiency of our estimators is then
illustrated on simulated data in Section 4 while Section 5 provides a motivating
example in reliability. Proofs are postponed to the Appendix.

1. Regression risk measures

Let Y be a positive random variable and X ∈ Rp a random vector of regressors
recorded simultaneously with Y . Assuming that (X,Y ) is absolutely continuous
with respect to Lebesgue measure, the probability density functions (p.d.f.) of
X and Y given X = x are denoted respectively by g(·) and f(·|x). For any
x ∈ Rp such that g(x) �= 0, the conditional distribution of Y given X = x is
characterized by the conditional survival function F̄ (·|x) = P(Y > ·|X = x) or,
equivalently, by the conditional quantile defined for α ∈ (0, 1) by F̄←(α|x) =
inf{t, F̄ (t|x) ≤ α}. In a risk analysis perspective, Y represents a loss while the
conditional quantile is referred to the Regression Value at Risk and is denoted by
RVaR(·|x) := F̄←(·|x). We shall also denote by y∗(x) := RVaR(0|x) ∈ (0,+∞]
the right endpoint of Y given X = x. The Regression Conditional Tail Moment
of level α ∈ (0, 1) and order b ≥ 0 has been introduced in [16] and is defined by

RCTMb(α|x) := E
(
Y b|Y > RVaR(α|x), X = x

)
.

Let us note that this quantity may not exist for all b ≥ 0, depending on the
tail heaviness of Y given X = x, see Section 2 for sufficient conditions. Thanks
to the RCTM tool, several risk measures have been adapted to the conditional
framework: the Conditional Tail Expectation, the Conditional Tail Variance and
the Conditional Tail Skewness. More specifically, the following regression risk
measures are considered: the Regression Conditional Tail Expectation defined by

RCTE(α|x) = E(Y |Y > RVaR(α|x), X = x) = RCTM1(α|x), (1.1)

measuring the mean of losses above the RVaR, the Regression Conditional Tail
Variance

RCTV(α|x) = E
(
[Y − RCTE(α|x)]2|Y > RVaR(α|x), X = x

)
= RCTM2(α|x)− RCTM2

1(α|x), (1.2)

measuring the variability of the losses above the RVaR and the Regression Con-
ditional Tail Skewness given by

RCTS(α|x) = RCTM3(α|x)
[RCTV(α|x)]3/2 , (1.3)
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assessing the asymmetry of the losses above the RVaR.

Starting from n independent copies (X1, Y1), . . . , (Xn, Yn) of the random vec-
tor (X,Y ), the estimation of the previous regression risk measures has been
addressed in [16] when the distribution of Y given X = x is heavy-tailed and
for extreme levels α i.e. α = αn → 0 as n → ∞. In view of (1.1)–(1.3), the main
step is to estimate the RCTM, the other regression risk measures can then be
estimated by a plug-in technique. To this end, remark that the RCTM can be
rewritten as

RCTMb(αn|x)=
1

αn
E
(
Y bI{Y >RVaR(αn|x)}|X = x

)
=:

1

αn
ϕb(RVaR(αn|x)|x)

where I{·} is the indicator function. The considered estimator of the Regression
Conditional Tail Moment of level αn and order b is thus given by the following
three quantities:

R̂CTMb,n(αn|x) :=

∑n
i=1 Khn(x−Xi)Y

b
i I{Yi > R̂VaRn(αn|x)}∑n

i=1 αnKhn(x−Xi)
, (1.4)

R̂VaRn(αn|x) := inf{t, ˆ̄Fn(t|x) ≤ αn}, (1.5)

ˆ̄Fn(y|x) :=

∑n
i=1 Kkn(x−Xi)I{Yi > y}∑n

i=1 Kkn(x−Xi)
, (1.6)

with Kz(·) := z−pK(·/z), for all z > 0 and where K(·) is a density on Rp referred
to as a kernel. Sequences (hn) and (kn) control the smoothness of the estimators.
For the sake of simplicity, in what follows, the dependence on n for these two
sequences is omitted and we let � := min(h, k), � := max(h, k). Observe that
(1.4)–(1.6) are classical kernel estimators (see for instance [41, 43]) of conditional
expectations, quantiles and survival functions. However, their use in an extreme
context (αn → 0 as n → ∞) induces unusual difficulties in the nonparametric
estimation, see the next section.

2. Main results

To derive the asymptotic properties of RCTM and of its estimator, an assump-
tion on the right tail behavior of the conditional distribution of Y given X = x
is required. Since (X,Y ) is supposed to be absolutely continuous with respect to
Lebesgue measure, the function RVaR(·|x) is differentiable almost everywhere
and we assume that

(A.1) There exists γ(x) ∈ R such that

lim
α→0

RVaR′(tα|x)
RVaR′(α|x) = t−(γ(x)+1),

locally uniformly in t ∈ (0,∞).
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Condition (A.1) amounts to supposing that −RVaR′(·|x) is regularly varying
at the origin with index −(γ(x)+1), see [6] for more details on regular variation
theory. From [28, Corollary 1.1.10, equation (1.1.33)], condition (A.1) entails
that the conditional distribution of Y given X = x is in the maximum domain
of attraction of the extreme-value distribution with extreme-value index γ(x).
The unknown function γ(·) is referred to as the conditional extreme-value index
function. Let us point out that in [16], only the case γ(x) > 0 was considered,
which corresponds to the situation where Y given X = x has an heavy right
tail (Fréchet maximum domain of attraction). Here, no assumption is made
on the sign of γ(x), and we let γ+(x) := max(γ(x), 0). Finally, the sign of the
function γ(·) in (A.1) is not supposed to be constant on the support of X, but it
will appear that it should remain constant in a neighbourhood of the estimation
point. To be more specific, let us consider three examples of distributions with
different tail behaviors.

Example 1 (Fréchet maximum domain of attraction, γ(x) > 0). The Pareto
distribution with cumulative distribution function (c.d.f.) F (y|x) = 1− y−θ(x),
y ≥ 1 and θ(·) > 0 verifies (A.1), the extreme-value index is γ(x) = 1/θ(x) > 0.
Note that F̄ (·|x) is regularly varying at infinity, this is the framework of [16].

Example 2 (Gumbel maximum domain of attraction, γ(x) = 0). The expo-
nential distribution with c.d.f. F (y|x) = 1 − exp(−y/θ(x)), y ≥ 0 and θ(·) > 0
verifies (A.1), the extreme-value index is γ(x) = 0. Note that F̄ (·|x) is not
regularly varying at infinity.

Example 3 (Weilbull maximum domain of attraction, γ(x) < 0). Let y∗(·) and
θ(·) be two positive functions. The considered c.d.f. is

F (y|x) = 1− (1− y/y∗(x))θ(x), ∀ y ∈ [0, y∗(x)] (2.1)

and thus

RVaR(α|x) = y∗(x)(1− α1/θ(x)) (2.2)

is differentiable with respect to α ∈ (0, 1]. If, moreover, θ(x) < 1, then the
differentiability holds on the whole [0, 1] interval. In any case, (A.1) is verified,
the extreme-value index is γ(x) = −1/θ(x) < 0 while y∗(·) is the frontier. The
estimation of y∗(·) is illustrated on this particular example in Section 4.

Our first result establishes some asymptotic properties of the RCTM.

Proposition 1.

(i) Suppose y∗(x) < ∞. Then, for all b > 0, RCTMb(α|x) → [y∗(x)]b as α → 0.
(ii) Under (A.1), for all b ≥ 0 such that bγ(x) < 1,

lim
α→0

RCTMb(α|x)
[RVaR(α|x)]b =

1

1− bγ+(x)
, (2.3)

and RCTMb(·|x) is regularly varying with index −bγ+(x).
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First, let us highlight that Proposition 1 is an extension of the result estab-
lished in [33] for the Conditional Tail Expectation (b = 1) in the framework
of unconditional (γ(x) = γ) heavy-tailed (γ > 0) distributions. When y∗(x) is
finite, then the function x �→ y∗(x) is called a frontier, and, from classical results
of extreme-value theory, necessarily γ(x) ≤ 0. In such a case, Proposition 1(i)
shows that RCTMb(α|x) → (y∗(x))b as α → 0 without further assumption on
the distribution tail. This will be the starting point in Section 3.2 for designing
a new frontier estimator. Basing on Proposition 1(ii), the asymptotic proper-
ties of RCTE, RCTV and RCTS can easily be derived and will reveal useful in
Section 3.1.

Corollary 1. Assume (A.1) holds.

(i) If γ(x) < 1 then

lim
α→0

RCTE(α|x)
RVaR(α|x) =

1

1− γ+(x)
.

(ii) If γ(x) < 1/2 then

lim
α→0

RCTV(α|x)
[RVaR(α|x)]2 =

γ2
+(x)

(1− γ+(x))2(1− 2γ+(x))
=: ρ1(γ+(x)).

(iii) If γ(x) < 1/3 then

lim
α→0

RCTS(α|x) = (1− γ+(x))
3(1− 2γ+(x))

3/2

γ3
+(x)(1− 3γ+(x))

=: ρ2(γ+(x)).

(iv) If γ(x) < 1/3 then

lim
α→0

RCTV(α|x)[RCTS(α|x)]2/3
[RVaR(α|x)]2 = (1− 3γ+(x))

−2/3.

It is interesting to note that, from (i), when γ(x) ≤ 0, both risk measures
RCTE and RVaR are asymptotically equivalent. Besides, a close study of the
function ρ2 appearing in (iii) shows that the RCTS tends to infinity when γ+(x)
approaches 0 or 1/3 and is asymptotically minimum for γ(x) = γ0 where γ0 

0.2873 is the unique root of equation γ3

0 +5γ2
0 − 5γ0 +1 = 0 on [1/4, 1/2]. Such

an extreme-value index γ0 defines the distribution tail whose losses have the
minimum asymmetry.

The asymptotic normality of (1.4)–(1.6) is obtained under additional as-
sumptions. First, a Lipschitz condition on the p.d.f. of X is required. For all
(x, x′) ∈ Rp × Rp, let us denote by d(x, x′) a distance between x and x′.

(A.2) There exists a constant cg > 0 such that |g(x)− g(x′)| ≤ cgd(x, x
′).

The next assumption is devoted to the kernel function K(·).

(A.3) K(·) is a bounded density on Rp, with support S included in the unit
ball of Rp.
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For ξ > 0, the largest oscillation at point (x, y) ∈ Rp × R+ associated with the
Regression Conditional Tail Moment of order b ≥ 0 such that bγ(x) < 1 is given
by

ω (x, α, b, ξ, h)

= sup
x′∈B(x,h)

{∣∣∣∣ϕb(ϕ
←
b (β|x)|x′)

β
− 1

∣∣∣∣ with ∣∣∣∣βα − RCTMb(α|x)
∣∣∣∣ ≤ ξ

}
,

recalling that ϕb(·|x) = F̄ (·|x)RCTMb(F̄ (·|x)|x) and where B(x, h) denotes the
ball centred at x with radius h Finally, for all finite set E, let L(E) = {ei +
ej , (ei, ej) ∈ E×E}∪E. The first theorem establishes the asymptotic normality
of the RVaR estimator defined by (1.5) and (1.6).

Theorem 1. Suppose (A.1), (A.2) and (A.3) hold. Let x ∈ Rp such that
g(x) > 0 and consider αn → 0 such that nkpαn → ∞ as n → ∞. If there exists
ξ > 0 such that

nkpαn (k ∨ ω(x, αn, 0, ξ, k))
2 → 0, (2.4)

then

(nkpα−1
n )1/2f(RVaR(αn|x)|x)

(
R̂VaRn(αn|x)− RVaR(αn|x)

)
d−→ N

(
0,

‖K‖22
g(x)

)
.

This result was first established in [11, Theorem 1] but under a stronger
assumption on the tail of Y given X = x. The Von-Mises condition used in [11]
requires the twice differentiability of F . Here, it is replaced by (A.1) which only
involves the first derivative of F . As observed in [11], condition nkpαn → ∞
limits the range of extreme Regression Value at Risk that can be estimated
with a kernel method. Condition (2.4) implies that the bias introduced by the
oscillation of the survival function

ω(x, αn, 0, ξ, k) = sup
x′∈B(x,k)

{∣∣∣∣ F̄ (F̄←(β|x)|x′)

β
− 1

∣∣∣∣ with ∣∣∣∣ βαn
− 1

∣∣∣∣ ≤ ξ

}
,

should be negligible compared to the standard-deviation of the estimator. The
smaller the oscillation is, the better the nonparametric estimation procedure
will perform. Moreover, (2.4) entails that ω(x, αn, 0, ξ, k) → 0 as n → ∞. This
condition can also be found in [11], it is verified under smoothness assumptions
on the conditional survival function. In particular, it requires the endpoint y∗(·)
to stay either finite or infinite in a neighbourhood of x. Similarly, the sign of
the extreme-value index γ(·) should remain constant in a neighbourhood of x.

Theorem 2. Let J ∈ N \ {0} and E := {b1, . . . , bJ} where bj > 0 for all
j = 1, . . . , J . Suppose (A.1), (A.2) and (A.3) hold and let αn → 0 be a
sequence satisfying n�pαn → ∞ as n → ∞. Let x ∈ Rp such that g(x) > 0 and
γ(x) < 1/(2bj) for all j = 1, . . . , J . If there exists ξ > 0 such that

n�
p
αn

(
� ∨ max

b∈L(E)
ω(x, αn, b, ξ, �)

)2

→ 0,
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and �/�̄ → 0, then the random vector

(n�pαn)
1/2

{(
R̂CTMbj ,n(αn|x)
RCTMbj (αn|x)

− 1

)}
j∈{1,...,J}

is asymptotically Gaussian, centred, with a J × J covariance matrix given by

either ‖K‖22Σ
(1)
E (x)/g(x) if h/k → 0, or ‖K‖22Σ

(2)
E (x)/g(x) if k/h → 0, where

for (i, j) ∈ {1, . . . , J}2,

(Σ
(1)
E (x))i,j =

(1− biγ+(x))(1− bjγ+(x))

1− (bi + bj)γ+(x)
,

(Σ
(2)
E (x))i,j = (1− biγ+(x))(1− bjγ+(x)).

Two cases appear:
– If γ(x) ≤ 0, then the asymptotic covariance matrices do not depend on

{b1, . . . , bJ} and thus the estimators R̂CTMbj ,n(αn|x), j = 1, . . . , J share the
same rate of convergence.

– Conversely, when γ(x) > 0, the asymptotic variances are increasing func-

tions of the RCTM order. Moreover, note that [Σ
(1)
E (x)]j,j > [Σ

(2)
E (x)]j,j for

all j ∈ {1, . . . , J} and thus k/h → 0 leads to more efficient estimators than
h/k → 0. Let us also note that, in this situation, the case h = k has been
investigated in [16, Theorem 1] where it was shown that diagonal terms of the
covariance matrix are

[Σ
(3)
E (x)]j,j =

2b2jγ
2(x)(1− bjγ(x))

1− 2bjγ(x)
.

Routine calculations show that [Σ
(1)
E (x)]j,j > [Σ

(3)
E (x)]j,j for all j ∈ {1, . . . , J}

and thus k = h leads to more efficient estimators than h/k → 0. The comparison

between the choices k/h → 0 and h = k is less straightforward: [Σ
(2)
E (x)]j,j <

[Σ
(3)
E (x)]j,j for all j ∈ {1, . . . , J} if and only if bjγ(x) > 1/3.
These conclusions are however only of theoretical interest, since, in practice,

γ(x) is unknown and the bandwidths h and k have to be determined for a fixed
value of the sample size n. A data-driven procedure is proposed in Section 4
but, before that, two illustrations of the above results are proposed.

3. Applications

In Paragraph 3.1, an estimation procedure is introduced for estimating the
regression risk measures (1.1)–(1.3) and the associated asymptotic properties
are established. These results are derived whatever the sign of the conditional
extreme-value index γ(x) is, in contrast to [16, Corollary 1, 2] which hold only
under the assumption γ(x) > 0. In Paragraph 3.2, we focus on the situation
where γ(x) ≤ 0 and more precisely when the distribution of Y |X = x is up-
per bounded. A new estimator of the endpoint (or equivalently the frontier) is
then proposed basing on the RCTM estimator and its asymptotic normality is
proved.
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3.1. Estimation of extreme regression risk measures

All the regression risk measures (1.1)–(1.3) can be estimated by plugging-in the
RCTM estimator defined by (1.4)–(1.6). The obtained estimators are denoted

by R̂CTEn(αn|x), R̂CTVn(αn|x) and R̂CTSn(αn|x). The following corollary
establishes their asymptotic normality while their asymptotic variances are given
in Table 1.

Corollary 2.

(i) Under the assumptions of Theorem 2 with E = {1} (implying γ(x) < 1/2),

(n�pαn)
1/2

(
R̂CTEn(αn|x)
RCTE(αn|x)

− 1

)
,

is asymptotically Gaussian, centred with variance ϑRCTE,1(γ+(x))‖K‖22/
g(x) if h/k → 0 or ϑRCTE,2(γ+(x))‖K‖22/g(x) if k/h → 0.

(ii) Under the assumptions of Theorem 2 with E = {1, 2} (implying γ(x) <
1/4),

(n�pαn)
1/2 RCTV(αn|x)

[RVaR(αn|x)]2

(
R̂CTVn(αn|x)
RCTV(αn|x)

− 1

)
,

is asymptotically Gaussian, centred with variance ϑRCTV,1(γ+(x))‖K‖22/
g(x) if h/k → 0 or ϑRCTV,2(γ+(x))‖K‖22/g(x) if k/h → 0.

(iii) Under the assumptions of Theorem 2 with E = {1, 2, 3} (implying γ(x) <
1/6), if (n�pαn)

1/2[RCTS(αn|x)]−2/3 → ∞, then

(n�pαn)
1/2[RCTS(αn|x)]−2/3

(
R̂CTSn(αn|x)
RCTS(αn|x)

− 1

)
,

is asymptotically Gaussian, centred with variance ϑRCTS,1(γ+(x))‖K‖22/
g(x) if h/k → 0 or ϑRCTS,2(γ+(x))‖K‖22/g(x) if k/h → 0.

The following comments can be made:
– In the case γ(x) ≤ 0, estimators of the RCTV and RCTS both have the

same rate of convergence (Corollary 1(iv)) while the estimator of the RCTE
converges faster (Corollary 1(i)–(iii)).

– In the case γ(x) > 0, from Corollary 1(ii) and (iii), all the previous risk mea-
sures share the same rate of convergence (n�pαn)

1/2. The asymptotic variances
of

(n�pαn)
1/2

(
R̂CTEn(αn|x)
RCTE(αn|x)

− 1

)
, (n�pαn)

1/2

(
R̂CTVn(αn|x)
RCTV(αn|x)

− 1

)
,

(n�pαn)
1/2

(
R̂CTSn(αn|x)
RCTS(αn|x)

− 1

)
,
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Table 1

Asymptotic variances.

ϑRCTE,1(z)
(1−z)2

1−2z
ϑRCTE,2(z) (1 − z)2

ϑRCTV,1(z)
1−7z+9z2+15z3−6z4

(1−z)2(1−2z)(1−3z)(1−4z)

ϑRCTV,2(z)
(1+z)2

(1−z)2

ϑRCTS,1(z)
(1−3z)1/3(9−198z+1749z2−7890z3+18979z4−22746z5+10415z6+810z7−1296z8−216z9)

4(1−z)4(1−2z)2(1−4z)(1−5z)(1−6z)

ϑRCTS,2(z)
(1−3z)4/3(3−6z−z2)2

4(1−z)4(1−2z)2

ϑ̃RCTE,1(z)
(1−z)2

1−2z

ϑ̃RCTE,2(z) (1 − z)2

ϑ̃RCTV,1(z)
(1−z)2(1−2z)(1−7z+9z2+15z3−6z4)

z4(1−3z)(1−4z)

ϑ̃RCTV,2(z)
(1−z)2(1−2z)2(1+z)2

z4

ϑ̃RCTS,1(z)
(1−3z)1/3(9−198z+1749z2−7890z3+18979z4−22746z5+10415z6+810z7−1296z8−216z9)

4z4(1−4z)(1−5z)(1−6z)

ϑ̃RCTS,2(z)
(1−3z)4/3(3−6z−z2)2

4z4

are respectively given by ϑ̃RCTE,•(γ+(x)), ϑ̃RCTV,•(γ+(x)), ϑ̃RCTS,•(γ+(x))
where

ϑ̃RCTE,•(z) := ϑRCTE,•(z),

ϑ̃RCTV,•(z) := ϑRCTV,•(z)/ρ
2
1(z),

ϑ̃RCTS,•(z) := ϑRCTS,•(z)ρ
4/3
2 (z),

see Table 1 for details and Figure 1 for an illustration. It appears that the
asymptotic variance associated with the situation k/h → 0 is smaller than the
asymptotic variance associated with the situation k/h → 0 for all three consid-
ered estimators, even though they almost coincide for RCTS. This is consistent
with the conclusions derived from Theorem 2 where it has already been observed
that the case k/h → 0 was the most favorable to estimate the RCTM. Since
ϑ̃RCTE,2, ϑ̃RCTV,2 and ϑ̃RCTS,2 are decreasing functions, the following bounds
can readily be established:

ϑ̃RCTE,2(z) ≥ 1/4 for all z ∈ [0, 1/2],

ϑ̃RCTV,2(z) ≥ 225/4 for all z ∈ [0, 1/4],

ϑ̃RCTS,2(z) ≥ 5041/4 for all z ∈ [0, 1/6],

and therefore the estimation of RCTV and RTCS is very unstable whatever the
tail heaviness is.

3.2. Frontier estimation

This paragraph is dedicated to the estimation of the right (positive) endpoint
y∗(x) := RVaR(0|x) of the distribution of Y given X = x in the situation where
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Fig 1. Asymptotic variances z �→ ϑ̃RCTE,•(z) (top left), z �→ ϑ̃RCTV,•(z) (top right) and

z �→ ϑ̃RCTS,•(z) (bottom) in a logarithmic scale. The case k/h → 0 is depicted with a solid
line while the case h/k → 0 is depicted with a dashed line. In case of the RCTS, the two
curves are almost superimposed.

y∗(x) < ∞ (and thus when γ(x) ≤ 0). From Proposition 1(i), the Regression
Conditional Tail Moment of order b ≥ 0 exists and

RCTMb(α|x) → [y∗(x)]b as α → 0. (3.1)

For all b > 0, a natural estimator of the right endpoint (or frontier) is thus given
by

ŷ∗b,n(x) :=
[
R̂CTMb,n(αn|x)

]1/b
, (3.2)

where αn is a sequence converging to 0 as n → ∞. In the unconditional
situation, the estimation of the endpoint of a distribution has been widely
studied in the extreme-value literature, see [28, Section 4.5] for an overview
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or [1, 19] for applications. The methods rely on the extrapolation beyond an
extreme quantile via the estimation of the extreme-value index. In our situ-
ation, the adaptation of such techniques would require the estimation of the
conditional extreme-value index γ(x) which would induce additional difficul-
ties. Our idea is to rely on the definition of the RCTM itself, which ensures that
[RCTMb(αn|x)]1/b ≥ RVaR(αn|x). There is thus some hope that ŷ∗b,n(x) extrap-
olate beyond the extreme conditional quantile RVaR(αn|x) without estimating
γ(x).

Let us highlight that, however, for a fixed value of n, one does not neces-
sarily have ŷ∗b,n(Xi) ≥ Yi for all i = 1, . . . , n. More generally, this is also the
case for robust estimators of the frontier [2, 7, 13]. For instance, in [7], an ex-
pected frontier of order m is defined. The expected frontier converges to the
true frontier as m → ∞ (see [7, Theorem 2.3]) similarly to (3.1) but it does
not necessary envelop all the data points either. This property illustrates the
fact that such estimators are less sensitive to extreme values or outliers than
classical nonparametrical ones.

Assumption (A.1) is not required to justify the expression of the right end-
point estimator but it will reveal necessary to establish its asymptotic nor-
mality. Before stating this result, some notations are required. Let a(u|x) :=
F̄ (u|x)/f(u|x). Under (A.1) with y∗(x) < ∞, Lemma 1, equation (A.3) shows
that

Δa(u|x) :=
a(u|x)

u
− γ+(x) =

a(u|x)
u

→ 0 (3.3)

as u ↑ y∗(x).

Corollary 3. Suppose the assumptions of Theorem 2 hold with E = {b}, b > 0.

(i) If y∗(x) < ∞, |Δa(·|x)| is asymptotically decreasing and such that
(n�pαn)

1/2Δa(RVaR(αn|x)|x) → 0 then

(n�pαn)
1/2
(
ŷ∗b,n(x)− RVaR(αn|x)

) d−→ N (0, ‖K‖22(y∗(x))2/(b2g(x))).

(ii) If, moreover, γ(x) < 0 then

(n�pαn)
1/2
(
ŷ∗b,n(x)− y∗(x)

) d−→ N (0, ‖K‖22(y∗(x))2/(b2g(x))).

Part (i) of the result states the asymptotic normality of the estimator ŷ∗b,n(x)
when centred on RVaR(αn|x). It is well-known that the RVaR converges to the
endpoint, but centering the asymptotic distribution on the endpoint requires
the additional condition

(n�pαn)
1/2(RVaR(αn|x)− y∗(x)) → 0 (3.4)

as n → ∞. However, in the case (ii) where γ(x) < 0, condition (3.4) is automat-
ically fulfilled.

To be more specific, let us consider the situation where the c.d.f. of Y given
X = x is defined by (2.1) in Example 3. From (3.3), it is easy to check that
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Δa(·|x) is a decreasing function given by

Δa(u|x) =
1

θ(x)

(
y∗(x)

u
− 1

)
.

As expected, condition (3.4) and condition (n�pαn)
1/2Δa(RVaR(αn|x)|x) → 0

are thus equivalent. Since RVaR(α|x) is given by (2.2), these conditions sim-

ply reduce to (n�pαn)
1/2α

1/θ(x)
n → 0. It appears that the rate of convergence

(n�pαn)
1/2 of the estimator is slightly smaller than α

−1/θ(x)
n = α

γ(x)
n . It directly

depends on the tail behavior at the endpoint. The heavier the tail is, i.e. the
larger the extreme-value index is, the faster the convergence.

Finally, under the assumptions of Corollary 3(ii), an asymptotic confidence
interval of level τ can then be established:[
ŷ∗b,n(x)

(
1− uτ

(n�pαn)1/2
‖K‖2

b ĝn(x)1/2

)
, ŷ∗b,n(x)

(
1 +

uτ

(n�pαn)1/2
‖K‖2

b ĝn(x)1/2

)]
,

(3.5)
where ĝn(·) is the kernel estimator of the p.d.f. of X:

ĝn(x) =
1

n

n∑
i=1

Kh(x−Xi) (3.6)

and uτ is the (τ/2)th quantile from the survival function of the standard Gaus-
sian distribution.

4. Validation on simulations

The performance of the frontier estimator (3.2) is illustrated on simulated data
and compared to some other recent propositions [24, 26]. To this end, the simula-
tion framework of [24] is used: X is a one-dimensional standard uniform random
variable and the c.d.f. of Y given X = x is defined by (2.1), see Example 3. The
chosen frontier function is

y∗(x) =

(
1

10
+ sin(πx)

)[
11

10
− 1

2
exp

(
−64

(
x− 1

2

)2
)]

,

see Figure 3 for an illustration. The shape of the unknown function is challenging
to estimate since it involves large derivatives as well as both concave and convex
parts. Two (positive) functions θ(·) are considered: θ1(x) = 1.25 and θ2(x) =
1.25 + | cos(4πx)| for all x ∈ [0, 1].

Selection of the hyper-parameters. The bi-quadratic kernel defined by
K(x) = 15/16(1 − x2)2I{|x| ≤ 1} is selected and, for the sake of simplicity,
we restrict ourselves to one common bandwidth h = k. Consequently, estima-
tors (1.4)–(1.6) depend on two hyper-parameters h and α. The choice of the
bandwidth h, which controls the degree of smoothing, is a recurrent problem
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in non-parametric statistics. Besides, the choice of α is crucial, it is equivalent
to the choice of the number of upper order statistics in the non-conditional
extreme-value theory. In the following, a data-driven strategy is used to select
simultaneously h and α. Two sets of possible equi-spaced values are introduced:
H = {h1 ≤ · · · ≤ hJ} where h1 = 0.01, hJ = 0.1 and A = {α1 ≤ · · · ≤ αI} with
α1 = 0.01 and αI = 0.1. These values ensure that there is at least one point
above RVaR(αj |x) in the ball B(x, hi) for all x ∈ [0, 1] and (hj , αi) ∈ H×A. The
cardinal of the sets H and A are I = J = 11. The proposed data-driven strategy

consists in minimizing the sampled relative L1 – error between R̂TCM2,n and

R̂VaR
2

n:

(hdata, αdata) = argmin
(hi,αj)∈H×A

1

T

T∑
t=1

∣∣∣∣∣∣ R̂TCM2,n(αj |xt)

R̂VaR
2

n(αj |xt)
− 1

∣∣∣∣∣∣ ,
where xt = t/(T +1) and T = 50. The idea motivating this criteria is that both

R̂TCM2,n(α|·) and R̂VaR
2

n(α|·) should be close to (y∗)2(·) if α and h are well
chosen. To assess the behavior of the selection procedure, it is compared to an
oracle strategy which consists in minimizing the relative L1 – error between an
estimator ŷ∗(·) and the true frontier y∗(·):

(horacle, αoracle) = argmin
(hi,αj)∈H×A

1

T

T∑
t=1

∣∣∣∣ ŷ∗(xt)

y∗(xt)
− 1

∣∣∣∣ .
Of course, the oracle strategy cannot be used in practice to select h and α since
the true function y∗(·) is unknown. However, it provides a lower bound on the
L1 – error that can be reached with the proposed estimators.

Competing estimators. Ten estimators ŷ∗1,n, . . . , ŷ
∗
10,n deduced from (3.2)

are compared with R̂VaRn and three estimators ŷ
(∗,gj)
n , ŷ

(∗,mc)
n and ŷ

(∗,mv)
n

from [24, 26]. All three previous estimators are based on a kernel estimator
of the high order moments of Y given X = x:

μ̂p,n(x) =
1

n

n∑
i=1

Y p
i Kh(x−Xi).

where p → ∞ and h → 0 as n → ∞. The first one relies on the assumption that
Y given X = x is uniformly distributed on [0, g(x)]:

ŷ(∗,gj)n (x) = ((p+ 1)μ̂p,n(x)/ĝn(x))
1/p

,

where ĝn(·) is the kernel estimator (3.6) of the density of X. Estimators ŷ
(∗,mc)
n

and ŷ
(∗,mv)
n do not rely on a parametric assumption. They can be written as

1

ŷ∗,•n (x)
=

1

a

[
((a+ 1)p+ 1)

μ̂(a+1)p,n(x)

μ̂(a+1)p+1,n(x)
− (p+ 1)

μ̂p,n(x)

μ̂p+1,n(x)

]
,
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where a > 0 is an additional parameter and • ∈ {mc,mv}. The difference

between ŷ
(∗,mc)
n and ŷ

(∗,mv)
n lies in the choice of the hyper-parameters h, p and

a, see [24] for implementation details.

Results. The finite sample performance of the estimators is assessed on N =
500 replications of samples of size n = 500. The choices (hdata, αdata) and

(horacle, αoracle) associated with ŷ∗1,n, . . . , ŷ
∗
10,n and R̂VaR are computed on each

replication with the two strategies. The minimum, maximum and mean L1– er-
rors associated with (hdata, αdata) are given in Table 2. The results associated

with ŷ
(∗,gj)
n , ŷ

(∗,mc)
n and ŷ

(∗,mv)
n are reported from [24]. It appears that ŷ∗1,n does

not yield very good results but ŷ∗2,n, . . . , ŷ
∗
10,n all perform better than R̂VaR,

ŷ
(∗,gj)
n , ŷ

(∗,mc)
n and ŷ

(∗,mv)
n in both situations θ(·) = θ1(·) and θ(·) = θ2(·).

Among them, ŷ∗7,n yields the best results but the behavior of ŷ∗5,n and ŷ∗6,n are
very close. The performance of the data-driven selection of the hyper-parameters
is compared to the oracle one on Figure 2. Histograms of the L1– errors associ-
ated with each strategies are displayed for ŷ∗7,n and for both functions θ1(·) and
θ2(·). Unsurprisingly, the oracle strategy yields smaller errors than the data-
driven one, but the large overlap of the histograms shows that the data-driven
selection procedure yields reasonable results. Figure 3 provides the best, the
worst and the median estimation of the frontier respectively corresponding to
the min, max and median of the mean L1– errors. It appears study that ŷ∗7,n
combined with the data-driven hyper-parameters selection is a reasonable fron-
tier estimator both in terms of stability and precision.

Table 2

Mean L1 – errors and [minimum, maximum] L1 – errors associated with the frontier

estimators. Estimators R̂VaRn, ŷ∗1,n, . . . , ŷ
∗
10,n are computed with the hyper-parameters

selected by the data-driven strategy. Results obtained with estimators ŷ
(∗,mc)
n , ŷ

(∗,mv)
n and

ŷ
(∗,gj)
n are reported from [24]. The best results are emphasized.

θ(·) = θ1(·) θ(·) = θ2(·)

R̂VaRn 0.081 [0.045, 0.131] 0.131 [0.074, 0.199]
ŷ∗1,n 0.108 [0.069, 0.169] 0.138 [0.076, 0.232]

ŷ∗2,n 0.073 [0.047, 0.112] 0.107 [0.071, 0.177]

ŷ∗3,n 0.065 [0.041, 0.098] 0.100 [0.062, 0.159]

ŷ∗4,n 0.062 [0.039, 0.091] 0.096 [0.058, 0.149]

ŷ∗5,n 0.061 [0.037, 0.089] 0.094 [0.056, 0.144]

ŷ∗6,n 0.060 [0.037, 0.089] 0.093 [0.055, 0.140]

ŷ∗7,n 0.059 [0.037, 0.088] 0.092 [0.054, 0.137]

ŷ∗8,n 0.077 [0.032, 0.143] 0.104 [0.055, 0.171]

ŷ∗9,n 0.070 [0.032, 0.131] 0.100 [0.053, 0.164]

ŷ∗10,n 0.066 [0.033, 0.121] 0.098 [0.052, 0.158]

ŷ
(∗,mc)
n 0.082 [0.054, 0.137] 0.141 [0.091, 0.202]

ŷ
(∗,mv)
n 0.083 [0.051, 0.143] 0.140 [0.089, 0.203]

ŷ
(∗,gj)
n 0.091 [0.043, 0.161] 0.246 [0.175, 0.326]
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Fig 2. Comparison between the L1 – error distributions associated with ŷ∗7,n computed on
N = 500 samples of size n = 500. White bars: oracle strategy, grey bars: data-driven strategy,
left: shape parameter θ1(·), right: shape parameter θ2(·).

5. Illustration on real data

As an illustration, an application to the reliability of nuclear reactors is pro-
posed. The data consist in n = 254 non-irradiated representative steels obtained
from the US Electric Power Research Institute. The variable of interest Y is the
fracture toughness and the unidimensional covariate X is the temperature mea-
sured in degrees Fahrenheit. As the temperature decreases, the steels fissure
more easily (see Figure 4). In a worst case scenario, it is important to know the
upper limit of fracture toughness of each material as a function of the tempera-
ture, that is y∗(x) the endpoint of Y given X = x. In view of Figure 4, one may
assume that the frontier y∗(x) is an increasing function of the covariate x. In such
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Fig 3. The frontier (solid line) and its estimations by ŷ∗7,n computed on the N = 500 samples

of size n = 500 (left: shape parameter θ1(·), right: shape parameter θ2(·)). For the mean
L1 – errors: best estimation (dotted line), worst estimation (dashed-dotted line) and median
estimation (dashed line).

a case, the frontier can also be interpreted as the endpoint of Y given X ≤ x. In-
troducing this prior information opens the way to specific estimation techniques,
see for instance [12, 14, 17, 23]. We also refer to [2, 7, 13] for the definition of
robust estimators. Here, the estimator ŷ∗7,n is compared to the spline-based es-
timators CS-B and QS-B recently introduced [12] for monotone boundaries (CS
and QS refer respectively to cubic and quadratic splines). The BIC criterion
is used to determine the complexity of the spline approximation. The hyper-
parameters associated with ŷ∗7,n are chosen in the sets H = {17, 18, . . . , 120}
and A = {0.01, 0.015, . . . , 0.1} using the data-driven procedure presented in
Section 4. The selection yields (hdata, αdata) = (98, 0.085), results are depicted
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Fig 4. Scatterplot of the 254 nuclear reactor’s data together with the frontier estimators. Top:
ŷ∗7,n (solid line), CS-B (dashed line) and QS-B (dotted line). Bottom: ŷ∗7,n (solid line) and

the associated pointwise asymptotic confidence intervals (dashed lines).
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Fig 5. γ̂RP,1
n (solid line) and the associated pointwise asymptotic confidence intervals (dashed

lines) on the nuclear reactor’s data.

on Figure 4. All three estimators yield increasing functions even though this con-
straint was not implemented in ŷ∗7,n. Also, the three estimated frontiers coincide
on the range x ∈ [−120,−30]. Results are slightly different outside this interval:
CS-B and QS-B estimators simply interpolate the boundary points whereas ŷ∗7,n
estimates a heavier tail and thus a higher value for the limit of fracture tough-
ness. Basing on (3.5), Figure 4 provides pointwise 95% asymptotic confidence
intervals centered on ŷ∗7,n for the frontier. The estimation of γ(·) is also displayed
on Figure 5 together with the associated pointwise 95% asymptotic confidence
intervals. The following estimator, introduced in [11], has been implemented:

γ̂RP,1
n (x) =

1

log(2/3)
log

(
R̂VaRn(αn|x)− R̂VaRn(2αn/3|x)

R̂VaRn(2αn/3|x)− R̂VaRn(4αn/9|x)

)
.

Note that this estimator also coincides with the kernel Pickands estimator in-
troduced and studied in [10] in the case γ(x) > 0. It appears that the estimation
of γ(x) is negative for most of the values of the covariate x and the 95% con-
fidence interval is most of the time included in R−. It seems thus reasonable
to assume that y∗(x) < ∞ for most of the values of the covariate x. However,
the estimations ŷ∗7,n(x) for which γ̂RP,1

n (x) ≥ 0 should be considered with great
care. To conclude, we would like to stress two possible improvements:

– In this work, we do not propose an automatic procedure for selecting b in
ŷ∗b,n. From the practical point of view, our opinion is that any choice of b ≥ 4
is satisfying, the estimation being very stable over this threshold. As illustrated
on Figure 6, ŷ∗4,n, ŷ

∗
5,n, ŷ

∗
6,n and ŷ∗7,n, are very close to each other. In fact, using
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Fig 6. Scatterplot of the 254 nuclear reactor’s data together with the frontier estimators ŷ∗4,n,
ŷ∗5,n, ŷ

∗
6,n and ŷ∗7,n. The four estimators are nearly superimposed.

the pointwise confidence intervals (3.5), at each point x, it is possible to show
that these four estimators are not significantly different at the 5% level. From
the theoretical point of view, Corollary 3 shows that the asymptotic variance is
a decreasing function of b. Since there is no counterpart on the bias, this would
suggest to choose b = bn → ∞ and to investigate the asymptotic behavior of
this new estimator. This approach would be similar to the kernel regression on
high order moments developed in [24].

– It is well-known that non-parametric estimators based on Parzen-Rosenblatt
kernels may suffer from a lack of performance on the boundaries of the esti-
mation interval [21]. This phenomenon appears on Figure 4. When x is large,
ŷ∗7,n(x) slightly underestimates the true frontier. To overcome this limitation,
symmetrization [8] and jackknife [36] techniques have been developed. They
could be adapted to our framework.

Appendix A: Proofs

A.1. Preliminary results

We start with useful results on regularly varying functions. The set of reg-
ularly varying functions at 0 with index β ∈ R is denoted by RVβ . Recall
that a function V (·) ∈ RVβ if V (·) is asymptotically positive and such that
V (tα)/V (α) → tβ as α → 0, locally uniformly in t ∈ (0,∞).

Lemma 1. Let U(·|x) be a decreasing and differentiable function with support
(0,M), M > 0. Let us introduce the positive function aU (·|x) such that for



Kernel estimation of extreme regression risk measures 379

p ∈ (0,M), aU (U(p|x)|x) = −pU ′(p|x) and the function Lz(·) defined for all
(z, u) ∈ R2 by Lz(u) :=

∫ u

1
vz−1dv. If U ′(·|x) is regularly varying with index

−(β(x) + 1), β(x) ∈ R, then locally uniformly in s ∈ (0,∞),

lim
p→0

U(sp|x)− U(p|x)
aU (U(p|x)|x) = Lβ(x)(1/s), (A.1)

which is equivalent to

lim
p→0

U←(U(p|x) + taU (U(p|x)|x)|x)
p

=
1

L←
β(x)(t)

, (A.2)

locally uniformly in t∈ (−1/β+(x),−1/β−(x)). Finally, if U
′(·|x)∈RV−(β(x)+1),

then

lim
p→0

aU (U(p|x)|x)
U(p|x) = β+(x). (A.3)

The function aU (·|x) is called the auxiliary function of U(·|x). Obviously,
under (A.1), the function RVaR(·|x) satisfies the assumptions of Lemma 1 (see
the first row of Table 3).

Table 3

Index of regular variation and auxiliary function associated with RVaR(·|x) and ϕ←
b (·|x).

U(·|x) β(x) aU (·|x)

RVaR(·|x) γ(x) a(·|x) := F̄ (·|x)/f(·|x)
ϕ←
b (·|x) γ̃b(x) := γ(x)/(1− bγ+(x)) ãb(·|x) := a(·|x)/(1− bγ+(x))

Proof. First remark that condition U ′(·|x) ∈ RV−(β(x)+1) coincides with con-
dition (1.1.33) in [28, Corollary 1.1.10] which implies (A.1). Second, condi-
tion (A.1) is equivalent to condition (1.1.20) in [28, Theorem 1.1.6], with the
auxiliary function aU (·|x), which is also equivalent to (A.2). Finally, from [18,
Lemma 3.1] condition (A.2) entails (A.3).

Since for any b ≥ 0 such that the moment of order b of Y exists, ϕb(·|x) =
F̄ (·|x)RCTMb(F̄ (·|x)|x) or, equivalently, the Regression Conditional Tail Mo-
ment of level α and order b is given by RCTMb(α|x) = α−1ϕb(RVaR(α|x)|x).
The next lemma is dedicated to the analysis of the function ϕb(·|x).

Lemma 2. Assume that (A.1) holds and let b ≥ 0 such that bγ+(x) < 1.

(i) The function ϕb(·|x) is such that

lim
y↑y∗(x)

ϕb(y|x)
ybF̄ (y|x) =

1

1− bγ+(x)
.
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(ii) The function ϕb(·|x) is differentiable with derivative ϕ′
b(·|x) such that

lim
y↑y∗(x)

ϕ′
b(y|x)

ϕb(y|x)
F̄ (y|x)
f(y|x) = bγ+(x)− 1.

Proof. (i) First, an integration by part leads to

ϕb(y|x) =
∫ y∗(x)

y

zbF ′(z|x)dz = ybF̄ (y|x) + b

∫ y∗(x)

y

zb−1F̄ (z|x)dz,

since, for all b ∈ [0, 1/γ+(x)), y
bF̄ (y|x) → 0 as y ↑ y∗(x), see [28, Exercise 1.11].

Straightforward calculations yield

ϕb(y|x) = (1− bγ+(x))
−1ybF̄ (y|x)(1 + bRb(y|x)) (A.4)

with

Rb(y|x) = (1− bγ+(x))

∫ y∗(x)

y

zb−1F̄ (z|x)
ybF̄ (y|x) dz − γ+(x). (A.5)

It thus remains to show that Rb(y|x) → 0 as y ↑ y∗(x). Three cases are consid-
ered.

– In the case γ(x) > 0, one has y∗(x) = ∞ and, from [42, Theorem 0.6],

lim
y→∞

∫ ∞

y

zb−1F̄ (z|x)
ybF̄ (y|x) dz =

γ(x)

1− bγ(x)
.

Then, Rb(y|x) → 0 as y ↑ y∗(x).
– Let us now consider the case γ(x) ≤ 0 with y∗(x) < ∞. One has,∫ y∗(x)

y

zb−1F̄ (z|x)
ybF̄ (y|x) dz =

∫ y∗(x)/y

1

tb−1 exp

{
−
∫ ty

y

f(u|x)
F̄ (u|x)du

}
dt.

Under (A.1), applying Lemma 1, equation (A.3) with U(·) = RVaR(·|x) entails

lim
y↑y∗(x)

F̄ (y|x)
yf(y|x) = lim

y↑y∗(x)

a(y|x)
y

= 0.

Hence, for ε ∈ (0, 1/(2b)), there exists Y > 0 such that for y > Y , t > 1 and
u ∈ [y, ty], uf(u|x)/F̄ (u|x) > 1/ε leading to

0 ≤
∫ y∗(x)

y

zb−1F̄ (z|x)
ybF̄ (y|x) dz ≤ ε

1− bε
≤ 2ε. (A.6)

– Similar calculations show that (A.6) also hold in the case γ(x) = 0 with
y∗(x) = ∞. The proof of (i) is then complete since (A.6) is true for all ε ∈
(0, 1/(2b)).

(ii) The proof is straightforward remarking that ϕ′
b(y|x) = −ybf(y|x) and

using (i) of Lemma 2.
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The next lemma provides a control of the approximation error in Proposi-
tion 1(i) in the situation where y∗(x) < ∞.

Lemma 3. Let x ∈ Rp such that g(x) > 0. Suppose (A.1) holds and y∗(x) < ∞.
Introduce Δa(u|x) := a(u|x)/u. If |Δa(·|x)| is asymptotically decreasing then,
for all b ≥ 0,

RCTMb(α|x) = [RVaR(α|x)]b [1 +O (Δa(RVaR(α|x)|x))] ,

as α → 0.

Proof. Recall that since y∗(x) < ∞, γ(x) ≤ 0 and thus γ+(x) = 0. As a conse-
quence, RCTMb exists for all b ≥ 0 and Proposition 1(ii) states that

RCTMb(α|x) = [RVaR(α|x)]b(1 + o(1)).

We start with the following equality derived from (A.4) in the proof of Lem-
ma 2(i):

RCTMb(α|x) = [RVaR(α|x)]b [1 + bRb(RVaR(α|x)|x)] ,

where Rb(·|x) is defined in (A.5). Since y∗(x) < ∞, elementary calculations
yield

Rb(RVaR(α|x)|x)=
∫ y∗(x)/RVaR(α|x)

1

tb−1 exp

{
−
∫ tRVaR(α|x)

RVaR(α|x)

1

u

1

Δa(u|x)
du

}
dt.

Let us remark that, by assumption, −1/Δa(u|x) ≤ −1/Δa(RVaR(α|x)|x) for all
u ∈ [RVaR(α|x), tRVaR(α|x)], and thus

0 ≤ Rb(RVaR(α|x)|x) ≤ 1

[Δa(RVaR(α|x)|x)]−1 − b

×
[
1−
(

y∗(x)

RVaR(α|x)

)b−[Δa(RVaR(α|x)|x)]−1]
.

Since Δa(RVaR(α|x)|x) → 0 as α → 0, one has

0 ≤ Rb(RVaR(α|x)|x) ≤ Δa(RVaR(α|x)|x)/[1− bΔa(RVaR(α|x)|x)]

for α small enough. As a conclusion,

RCTMb(α|x) = [RVaR(α|x)]b [1 +O (Δa(RVaR(α|x)|x))]

and the result is proved.

The next lemma shows that the function ϕ←
b (·|x) satisfies the assumption of

Lemma 1 (see Table 3).
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Lemma 4. Under (A.1), for all b ≥ 0 such that bγ+(x) < 1, the derivative
(ϕ←

b )′(·|x) of ϕ←
b (·|x) belongs to the set RV−(γ̃b(x)+1) with γ̃b(x) := γ(x)/(1 −

bγ+(x)) and ãb(·|x) := a(·|x)/(1− bγ+(x)).

Proof. For t ∈ (0,∞) and α ∈ (0, 1), remark that

(ϕ←
b )′(tα|x)

(ϕ←
b )′(α|x) =

ϕ′
b(ϕ

←
b (α|x)|x)

ϕ′
b(ϕ

←
b (tα|x)|x) .

Recalling that a(·|x) = F̄ (·|x)/f(·|x), Lemma 2(ii) entails that

(ϕ←
b )′(tα|x)

(ϕ←
b )′(α|x) =

1

t

a(ϕ←
b (tα|x)|x)

a(ϕ←
b (α|x)|x) (1 + o(1)),

as α goes to 0. It thus remains to prove that the function a(ϕ←
b (·|x)|x) belongs

to RV−γ̃b(x). Remark that under (A.1), the function A(·|x) := a(RVar(·|x)|x) =
−αRVaR′(α|x) ∈ RV−γ(x). Introduce the function Vb(·|x) := F̄ (ϕ←

b (·|x)|x).
Since a(ϕ←

b (·|x)|x) = A(Vb(·|x)|x), it then suffices to prove that Vb(·|x) ∈
RV(1−bγ+(x))−1 . To this end, note that for all t > 0,

Vb(tα|x)
Vb(α|x)

=
F̄ (ϕ←

b (α|x) +Wb,t(α|x)a(ϕ←
b (α|x)|x)|x)

F̄ (ϕ←
b (α|x)|x) ,

with Wb,t(α|x) := (ϕ←
b (tα|x) − ϕ←

b (α|x))/a(ϕ←
b (α|x)|x). Our goal is to prove

that
lim
α→0

Wb,t(α|x) = Lγ(x)

(
t−(1−bγ+(x))−1

)
. (A.7)

If (A.7) holds, then Lemma 1, equation (A.2) applied to the function U(·|x) =
RVaR(·|x) with p = F̄ (ϕ←

b (α|x)|x) entails that Vb(·|x) ∈ RV(1−bγ+(x))−1 which
is the desired result. Straightforward calculations show that (A.7) is equivalent
to

lim
α→0

ϕ←
b (tα|x)− ϕ←

b (α|x)
ãb(ϕ←

b (α|x)|x) = Lγ̃b(x)(1/t).

As a consequence of the equivalence (A.1) ⇔ (A.2) in Lemma 1, limit (A.7) is
also equivalent to

lim
y↑y∗(x)

ϕb(y + tãb(y|x)|x)
ϕb(y|x)

=
1

L←
γ̃b(x)

(t)
. (A.8)

Applying Lemma 1, equation (A.3) to the function RVaR(·|x) leads to a(y|x)/
y → γ+(x) as y tends to the endpoint y∗(x). Hence,

lim
y↑y∗(x)

y + tãb(y|x)|x)
y

= 1 + t
γ+(x)

1− bγ+(x)
.

Consequently, y+tãb(y|x)|x) → y∗(x) as y → y∗(x). Thus, applying Lemma 2(i)
together with Lemma 1, equation (A.2) leads to

lim
y↑y∗(x)

ϕb(y + tãb(y|x)|x)|x)
ϕb(y|x)

=

(
1 + t

γ+(x)

1− bγ+(x)

)b
1

L←
γ(x)(t/(1− bγ+(x)))

.

Considering separately the cases γ(x) > 0 and γ(x) ≤ 0, it is easy to check that
this limit is equal to 1/L←

γ̃b(x)
(t) which concludes the proof.
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The Regression Conditional Tail Moment estimator defined in (1.4) is given

by R̂CTMb,n(αn|x)=α−1
n ϕ̂b,n(R̂Varn(αn|x)|x) where ϕ̂b,n(·|x)= ψ̂b,n(·|x)/ĝn(x)

with

ψ̂b,n(y|x) =
1

n

n∑
i=1

Kh(x−Xi)Y
b
i I{Yi > y}

an estimator of ψb(y|x) = g(x)ϕb(y|x) and ĝn(·) the kernel estimator (3.6) of
the p.d.f. of X.

Let us finally introduce some further notations. Let yn(x) be a sequence
such that yn(x) ↑ y∗(x) and let J ∈ N \ {0}. For j = 1, . . . , J , let yn,j(x) :=
yn(x)+tn,j(x)a(yn(x)|x) where tn,j(x) are sequences converging to 0 as n goes to
infinity. Recall that under (A.1), a(y|x)/y → γ+(x) as y ↑ y∗(x) (see Lemma 1,
equation (A.3)). Hence, for all j = 1, . . . , J , yn,j(x) = yn(x)(1+o(1)) as n → ∞.

The next lemma is dedicated to the study of the asymptotic behavior of the
random vector {ϕ̂bj ,n(yn,j(x)|x)}j=1,...,J with b1 ≥ 0, . . . , bJ ≥ 0. The oscilla-
tions of the functions ϕb(yn,j(x)|·) with b ∈ L(E) where E := {b1, . . . , bJ} are
controlled by

Ωn(x, h) := max
b∈L(E)
j=1,...,J

sup

{∣∣∣∣ϕb(yn,j(x)|x′)

ϕb(yn,j(x)|x)
− 1

∣∣∣∣ , x′ ∈ B(x, h)

}
.

Lemma 5. Suppose (A.1)– (A.3) hold. Let x ∈ Rp such that g(x) > 0 and
let J ∈ N \ {0} and E = {b1, . . . , bJ} with b1 ≥ 0, . . . , bJ ≥ 0. Assume that
nhpF̄ (yn(x)|x) → ∞ as n → ∞. If there exists ξ > 0 such that

nhpF̄ (yn(x)|x) (h ∨ Ωn(x, h))
2 → 0, (A.9)

then, if bjγ+(x) < 1 for all j = 1, . . . , J , the random vector{(
nhpF̄ (yn(x)|x)

)1/2( ϕ̂bj ,n(yn,j(x)|x)
ϕbj (yn,j(x)|x)

− 1

)}
j∈{1,...,J}

is asymptotically Gaussian, centred, with covariance matrix ‖K‖22Σ
(1)
E (x)/g(x).

Proof. Let β = (β1, . . . , βJ)
t ∈ RJ with β �= 0. Our goal it to establish the

asymptotic normality of the random variable

Ψ(1)
n :=

1

Λn(x)

J∑
j=1

βj

(
ϕ̂bj ,n(yn,j(x)|x)
ϕbj (yn,j(x)|x)

− 1

)
,

with Λ2
n(x) = 1/[nhpF̄ (yn(x)|x)]. The following expansion holds

Ψ(1)
n =

1

ĝn(x)Λn(x)

J∑
j=1

βj

{
g(x)

(
ψ̂bj ,n(yn,j(x)|x)
ψbj (yn,j(x)|x)

− 1

)
− (ĝn(x)− g(x))

}
.
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Under (A.2), it is well known that ĝn(x) − g(x) = O(h) + OP

(
(nhp)−1/2

)
and

thus, in particular, that ĝn(x) converges in probability to g(x). Hence, since
g(x) �= 0,

ĝn(x)− g(x)

ĝn(x)Λn(x)
= O

(
(nhp+2F̄ (yn(x)|x))1/2

)
+OP

(
(F̄ (yn(x)|x))1/2

)
= oP(1).

As a first conclusion, the limit distribution of Ψ
(1)
n is driven by

Ψ(2)
n :=

1

Λn(x)

J∑
j=1

βj

(
ψ̂bj ,n(yn,j(x)|x)
ψbj (yn,j(x)|x)

− 1

)
.

We are now interested in finding a first order expansion of E[Ψ̂b,n(yn,j(x)|x)] for
b ∈ L(E) with bγ+(x) < 1 and j = 1, . . . , J . Since the (Xi, Yi), i = 1, . . . , n are
identically distributed,

E[ψ̂b,n(yn,j(x)|x)] =

∫
Rp

Kh(x− t)ϕb(yn,j(x)|t)g(t)dt

=

∫
S

K(u)ϕb(yn,j(x)|x− hu)g(x− hu)du,

under (A.3). Hence,∣∣∣∣∣E[ψ̂b,n(yn,j(x)|x)]− ψb(yn,j(x)|x)
ϕb(yn,j(x)|x)

∣∣∣∣∣ ≤
∫
S

K(u)|g(x− hu)− g(x)|du (A.10)

+

∫
S

K(u)

∣∣∣∣ϕb(yn,j(x)|x− hu)

ϕb(yn,j(x)|x)
− 1

∣∣∣∣ g(x− hu)du. (A.11)

Under (A.2), we have

(A.10) ≤ cgh

∫
S

d(u, 0)K(u)du = O(h). (A.12)

Besides, in view of (A.12),

(A.11) ≤ Ωn(x, h)

∫
S

K(u)g(x− hu)du ≤ g(x)Ωn(x, h)(1 + o(1)). (A.13)

Combining (A.12) and (A.13) leads to

E[ψ̂b,n(yn,j(x)|x)]
ψb(yn,j(x)|x)

− 1 = O (h) +O (Ωn(x, h)) (A.14)

for all b ∈ L(E) and j = 1, . . . , J . Thus, by assumption

1

Λn(x)

(
E[ψ̂bj ,n(yn,j(x)|x)]
ψbj (yn,j(x)|x)

− 1

)
→ 0,
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as n → ∞ and for all j = 1, . . . , J . The limiting distribution of Ψ
(2)
n (and

consequently the one of Ψ
(1)
n ) is then also the limiting distribution of

Ψn :=

J∑
j=1

βj

(
ψ̂bj ,n(yn,j(x)|x)− E[ψ̂bj ,n(yn,j(x)|x)]

Λn(x)ψbj (yn,j(x)|x)

)
=:

n∑
i=1

Zi,n,

where

Zi,n

:=

J∑
j=1

βj

{
Kh(x−Xi)Y

bj
i I{Yi ≥ yn,j(x)}−E

(
Kh(x−Xi)Y

bj I{Yi ≥ yn,j(x)}
)}

nΛn(x)ψbj (yn,j(x)|x)
.

Clearly, {Zi,n, i = 1, . . . , n} is a set of centred, independent and identically
distributed random variables with variance V(Z1,n) = βtBβ/(nΛn(x))

2 where
B is the J × J matrix defined for (j, l) ∈ {1, . . . , J}2 by

Bj,l := cov

(
Kh (x−X)

Y bj I{Y ≥ yn,j(x)}
ψbj (yn,j(x)|x)

,Kh (x−X)
Y blI{Y ≥ yn,l(x)}

ψbl(yn,l(x)|x)

)
.

Introducing the function Q(·) := K2(·)/‖K‖22, one has

hpψbj (yn,j(x)|x)ψbl(yn,l(x)|x)Bj,l

=
{
‖K‖22E

(
Qh (x−X)Y bj+blI{Y ≥ yn,j(x) ∨ yn,l(x)}

)
− hpE

(
Kh (x−X)Y bj I{Y ≥ yn,j(x)}

)
E
(
Kh (x−X)Y blI{Y ≥ yn,l(x)}

)}
.

Since Q(·) also satisfies assumption (A.3), the three above expectations can be
expanded as in (A.14) leading to:

Bj,l =
‖K‖22ψbj+bl(yn,j(x) ∨ yn,l(x)|x)
hpψbj (yn,j(x)|x)ψbl(yn,l(x)|x)

×
[
1 +O

(
hpψbj (yn,j(x)|x)ψbl(yn,l(x)|x)

ψbj+bl(yn,j(x) ∨ yn,l(x)|x)

)]
.

Recall that ψb(·|x) = g(x)ϕb(·|x). Since (bj + bl)γ+(x) < 1 and yn,j(x) =
yn(x)(1 + o(1)) for all j = 1, . . . , J , Lemma 2(i) entails that

ψbj (yn,j(x)|x)ψbl(yn,l(x)|x)
ψbj+bl(yn,j(x) ∨ yn,l(x)|x)

=
1− (bj + bl)γ+(x)

(1− bjγ+(x))(1− blγ+(x))

× F̄ (yn,j |x)F̄ (yn,l|x)
F̄ (yn,j(x) ∨ yn,l(x)|x)

(1 + o(1))

=
1− (bj + bl)γ+(x)

(1− bjγ+(x))(1− blγ+(x))

× F̄ (yn,j(x) ∧ yn,l(x)|x)(1 + o(1)),
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and consequently,

Bj,l =
‖K‖22
hpg(x)

(1− bjγ+(x))(1− blγ+(x))

1− (bj + bl)γ+(x)

1

F̄ (yn,j(x) ∧ yn,l(x)|x)
(1 + o(1)).

Moreover, since F̄ (yn,j(x)∧yn,l(x)|x)= F̄ (yn(x)+ (tn,j(x) ∨ tn,l(x))a(yn(x)|x)),
Lemma 1, equation (A.2) entails that

lim
n→∞

F̄ (yn,j(x) ∧ yn,l(x)|x)
F̄ (yn(x)|x)

→
n→∞

1

L←
γ(x)(0)

= 1, (A.15)

leading to Bj,l = nΛ2
n(x)‖K‖22[Σ

(1)
E (x)]j,l/g(x)(1 + o(1)).

To sum up, the variance of Ψn converges to ‖K‖22βtΣ
(1)
E (x)β/g(x). Since Ψn

is a sum of independent centred random values, its asymptotic normality can be
established using Lyapounov theorem. It is sufficient to prove that there exists
η > 0 such that:

n∑
i=1

E
(
|Zi,n|2+η

)
= nE

(
|Z1,n|2+η

)
→ 0.

Since for every random pair (T1, T2) with finite (2 + η)th order moments, one
has E(|T1 + T2|2+η) ≤ 22+η[E(|T1|2+η) ∨ E(|T2|2+η)],

E |Z1,n|2+η
=

(
1

nΛn(x)

)2+η

E

⎡⎣∣∣∣∣∣∣
J∑

j=1

βjKh (x−X)Y bj I{Y ≥ yn,j(x)}
ψbj (yn,j(x)|x)

− E

⎛⎝ J∑
j=1

βjKh (x−X)Y bj I{Y ≥ yn,j(x)}
ψbj (yn,j(x)|x)

⎞⎠∣∣∣∣∣∣
2+η
⎤⎥⎦

≤
(

2

nΛn(x)

)2+η

× E

⎡⎢⎣
⎛⎝ J∑

j=1

|βj |Kh (x−X)Y bj I{Y ≥ yn,j(x)}
ψbj (yn,j(x)|x)

⎞⎠2+η
⎤⎥⎦ .

From Lemma 2(i) and (A.15),

ψbj (yn,j(x)|x) = g(x)ybjn (x)F̄ (yn(x)|x)/(1− bjγ+(x))(1 + o(1))

which implies that for n large enough,

E |Z1,n|2+η ≤
(
4hpΛn(x)

g(x)

)2+η

×E

⎡⎢⎣
⎛⎝ J∑

j=1

|βj |Kh (x−X) I{Y ≥ yn,j(x)}
(

Y

yn(x)

)bj

(1− bjγ+(x))

⎞⎠2+η
⎤⎥⎦ .
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Introducing y̆n(x) = min{yn,1(x), . . . , yn,J(x)}, b̆ = min{b1, . . . , bJ} and b̃ =
max{b1, . . . , bJ}, it follows that

E |Z1,n|2+η ≤ 42+η

g(x)

(
Λn(x)(1− b̆γ+(x))

yb̃n(x)

)2+η
⎛⎝ J∑

j=1

|βj |

⎞⎠2+η

× E

[(
K
(
x−X

h

)
Y b̃I{Y ≥ y̆n(x)}

)2+η
]
.

Let N (·) := K2+η(·)/‖K‖2+η
2+η and choose η such that 0 < η < −2 + 1/(b̃γ+(x)).

One has

E

[(
K
(
x−X

h

)
Y b̃I{Y ≥ y̆n(x)}

)2+η
]

= hp‖K‖2+η
2+ηE

(
Nh (x−X)Y b̃(2+η)I{Y ≥ y̆n(x)}

)
= hp‖K‖2+η

2+ηψb̃(2+η)(y̆n(x)|x)(1 + o(1)),

using expansion (A.14) that holds since N (·) also fulfills assumption (A.3).

Lemma 2(i) and (A.15) entail nE |Z1,n|2+η
= O (Λη

n(x)) → 0 as n → ∞ which
concludes the proof.

The next result establishes the asymptotic behavior of the J− dimensional
random vector {ϕ̂←

bj ,n
(αn,j |x)}j=1,...,J with αn,j = ϕbj [RVaR(αn|x)|x](1 + o(1))

for all j = 1, . . . , J , and where αn → 0 as n → ∞.

Lemma 6. Suppose (A.1)– (A.3) hold. Let x ∈ Rp such that g(x) > 0 and let
J ∈ N \ {0}, E = {b1, . . . , bJ} with b1 ≥ 0, . . . , bJ ≥ 0. Assume αn → 0 and
nhpαn → ∞ as n → ∞. If there exists ξ > 0 such that

nhpαn

(
h ∨ max

b∈L(E)
ω(x, αn, b, ξ, h)

)2

→ 0,

then, if 2bjγ+(x) < 1, for all j = 1, . . . , J , the random vector{
RVaR(αn|x)

a(RVaR(αn|x)|x)
(nhpαn)

1/2

(
ϕ̂←
bj ,n

(αn,j |x)
ϕ←
bj
(αn,j |x)

− 1

)}
j∈{1,...,J}

is asymptotically Gaussian, centred, with covariance matrix ‖K‖22Σ
(3)
E (x)/g(x)

where [Σ
(3)
E (x)]i,j = [1− (bi + bj)γ+(x)]

−1, for all (i, j) ∈ {1, . . . , J}2.
Proof. Let (z1, . . . , zJ) ∈ RJ . We are interested in the asymptotic behavior of
the c.d.f. defined by

Φn(z1, . . . , zJ ) = P

⎛⎝ J⋂
j=1

{
σ−1
n,j(x)(ϕ̂

←
bj ,n(αn,j |x)− ϕ←

bj (αn,j |x)) ≤ zj

}⎞⎠ ,
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where for j = 1, . . . , J , σ−1
n,j(x) := (1 − bjγ+(x))(nh

pαn)
1/2/a(RVaR(αn|x)|x).

For j = 1, . . . , J , let us introduce the notations

Wn,j(x) =
(nhpαn)

1/2

αn,j

(
ϕ̂bj ,n(ϕ

←
bj (αn,j |x) + σn,j(x)zj)|x)

)
.

− ϕbj (ϕ
←
bj (αn,j |x) + σn,j(x)zj)|x

)
and

sn,j(x) =
(nhpαn)

1/2

αn,j

(
αn,j − ϕbj (ϕ

←
bj (αn,j |x) + σn,j(x)zj)|x

)
.

It is easy to check that

Φn(z1, . . . , zJ ) = P

⎛⎝ J⋂
j=1

{Wn,j(x) ≤ sn,j(x)}

⎞⎠ .

Let us first focus on the non-random term sn,j(x) for j ∈ {1, . . . , J}. Since, for all
b ≥ 0 such that bγ+(x) < 1, the function ϕb(·|x) is continuously differentiable,
there exists θn,j ∈ (0, 1) such that

ϕbj

(
ϕ←
bj (αn,j |x)|x

)
− ϕbj

(
ϕ←
bj (αn,j |x) + σn,j(x)zj |x

)
= −σn,j(x)zjϕ

′
bj (rn,j(x)|x), (A.16)

where

rn,j(x) := ϕ←
bj (αn,j |x) + θn,jσn,j(x)zj

= RVaR(αn|x) + t̃n,j(x; zj)a(RVaR(αn|x)|x)

with

t̃n,j(x; θn,j) :=
ϕ←
bj
(αn,j |x)− RVaR(αn|x)
a(RVaR(αn|x)|x)

+
θn,jzj

1− bγ+(x)
(nhpαn)

−1/2.

Our goal is now to find a first order expansion of ϕ′
bj
(rn,j(x)|x). Since from

Lemma 4, ϕ←
b (·|x) satisfies the assumption of Lemma 1 for all b ≥ 0 such that

bγ+(x) < 1, equation (A.1) of Lemma 1 entails that

ϕ←
bj
(αn,j |x)− RVaR(αn|x)
a(RVaR(αn|x)|x)

→ 0. (A.17)

Using (A.17), one has for all j ∈ {1, . . . , J} that t̃n,j(x; zj) → 0. Hence, from
equation (A.2) of Lemma 1,

ϕbj (rn,j(x)|x)
ϕbj (RVaR(αn|x)|x)

→ 1. (A.18)
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Since a(y|x)/y → γ+(x) as y ↑ y∗(x), it is thus clear that

rn,j(x) = RVaR(αn|x)(1 + o(1)) ↑ y∗(x).

Using Lemma 2(ii) and (A.18), it follows that

ϕ′
bj (rn,j(x)|x) = (bjγ+(x)− 1)

ϕbj (RVaR(αn|x)|x)
a(rn,j(x)|x)

(1 + o(1)). (A.19)

Let us focus on the sequence a(rn,j(x)|x). Under (A.1), using equation (A.2) of
Lemma 1, it is clear that F̄ (rn,j(x)|x) = αn(1+ o(1)) for all j = 1, . . . , J . In ad-
dition, the function f(RVaR(·|x)|x) is regularly varying and thus, f(rn,j(x)|x) =
f(RVaR(αn|x)|x)(1 + o(1)). Hence,

a(rn,j(x)|x) =
F̄ (rn,j(x)|x)
f(rn,j(x)|x)

=
αn

f(RVaR(αn|x)|x)
(1 + o(1))

= a(RVaR(αn|x)|x)(1 + o(1)).

Substituting in (A.19) the sequence a(rn,j(x)|x) by its first order approximation,
we obtain that

ϕ′
bj (rn,j(x)|x) = (bjγ+(x)− 1)

ϕbj (RVaR(αn|x)|x)
a(RVaR(αn|x)|x)

(1 + o(1)). (A.20)

To conclude the study of the non-random term sn,j(x), it suffices to replace
in (A.16), ϕ′

bj
(rn,j(x)|x) by its first order approximation, leading to

sn,j(x) = −zj
σn,j(x)(bjγ+(x)− 1)

a(RVaR(αn|x)|x)(nhpαn)−1/2

ϕbj (RVaR(αn|x)|x)
αn,j

(1 + o(1))

= zj(1 + o(1)). (A.21)

Let us now turn to the random term Wn,j(x) for j ∈ {1, . . . , J}. Let yn(x) :=
RVaR(αn|x) and for all j = 1, . . . , J , yn,j(x) := ϕ←

bj
(αn,j |x) + σn,j(x)zj =

RVaR(αn|x)+ t̃n,j(x; 1)a(RVaR(αn|x)|x). Obviously, equation (A.18) also holds
if rn,j(x) is replaced by yn,j(x) and thus,

ϕbj (yn,j(x)|x) = αn,j(1 + o(1)) = ϕbj (RVaR(αn|x)|x)(1 + o(1)).

As a consequence, there exists ξ ∈ (0, 1) such that for n large enough

Ωn(x, h) ≤ max
b∈L(E)

ω(x, αn, b, ξ, h).

One can then apply Lemma 5 to show that the random vector (Wn,1, . . . ,Wn,J)
is equal to ξn where ξn is a J−random vector converging to a centred Gaus-

sian random variable with covariance matrix ‖K‖22Σ
(1)
E (x)/g(x). Taking account

of (A.21) and since, as a consequence of (A.17),

ϕ←
bj (αn,j |x) = RVaR(αn|x)(1 + o(1)),
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we have shown that{
RVaR(αn|x)(nhpαn)

1/2

a(RVaR(αn|x)|x)

(
ϕ̂←
bj ,n

(αn,j |x)
ϕ←
bj
(αn,j |x)

− 1

)}
j=1,...,J

converges to the c.d.f. of a centred Gaussian distribution with covariance ma-

trix ‖K‖22Σ
(3)
E (x)/g(x) = ‖K‖22A(x)Σ

(1)
E (x)A(x)/g(x) where A(x) is a diagonal

matrix with Aj,j(x) = (1− bjγ+(x))
−1.

The next result will be used in the proofs of Corollary 2 and 3. The following
notations are introduced. For x ∈ RJ , the gradient of the function Ψ : RJ �→ R

evaluated at x is denoted by (∇Ψ)x and the J × J matrix Dx is the diagonal
matrix whose (diagonal) elements are the coordinates of x.

Lemma 7. Let J ∈ N \ {0} and Ψ : RJ �→ R be a continuously differentiable
function. Assume that the assumptions of Theorem 2 hold with E = {b1, . . . , bJ}
where b1 ≥ 0, . . . , bJ ≥ 0. Introduce rn,E := {RCTMbi(αn|x)}i∈{1,...,J} and

r̂n,E := {R̂CTMbi,n(αn|x)}i∈{1,...,J}. If there exist a positive sequence vn and a
non null vector v ∈ RJ such that,

vnDrn,E
(∇Ψ)θr̂n,E+(1−θ)rn,E

P−→ v,

for all θ ∈ (0, 1), then

vn(n�
pαn)

1/2 [Ψ (r̂n,E)−Ψ(rn,E)]

is asymptotically Gaussian, centred, with variance ‖K‖22(vtΣ
(1)
E (x)v)/g(x) in the

case h/k → 0 and ‖K‖22(vtΣ
(2)
E (x)v)/g(x) in the case k/h → 0.

Proof. A first order Taylor expansion leads to

Ψ(r̂n,E)−Ψ(rn,E) = (r̂n,E − rn,E)
t(∇Ψ)θr̂n,E+(1−θ)rn,E

,

where θ ∈ (0, 1). From Theorem 2, one has r̂n,E − rn,E = (n�pαn)
−1/2Drn,E

ξn,
where ξn is a random vector of dimension J asymptotically Gaussian, centred,

with covariance matrix ‖K‖22Σ
(1)
E (x)/g(x) if h/k → 0 and ‖K‖22Σ

(2)
E (x)/g(x) if

k/h → 0. Hence, by assumption

(n�pαn)
1/2(Ψ(r̂n,E)−Ψ(rn,E)) = vnξ

t
nDrn,E

(∇Ψ)θr̂n,E+(1−θ)rn,E

= vtξ(1 + oP(1)),

and the proof is complete.
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A.2. Proofs of main results

Proof of Proposition 1. (i) Conditionally to {X = x}, Y ≤ y∗(x) a.s. and
thus

RCTMb(α|x)
[y∗(x)]b

=
1

α
E

[(
Y

y∗(x)

)b

I{Y > RVaR(α|x)}
∣∣∣∣∣X = x

]
≤ 1.

Moreover,

RCTMb(α|x)
[y∗(x)]b

≥ 1

α

(
RVaR(α|x)

y∗(x)

)b

P(Y > RVaR(α|x)|X = x)

=

(
RVaR(α|x)

y∗(x)

)b

which tends to 1 since RVaR(α|x) → y∗(x) as α → 0. These two bounds prove
the result.

(ii) Recall that RVaR(α|x)=ϕ←
0 (α|x) and RCTMb(α|x)=ϕb(ϕ

←
0 (α|x)|x)/α.

Then, applying Lemma 2(i) with y = ϕ←
0 (α|x) entails that

lim
α→0

ϕb(ϕ
←
0 (α|x)|x)

α[ϕ←
0 (α|x)]b =

1

1− bγ+(x)
,

since F̄ (·|x) = ϕ0(·|x), and (2.3) is proved. Next, Lemma 1, (A.1) with U(·|x) =
RVaR(·|x) implies

lim
α→0

RVaR(sα|x)/RVaR(α|x)− 1

a(RVaR(α|x)|x)/RVaR(α|x) = Lγ(x)(1/s). (A.22)

Two cases occur. If γ(x) > 0, (A.22) and (A.3) entail that

lim
α→0

RVaR(sα|x)
RVaR(α|x) = 1 + γ(x)Lγ(x)(1/s) = s−γ(x).

If γ(x) ≤ 0, (A.22) and (A.3) yield

lim
α→0

RVaR(sα|x)
RVaR(α|x) = 1,

and the proof is complete.

Proof of Theorem 1. Remarking that a(·|x) = F̄ (·|x)/f(·|x) (see Table 3),
the result is a direct consequence of Lemma 6 with J = 1 and b1 = 0.
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Proof of Theorem 2. Let (z1, . . . , zJ) ∈ RJ . Our goal is to prove that the
c.d.f. defined by

Φn(z1, . . . , zJ) = P

⎛⎝ J⋂
j=1

{
σ−1
n,j(x)(R̂CTMbj ,n(αn|x)− RCTMbj (αn|x) ≤ zj

}⎞⎠ ,

with σn,j(x) := RCTMbj (αn|x)(n�pαn)
−1/2 converges to the c.d.f. of a Gaussian

random vector. To this aim, introduce the following notations: for j = 1, . . . , J
and θ > 0 let

αn,j(θ) := αn(RCTMbj (αn|x) + θσn,j(x)zj),

vn,j(x) := (1− bjγ+(x))(n�
pαn)

1/2/a(RVaR(αn|x)|x),

Wn,j(x) = vn,j(x)
(
ϕ̂←
bj ,n(αn,j(1)|x)− ϕ←

bj (αn,j(1)|x)
)
,

W
(0)
n,j (x) = vn,j(x)

(
R̂VaRn(αn|x)− RVaR(αn|x)

)
.

It is easy to check that

Φn(z1, . . . , zJ) = P

⎛⎝ J⋂
j=1

{
Wn,j(x)−W

(0)
n,j (x) ≤ sn,j(x)

}⎞⎠ , (A.23)

with sn,j(x) := vn,j(x)(RVaR(αn|x)− ϕ←
bj
(αn,j(1)|x)). Let us first focus on the

non-random term sn,j(x) for j = {1, . . . , J}. Remarking that RVaR(αn|x) =
ϕ←
bj
(αnRCTMbj (αn|x)|x), a first order Taylor expansion leads to:

sn,j(x) = −zjαnvn,j(x)σn,j(x)(ϕ
←
bj )

′(αn,j(θn,j)|x)

where (θn,1, . . . , θn,J) ∈ (0, 1)J . Our aim is to find a first order expansion of
(ϕ←

bj
)′(αn,j(θn,j)|x) = 1/(ϕ′

bj
(ϕ←

bj
(αn,j(θn,j)|x)|x). First note that

ϕ←
bj (αn,j(θn,j)|x) = RVaR(αn|x) + tn,j(x)a(RVaR(αn|x)|x)

with

tn,j(x) =
ϕ←
bj
(αn,j(θn,j)|x)− RVaR(αn|x)

a(RVaR(αn|x)|x)
.

Since αn,j(θn,j) = ϕbj (RVaR(αn|x)|x)(1+o(1)), equation (A.17) in the proof of
Lemma 6 entails that tn,j(x) → 0. Hence, equation (A.20) also holds if rn,j(x)
is replaced by ϕ←

bj
(αn,j(θn,j)|x). Therefore,

(ϕ←
bj )

′(αn,j(θn,j)|x) =
a(RVaR(αn|x)|x)

(bjγ+(x)− 1)ϕbj (RVaR(αn|x)|x)
(1 + o(1)).

Replacing in the Taylor expansion of sn,j(x) yields sn,j(x) = zj(1 + o(1)).
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We are now interested in the random term

Wn,j(x) =
1− bjγ+(x)

a(RVaR(αn|x)|x)
(n�pαn)

1/2
(
ϕ̂←
bj ,n (αn,j(1)|x)− ϕ←

bj (αn,j(1)|x)
)
.

Since

ϕ←
bj (αn,j(1)|x) = RVaR(αn|x)(1 + o(1))

αn,j(1) = ϕbj (RVaR(αn|x)|x)(1 + o(1)),

Lemma 6 entails that

{Wn,j}j=1,...,J = (�/h)
p/2

ξn, (A.24)

where ξn is asymptotically Gaussian, centred with covariance matrix

‖K‖22Ã(x)Σ
(3)
E (x)Ã(x)/g(x) = ‖K‖22Σ

(1)
E (x)/g(x)

and where Ã(x) is a diagonal matrix with Ãj,j(x) = 1− bjγ+(x). Furthermore,
from Theorem 1, {

W
(0)
n,j

}
j=1,...,J

= (�/k)
p/2

ξ(0)n , (A.25)

where ξ
(0)
n is asymptotically Gaussian, centred with covariance ‖K‖22vvt/g(x) =

‖K‖22Σ
(2)
E (x)/g(x) and v = (1 − b1γ+(x), . . . , 1 − bJγ+(x))

t ∈ RJ . Collect-
ing (A.23)–(A.25) and using the fact that sn,j(x) → zj conclude the proof.

Proof of Corollary 2. First, recall the notations introduced in Lemma 7:
For all set E = {b1, . . . , bJ} where b1 ≥ 0, . . . , bJ ≥ 0,

rn,E = (RCTMb1(αn|x), . . . ,RCTMbJ (αn|x))t,
r̂n,E = (R̂CTMb1,n(αn|x), . . . , R̂CTMbJ ,n(αn|x))t.

Remark also that under the assumptions of Theorem 2 with E = {b1, . . . , bJ},
one has for all θ ∈ (0, 1) and i ∈ {1, . . . , J} that

θR̂CTMi,n(αn|x) + (1− θ)RCTMi(αn|x) = RCTMi(αn|x) (1 +OP(σn)) ,
(A.26)

where σn := (n�pαn)
−1/2 → 0.

(i) is a direct consequence of Theorem 2 with E = {1}.
(ii) Let E = {1, 2}. We start by remarking that RCTV(αn|x) = Ψ(rn,E) where
for x = (x1, x2)

t, Ψ(x) = x2 − x2
1. Since (∇Ψ)x = (−2x1, 1)

t, equation (A.26)
entails that

Drn,E
(∇Ψ)θr̂n,E+(1−θ)rn,E

=
(
−2[RCTM1(αn|x)]2,RCTM2(αn|x)

)t
(1+OP(σn)).

Proposition 1(ii) leads to

Drn,E
(∇Ψ)θr̂n,E+(1−θ)rn,E

= [RVaR(αn|x)]2vt(1 + oP(1))
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with

v =

(
− 2

(1− γ+(x))2
,

1

1− 2γ+(x)

)t

.

Thus, the assumptions of Lemma 7 are satisfied with vn = [RVaR(αn|x)]−2. The
end of the proof is straightforward by using Lemma 7 and remarking that

vtΣ
(1)
E (x)v =

1− 7γ+(x) + 9γ2
+(x) + 15γ3

+(x)− 6γ4
+(x)

(1− γ+(x))2(1− 2γ+(x))(1− 3γ+(x))(1− 4γ+(x))

= ϑRCTV,1(γ+(x))

and vtΣ
(2)
E (x)v =

(
1 + γ+(x)

1− γ+(x)

)2

= ϑRCTV,2(γ+(x)).

(iii) Let E = {1, 2, 3} and remark that RCTS(αn|x) = Ψ(rn,E) where for x =
(x1, x2, x3)

t, Ψ(x) = x3(x2−x2
1)

−3/2. The gradient of the function Ψ(·) evaluated
at x is

(∇Ψ)x =

(
3x1x3

(x2 − x2
1)

5/2
,−3

2

x3

(x2 − x2
1)

5/2
,

1

(x2 − x2
1)

3/2

)t

.

Hence, using equation (A.26), the vector Drn,E
(∇Ψ)θr̂n,E+(1−θ)rn,E

is given by(
3[RCTM1(αn|x)]2RCTM3(αn|x)

[R̃CTV(αn|x)]5/2
(1 +OP(σn)),

−3

2

RCTM2(αn|x)RCTM3(αn|x)
[R̃CTV(αn|x)]5/2

(1 +OP(σn)),

RCTM3(αn|x)
[R̃CTV(αn|x)]3/2

(1 +OP(σn))

)t

,

where

R̃CTV(αn|x) = RCTM2(αn|x)(1 +OP(σn))− [RCTM1(αn|x)]2(1 +OP(σn))
2

= RCTV(αn|x) +OP (σnRCTM2(αn|x))
+OP

(
σn[RCTM1(αn|x)]2

)
.

Since by assumption σn[RCTS(αn|x)]2/3 → 0 and, by Proposition 1(ii), both
RCTM2(αn|x) and [RCTM1(αn|x)]2 are O([RVaR(αn|x)]2), it appears that

R̃CTV(αn|x) = RCTV(αn|x)(1 + oP(1)).

Using again Proposition 1(ii), it is then easy to check that

vnDrn,E
(∇Ψ)θr̂n,E+(1−θ)rn,E

P−→ v
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with vn = [RCTS(αn|x)]−5/3 and

v =

(
3(1− 3γ+(x))

2/3

(1− γ+(x))2
,−3

2

(1− 3γ+(x))
2/3

1− 2γ+(x)
,

γ2
+(x)(1− 3γ+(x))

2/3

(1− γ+(x))2(1− 2γ+(x))

)t

.

Applying Lemma 7 and remarking that vtΣ
(1)
E (x)v = ϑRCTS,1(γ+(x)) and that

vtΣ
(2)
E (x)v = ϑRCTS,2(γ+(x)) conclude the proof.

Proof of Corollary 3. (i) First remark that ŷ∗b,n(x) = Ψ(R̂CTMb,n(αn|x)),
with Ψ(x) = x1/b for x ≥ 0. Since (∇Ψ)x = b−1x1/b−1, one has for θ ∈ (0, 1)
and in the situation y∗(x) < ∞ that

RCTMb(αn|x)(∇Ψ)
θR̂CTMb,n(αn|x)+(1−θ)RCTMb(αn|x)

=
RVaR(αn|x)

b
[θR̂CTMb,n(αn|x) + (1− θ)RCTMb(αn|x)]1/b−1

=
RVaR(αn|x)

b
(1 + oP(1)),

from Proposition 1(ii) and since, for all θ ∈ (0, 1),

θR̂CTMb,n(αn|x) + (1− θ)RCTMb(αn|x) = RCTMb(αn|x) (1 +OP(σn)) ,

from Theorem 2 and where σn := (n�pαn)
−1/2 → 0. Hence, the assumptions of

Lemma 7 are satisfied with vn = 1/RVaR(αn|x) and v = 1/b and thus,

(n�pαn)
−1/2[RVaR(αn|x)]−1

(
ŷ∗b,n(x)− [RCTMb(αn|x)]1/b

)
converges to aN (0, ‖K‖2/(b2g(x))) distribution since vtΣ

(1)
{b}(x)v= vtΣ

(2)
{b}(x)v=

b−2. We conclude the proof by remarking that, from Lemma 3,

(n�pαn)
1/2[RVaR(αn|x)]−1

(
[RCTMb(αn|x)]1/b − RVaR(αn|x)

)
= O

(
(n�pαn)

1/2Δa(RVaR(αn|x)|x)
)

and that RVaR(αn|x) → y∗(x) as n → ∞.
(ii) Let us now consider the bias term in the situation γ(x) < 0:

(n�pαn)
1/2(RVaR(αn|x)− y∗(x))

= (n�pαn)
1/2Δa(RVaR(αn|x)|x))RVaR(αn|x)

RVaR(αn|x)− y∗(x)

a(RVaR(αn|x)|x)

=
y∗(x)

γ(x)
(n�pαn)

1/2Δa(RVaR(αn|x)|x))(1 + o(1)),

since RVaR(αn|x) → y∗(x) and (RVaR(αn|x) − y∗(x))/a(RVaR(αn|x)|x) →
1/γ(x) as n → ∞ in view of (1.2.14) in [28, Lemma 1.2.9]. It is thus clear that the
bias term tends to 0 under the assumption (n�pαn)

1/2Δa(RVaR(αn|x)|x)) → 0
as n → ∞.
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