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Abstract: We propose least tail-trimmed absolute deviation estimation
for autoregressive processes with infinite/finite variance. We explore the
large sample properties of the resulting estimator and establish its asymp-
totic normality. Moreover, we study convergence rates of the estimator un-
der different moment settings and show that it attains a super-

√
n con-

vergence rate when the innovation variance is infinite. Simulation studies
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method and that of relevant statistical inferences. A real example is also
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1. Introduction

Heavy-tailed time series is often encountered in the real world and particularly
in economics and finance; see [5, 6] for some of the examples. Autoregressive
(AR) processes with infinite variance have been widely used to model such a
series. Let {Xt} be an AR process of order p (AR(p)); that is, {Xt} satisfies the
recursions

Xt = φ0 + φ1Xt−1 + · · ·+ φpXt−p + Zt, (1.1)
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where {Zt} is a sequence of independent and identically distributed (i.i.d.) ran-
dom variables. Heavy-tailed time series {Xt} is induced when the innovation Zt

has an infinite variance. A number of papers have been devoted to estimation of
φφφ = (φ0, φ1, . . . , φp)

T
, the vector of unknown AR coefficients; see [10, 11] for a

review. Specifically, [9] established the limiting distribution of the least squares
(LS) and Yule–Walker estimators. [8] made available the respective asymptotic
theory of the M-estimator and least absolute deviation (LAD) estimator when
the innovation Zt is in the domain of attraction of a stable law. However, nei-
ther these estimators are asymptotically normal nor their limiting distributions
have a closed form. As a result, it is difficult to apply the asymptotic theory to
statistical inferences due to the lack of effective inference techniques. Typically
one needs to resort to nonparametric methods for an approximation of limiting
distribution. Along another strand of research, [11] proposed self-weighted LAD
(SLAD) estimation and showed asymptotic normality of the resulting estima-
tor with a standard-

√
n convergence rate when the innovation density and its

derivative are uniformly bounded. Ling’s result admits statistical inferences in
a conventional fashion. More recently, aiming at robust parameter estimation,
[10] developed a least tail-trimmed squares (LTTS) procedure. It is shown that
the LTTS estimator is asymptotically normal and can achieve a super-

√
n con-

vergence rate when the innovation variance is infinite. Also, Hill’s simulation
study indicated that the LTTS procedure is robust to outlying observations in
both small and large samples.

In the present paper we explore least tail-trimmed absolute deviation (LT-
TAD) estimation, the LAD version of Hill’s LTTS estimation, for AR processes.
Our study is motivated by the well known fact that the LAD method in general
is superior to the LS method when modeling heavy-tailed data due to its robust-
ness to outliers. For infinite variance AR processes, it has been shown that the
LAD estimator has a higher convergence rate than the LS estimator. Our study
suggests that the merits of the LAD method carry over to LTTAD estimation
when compared to LTTS estimation; for example, the LTTAD estimator con-
verges faster than the LTTS estimator. Meanwhile, asymptotic normality of the
LTTAD estimator is alike ensured. Moreover, without exerting tail-trimming on
the extreme residual values, the LTTAD estimation on the one hand is much
simpler to implement numerically and on the other hand requires weaker model
assumptions.

Our study is also related to [11], but major difference exists. Ling employed a
constant trimming threshold as an example of weight selection. However, when
the constant is replaced by quantile order statistic of observations (as in Ling’s
simulation studies), the corresponding weight no longer meets the requirement
(i.e. Ling’s Assumption 2 on page 383). Our study develops theoretical treat-
ments under such a situation. It turns out that, while the resulting estima-
tor retains asymptotic normality, it actually achieves a super-

√
n (instead of

standard-
√
n) convergence rate in the case of infinite variance.

The remainder of the paper is organized as follows. Section 2 sets up the study
and defines the proper LTTAD estimator. We develop the asymptotic proper-
ties of the estimator. Statistical inferences are also explored. In Section 3 we
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discuss convergence rate of the LTTAD estimator under different cases, showing
its super-

√
n convergence when the innovation variance is infinite. Simulation

studies are conducted in Section 4 to assess the finite sample performance of the
proposed procedures and a real example of financial time series is presented as
well. Technical proofs are relegated to the Appendix.

2. Least tail-trimmed absolute deviation estimation

In this paper we assume that

(A1) the innovation Zt has zero median and a probability density function f(·)
that is continuous in a neighborhood of zero, f(0) > 0, and supz∈R

f(z) <
B < ∞; and

(A2) the distribution of Zt has Pareto-like tails:

P (|Zt| > z) = Cz−α(1 + o(1)), (2.1)

where C > 0 is a constant and α > 0 is the tail index.

Assumption (A2) is satisfied by the Pareto distribution, stable distribution with
index α ∈ (0, 2), Student’s t distribution, Fréchet distribution, etc. Under this
assumption, E|Zt|ϑ < ∞ for ϑ ∈ (0, α), and therefore there exists a unique
strictly stationary and ergodic process {Xt}. When α ≤ 2, Zt has no finite
variance and whence {Xt} is a heavy-tailed series, which is the case of particular
interest.

For the model (1.1), φ (z) = 1 −
∑p

j=1 φjz
j is called the AR polynomial.

Under the assumption

(A3) the polynomial φ (z) has all its roots outside the unit circle in the complex
plane,

Xt can be represented as Xt =
∑∞

j=0 ψjZt−j , where ψj , j = 0, 1, . . ., is the

coefficient of zj in the power series expansion of 1/φ(z). According to the results
of [4],

lim
z→∞

P (|Xt| > z)

P (|Zt| > z)
=

∞∑
j=0

|ψj |α,

from which it follows that the distribution of Xt also has Pareto-like tails with
the same decay rate as in (2.1).

Let φφφ0 = (φ00, φ01, . . . , φ0p)
T
denote the true value of φφφ. Suppose X1, . . . , Xn

are the observations from the true model. At t = p + 1, . . . , n, the residual
corresponding to φφφ is given by

zt(φφφ) = Xt − φ0 − φ1Xt−1 − · · · − φpXt−p.

To introduce the LTTAD estimator, we will trim the extreme values of Xt−i,
t = p + 1, . . . , n, i = 1, . . . , p. Define Xa

t = |Xt|, t = 1, . . . , n and let Xa
(1) ≥

· · · ≥ Xa
(n) denote the order statistics of Xa

1 , . . . , X
a
n. Also, let kn be an integer
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number such that 1 ≤ kn < n and 1/kn + kn/n → 0 as n → ∞. The LTTAD

estimator φ̂φφn of φφφ0 is defined as the minimizer of the objective function

ln (φφφ) =

n∑
t=p+1

|zt(φφφ)|Int, (2.2)

where Int =
∏p

i=1 I(|Xt−i| < Xa
(kn)

) with I(·) being the indicator function.

Unlike Hill’s LTTS procedure, there is no trimming in (2.2) based on the mag-
nitude of |zt(φφφ)|. There are several advantages of doing so. First, ln (φφφ) is a
convex function of φφφ, which on the one hand guarantees that the established
theoretical results hold for the global minimizer and on the other hand consid-
erably reduces the burden of numerical computations. Second, the “fractiles”
assumption of [10] can be dropped. Third, the symmetry is no longer required
for the distribution of Zt, that is, skewed distributions are allowed for Zt.

For t > p, noting that zt(φφφ0) = Zt, we have

zt(φφφ) = Zt − (φ0 − φ00)− (φ1 − φ01)Xt−1 − · · · − (φp − φ0p)Xt−p

=: Zt − (φφφ− φφφ0)
T
Yt,

where Yt = (1, Xt−1, . . . , Xt−p)
T
. Let Vn = E(YtY

T
t I

c
nt), where Icnt is the

model version of Int; i.e. Icnt =
∏p

i=1 I(|Xt−i| < cn), where {cn} is a non-
random sequence such that P (|Xt| ≥ cn) = kn/n. By similar arguments of [10],
it can be shown that Vn is positive definite for sufficiently large n.

The asymptotic distribution of the LTTAD estimator is given in the following
theorem.

Theorem 2.1. Under the Assumptions (A1)–(A3), the LTTAD estimator sat-
isfies

n1/2V1/2
n

(
φ̂φφn −φφφ0

)
d→ 1

2f(0)
N (0, Ip+1) . (2.3)

Proof. See Appendix.

Theorem 2.1 admits statistical inferences with respect to φφφ0 in a conventional
fashion. For example, consider a linear null hypothesis of the form

H0 : ΓΓΓφφφ0 = γγγ,

where ΓΓΓ and γγγ are s × (p + 1) constant matrix and s × 1 constant vector,
respectively. A Wald test statistic can be constructed once Vn and f(0) are
consistently estimated. An estimator of Vn is given by

V̂n :=
1

n− p

n∑
t=p+1

YtY
T

t Int.

On the other hand, a kernel density estimator of f(0) is

f̂(0) =
1∑n

t=p+1 Int

n∑
t=p+1

IntKh(Xt − φ̂φφ
T

nYt),
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where Kh(·) = K(·/hn)/hn with K(·) being a symmetric kernel function and

hn > 0 being a bandwidth. It can be shown that V̂n = Vn(1+op(1)). Moreover,

f̂(0) = f(0)+op(1) under some regularity conditions on the kernel function and
bandwidth. Then, a Wald test statistic defined as

Ŵ :=
(
ΓΓΓφ̂φφn − γγγ

)T

(
1

4nf̂2(0)
ΓΓΓV̂−1

n ΓΓΓT

)−1 (
ΓΓΓφ̂φφn − γγγ

)
has a null limiting chi-squared distribution with s degrees of freedom.

3. Convergence rate

It follows from Theorem 2.1 that, for i = 0, 1, . . . , p,

n1/2V
1/2
i+1,i+1,n

(
φ̂i,n − φ0i

)
d→ 1

2f(0)
N (0, 1) (3.1)

where φ̂i,n is the LTTAD estimator of φ0i and Vi+1,i+1,n is the (i+1)th element
on the diagonal of the matrix Vn. As we specify the same distribution tails of Zt

as in [10], the convergence rate of the LTTAD estimator can be straightforwardly
derived. First, by the results of [10] that

E(Icnt) = 1+o(1) and E(X2
t−iI

c
nt) = E(X2

t I(|Xt| < cn))(1+o(1)), i = 1, . . . , p,

we have

V1,1,n ∼ 1 and Vi,i,n ∼ E(X2
t I(|Xt| < cn)), i = 2, . . . , p+ 1.

On the other hand, [10] showed that

E(X2
t I(|Xt| < cn)) ∼

{
d ln(n), if α = 2,

α
2−αd

2/α
(

n
kn

)2/α−1

, if α ∈ (0, 2),

where d is some scale parameter. So, the convergence rate of our LTTAD esti-
mator is in order.

Theorem 3.1. Suppose Assumptions (A1)–(A3) are satisfied.

(a) If α > 2, then the convergence rate of φ̂i,n is n1/2, i = 0, 1, . . . , p.

(b) If α = 2, then the convergence rates of φ̂0,n and φ̂i,n, i = 1, . . . , p, are n1/2

and (n ln(n))1/2, respectively.

(c) If α ∈ (0, 2), then the convergence rates of φ̂0,n and φ̂i,n, i = 1, . . . , p, are
n1/2 and n1/2(n/kn)

1/α−1/2, respectively.

Remark 1. When the innovation variance is infinite (i.e. α ∈ (0, 2]), the LT-
TAD estimator has a higher convergence rate than Hill’s LTTS estimator. More
specifically,

‖φ̂φφLTTS − φφφ0‖
‖φ̂φφLTTAD − φφφ0‖

=

{
OP ((ln(n))

1/2), if α = 2,
OP ((n/k

Z
n )

1/α−1/2), if α ∈ (0, 2),
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where kZn is the number of trimmed |zt(φφφ)|’s as in [10], which satisfies 1 ≤ kZn <
n− p and 1/kZn + kZn /n → 0 as n → ∞. On the other hand, when α ∈ (0, 2) the
LAD estimator of φ0i, i = 1, . . . , p, has a n1/α convergence rate so it converges
faster than the LTTAD estimator:

|φ̂i,LAD − φ0i|
|φ̂i,LTTAD − φ0i|

= OP ((kn)
1/2−1/α), i = 1, . . . , p.

Remark 2. When the innovation variance is finite (i.e. α > 2), the trimming
does not affect the efficiency and the asymptotic result coincides with that of
the LAD estimator established [7]. When 0 < α ≤ 2, the super-

√
n convergence

is ensured.

4. Numerical studies

4.1. Simulation studies

We conducted simulation studies to evaluate the finite-sample performance of
LTTAD estimation. We considered the AR(2) model studied in [10]: Xt = 0.2+
0.8Xt−1 − 0.3Xt−2 + Zt, where {Zt} is a sequence of i.i.d. random variables.
Two types of distributions were specified for the innovation {Zt}: the two-sided
compound Pareto distribution and the stable distribution. The Pareto (type II)
distribution has a probability density function (pdf) of the form

g(z) =
α

σ

(
1 +

z − μ

σ

)−(α+1)

, z ≥ μ,

where α > 0 is the tail index, μ ∈ R is the location parameter, and σ > 0
is the scale parameter. In the studies we set μ = 0 and σ = 1. The two-
sided compound Pareto distribution was defined such that it had a pdf of
0.5g(−z)I(z < 0) + 0.5g(z)I(z ≥ 0) for z ∈ R. So, the distribution is sym-
metric about zero. Three values of α were taken: 0.75 (infinite mean), 1.5 (finite
mean but infinite variance), and 2.5 (finite variance). On the other hand, the
stable distribution can be described by four parameters: the index parameter
α ∈ (0, 2], the skewness parameter β̃ ∈ [−1, 1], the scale parameter γ̃ > 0,
and the shift parameter δ̃. We denote the distribution as S(α, β̃, γ̃, δ̃). We con-
sidered two index values, 0.75 (infinite mean) and 1.5 (finite mean but infinite
variance); more specifically, we used skewed distributions S(0.75, 0.5, 1,−0.2565)
and S(1.5, 0.5, 1,−0.1339), where for each distribution the value of shift param-
eter ensures a median of zero (i.e. its magnitude equals the 50th percentile of
the corresponding distribution with δ̃ = 0), as well as symmetric distributions
S(0.75, 0, 1, 0) and S(1.5, 0, 1, 0).

Three sample sizes: 100, 400, and 800 were used. When sample size is small,
the objective function ln (φφφ) in (2.2) might be sensitive to extreme values of
zt(φφφ). As a remedial measure, additional trimming on the residuals may be
incorporated into ln (φφφ) as in [10]. In this regard, we define likewise zat (φφφ), t =
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p + 1, . . . , n, and za(1)(φφφ), · · · , za(n−p)(φφφ). Then, we can formulate the following
objective function

l∗n (φφφ) =
n∑

t=p+1

|zt(φφφ)|IntIznt(φφφ),

where Iznt(φφφ) = I(|zt(φφφ)| < za(kz
n)
(φφφ)). The minimizer of l∗n (φφφ) is denoted as

φ̂φφ
∗
n and is referred to as the LTTADR estimator of φφφ0. However, our simula-

tion studies indicated that it would not necessarily have a better finite-sample
performance than the LTTAD estimator.

We simulated 5000 replicates of time series from the AR(2) model for each
case of setting. To compare the performance of the LTTAD estimator with the
LAD, Hill’s LTTS, Ling’s SLAD, and LTTADR estimators we computed the
empirical bias and standard deviation (SD) for each type of estimates. The
trimming parameter kn was set to max{1, [0.2n/(ln(n))2]} in the tail-trimmed
procedures (i.e. LTTS, LTTAD, and LTTADR); that is, kn = 1, 2, and 4 for
n = 100, 400, and 800, respectively. On the other hand, the specification of
kZn = max{1, [0.05n/ ln(n)]} in [10] was used in the computation of LTTS and
LTTADR estimates, which equals to 1, 3, and 6 for the three sample sizes,
respectively.

Table 1 reported the results when α = 0.75 and Zt follows a compound
Pareto distribution; a similar pattern was displayed when Zt follows a Stable
distribution. The table exposed us to several distinct features. First, while all
five procedures performed very well in estimation of φ01 and φ02, the estimates of
the intercept φ00 were quite off except for the LTTAD, SLAD, and LAD (when
n = 400 and 800) procedures. The irregular bias was resulted from a large num-
ber of extremely outlying estimates. It seemed that the undefined mean of time
series somehow caused difficulty in numerical minimization to obtain φ̂00. Note
that, this abnormality vanished when there existed finite mean; see Tables 2
and 3. Second, LTTAD estimation significantly outperformed LTTS estimation.
Third, additional trimming on the residuals did not necessarily improve the per-
formance of estimation. This may be partially due to the non-convexity of the
LTTADR criterion function. Note that, LAD estimates are expected to have a
better performance than LTTAD estimates; see Remark 1. The motivation of
studying LTTAD estimation is to trade a small loss of precision for asymptotic
normality so that statistical inferences can be conducted in the classical fashion.
The magnitudes of the reported standard deviations in Table 1 supported the
relative convergence rates of the LAD, LTTS, and LTTAD estimators. Table 2
contains the results when the distribution of Zt has a tail index α = 1.5 (fi-
nite mean but infinite variance). The LTTAD estimator again outperformed the
LTTS estimator. We also examined the impact of skewness of the innovation
distribution on estimation. It is seen from the results that skewness made little
difference on the performance of LTTAD estimation but resulted in a biased
estimate of the intercept φ00 for the LTTS method. Table 3 reported the results
when the time series has a finite variance. On the one hand, the LTTAD estima-
tor outperformed the LTTS estimator. On the other hand, there was not much
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Table 1

Coefficient estimates for the AR(2) model Xt = φ00 + φ01Xt−1 + φ02Xt−2 + Zt, where
(φ00, φ01, φ02) = (0.2, 0.8,−0.3) and Zt is compound Pareto with tail index α = 0.75.

LAD SLAD LTTS LTTAD LTTADR
Bias× 102

(SD)
Bias× 102

(SD)
Bias× 102

(SD)
Bias× 102

(SD)
Bias× 102

(SD)

n = 100

φ̂0 30.41
(19.49)

0.360
(0.488)

113.4
(87.68)

0.502
(0.745)

3.7× 104
(2.6×104)

φ̂1 −0.081
(0.013)

−0.061
(0.015)

−1.085
(0.082)

0.028
(0.029)

0.111
(0.055)

φ̂2 0.004
(0.010)

−0.042
(0.013)

−0.128
(0.063)

−0.048
(0.017)

0.005
(0.031)

n = 400

φ̂0 −0.239
(0.242)

0.030
(0.079)

−148.1
(258.1)

−0.404
(0.192)

−110.4
(1646)

φ̂1 0.001
(0.004)

−0.005
(0.003)

−0.121
(0.026)

−0.002
(0.003)

−0.139
(0.045)

φ̂2 −0.004
(0.002)

−0.003
(0.003)

−0.020
(0.021)

0.000
(0.002)

0.084
(0.027)

n = 800

φ̂0 −0.190
(0.176)

0.068
(0.054)

3796
(4344)

0.372
(0.391)

3245
(4327)

φ̂1 −0.002
(0.002)

−0.001
(0.002)

0.027
(0.026)

−0.014
(0.006)

0.012
(0.013)

φ̂2 −0.000
(0.001)

−0.000
(0.002)

−0.071
(0.021)

0.010
(0.005)

−0.027
(0.014)

difference in performance between the LTTAD and LTTADR estimators. In all
the cases the LTTAD and SLAD methods had comparable performances. This is
not surprising because the SLAD estimation implemented in Ling’s simulation
studies is essentially a variant of the LTTAD method. To see it, note that the
constant trimming threshold in Ling’s equation (2.3) was replaced by the 95%
quantile of Xa

1 , · · · , Xa
n. As a consequence, Ling weighted down substantially

the relevant residual terms in the objective function while we simply assigned a
zero weight to them.

To get a feeling of normality of the LTTAD and LTTS estimators, in Figure 1
we constructed normal probability plots of LTTAD and LTTS estimates of φ00,
φ01, and φ02, respectively, where Zt is Stable with tail index α = 1.5 and
n = 400. The Gaussian approximation was fairly reasonable for both estimators
if the few outliers due to the computer glitch were ignored.

To explore the performance of the Wald test, we considered testing AR(1)
model against AR(2) model, where H0 : (0, 0, 1)(φ0, φ1, φ2)

T = 0. Data were
simulated from an AR(1)/AR(2) model with φ0 = 0.2, φ1 = 0.8, and φ2 ranging
from −0.10 to 0.10 with an increment of 0.05, while other settings remained the
same as before. We computed the empirical power/size of the Wald test based
on both LTTAD and LTTS methods, respectively, at nominal significance levels
of 0.01, 0.05, and 0.1. The results when Zt is a two-sided compound Pareto
distribution with tail index α = 1.5 were displayed in Figure 2, where the dotted
horizontal line represents the nominal size. In estimation of f(0) a Gaussian
kernel was used with the default normal scale bandwidth selector. For both
methods, the empirical size was close to the nominal size. But the Wald test
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Table 2

Coefficient estimates for the AR(2) model Xt = φ00 + φ01Xt−1 + φ02Xt−2 + Zt, where
(φ00, φ01, φ02) = (0.2, 0.8,−0.3) and Zt is Stable with tail index α = 1.5.

LAD SLAD LTTS LTTAD LTTADR
Bias× 102

(SD)
Bias× 102

(SD)
Bias× 102

(SD)
Bias× 102

(SD)
Bias× 102

(SD)

Zt ∼ S(1.5, 0, 1, 0); symmetric case
n = 100

φ̂0 0.505
(0.181)

0.632
(0.186)

0.557
(0.250)

0.601
(0.185)

0.670
(0.184)

φ̂1 −0.671
(0.069)

−0.760
(0.085)

−1.188
(0.095)

−0.659
(0.085)

−0.705
(0.085)

φ̂2 −0.217
(0.068)

−0.457
(0.082)

−0.433
(0.086)

−0.355
(0.077)

−0.291
(0.077)

n = 400

φ̂0 0.031
(0.088)

0.036
(0.091)

−0.086
(0.112)

0.053
(0.089)

0.057
(0.088)

φ̂1 −0.099
(0.027)

−0.202
(0.043)

−0.197
(0.041)

−0.135
(0.034)

−0.148
(0.034)

φ̂2 −0.080
(0.027)

−0.127
(0.041)

−0.156
(0.038)

−0.098
(0.032)

−0.078
(0.032)

n = 800

φ̂0 −0.083
(0.062)

−0.072
(0.064)

−0.131
(0.081)

−0.089
(0.062)

−0.110
(0.062)

φ̂1 −0.023
(0.017)

−0.061
(0.030)

−0.115
(0.028)

−0.086
(0.023)

−0.092
(0.023)

φ̂2 −0.020
(0.017)

−0.080
(0.029)

−0.068
(0.027)

−0.013
(0.022)

−0.001
(0.023)

Zt ∼ S(1.5, 0.5, 1,−0.1339); skewed case with median zero
n = 100

φ̂0 1.675
(0.192)

2.109
(0.195)

22.20
(0.264)

1.962
(0.194)

0.927
(0.194)

φ̂1 −0.601
(0.070)

−0.713
(0.088)

−1.135
(0.096)

−0.652
(0.087)

−0.671
(0.087)

φ̂2 −0.152
(0.069)

−0.480
(0.084)

−0.496
(0.085)

−0.333
(0.078)

−0.273
(0.078)

n = 400

φ̂0 0.274
(0.093)

0.468
(0.097)

21.18
(0.120)

0.355
(0.094)

−0.372
(0.095)

φ̂1 −0.072
(0.028)

−0.183
(0.043)

−0.168
(0.041)

−0.145
(0.035)

−0.130
(0.035)

φ̂2 −0.064
(0.027)

−0.150
(0.042)

−0.129
(0.039)

−0.079
(0.033)

−0.077
(0.033)

n = 800

φ̂0 0.018
(0.065)

0.103
(0.068)

20.87
(0.090)

0.053
(0.067)

−0.645
(0.067)

φ̂1 0.010
(0.017)

−0.101
(0.030)

−0.040
(0.029)

−0.052
(0.024)

−0.045
(0.024)

φ̂2 −0.011
(0.017)

−0.050
(0.030)

−0.066
(0.027)

−0.022
(0.023)

−0.011
(0.023)

based on the LTTAD method had much larger empirical power, especially when
the true φ2 value is close to the hypothesized value of zero.

4.2. Empirical example

As an empirical example, we considered the log-returns of Hang Seng Index
(HSI) between June 3, 1996 and May 31, 1998. The same data set has been
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Table 3

Coefficient estimates for the AR(2) model Xt = φ00 + φ01Xt−1 + φ02Xt−2 + Zt, where
(φ00, φ01, φ02) = (0.2, 0.8,−0.3) and Zt is compound Pareto with tail index α = 2.5.

LAD SLAD LTTS LTTAD LTTADR
Bias× 102

(SD)
Bias× 102

(SD)
Bias× 102

(SD)
Bias× 102

(SD)
Bias× 102

(SD)

n = 100

φ̂0 0.271
(0.052)

0.322
(0.053)

0.843
(0.115)

0.291
(0.053)

0.296
(0.053)

φ̂1 −0.517
(0.049)

−0.615
(0.056)

−1.276
(0.098)

−0.500
(0.057)

−0.511
(0.057)

φ̂2 −0.193
(0.047)

−0.261
(0.055)

−0.673
(0.089)

−0.268
(0.052)

−0.239
(0.052)

n = 400

φ̂0 0.031
(0.023)

0.062
(0.024)

0.242
(0.053)

0.041
(0.023)

0.041
(0.023)

φ̂1 −0.056
(0.019)

−0.071
(0.024)

−0.289
(0.045)

−0.099
(0.021)

−0.102
(0.022)

φ̂2 −0.043
(0.018)

−0.102
(0.023)

−0.124
(0.043)

−0.028
(0.020)

−0.021
(0.020)

n = 800

φ̂0 0.036
(0.016)

0.043
(0.016)

0.114
(0.037)

0.044
(0.016)

0.036
(0.016)

φ̂1 −0.038
(0.012)

−0.023
(0.016)

−0.089
(0.031)

−0.025
(0.014)

−0.022
(0.014)

φ̂2 0.009
(0.012)

−0.016
(0.015)

−0.014
(0.030)

−0.005
(0.014)

0.002
(0.014)

investigated in [10, 11]. Figure 3(a) displayed the time series. The normal proba-
bility plot in Figure 3(b) showed strong evidence for heavy-tailedness, which was
further confirmed by the Jarque–Bera and Shapiro–Wilk tests. Figure 3(c) de-
picted the kernel density estimate for the log-returns, superimposed with normal
and stable density functions. For the normal density we took the corresponding
empirical mean (−4.356×10−4) and standard deviation (2.250×10−2) as the dis-
tributional mean and standard deviation. For the stable density we estimated
the distribution parameters by fitting a stable distribution to the log-returns
using the maximum likelihood method via the R package “fBasics”. The fitted
stable distribution was S(1.404,−0.204, 0.009, 0.001). It is seen that the esti-
mated density was well approximated by the fitted stable density. Thus, it is
plausible to model the log-returns as a non-Gaussian stable time series.

Large-scale simulations showed [1] that sample autocorrelation function
(ACF) and sample partial autocorrelation function (PACF) are still excellent
tools for tentative identification of the orders of a stable ARMA model. The
sample PACF plot of the log-returns was given in Figure 3(d). The 95% bounds
in the figure are modified bounds for the stable ARMA models computed based
on Table 3 of [1]. To be specific, with a fitted index value of 1.404, the bounds
were approximately ±2.814(logn/n)1/1.4 = ±0.124, where n = 490 is the length
of the time series. For comparison, the standard bounds under the classical
Gaussian framework are ±1.96/

√
n = ±0.089. From the plot the sample partial

autocorrelation is significantly outside the bounds at lag 3, slightly outside the
bounds at lag 4, and insignificant at other lags. So it is reasonable to consider
fitting the following three AR models:
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Fig 1. The normal probability plots of LTTAD and LTTS estimates, where Zt is Stable with
tail index α = 1.5 and n = 400

(M1) AR(4) model, Xt = φ1Xt−1 + φ2Xt−2 + φ3Xt−3 + φ4Xt−4 + Zt,
(M2) AR(3) model, Xt = φ1Xt−1 + φ2Xt−2 + φ3Xt−3 + Zt,
(M3) subset AR(3) model, Xt = φ3Xt−3 + Zt.

The intercept term was dropped (i.e. zero-mean AR models for the log-returns)
due to the insignificance of the empirical mean. This is in agreement with the
conclusion of [10, 11] that φ0 is insignificant. Also, the model (M3) is the final
model chosen by [11].

We first fitted the model (M1) using both the LTTAD and LTTS proce-
dures with the trimming parameters as specified in the simulation studies. The
resulting LTTAD model was

Xt = 0.060
(0.035)

Xt−1 − 0.121
(0.035)

Xt−2 + 0.147
(0.036)

Xt−3 + 0.026
(0.037)

Xt−4 + Zt

where Zt ∼ S(1.372,−0.171, 0.009, 0.001). The standard errors beneath the co-
efficient estimates were computed based on Theorem 2.1. The fitted LTTS model
was

Xt = 0.080
(0.045)

Xt−1 − 0.093
(0.045)

Xt−2 + 0.122
(0.046)

Xt−3 − 0.037
(0.048)

Xt−4 + Zt

where Zt ∼ S(1.398,−0.190, 0.009, 0.001). The standard errors were computed
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Fig 2. The empirical power/size of the Wald test, where Zt is a two-sided compound Pareto
distribution with tail index α = 1.5

based on the asymptotic results of [10]. The two fitted models were comparable

other than the opposite signs of φ̂4, which, however, do not truly imply a contra-
diction. Indeed, φ̂4 was insignificantly different from zero, as was not surprising
according to the sample PACF plot of the log-returns. Thus we removed the
term Xt−4 and re-fitted the model (M2) to the data, leading to the LTTAD
model of

Xt = 0.063
(0.034)

Xt−1 − 0.126
(0.034)

Xt−2 + 0.152
(0.035)

Xt−3 + Zt,

Zt ∼ S(1.379,−0.179, 0.009, 0.001)

with AIC = −7.623, and the LTTS model of

Xt = 0.063
(0.044)

Xt−1 − 0.096
(0.045)

Xt−2 + 0.126
(0.045)

Xt−3 + Zt,

Zt ∼ S(1.378,−0.173, 0.009, 0.001)

with AIC = −7.619. So, both fitted AR(3) models were adequate but the LT-
TAD model-fit was slightly better, which is also seen from the sample ACF plot
of the residuals in Figure 4. The bounds in the sample ACF plot are again the
modified bounds.



LTTAD estimation for autoregressions 953

Fig 3. (a) The log-returns of Hang Seng Index, (b) normal q-q plot, (c) kernel density esti-
mate, and (d) sample partial autocorrelation function.

Finally we considered fitting the log-returns using the model (M3). By the
LTTAD method we obtained the model

Xt = 0.163
(0.034)

Xt−3 + Zt, Zt ∼ S(1.399,−0.185, 0.009, 0.001)

with AIC = −7.634, and the fitted model by the LTTS method was

Xt = 0.104
(0.045)

Xt−3 + Zt, Zt ∼ S(1.392,−0.185, 0.009, 0.001)

with AIC = −7.621. The diagnostic plots were presented in Figure 5. Again,
the LTTAD model-fit was better than the LTTS model-fit although both were
adequate. Also, based on the AIC values, the subset AR(3) model was a bit
more plausible than the usual AR(3) model. So, we concluded, in agreement
with [11], with a subset AR(3) model for fitting the log-returns of Hang Seng
Index.
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Fig 4. Diagnostic plots of residuals from the fitted AR(3) models (M2)

Appendix A: Technical proofs

We first establish a lemma, from which Theorem 2.1 follows. To be specific, we

reparameterize by setting ννν = n1/2V
1/2
n (φφφ− φφφ0) and hence can rewrite

zt(φφφ) = Zt − n−1/2νννTV−1/2
n Yt.

Then, minimizing ln (φφφ) with respect to φφφ is equivalent to minimizing

Sn (ννν) :=

n∑
t=p+1

(∣∣∣Zt − n−1/2νννTV−1/2
n Yt

∣∣∣ − |Zt|
)
Int (A.1)

with respect to ννν. Stated below is the functional limit theorem for Sn (ννν).

Lemma A.1. Under the Assumptions (A1)–(A3),

Sn (ννν)
d→ S (ννν) := −νννTN (0, Ip+1) + f(0)νννTννν

on C
(
R

p+1
)
, the space of real-valued continuous functions on R

p+1 where con-
vergence means uniform convergence on every compact set in R

p+1.

Proof. We adopt the strategy used in [7]. Using the identity

|z − y| − |z| = −ysgn(z) + 2(y − z) [I(0 < z < y)− I(y < z < 0)] ,
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Fig 5. Diagnostic plots of residuals from the fitted subset AR(3) models (M3)

which holds when z 
= 0, we have

Sn (ννν) = −νννTAn + 2

n∑
t=p+1

(ξ1nt(ννν) + ξ2nt(ννν)) , (A.2)

where

An = n−1/2V−1/2
n

n∑
t=p+1

Ytsgn(Zt)Int,

ξ1nt(ννν) =
(
n−1/2νννTV−1/2

n Yt − Zt

)
I(0 < Zt < n−1/2νννTV−1/2

n Yt)Int,

ξ2nt(ννν) = −
(
n−1/2νννTV−1/2

n Yt − Zt

)
I(n−1/2νννTV−1/2

n Yt < Zt < 0)Int.

Define Ac
n = n−1/2

∑n
t=p+1 ηηη

c
nt(ννν), where ηηη

c
nt(ννν) = V

−1/2
n Ytsgn(Zt)I

c
nt. Ap-

plying a martingale central limit theorem to {ηηηcnt(ννν)}, we obtain Ac
n

d→
N (0, Ip+1). On the other hand, following the lines of [10] for proving his Lemma

A1(a) it is easy to show that An −Ac
n

P→ 0. Therefore,

An
d→ N (0, Ip+1) . (A.3)
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Next, for given ννν, define

ξc1nt(ννν) =
(
n−1/2νννTV−1/2

n Yt − Zt

)
I(0 < Zt < n−1/2νννTV−1/2

n Yt)I
c
nt,

ξc2nt(ννν) = −
(
n−1/2νννTV−1/2

n Yt − Zt

)
I(n−1/2νννTV−1/2

n Yt < Zt < 0)Icnt.

Let Ft be the sigma-filed generated by {Zs, s ≤ t}. Then, for t = p+ 1, . . . , n,

E (ξc1nt(ννν) | Ft−1)

=

∫ n−1/2νννTV−1/2
n Yt

0

(
n−1/2νννTV−1/2

n Yt − z
)
IcntI(ννν

TV−1/2
n Yt > 0)F (dz)

∼
∫ n−1/2νννTV−1/2

n Yt

0

(
n−1/2νννTV−1/2

n Yt − z
)
f(0)IcntI(ννν

TV−1/2
n Yt > 0)dz

=
f(0)

2n

(
νννTV−1/2

n Yt

)2

IcntI(ννν
TV−1/2

n Yt > 0),

where the approximation holds on the set
{
0 ≤ νννTV

−1/2
n YtI

c
nt < εn1/2

}
, where

ε > 0 stands for a small number. Note that,

P

(
max

t=p+1,...,n
|νννTV−1/2

n YtI
c
nt| ≥ εn1/2

)
≤ nP

(
|νννTV−1/2

n Yp+1I
c
n,p+1| ≥ εn1/2

)
≤ ε−2E

[(
νννTV−1/2

n Yp+1

)2

Icn,p+1I
(
|νννTV−1/2

n Yp+1I
c
n,p+1| ≥ εn1/2

)]
→ 0,

where the convergence in the last step follows from the fact that

E

[(
νννTV−1/2

n Yp+1

)2

Icn,p+1

]
= νννTV−1/2

n E
(
Yp+1Y

T

p+1I
c
n,p+1

)
V−1/2

n ννν = νννTV−1/2
n VnV

−1/2
n ννν = νννTννν < ∞

for given ννν. Therefore,

n∑
t=p+1

E (ξc1nt(ννν) | Ft−1) ∼
f(0)

2n

n∑
t=p+1

(
νννTV−1/2

n Yt

)2

IcntI(ννν
TV−1/2

n Yt > 0).

(A.4)
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Moreover,

E
[
(ξc1nt(ννν))

2 | Ft−1

]
=

∫ n−1/2νννTV−1/2
n Yt

0

(
n−1/2νννTV−1/2

n Yt − z
)2

IcntI(ννν
TV−1/2

n Yt > 0)F (dz)

=

∫ n−1/2νννTV−1/2
n Yt

0

(
n−1/2νννTV−1/2

n Yt − z
)2

· IcntI(0 < νννTV−1/2
n YtI

c
nt < εn1/2)F (dz)

+

∫ n−1/2νννTV−1/2
n Yt

0

(
n−1/2νννTV−1/2

n Yt − z
)2

· IcntI(νννTV−1/2
n YtI

c
nt ≥ εn1/2)F (dz)

=: T1 + T2.

The term T1 is upper-bounded by

B

∫ n−1/2νννTV−1/2
n Yt

0

(
n−1/2νννTV−1/2

n Yt − z
)2

· IcntI(0 < νννTV−1/2
n YtI

c
nt < εn1/2)dz

=
B

3
n−3/2

(
νννTV−1/2

n Yt

)3

IcntI(0 < νννTV−1/2
n YtI

c
nt < εn1/2)

≤ εB

3n

(
νννTV−1/2

n Yt

)2

IcntI(0 < νννTV−1/2
n YtI

c
nt < εn1/2).

On the other hand,

T2 ≤
∫ n−1/2νννTV−1/2

n Yt

0

(
n−1/2νννTV−1/2

n Yt

)2

IcntI(ννν
TV−1/2

n YtI
c
nt ≥ εn1/2)F (dz)

≤ n−1
(
νννTV−1/2

n Yt

)2

IcntI(ννν
TV−1/2

n YtI
c
nt ≥ εn1/2).

So,

nE
[
(ξc1nt(ννν))

2
]
= nE(T1) + nE(T2)

≤ εB

3
E

[(
νννTV−1/2

n Yt

)2

IcntI(0 < νννTV−1/2
n YtI

c
nt < εn1/2)

]
+ E

[(
νννTV−1/2

n Yt

)2

IcntI(ννν
TV−1/2

n YtI
c
nt ≥ εn1/2)

]
Since E[(νννTV

−1/2
n Yt)

2Icnt] is finite and ε > 0 is arbitrary, we have

lim sup
n→∞

nE
[
(ξc1nt(ννν))

2
]
= 0. (A.5)
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It follows that, as n → ∞,

V ar

{
n∑

t=p+1

[ξc1nt(ννν)− E (ξc1nt(ννν) | Ft−1)]

}

=

n∑
t=p+1

V ar [ξc1nt(ννν)− E (ξc1nt(ννν) | Ft−1)] ≤
n∑

t=p+1

E
[
(ξc1nt(ννν))

2
]
→ 0.

Therefore, (A.4) implies

n∑
t=p+1

ξc1nt(ννν) ∼
f(0)

2n

n∑
t=p+1

(
νννTV−1/2

n Yt

)2

IcntI(ννν
TV−1/2

n Yt > 0). (A.6)

Handling the term ξc2nt(ννν) in the same fashion yields

n∑
t=p+1

ξc2nt(ννν) ∼
f(0)

2n

n∑
t=p+1

(
νννTV−1/2

n Yt

)2

IcntI(ννν
TV−1/2

n Yt < 0). (A.7)

Combining (A.6) and (A.7) leads to

2

n∑
t=p+1

(ξc1nt(ννν) + ξc2nt(ννν)) ∼
f(0)

n

n∑
t=p+1

(
νννTV−1/2

n Yt

)2

Icnt,

which converges in probability to f(0)E

[(
νννTV

−1/2
n Yt

)2

Icnt

]
= f(0)νννTννν. More-

over, it can be shown that, for any fixed ννν,
∑n

t=p+1 [ξint(ννν)− ξcint(ννν)]
P→ 0,

i = 1, 2. Therefore,

2
n∑

t=p+1

(ξ1nt(ννν) + ξ2nt(ννν))
P→ f(0)νννTννν. (A.8)

Putting together (A.2), (A.3), and (A.8), we conclude that Sn (ννν)
d→ S (ννν) as

n → ∞ for each ννν.
Now, by Theorem 29.4 of [2], the finite dimensional distributions of Sn con-

verge to those of S. On the other hand, since Sn has convex sample paths, the
tightness of Sn can be established using the result that pointwise convergence of
convex functions implies uniform convergence on compact sets [12]. Therefore,

by Theorem 7.1 of [3], Sn (ννν)
d→ S (ννν) on C (K), where K is any compact set

in R
p+1. As this is equivalent to convergence in distribution on C

(
R

p+1
)
, the

proof is complete.

Proof of Theorem 2.1. Note that, the limiting process S (ννν) is a quadratic func-
tion of ννν and hence has a unique minimizer N (0, Ip+1) /(2f(0)). Therefore, the
asymptotic normality of the LTTAD estimator follows immediately from the
above lemma and Lemma 2.2 of [8].
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