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Abstract

We investigate existence and uniqueness of strong solutions of mean-field stochastic
differential equations with irregular drift coefficients. Our direct construction of
strong solutions is mainly based on a compactness criterion employing Malliavin
Calculus together with some local time calculus. Furthermore, we establish regularity
properties of the solutions such as Malliavin differentiablility as well as Sobolev
differentiability and Hölder continuity in the initial condition. Using this properties
we formulate an extension of the Bismut-Elworthy-Li formula to mean-field stochastic
differential equations to get a probabilistic representation of the first order derivative
of an expectation functional with respect to the initial condition.
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1 Introduction

Throughout this paper, let T > 0 be a given time horizon. Mean-field stochastic
differential equations (hereafter mean-field SDE), also referred to as McKean-Vlasov
equations, given by

dXx
t = b(t,Xx

t ,PXxt )dt+ σ(t,Xx
t ,PXxt )dBt, Xx

0 = x ∈ Rd, t ∈ [0, T ], (1.1)

are an extension of stochastic differential equations where the coefficients are allowed
to depend on the law of the solution in addition to the dependence on the solution itself.
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Strong solutions of MFSDEs with irregular drift

Here b : R+ ×Rd ×P1(Rd)→ Rd and σ : R+ ×Rd ×P1(Rd)→ Rd×n are some given drift
and volatility coefficients, (Bt)t∈[0,T ] is an n-dimensional Brownian motion,

P1(Rd) :=

{
µ

∣∣∣∣µ probability measure on (Rd,B(Rd)) with

∫
Rd
|x|dµ(x) <∞

}
is the space of probability measures over (Rd,B(Rd)) with existing first moment, and
PXxt is the law of Xx

t with respect to the underlying probability measure P. Based
on the works of Vlasov [39], Kac [25] and McKean [33], mean-field SDEs arised from
Boltzmann’s equation in physics, which is used to model weak interaction between
particles in a multi-particle system. Since then the study of mean-field SDEs has evolved
as an active research field with numerous applications. Various extensions of the class
of mean-field SDEs as for example replacing the driving noise by a Lévy process or
considering backward equations have been examined e.g. in [24], [4], [5], and [6]. With
their work on mean-field games in [29], Lasry and Lions have set a cornerstone in the
application of mean-field SDEs in Economics and Finance, see also [7] for a readily
accessible summary of Lions’ lectures at Collège de France. As opposed to the analytic
approach taken in [29], Carmona and Delarue developed a probabilistic approach to
mean-field games, see e.g. [8], [9], [10], [11] and [14]. More recently, the mean-field
approach also found application in systemic risk modeling, especially in models for
inter-bank lending and borrowing, see e.g. [12], [13], [19], [20], [21], [28], and the cited
sources therein.

In this paper we study existence, uniqueness and regularity properties of (strong)
solutions of one-dimensional mean-field SDEs of the type

dXx
t = b(t,Xx

t ,PXxt )dt+ dBt, Xx
0 = x ∈ R, t ∈ [0, T ]. (1.2)

If the drift coefficient b is of at most linear growth and Lipschitz continuous, existence and
uniquenss of (strong) solutions of (1.2) are well understood. Under further smoothness
assumptions on b, differentiability in the initial condition x and the relation to non-linear
PDE’s is studied in [6]. We here consider the situation when the drift b is allowed to be
irregular. More precisely, in addition to some linear growth condition we basically only
require measurability in the second variable and some continuity in the third variable.

The first main contribution of this paper is to establish existence and uniqueness of
strong solutions of mean-field SDE (1.2) under such irregularity assumptions on b. To
this end, we firstly consider existence and uniqueness of weak solutions of mean-field
SDE (1.2). In [16], Chiang proves the existence of weak solutions for time-homogeneous
mean-field SDEs with drift coefficients that are of linear growth and allow for certain
discontinuities. Using the methodology of martingale problems, Jourdain proves in [23]
the existence of a unique weak solution under the assumptions of a bounded drift which
is Lipschitz continuous in the law variable. In the time-inhomogeneous case, Mishura
and Veretennikov ensure in [37] the existence of weak solutions by requiring in addition
to linear growth that the drift is of the form

b(t, y, µ) =

∫
b(t, y, z)µ(dz), (1.3)

for some b : [0, T ]×R×R→ R. In [31], Li and Min show the existence of weak solutions
of mean-field SDEs with path-dependent coefficients, supposing that the drift is bounded
and continuous in the third variable. We here relax the boundedness requirement in
[31] (for the non-path-dependent case) and show existence of a weak solution of (1.2) by
merely requiring that b is continuous in the third variable, i.e. for all µ ∈ P1(R) and all
ε > 0 exists a δ > 0 such that

(∀ν ∈ P1(R) : K(µ, ν) < δ)⇒ |b(t, y, µ)− b(t, y, ν)| < ε, t ∈ [0, T ], y ∈ R, (1.4)
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and of at most linear growth, i.e. there exists a constant C > 0 such that for all t ∈ [0, T ],
y ∈ R and µ ∈ P1(R),

|b(t, y, µ)| ≤ C(1 + |y|+K(µ, δ0)). (1.5)

Here δ0 is the Dirac-measure in 0 and K the Kantorovich metric:

K(λ, ν) := sup
h∈Lip1(R)

∣∣∣∣∫
R

h(x)(λ− ν)(dx)

∣∣∣∣ , λ, ν ∈ P1(R),

where Lip1(R) is the space of Lipschitz continuous functions with Lipschitz constant 1
(for an explicit definition see the notations below). Further we show that if b admits a
modulus of continuity in the third variable (see Definition 2.5) in addition to (1.4) and
(1.5), then there is weak uniqueness (or uniqueness in law) of solutions of (1.2).

In order to establish the existence of strong solutions of (1.2), we then show that any
weak solution actually is a strong solution. Indeed, given a weak solution Xx (and in
particular its law) of mean-field SDE (1.2), one can re-interprete X as the solution of a
common SDE

dXx
t = bPX (t,Xx

t )dt+ dBt, Xx
0 = x ∈ R, t ∈ [0, T ], (1.6)

where bPX (t, y) := b(t, y,PXxt ). This re-interpretation allows to apply the ideas and
techniques developed in [2], [34] and [36] on strong solutions of SDEs with irregular
coefficients to equation (1.6). In order to deploy these results and to prove that the weak
solution Xx is indeed a strong solution, we still assume condition (1.4), i.e. the drift
coefficient b is supposed to be continuous in the third variable, but require the following
particular form proposed in [2] of the linear growth condition (1.5):

b(t, y, µ) = b̂(t, y, µ) + b̃(t, y, µ), (1.7)

where b̂ is merely measurable and bounded and b̃ is of at most linear growth (1.5) and
Lipschitz continuous in the second variable, i.e. there exists a constant C > 0 such that
for all t ∈ [0, T ], y1, y2 ∈ R and µ ∈ P1(R),

|b̃(t, y1, µ)− b̃(t, y2, µ)| ≤ C|y1 − y2|. (1.8)

We remark that while a typical approach to show existence of strong solutions is to
establish existence of weak solutions together with pathwise uniqueness (Yamada-
Watanabe Theorem), in [2], [34] and [36] the existence of strong solutions is shown by a
direct constructive approach based on some compactness criterion employing Malliavin
calcuclus. Further, pathwise (or strong) uniqueness is then a consequence of weak
uniqueness. We also remark that in [37] the existence of strong solutions of mean-field
SDEs is shown in the case that the drift is of the special form (1.3) where b fulfills certain
linear growth and Lipschitz conditions.

The second contribution of this paper is the study of certain regularity properties of
strong solutions of mean-field equation (1.2). Firstly, from the constructive approach to
strong solutions based on [2], [34] and [36] we directly gain Malliavin differentiability
of strong solutions of SDE (1.6), i.e. Malliavin differentiability of strong solutions of
mean-field SDE (1.2). Similar to [2] we provide a probabilistic representation of the
Malliavin derivative using the local time-space integral introduced in [18].

Secondly, we investigate the regularity of the dependence of a solution Xx on its
initial condition x. For the special case where the mean-field dependence is given via an
expectation functional of the form

dXx
t = b(t,Xx

t ,E[ϕ(Xx
t )])dt+ dBt, Xx

0 = x ∈ R, t ∈ [0, T ], (1.9)
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for some b : [0, T ] × R × R → R, continuous differentiability of Xx with respect to x

can be deduced from [6] under the assumption that b and ϕ : R→ R are continuously
differentiable with bounded Lipschitz derivatives. We here establish weak (Sobolev)
differentiability of Xx with respect to x for the general drift b given in (1.2) by assuming
in addition to (1.7) that µ 7→ b(t, y, µ) is Lipschitz continuous uniformly in t ∈ [0, T ] and
y ∈ R, i.e. there exists a constant C > 0 such that for all t ∈ [0, T ], y ∈ R and µ, ν ∈ P1(R)

|b(t, y, µ)− b(t, y, ν)| ≤ CK(µ, ν). (1.10)

Further, also for the Sobolev derivative we provide a probabilistic representation in
terms of local-time space integration.

The third main contribution of this paper is a Bismut-Elworthy-Li formula for first
order derivatives of expectation functionals E[Φ(Xx

T )], Φ : R→ R, of a strong solution Xx

of mean-field SDE (1.2). Assuming the drift b is in the form (1.7) and fulfills the Lipschitz
condition (1.10), we first show Sobolev differentiability of these expectation functionals
whenever Φ is continuously differentiable with bounded Lipschitz derivative. We then
continue to develop a Bismut-Elworthy-Li type formula, that is we give a probabilistic
representation for the first-order derivative of the form

∂

∂x
E[Φ(Xx

T )] = E

[
Φ(Xx

T )

∫ T

0

θtdBt

]
, (1.11)

where (θt)t∈[0,T ] is a certain stochastic process measurable with respect to σ(Xs : s ∈
[0, T ]). We remark that in [1], the author provides a Bismut-Elworthy-Li formula for multi-
dimensional mean-field SDEs with multiplicative noise but smooth drift and volatility
coefficients. For one-dimensional mean-field SDEs with additive noise (i.e. σ ≡ 1), we
thus extend the result in [1] to irregular drift coefficients. Moreover, we are able to
further develop the formula such that the so-called Malliavin weight

∫ T
0
θtdBt is given in

terms of an Itô integral and not in terms of an anticipative Skorohod integral as in [1].
Finally, we remark that in [3] we study (strong) solutions of mean-field SDEs and a

corresponding Bismut-Elworthy-Li formula where the dependence of the drift b on the
solution law PXxt in (1.2) is of the special form

dXx
t = b

(
t,Xx

t ,

∫
R

ϕ(t,Xx
t , z)PXxt (dz)

)
dt+ dBt, Xx

0 = x ∈ R, (1.12)

for some b, ϕ : [0, T ] × R × R → R. For this special class of mean-field SDEs, which
includes the two popular drift families given in (1.3) and (1.9), we allow for irregularity
of b and ϕ that is not covered by our assumptions on b in this paper. For example, for
the indicator function ϕ(t, x, z) = 1z≤u we are able to deal in [3] with the important
case where the drift b

(
t,Xx

t , FXxt (u)
)

depends on the distribution function FXxt (·) of the
solution.

The remaining paper is organized as follows. In the second section we deal with
existence and uniqueness of solutions of the mean-field SDE (1.2). The third section
investigates the aforementioned regularity properties of strong solutions. Finally, a
proof of weak differentiability of expectation functionals E[Φ(Xx

T )] is given in the fourth
section together with a Bismut-Elworthy-Li formula.

Notation: Subsequently we list some of the most frequently used notations. For this, let
(X , dX ) and (Y, dY) be two metric spaces.

• C(X ;Y) denotes the space of continuous functions f : X → Y.
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• C∞0 (U), U ⊆ R, denotes the space of smooth functions f : U → R with compact
support.

• For every C > 0 we define the space LipC(X ,Y) of functions f : X → Y such that

dY(f(x1), f(x2)) ≤ CdX (x1, x2), ∀x1, x2 ∈ X ,

as the space of Lipschitz functions with Lipschitz constant C > 0. Furthermore,
we define Lip(X ,Y) :=

⋃
C>0 LipC(X ,Y) and denote by LipC(X ) := LipC(X ,X ) and

Lip(X ) := Lip(X ,X ), respectively, the space of Lipschitz functions mapping from
X to X .

• C1,1
b,C(R) denotes the space of continuously differentiable functions f : R→ R such

that its derivative f ′ satisfies for C > 0

(a) supy∈R |f ′(y)| ≤ C and

(b) (y 7→ f ′(y)) ∈ LipC(R).

We define C1,1
b (R) :=

⋃
C>0 C

1,1
b,C(R).

• C1,L
b (R×P1(R)) is the space of functions f : R×P1(R)→ R such that there exists

a constant C > 0 with

(a) (y 7→ f(y, µ)) ∈ C1,1
b,C(R) for all µ ∈ P1(R), and

(b) (µ 7→ f(y, µ)) ∈ LipC(P1(R),R) for all y ∈ R.

• Let (Ω,F ,F,P) be a generic complete filtered probability space with filtration
F = (Ft)t∈[0,T ] and B = (Bt)t∈[0,T ] be a Brownian motion defined on this probability
space. Furthermore, we write E[·] := EP[·], if not mentioned differently.

• Lp(S,X ) denotes the Banach space of functions on the measurable space (S,G)

mapping to the normed space (X , ‖ · ‖X ) integrable to some power p, p ≥ 1.

• Lp(Ω,Ft) denotes the space of Ft–measurable functions in Lp(Ω).

• Let f : R→ R be a (weakly) differentiable function. Then we denote by ∂yf(y) :=
∂f
∂y (y) its first (weak) derivative evaluated at y ∈ R.

• We denote the Doléans-Dade exponential for a progressively measurable process Y
with respect to the corresponding Brownian integral if well-defined for t ∈ [0, T ] by

E
(∫ t

0

YudBu

)
:= exp

{∫ t

0

YudBu −
1

2

∫ t

0

|Yu|2du
}
.

• We define Bxt := x+Bt, t ∈ [0, T ], for any Brownian motion B.

• For any normed space X we denote its corresponding norm by ‖ · ‖X ; the Euclidean
norm is denoted by | · |.

• We write E1(θ) . E2(θ) for two mathematical expressions E1(θ), E2(θ) depending
on some parameter θ, if there exists a constant C > 0 not depending on θ such that
E1(θ) ≤ CE2(θ).

• We denote by LX the local time of the stochastic process X and furthermore by∫ t
s

∫
R
b(u, y)LX(du, dy) for suitable b the local-time space integral as introduced in

[18] and extended in [2].

• We denote the Wiener transform of some Z ∈ L2(Ω,FT ) in f ∈ L2([0, T ]) by

W(Z)(f) := E

[
ZE

(∫ T

0

f(s)dBs

)]
.
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2 Existence and uniqueness of solutions

The main objective of this section is to investigate existence and uniqueness of strong
solutions of the one-dimensional mean-field SDE

dXx
t = b(t,Xx

t ,PXxt )dt+ dBt, Xx
0 = x ∈ R, t ∈ [0, T ], (2.1)

with irregular drift coefficient b : R+ ×R× P1(R)→ R. We first consider existence and
uniqueness of weak solutions of (2.1) in Section 2.1, which consecutively is employed
together with results from [2] to study strong solutions of (2.1) in Section 2.2.

2.1 Existence and uniqueness of weak solutions

We recall the definition of weak solutions.

Definition 2.1. A weak solution of the mean-field SDE (2.1) is a six-tuple
(Ω,F ,F,P, B,Xx) such that

(i) (Ω,F ,P) is a complete probability space and F = {Ft}t∈[0,T ] is a filtration on
(Ω,F ,P) satisfying the usual conditions of right-continuity and completeness,

(ii) Xx = (Xx
t )t∈[0,T ] is a continuous, F-adapted, R-valued process; B = (Bt)t∈[0,T ] is a

one-dimensional (F,P)-Brownian motion,

(iii) Xx satisfies P-a.s.

dXx
t = b(t,Xx

t ,PXxt )dt+ dBt, Xx
0 = x ∈ R, t ∈ [0, T ],

where for all t ∈ [0, T ], PXxt ∈ P1(R) denotes the law of Xx
t with respect to P.

Remark 2.2. If there is no ambiguity about the stochastic basis (Ω,F ,F,P, B) we also
refer solely to the process Xx as weak solution (or later on as strong solution) for
notational convenience.

In a first step we employ Girsanov’s theorem in a well-known way to construct
weak solutions of certain stochastic differential equations (hereafter SDE) associated
to our mean-field SDE (2.1). Assume the drift coefficient b : [0, T ] × R × P1(R) → R

satisfies the linear growth condition (1.5). For a given µ ∈ C([0, T ];P1(R)) we then define
bµ : R+ ×R→ R by bµ(t, y) := b(t, y, µt) and consider the SDE

dXx
t = bµ(t,Xx

t )dt+ dBt, Xx
0 = x ∈ R, t ∈ [0, T ]. (2.2)

Let B̃ be a one-dimensional Brownian motion on a suitable filtered probability space

(Ω,F ,F,Q). Define Xx
t := B̃t + x. By Lemma A.2, the density dPµ

dQ = E
(∫ T

0
bµ(t, B̃xt )dB̃t

)
gives rise to a well-defined equivalent probability measure Pµ, and by Girsanov’s theorem
Bµt := Xx

t − x−
∫ t

0
bµ(s,Xx,µ

s )ds, t ∈ [0, T ], defines an (F,Pµ)-Brownian motion. Hence,
(Ω,F ,F,Pµ, Bµ, Xx

t ) is a weak solution of SDE (2.2).
To show existence of weak solutions of the mean-field SDE (2.1) we proceed by

employing the weak solutions of the auxiliary SDEs in (2.2) together with a fixed point
argument. Compared to the typical construction of weak solutions of SDE’s by a straight
forward application of Girsanov’s theorem, the construction of weak solutions of mean-
field SDE’s is thus more complex and requires a fixed point argument in addition to the
application of Girsanov’s theorem due to the fact that the measure dependence in the
drift stays fixed under the Girsanov transformation. The upcoming theorem is a modified
version of Theorem 3.2 in [31] for non-path-dependent coefficients, where we extend the
assumptions on the drift from boundedness to linear growth.
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Theorem 2.3. Let the drift coefficient b : [0, T ] × R × P1(R) → R be a measurable
function that satisfies conditions (1.4) and (1.5), i.e. b is continuous in the third variable
and of at most linear growth. Then there exists a weak solution of the mean-field SDE
(2.1). Furthermore, PXx· ∈ C([0, T ];P1(R)) for any weak solution Xx of (2.1).

Proof. We will state the proof just in the parts that differ from the proof in [31].
For µ ∈ C([0, T ];P1(R)) let (Ω,F ,F,Pµ, Bµ, Xx,µ) be a weak solution of SDE (2.2). We
define the mapping ψ : C([0, T ];P1(R))→ C([0, T ];P1(R)) by

ψs(µ) := P
µ
Xx,µs

,

where Pµ
Xx,µs

denotes the law of Xx,µ
s under Pµ, s ∈ [0, T ]. Note that it can be shown

equivalently to (ii) below that ψs(µ) is indeed continuous in s ∈ [0, T ]. We need to show
that ψ has a fixed point, i.e. µs = ψs(µ) = P

µ
Xx,µs

for all s ∈ [0, T ]. To this end we aim at
applying Schauder’s fixed point theorem (cf. [38]) to ψ : E → E, where

E :=
{
µ ∈ C([0, T ];P1(R)) : K(µt, δx) ≤ C, K(µt, µs) ≤ C|t− s|

1
2 , t, s ∈ [0, T ]

}
,

for some suitable constant C > 0. Therefore we have to show that E is a non-empty
convex subset of C([0, T ];P1(R)), ψ maps E continuously into E and ψ(E) is compact.
Due to the proof of Theorem 3.2 in [31] it is left to show that for all s, t ∈ [0, T ] and µ ∈ E,

(i) ψ is continuous on E,

(ii) K(ψt(µ), ψs(µ)) . |t− s| 12 ,

(iii) EPµ [|Xµ,x
t |1{|Xµ,xt |≥r}] −−−→

r→∞
0.

(i) First note that E endowed with supt∈[0,T ]K(·, ·), is a metric space. Let ε̃ > 0, µ ∈ E
and C1 > 0 be some constant. Moreover, let Cp,T > 0 be a constant depending on p

and T such that by Burkholder-Davis-Gundy’s inequality E
[
|Bt|2p

] 1
2p ≤ Cp,T

2C1
for all

t ∈ [0, T ]. Since b is continuous in the third variable and ·2 is a continuous function,
we can find δ1 > 0 such that for all ν ∈ E with supt∈[0,T ]K(µt, νt) < δ1,

sup
t∈[0,T ],y∈R

|b(t, y, µt)− b(t, y, νt)| <
ε̃

2Cp,TT
1
2

,

sup
t∈[0,T ],y∈R

∣∣|b(t, y, µt)|2 − |b(t, y, νt)|2∣∣ < ε̃

Cp,TT
.

(2.3)

Furthermore, by the proof of Lemma A.3 we can find ε > 0 such that

sup
λ∈E

E

E (−∫ T

0

b(t, Bxt , λt)dBt

)1+ε
 1

1+ε

≤ C1. (2.4)

Then, we get by the definition of ψ and Et(µ) := E
(∫ t

0
b(s,Bxs , µs)dBs

)
that

K(ψt(µ), ψt(ν)) = sup
h∈Lip1

{∣∣∣∣∫
R

h(y)ψt(µ)(dy)−
∫
R

h(y)ψt(ν)(dy)

∣∣∣∣}
= sup
h∈Lip1

{∣∣∣∣∫
R

(h(y)− h(x))
(
P
µ
Xx,µt

− PνXx,νt
)

(dy)

∣∣∣∣}
= sup
h∈Lip1

{|EQµ [(h(Xx,µ
t )− h(x)) Et(µ)]− EQν [(h(Xx,ν

t )− h(x)) Et(ν)]|}

≤ E [|Et(µ)− Et(ν)| |Bt|] ,
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where dQµ

dPµ = E
(
−
∫ t

0
b(s,Xx,µ

s , µs)dB
µ
s

)
defines an equivalent probability measure

Qµ by Lemma A.2. Here we have used the fact that Xx,µ is a Brownian motion
under Qµ starting in x for all µ ∈ C([0, T ];P1(R)). We get by the inequality

|ey − ez| ≤ |y − z|(ey + ez), y, z ∈ R, (2.5)

Hölder’s inequality with p := 1+ε
ε , ε > 0 sufficiently small with regard to (2.4), and

Minkowski’s inequality that

K(ψt(µ), ψt(ν)) ≤ E [|Bt| (Et (µ) + Et (ν))

×
∣∣∣∣∫ t

0

b(s,Bxs , µs)− b(s,Bxs , νs)dBs −
1

2

∫ t

0

|b(s,Bxs , µs)|2 − |b(s,Bxs , νs)|2ds
∣∣∣∣]

≤
(
E
[
Et (µ)

1+ε
] 1

1+ε

+ E
[
Et (ν)

1+ε
] 1

1+ε

)

×

E[(∫ t

0

|b(s,Bxs , µs)− b(s,Bxs , νs)|dBs
)2p

] 1
2p

+
1

2
E

[(∫ t

0

∣∣|b(s,Bxs , µs)|2 − |b(s,Bxs , νs)|2∣∣ ds)2p
] 1

2p

E [|Bt|2p] 1
2p .

(2.6)

Consequently, we get by Burkholder-Davis-Gundy’s inequality and the bounds in
(2.3) and (2.4) that

sup
t∈[0,T ]

K(ψt(µ), ψt(ν)) ≤ Cp,T

E[(∫ T

0

|b(s,Bxs , µs)− b(s,Bxs , νs)|2ds

)p] 1
2p

+
1

2
E

(∫ T

0

∣∣|b(s,Bxs , µs)|2 − |b(s,Bxs , νs)|2∣∣ ds
)2p

 1
2p


< T

1
2

ε̃

2T
1
2

+
T

2

ε̃

T
= ε̃.

Hence, ψ is continuous on E.

(ii) Define p := 1+ε
ε , ε > 0 sufficiently small with regard to (2.4), and let µ ∈ E and

s, t ∈ [0, T ] be arbitrary. Then, equivalently to (2.6)

K(ψt(µ), ψs(µ)) ≤ E [|Et(µ)− Es(µ)| |Bt|]

. E

[∣∣∣∣∫ t

s

b(r,Bxr , µr)dBr −
1

2

∫ t

s

|b(r,Bxr , µr)|2dr
∣∣∣∣2p
] 1

2p

.

Furthermore, by applying Burkholder-Davis-Gundy’s inequality, we get

K(ψt(µ), ψs(µ)) . E

[(∫ t

s

|b(r,Bxr , µr)|
2
dr

)p] 1
2p

+ E

[(∫ t

s

|b(r,Bxr , µr)|
2
dr

)2p
] 1

2p

≤ E

[
|t− s|p sup

r∈[0,T ]

|b(r,Bxr , µr)|
2p

] 1
2p

+ E

[
|t− s|2p sup

r∈[0,T ]

|b(r,Bxr , µr)|
4p

] 1
2p

.
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Strong solutions of MFSDEs with irregular drift

Finally by Lemma A.1, we get that

K(ψt(µ), ψs(µ)) ≤ C2

(
|t− s| 12 + |t− s|

)
. |t− s| 12 ,

for some constant C2 > 0, which is independent of µ ∈ E.

(iii) The claim holds by Lemma A.1 and dominated convergence for r →∞.

Next, we study uniqueness of weak solutions. We recall the definition of weak
uniqueness, also called uniqueness in law.

Definition 2.4. We say a weak solution (Ω1,F1,F1,P1, B1, X1) of (2.1) is weakly unique
or unique in law, if for any other weak solution (Ω2,F2,F2,P2, B2, X2) of (2.1) it holds
that

P1
X1 = P2

X2 ,

whenever X1
0 = X2

0 .

In order to establish weak uniqueness we have to make further assumptions on the
drift coefficient.

Definition 2.5. Let b : [0, T ] × R × P1(R) → R be a measurable function. We say b

admits θ as a modulus of continuity in the third variable, if there exists a continuous
function θ : R+ → R+, with θ(y) > 0 for all y ∈ R+,

∫ z
0

dy
θ(y) = ∞ for all z ∈ R+, and for

all t ∈ [0, T ], y ∈ R and µ, ν ∈ P1(R),

|b(t, y, µ)− b(t, y, ν)|2 ≤ θ(K(µ, ν)2). (2.7)

Remark 2.6. Note that this definition is a special version of the general definition of
modulus of continuity. In general one requires θ to satisfy limx→0 θ(x) = 0 and for all
t ∈ [0, T ], y ∈ R and µ, ν ∈ P1(R),

|b(t, y, µ)− b(t, y, ν)| ≤ θ(K(µ, ν)).

It is readily verified that if b admits θ as a modulus of continuity according to Definition 2.5
it also admits one in the sense of the general definition.

Theorem 2.7. Let the drift coefficient b : [0, T ]×R×P1(R)→ R satisfy conditions (1.5)
and (2.7), i.e. b is of at most linear growth and admits a modulus of continuity in the
third variable. Let (Ω,F ,F,P, B,X) and (Ω̂, F̂ , F̂, P̂,W, Y ) be two weak solutions of (2.1).
Then

P(X,B) = P̂(Y,W ).

In particular the solutions are unique in law.

Proof. For the sake of readability we just consider the case x = 0. The general case
follows in the same way. From Lemma A.2 and Girsanov’s theorem, we know that there
exist measures Q and Q̂ under which X and Y are Brownian motions, respectively.
Similarly to the idea in the proof of Theorem 4.2 in [31], we define by Lemma A.2 an
equivalent probability measure Q̃ by

dQ̃

dP̂
:= E

(
−
∫ T

0

(
b(s, Ys, P̂Ys)− b(s, Ys,PXs)

)
dWs

)
,
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and the Q̃-Brownian motion

B̃t := Wt +

∫ t

0

b(s, Ys, P̂Ys)− b(s, Ys,PXs)ds, t ∈ [0, T ].

Since

Bt = Xt −
∫ t

0

b(s,Xs,PXs)ds and B̃t = Yt −
∫ t

0

b(s, Ys,PXs)ds,

we can find a measurable function Φ : [0, T ]× C([0, T ];R)→ R such that

Bt = Φt(X) and B̃t = Φt(Y ).

Recall that X and Y are Q– and Q̂–Brownian motions, respectively. Consequently we
have for every bounded measurable functional F : C([0, T ];R)× C([0, T ];R)→ R

EP[F (B,X)] = EQ

[
E

(∫ T

0

b(t,Xt,PXt)dXt

)
F (Φ(X), X)

]

= E
Q̂

[
E

(∫ T

0

b(t, Yt,PXt)dYt

)
F (Φ(Y ), Y )

]

= EQ̃[F (B̃, Y )].

Hence,

P(X,B) = Q̃(X,B̃). (2.8)

It is left to show that supt∈[0,T ]K(Q̃Yt , P̂Yt) = 0, from which we conclude together with

(2.8) that supt∈[0,T ]K(PXt , P̂Yt) = 0 and hence dQ̃

dP̂
= 1. Consequently, P(X,B) = P̂(Y,W ).

Using Hölder’s inequality, we get for p := 1+ε
ε , ε > 0 sufficiently small with regard to

Lemma A.4,

K(Q̃Yt , P̂Yt) = sup
h∈Lip1

∣∣∣EQ̃ [h(Yt)− h(0)]− E
P̂

[h(Yt)− h(0)]
∣∣∣

≤ sup
h∈Lip1

E
P̂

[∣∣∣∣E (−∫ t

0

(
b(s, Ys, P̂Ys)− b(s, Ys,PXs)

)
dWs

)
− 1

∣∣∣∣ |h (Yt)− h(0)|
]

≤ E
P̂

∣∣∣∣E (−∫ t

0

(
b(s, Ys, P̂Ys)− b(s, Ys,PXs)

)
dWs

)
− 1

∣∣∣∣
2(1+ε)
2+ε


2+ε

2(1+ε)

× E

[
E
(∫ t

0

b(s,Bs, P̂Ys)dBs

)1+ε
] ε

2(1+ε)2

E
[
|Bt|2p

2
] 1

2p2

. E
P̂

∣∣∣∣E (−∫ t

0

(
b(s, Ys, P̂Ys)− b(s, Ys,PXs)

)
dWs

)
− 1

∣∣∣∣
2(1+ε)
2+ε


2+ε

2(1+ε)

.

Using that b admits a modulus of continuity in the third variable, we get by inequality
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(2.5), Lemma A.4, and Burkholder-Davis-Gundy’s inequality that

K(Q̃Yt , P̂Yt) . EP̂

[∣∣∣∣exp

{
−
∫ t

0

(
b(s, Ys, P̂Ys)− b(s, Ys,PXs)

)
dWs

−1

2

∫ t

0

(
b(s, Ys, P̂Ys)− b(s, Ys,PXs)

)2

ds

}
− exp{0}

∣∣∣∣
2(1+ε)
2+ε


2+ε

2(1+ε)

. E
P̂

[∣∣∣∣∫ t

0

(
b(s, Ys, P̂Ys)− b(s, Ys,PXs)

)
dWs

+
1

2

∫ t

0

(
b(s, Ys, P̂Xs)− b(s, Ys,PXs)

)2

ds

∣∣∣∣2p
] 1

2p

. E
P̂

[∣∣∣∣∫ t

0

(
b(s, Ys, P̂Ys)− b(s, Ys,PXs)

)2

ds

∣∣∣∣p
] 1

2p

+ E
P̂

[∣∣∣∣∫ t

0

(
b(s, Ys, P̂Ys)− b(s, Ys,PXs)

)2

ds

∣∣∣∣2p
] 1

2p

≤
(∫ t

0

θ
(
K(Q̃Ys , P̂Ys)

2
)
ds

) 1
2

+

∫ t

0

θ
(
K(Q̃Ys , P̂Ys)

2
)
ds.

Assume
∫ t

0
θ
(
K(Q̃Ys , P̂Ys)

2
)
ds ≥ 1. Then,

K(Q̃Yt , P̂Yt)
2 .

∫ t

0

θ̃
(
K(Q̃Ys , P̂Ys)

2
)
ds,

where for all z ∈ R+, θ̃ := θ2 satisfies the assumption
∫ z

0
1

θ̃(y)
dy =∞.

In the case 0 ≤
∫ t

0
θ
(
K(Q̃Ys , P̂Ys)

2
)
ds < 1, we get

K(Q̃Yt , P̂Yt)
2 .

∫ t

0

θ
(
K(Q̃Ys , P̂Ys)

2
)
ds.

We know that t 7→ K(Q̃Yt , P̂Yt) is continuous by the proof of [31, Theorem 4.2] and of
Theorem 2.3. Hence, by Bihari’s inequality (cf. [32, Lemma 3.6]) K(Q̃Yt , P̂Yt) = 0 for all
t ∈ [0, T ], which completes the proof.

2.2 Existence and uniqueness of strong solutions

We recall the definition of a strong solution.

Definition 2.8. A strong solution of the mean-field SDE (2.1) is a weak solution
(Ω,F ,FB ,P, B,Xx) where FB is the filtration generated by the Brownian motion B

and augmented with the P-null sets.

Remark 2.9. Note that according to Definition 2.8, we say that (2.1) has a strong
solution as soon as there exists some stochastic basis (Ω,F ,P, B) with a Brownian-
adapted solution Xx, while usually in the literature the definition of a strong solution
requires the (a priori stronger) existence of a Brownian-adapted solution of (2.1) on
any given stochastic basis. However, in our setting these two definitions are equivalent.
Indeed, a given strong solution (Ω,F ,FB ,P, B,Xx) of the mean-field SDE (2.1) can be
considered a strong solution of the associated SDE

dXx
t = bPX (t,Xx

t )dt+ dBt, Xx
0 = x, t ∈ [0, T ], (2.9)
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where we define the drift coefficient bPX : [0, T ]×R→ R by

bPX (t, y) := b(t, y,PXxt ).

For strong solutions of SDEs it is then well-known that there exists a family of functionals
(Ft)t∈[0,T ] with Xx

t = Ft(B) (see e.g. [35] for an explicit form of Ft), such that for any

other stochastic basis (Ω̂, F̂ , Q̂, B̂) the process X̂x
t := Ft(B̂) is a F B̂-adapted solution of

SDE (2.9). Further, from the functional form of the solutions we obviously get PX = PX̂ ,

and thus bPX (t, y) = bPX̂ (t, y) := b(t, y,PX̂xt
), such that X̂x fulfills

dX̂x
t = bPX̂ (t, X̂x

t )dt+ dB̂t, X̂x
0 = x, t ∈ [0, T ],

i.e. (Ω̂, F̂ , Q̂, B̂, X̂x) is a strong solution of the mean-field SDE (2.1). Hence, the two
definitions of strong solutions are equivalent.

In addition to weak uniqueness, a second type of uniqueness usually considered in
the context of strong solutions is pathwise uniqueness:

Definition 2.10. We say a weak solution (Ω,F ,F,P, B1, X1) of (2.1) is pathwisely
unique, if for any other weak solution (Ω,F ,F,P, B2, X2) on the same stochastic basis,

P
(
∀t ≥ 0 : X1

t = X2
t

)
= 1.

Remark 2.11. Note that in our setting weak uniqueness and pathwise uniqueness of
strong solutions of the mean-field SDE (2.1) are equivalent. Indeed, any weakly unique
strong solution of (2.1) is a weakly unique strong solution of the same associated SDE
(2.9), i.e. the drift coefficient in (2.9) does not vary with the solution since the law of
the solution is unique. Due to [15, Theorem 3.2], a weakly unique strong solution of
an SDE is always pathwisely unique, and thus a weakly unique strong solution of (2.1)
is pathwisely unique. Vice versa, by the considerations in Remark 2.9, any pathwisely
unique strong solution (Ω,F ,P, B,Xx) of (2.1) can be represented by Xx

t = Ft(B) for
some unique family of functionals (Ft)t∈[0,T ] that does not vary with the stochastic basis.
Consequently, the strong solution is weakly unique. Thus, in the following we will just
speak of a unique strong solution of (2.1).

In order to establish existence of strong solutions we require in addition to the
assumptions in Theorem 2.3 that the drift coefficient exhibits the particular linear
growth given by the decomposable form (1.7), that is, the irregular behavior of the drift
stays in a bounded spectrum.

Theorem 2.12. Suppose the drift coefficient b is in the decomposable form (1.7) and
additionally continuous in the third variable, i.e. fulfills (1.4). Then there exists a strong
solution of the mean-field SDE (2.1). More precisely, any weak solution (Xx

t )t∈[0,T ] of
(2.1) is a strong solution, and in addition Xx

t is Malliavin differentiable for every t ∈ [0, T ].
If moreover b satisfies (2.7), i.e. b admits a modulus of continuity in the third variable,
the solution is unique.

Proof. Let (Ω,F ,F,P, B,Xx) be a weak solution of the mean-field SDE (2.1), which
exists by Theorem 2.3. Then Xx can be interpreted as weak solution of the associated
SDE introduced in (2.9).

Now we note that under the assumptions specified in Theorem 2.12 the drift bPX (t, y)

of the associated SDE in (2.9) admits a decomposition

bPX (t, y) = b̂PX (t, y) + b̃PX (t, y),

where b̂PX is merely measurable and bounded and b̃PX is of at most linear growth and
Lipschitz continuous in the second variable. Thus, bPX fulfills the assumptions required
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in [2, Theorem 3.1], from which it follows that Xx is the unique strong (that is FB-
adapted) solution of SDE (2.9) and is Malliavin differentiable. Thus, Xx is indeed a
Malliavin differentiable strong solution of mean-field SDE (2.1). If further b admits a
modulus of continuity in the third variable, then by Theorem 2.7, Xx is a weakly, and by
Remark 2.11 also pathwisely, unique strong solution of (2.1).

3 Regularity properties

In this section we first give a representation of the Malliavin derivative of a strong
solution to mean-field SDE (2.1) in terms of a space-time integral with respect to local
time in Subsection 3.1 which yields a relation to the first variation process which will
be essential in the remainder of the paper. In the remaining parts of the section we
then investigate regularity properties of a strong solution of mean-field SDE (2.1) in its
initial condition. More precisely, in Subsection 3.2 we establish Sobolev differentiability
and give a representation of the first variation process, and in Subsection 3.3 we show
Hölder continuity in time and space.

3.1 Malliavin derivative

If the drift b is Lipschitz continuous in the second variable, it is well-known that the
Malliavin derivative of a strong solution to mean-field SDE (2.1) is given by DsX

x
t =

exp
{∫ t

s
∂2b(u,X

x
u ,PXxu )du

}
. For irregular drift b we obtain the following generalized rep-

resentation of the Malliavin derivative without the derivative of b which is an immediate
consequence of Theorem 2.12 and [2, Proposition 3.2]:

Proposition 3.1. Suppose the drift coefficient b satisfies the assumptions of Theo-
rem 2.12. Then for 0 ≤ s ≤ t ≤ T , the Malliavin derivative DsX

x
t of a strong solution Xx

to the mean-field SDE (2.1) has the following representation:

DsX
x
t = exp

{
−
∫ t

s

∫
R

b(u, y,PXxu )LX
x

(du, dy)

}
Here LX

x

(du, dy) denotes integration with respect to local time of Xx in time and space,
see [2] and [18] for more details.

3.2 Sobolev differentiability

In the remaining section we analyze the regularity of a strong solution Xx of (2.1)
in its initial condition x. More precisely, the two main results in this subsection are
the existence of a weak (Sobolev) derivative ∂xXx

t , which also is referred to as the first
variation process, for irregular drift coefficients in Theorem 3.3 and a representation of
∂xX

x
t in terms of a local time integral in Proposition 3.4.

We recall the definition of the Sobolev space W 1,2(U).

Definition 3.2. Let U ⊂ R be an open and bounded subset. The Sobolev space W 1,2(U)

is defined as the set of functions u : R → R, u ∈ L2(U), such that its weak derivative
belongs to L2(U). Furthermore, the Sobolev space is endowed with the norm

‖u‖W 1,2(U) = ‖u‖L2(U) + ‖u′‖L2(U),

where u′ is the weak derivative of u ∈W 1,2(U). We say a stochastic process X is Sobolev
differentiable in U , if for all t ∈ [0, T ], X ·t belongs P-a.s. to W 1,2(U).

Theorem 3.3. Suppose the drift coefficient b is in the decomposable form (1.7) and
uniformly Lipschitz continuous in the third variable (1.10). Let (Xx

t )t∈[0,T ] be the unique
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strong solution of (2.1) and U ⊂ R be an open and bounded subset. Then for every
t ∈ [0, T ],

(x 7→ Xx
t ) ∈ L2

(
Ω,W 1,2(U)

)
.

Before we turn our attention to the proof of Theorem 3.3, we give a probabilistic
representation of the first variation process ∂xXx

t which in particular yields a connection
to the Malliavin derivative. We remark that we will see in Proposition 3.11 that the
derivative ∂xb

(
s, y,PXxs

)
used in Proposition 3.4 is well-defined.

Proposition 3.4. Suppose the drift coefficient b is in the decomposable form (1.7) and
uniformly Lipschitz continuous in the third variable (1.10). For almost all x ∈ R the first
variation process (in the Sobolev sense) of the unique strong solution (Xx

t )t∈[0,T ] of the
mean-field SDE (2.1) has dt⊗ dP almost surely the representation

∂xX
x
t = exp

{
−
∫ t

0

∫
R

b
(
u, y,PXxu

)
LX

x

(du, dy)

}
+

∫ t

0

exp

{
−
∫ t

s

∫
R

b
(
u, y,PXxu

)
LX

x

(du, dy)

}
∂xb

(
s, y,PXxs

)
|y=Xxs

ds.

(3.1)

Furthermore, for s, t ∈ [0, T ], s ≤ t, the following relationship with the Malliavin deriva-
tive holds:

∂xX
x
t = DsX

x
t ∂xX

x
s +

∫ t

s

DuX
x
t ∂xb

(
u, y,PXxu

)
|y=Xxu

du. (3.2)

The remaining parts of this subsection are devoted to the proofs of Theorem 3.3
and Proposition 3.4. More precisely, the proof of Theorem 3.3 is structured as follows.
First we show Lipschitz continuity of Xx

t in x for smooth coefficients b in Proposition 3.5.
Then we define an approximating sequence of mean-field solutions {Xn,x

t }n≥1 with
smooth drift coefficients which is shown in Proposition 3.8 to converge in L2(Ω,Ft) to
the unique strong solution Xx

t of mean-field SDE (2.1) with general drift. Finally, after
also establishing weak L2-convergence of functionals of the approximating sequence in
Proposition 3.9 and a technical result in Lemma 3.10 we are ready to prove Theorem 3.3
using a compactness argument.

Proposition 3.5. Let b ∈ L∞([0, T ], C1,L
b (R × P1(R))) and Xx be the unique strong

solution of mean-field SDE (2.1). Then, for all t ∈ [0, T ] the map x 7→ Xx
t is a.s. Lipschitz

continuous and consequently weakly and almost everywhere differentiable. Moreover,
the first variation process ∂xXx

t , t ∈ [0, T ], has the representation

∂xX
x
t = exp

{∫ t

0

∂2b(s,X
x
s ,PXxs )ds

}
+

∫ t

0

exp

{∫ t

u

∂2b(s,X
x
s ,PXxs )ds

}
∂xb(u, y,PXxu )|y=Xxu

du.

(3.3)

Remark 3.6. Note that compared to [1] we consider the more general case of mean-field
SDEs of type (2.1) and therefore need to deal with differentiability of functions over the
metric space P1(R) as in [6], [7], and [29]. We avoid using the notion of differentiation
with respect to a measure by considering the real function x 7→ b(t, y,PXxt ), for which
differentiation is understood in the Sobolev sense.

Proof of Proposition 3.5. In order to prove Lipschitz continuity we have to show that
there exists a constant C > 0 such that for almost every ω ∈ Ω and for all t ∈ [0, T ] the
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map (x 7→ Xx
t ) ∈ LipC(R). For notational reasons we hide ω in our computations and

obtain using b ∈ C1,L
b (R× P1(R)) that

|Xx
t −X

y
t | =

∣∣∣∣x− y +

∫ t

0

b(s,Xx
s ,PXxs )− b(s,Xy

s ,PXys )ds

∣∣∣∣
. |x− y|+

∫ t

0

|Xx
s −Xy

s |+K(PXxs ,PXys )ds.

(3.4)

Hence, we immediately get that

K(PXxt ,PXyt ) ≤ E[|Xx
t −X

y
t |] . |x− y|+

∫ t

0

E[|Xx
s −Xy

s |]ds,

and therefore by Grönwall’s inequality with respect to E[|Xx
t −X

y
t |] we have that

K(PXxs ,PXys ) . |x− y|. (3.5)

Consequently, (3.4) simplifies to

|Xx
t −X

y
t | . |x− y|+

∫ t

0

|Xx
s −Xy

s |ds, (3.6)

and again by Grönwall’s inequality we get that (x 7→ Xx
t ) ∈ LipC(R). Note that due to

(3.5) and the assumptions on b also x 7→ b(t, y,PXxt ) is weakly differentiable for every
t ∈ [0, T ] and y ∈ R.
Regarding representation (3.3), note first that by taking the derivative with respect to x
in (2.1), ∂xXx

t has the representation

∂xX
x
t = 1 +

∫ t

0

∂2b(s,X
x
s ,PXxs )∂xX

x
s + ∂xb(s, y,PXxs )|y=Xxs

ds. (3.7)

It is readily seen that (3.3) solves this ODE ω-wise and therefore is a representation of
the first variation process of Xx

t .

As an immediate consequence of Proposition 3.5 and the representation of the
Malliavin derivative DsX

x
t , 0 ≤ s ≤ t ≤ T , given in Proposition 3.1, we get the following

connection between the first variation process and the Malliavin derivative:

Corollary 3.7. Let b ∈ L∞([0, T ], C1,L
b (R× P1(R))). Then, for every 0 ≤ s ≤ t ≤ T ,

∂xX
x
t = DsX

x
t ∂xX

x
s +

∫ t

s

DuX
x
t ∂xb(u, y,PXxu )|y=Xxu

du. (3.8)

Now let b be a general drift coefficient that allows for a decomposition b = b̃+ b̂ as in
(1.7) and is uniformly Lipschitz continuous in the third variable (1.10). Let (Xx

t )t∈[0,T ]

be the corresponding strong solution of (2.1) ascertained by Theorem 2.12. In order to
extend Proposition 3.5 we apply a compactness criterion to an approximating sequence
of weakly differentiable mean-field SDEs. By standard approximation arguments there
exists a sequence of approximating drift coefficients

bn := b̃n + b̂, n ≥ 1, (3.9)

where b̃n ∈ L∞([0, T ], C1,L
b (R × P1(R))) with supn≥1 ‖b̃n‖∞ ≤ C < ∞, where ‖ · ‖∞ is

the sup norm on all variables, such that bn → b pointwise in every µ and a.e. in (t, y)

with respect to the Lebesgue measure. Furthermore, we denote b0 := b and choose the
approximating coefficients bn such that they fulfill the uniform Lipschitz continuity in

EJP 23 (2018), paper 132.
Page 15/35

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP259
http://www.imstat.org/ejp/
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the third variable (1.10) uniformly in n ≥ 0. Under these conditions the corresponding
mean-field SDEs, defined by

dXn,x
t = bn(t,Xn,x

t ,PXn,xt
)dt+ dBt, Xn,x

0 = x ∈ R, t ∈ [0, T ], n ≥ 1, (3.10)

have unique strong solutions which are Malliavin differentiable by Theorem 2.12. Like-
wise the strong solutions {Xn,x}n≥1 are weakly differentiable with respect to the initial
condition by Proposition 3.5. In the next step we verify that (Xn,x

t )t∈[0,T ] converges to
(Xx

t )t∈[0,T ] in L2(Ω,Ft) as n→∞.

Proposition 3.8. Suppose the drift coefficient b is in the decomposable form (1.7) and
uniformly Lipschitz continuous in the third variable (1.10). Let (Xx

t )t∈[0,T ] be the unique
strong solution of (2.1). Furthermore, {bn}n≥1 is the approximating sequence of b as
defined in (3.9) and (Xn,x

t )t∈[0,T ], n ≥ 1, the corresponding unique strong solutions of
(3.10). Then, there exists a subsequence {nk}k≥1 ⊂ N such that

Xnk,x
t −−−−→

k→∞
Xx
t , t ∈ [0, T ].

strongly in L2(Ω,Ft).

Proof. In the case of SDEs it is shown in [2, Theorem A.4] that for every t ∈ [0, T ], the se-
quence {Xn,x

t }n≥1 is relatively compact in L2(Ω,Ft). The proof therein can be extended
to the assumptions of Proposition 3.8 and the case of mean-field SDEs due to Proposi-
tion 3.1. Consequently, for every t ∈ [0, T ] there exists a subsequence {nk(t)}k≥1 ⊂ N
such that Xnk(t),x

t converges to some Yt strongly in L2(Ω,Ft). We need to show that the
converging subsequence can be chosen independent of t. To this end we consider the
Hida test function space S and the Hida distribution space S∗ as defined in Definition B.1
and prove that {t 7→ Xn,x

t }n≥1 is relatively compact in C([0, T ];S∗), which is well-defined
since

S ⊂ L2(Ω) ⊂ S∗.

In order to show this, we use Theorem B.2 and show instead that {t 7→ Xn,x
t [φ]}n≥1 is

relatively compact in C([0, T ];R) for any φ ∈ S, where Xn,x
t [φ] := E[Xn,x

t φ]. Since Xn,x is
a solution of (3.10), using Cauchy-Schwarz’ inequality and Lemma A.4 yields

|Xn,x
t [φ]−Xn,x

s [φ]| = |E[(Xn,x
t −Xn,x

s )φ]|

=

∣∣∣∣E [(∫ t

s

bn(u,Xn,x
u ,PXn,xu

)du+Bt −Bs
)
φ

]∣∣∣∣ (3.11)

≤
(∫ t

s

E
[
bn(u,Xn,x

u ,PXn,xu
)2
] 1

2 du+ |t− s| 12
)
‖φ‖L2(Ω) ≤ C‖φ‖L2(Ω)|t− s|

1
2 ,

where C > 0 is a constant depending on T and in particular is independent of n which
shows equicontinuity of {t 7→ Xn,x

t [φ]}n≥1. Moreover, due to Lemma A.4

sup
n≥1

Xn,x
0 [φ] = sup

n≥1
E[Xn,x

0 φ] ≤ sup
n≥1

x‖φ‖L2(Ω) <∞,

and therefore Xn,x
t [φ] is uniformly bounded in n ≥ 1. Thus, by the version of the

Arzelà-Ascoli theorem given in Theorem B.3 the family {t 7→ Xn,x
t [φ]}n≥1 is relatively

compact in C([0, T ];R). Since φ was arbitrary, we have proven using Theorem B.2 that
{t 7→ Xn,x

t }n≥1 is relatively compact in C([0, T ];S∗), i.e. there exists a subsequence
(nk)k≥1 and {t 7→ Zt} ∈ C([0, T ];S∗) such that

{t 7→ Xnk,x
t } −−−−→

k→∞
{t 7→ Zt} (3.12)
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in C([0, T ];S∗). Furthermore, we have shown that for every t ∈ [0, T ] there exists a
subsequence (nkm(t))m≥1 ⊂ (nk)k≥1 such that in L2(Ω,Ft),

X
nkm (t),x
t −−−−→

m→∞
Yt.

Note that for every t ∈ [0, T ], we get by (3.12)

X
nkm (t),x
t −−−−→

m→∞
Zt

in S∗. By uniqueness of the limit Yt = Zt for every t ∈ [0, T ] and hence, the convergence
in L2(Ω,Ft) holds for the t independent subsequence (nk)k≥1.
In the last step, which is deferred to the subsequent lemma, we show for all t ∈ [0, T ]

that Xn,x
t converges weakly in L2(Ω,Ft) to the unique strong solution X

x

t of SDE

dX
x

t = b(t,X
x

t ,PYt)dt+ dBt, X
x

0 = x ∈ R, t ∈ [0, T ]. (3.13)

Consequently, Xn,x
t converges to Xx

t in L2(Ω,Ft). Indeed, we have shown that Xn,x
t

converges in L2(Ω,Ft) to Yt for all t ∈ [0, T ]. Moreover Xn,x
t converges weakly in

L2(Ω,Ft) to X
x

t for all t ∈ [0, T ]. Hence, by uniqueness of the limit, Yt
d
= X

x

t for all
t ∈ [0, T ]. Thus (3.13) is identical to (2.1) and we can write X = X, which shows
Proposition 3.8.

In the following we assume without loss of generality that the whole sequence
{Xn,x

t }n≥1 converges to Xx
t strongly in L2(Ω,Ft) for every t ∈ [0, T ]. Then, in addition to

strong L2-convergence of the solutions, we also get weak L2-convergence of φ(Xn,x
t ) to

φ(Xx
t ) for functions φ in certain Lp-spaces. To this end, we define the weight function

ωT : R→ R by

ωT (y) := exp

{
−|y|

2

4T

}
, y ∈ R. (3.14)

Proposition 3.9. Suppose the drift coefficient b is in the decomposable form (1.7) and
uniformly Lipschitz continuous in the third variable (1.10). Let (Xx

t )t∈[0,T ] be the unique
strong solution of (2.1). Furthermore, {bn}n≥1 is the approximating sequence of b as
defined in (3.9) and (Xn,x

t )t∈[0,T ], n ≥ 1, the corresponding unique strong solutions
of (3.10). Then, for every t ∈ [0, T ] and function φ ∈ L2p(R;ωT ) with p := 1+ε

ε , ε > 0

sufficiently small with regard to Lemma A.4,

φ(Xn,x
t ) −−−−→

n→∞
φ(Xx

t )

weakly in L2(Ω,Ft).

Proof. As described in the proof of Proposition 3.8 it suffices to show for all t ∈ [0, T ] that
φ(Xn,x

t ) converges weakly to φ(X
x

t ), whereX
x

t is the unique strong solution of SDE (3.13).
This can be shown equivalently to [2, Lemma A.3]. First note that φ(Xn,x

t ), φ(X
x

t ) ∈
L2(Ω,Ft), n ≥ 0. Hence, in order to show weak convergence it suffices to show that

W(φ(Xn,x
t ))(f) −−−−→

n→∞
W(φ(X

x

t ))(f),

for every f ∈ L2([0, T ]). One can show by Hölder’s inequality, inequality (2.5) and
Lemma A.4 that∣∣∣W(φ(Xn,x

t ))(f)−W(φ(X
x

t ))(f)
∣∣∣ =

. E

[(
E

(∫ T

0

bn(s,Bxs ,PXn,xs
) + f(s)dBs

)
− E

(∫ T

0

b(s,Bxs ,PYs) + f(s)dBs

))q] 1
q

. An,
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where q := 2(1+ε)
2+ε and

An := E

[(∫ T

0

(
bn(s,Bxs ,PXn,xs

)− b(s,Bxs ,PYs)
)
dBs

−1

2

∫ T

0

(
(bn(s,Bxs ,PXn,xs

) + f(s))2 − (b(s,Bxs ,PYs) + f(s))2
)
ds

)2p
 1

2p

.

Using Minkowski’s inequality and Burkholder-Davis-Gundy’s inequality yields

An ≤ E

∣∣∣∣∣
∫ T

0

bn(s,Bxs ,PXn,xs
)− b(s,Bxs ,PYs)dBs

∣∣∣∣∣
2p
 1

2p

+ E

∣∣∣∣∣12
∫ T

0

(bn(s,Bxs ,PXn,xs
) + f(s))2 − (b(s,Bxs ,PYs) + f(s))2ds

∣∣∣∣∣
2p
 1

2p

. E

[(∫ T

0

∣∣bn(s,Bxs ,PXn,xs
)− b(s,Bxs ,PYs)

∣∣2 ds)p] 1
2p

+ E

(∫ T

0

∣∣(bn(s,Bxs ,PXn,xs
) + f(s))2 − (b(s,Bxs ,PYs) + f(s))2

∣∣ ds)2p
 1

2p

=: Dn + En.

Looking at the first summand, we see using the triangle inequality that

Dn = E

[(∫ T

0

∣∣bn(s,Bxs ,PXn,xs
)− b(s,Bxs ,PYs)

∣∣2 ds)p] 1
2p

≤ E

[(∫ T

0

∣∣bn(s,Bxs ,PXn,xs
)− bn(s,Bxs ,PYs)

∣∣2 ds)p] 1
2p

+ E

[(∫ T

0

|bn(s,Bxs ,PYs)− b(s,Bxs ,PYs)|
2
ds

)p] 1
2p

.

Since there exists a constant C > 0 such that (µ 7→ bn(t, y, µ)) ∈ LipC(P1(R)) for

all n ≥ 0, t ∈ [0, T ], y ∈ R and Xn,x
s

L2(Ω,Fs)−−−−−−→
n→∞

Ys for all s ∈ [0, T ] by the proof of

Proposition 3.8, we get by dominated convergence that Dn converges to 0 as n → ∞.
Equivalently one can show that also En converges to 0 as n tends to infinity. Therefore∣∣∣W(φ(Xn,x

t ))(f)−W(φ(X
x

t ))(f)
∣∣∣ converges to 0 as n→∞ and the claim holds.

The following lemma will be used in the application of the compactness argument in
the proof of Theorem 3.3.

Lemma 3.10. Let {(Xn,x
t )t∈[0,T ]}n≥1 be the unique strong solutions of (3.10). Then, for

any compact subset K ⊂ R and p ≥ 2,

sup
n≥1

sup
t∈[0,T ]

ess sup
x∈K

E
[
|∂xXn,x

t |
p] ≤ C,

for some constant C > 0.
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Proof. By Corollary 3.7, we have

∂xX
n,x
t = D0X

n,x
t +

∫ t

0

DuX
n,x
t ∂xbn(u, y,PXn,xu

)|y=Xn,xu
du. (3.15)

Using Proposition 3.1 as well as Girsanov’s theorem and Hölder’s inequality with q := 1+ε
ε ,

ε > 0 sufficiently small with regard to Lemma A.4, yields together with Lemma A.5 that

E
[
|DsX

n,x
t |

p]
= E

[
exp

{
−p
∫ t

s

∫
R

bn(u, y,PXn,xu
)LX

x

(du, dy)

}]
. E

[
exp

{
−qp

∫ t

s

∫
R

bn(u, y,PXn,xu
)LB

x

(du, dy)

}] 1
q

≤ C1,

(3.16)

for some constant C1 > 0 independent of n ≥ 0, x ∈ K and s, t ∈ [0, T ]. Hence, we get for
every n ≥ 1 and almost every x ∈ K with Minkowski’s and Hölder’s inequality using that
(µ 7→ b(t, y, µ)) ∈ LipC(P1(R)) for every t ∈ [0, T ] and y ∈ R that

E
[
|∂xXn,x

t |
p] 1

p = E

[∣∣∣∣D0X
n,x
t +

∫ t

0

DuX
n,x
t ∂xbn(u, y,PXn,xu

)|y=Xn,xu
du

∣∣∣∣p
] 1
p

. sup
0≤u≤T

E
[
|DuX

n,x
t |

2p
] 1

2p

1 + E

[(∫ t

0

∣∣∂xbn (u, y,PXn,xu

)∣∣
y=Xn,xu

du

)2p
] 1

2p


. 1 + E

(∫ t

0

∣∣∣∣∣ lim
x0→x

bn
(
u,Xn,x

u ,PXn,xu

)
− bn

(
u,Xn,x

u ,PXn,x0u

)
|x− x0|

∣∣∣∣∣ du
)2p

 1
2p

. 1 + lim inf
x0→x

1

|x− x0|

∫ t

0

K
(
PXn,xu

,PXn,x0u

)
du.

(3.17)

Denote by conv(K) the closed convex hull of K and note that conv(K) is again a compact
set. Moreover, we can bound the Kantorovich metric of PXn,xu

and PXn,x0u
for arbitrary

x, x0 ∈ conv(K) by using the second fundamental theorem of calculus and representation
(3.3):

K
(
PXn,xu

,PXn,x0u

)
≤ E

[∣∣∣∣∫ u

0

bn(s,Xn,x
s ,PXn,xs

)− bn(s,Xn,x0
s ,PXn,x0s

)ds

∣∣∣∣]
= |x− x0|E

[∣∣∣∣∫ u

0

∫ 1

0

∂2bn

(
s,Xn,x+τ(x0−x)

s ,P
X
n,x+τ(x0−x)
s

)
∂τX

n,x+τ(x0−x)
s

+∂τ bn

(
s, z,P

X
n,x+τ(x0−x)
s

)
|
z=X

n,x+τ(x0−x)
s

dτds
∣∣∣]

≤ |x− x0|
∫ 1

0

E

[∣∣∣∣∫ u

0

∂2bn

(
s,Xn,x+τ(x0−x)

s ,P
X
n,x+τ(x0−x)
s

)
∂τX

n,x+τ(x0−x)
s

+∂τ bn

(
s, z,P

X
n,x+τ(x0−x)
s

)
|
z=X

n,x+τ(x0−x)
s

ds
∣∣∣] dτ

= |x− x0|
∫ 1

0

E
[∣∣∣∂τXn,x+τ(x0−x)

u − (1− τ)
∣∣∣] dτ

. |x− x0|+ |x− x0| ess sup
x∈conv(K)

E [|∂xXn,x
u |] .

(3.18)

Putting all together we can find a constant C2 > 0 independent of n ≥ 1, t ∈ [0, T ] and
x ∈ conv(K) such that

ess sup
x∈conv(K)

E
[
|∂xXn,x

t |
p] 1

p ≤ C2 + C2

∫ t

0

ess sup
x∈conv(K)

E [|∂xXn,x
u |

p
]
1
p du.
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Note that by (3.17) and (3.5) we can find constants C3(n), C4(n) > 0 for every n ≥ 1

independent of t ∈ [0, T ] and x ∈ conv(K) such that

E
[
|∂xXn,x

t |
p] 1

p ≤ C3(n)

(
1 + lim inf

x0→x

1

|x− x0|

∫ t

0

K
(
PXn,xu

,PXn,x0u

)
du

)
≤ C4(n) <∞.

Hence, t 7→ ess sup
x∈conv(K)

E
[
|∂xXn,x

t |
p] 1

p is integrable over [0, T ]. Since it is also Borel
measurable, we can apply Jones’ generalization of Grönwall’s inequality [22, Lemma 5]
to get

ess sup
x∈K

E
[
|∂xXn,x

t |
p] 1

p ≤ ess sup
x∈conv(K)

E
[
|∂xXn,x

t |
p] 1

p ≤ C2 + C2
2

∫ t

0

eC2(t−s)ds <∞.

Finally, we are able to give the proof of Theorem 3.3.

Proof of Theorem 3.3. Let (Xn,x
t )t∈[0,T ] be the unique strong solutions of (3.10). The

main idea of this proof is to show that {Xn
t }n≥1 is weakly relatively compact in

L2(Ω,W 1,2(U)) and to identify the weak limit Y := limk→∞Xnk in L2(Ω,W 1,2(U)) with
X, where {nk}k≥1 is a suitable subsequence.

Due to Lemma A.4 and Lemma 3.10

sup
n≥1

E
[
‖Xn,x

t ‖2W 1,2(U)

]
<∞,

and thus, the sequence Xn,x
t is weakly relatively compact in L2(Ω,W 1,2(U)), see e.g. [30,

Theorem 10.44]. Consequently, there exists a sub-sequence nk, k ≥ 0 such that Xnk,x
t

converges weakly to some Yt ∈ L2(Ω,W 1,2(U)) as k →∞. Let φ ∈ C∞0 (U) be an arbitrary
test function and denote by φ′ if well-defined its first derivative. Define

〈Xn
t , φ〉 :=

∫
U

Xn,x
t φ(x)dx.

Then for all measurable sets A ∈ F and t ∈ [0, T ] we get by Lemma A.4 that

E [1A〈Xn
t −Xt, φ

′〉] ≤ ‖φ′‖L2(U)|U |
1
2 sup
x∈U

E
[
1A|Xn,x

t −Xx
t |2
] 1

2 <∞,

where U is the closure of U , and consequently by Proposition 3.8 we get that
limn→∞E [1A〈Xn

t −Xt, φ
′〉] = 0. Therefore,

E[1A〈Xt, φ
′〉] = lim

k→∞
E[1A〈Xnk

t , φ′〉] = − lim
k→∞

E [1A 〈∂xXnk
t , φ〉] = −E [1A 〈∂xYt, φ〉] .

Thus,

P-a.s. 〈Xt, φ
′〉 = −〈∂xYt, φ〉 . (3.19)

Finally, we have to show as in [2, Theorem 3.4] that there exists a measurable set Ω0 ⊂ Ω

with full measure such that X ·t has a weak derivative on this subset. To this end, choose
a sequence {φn}n≥1 ⊂ C∞0 (R) dense in W 1,2(U) and a measurable subset Ωn ⊂ Ω with
full measure such that (3.19) holds on Ωn with φ replaced by φn. Then Ω0 :=

⋂
n≥1 Ωn

satisfies the desired property.

We conclude this subsection with the proof of Proposition 3.4 that generalizes the
probabilistic representation (3.3) of the first variation process (∂xX

x
t )t∈[0,T ] and the

connection to the Malliavin derivative given in Corollary 3.7 to irregular drift coefficients.
To this end we first verify the weak differentiability of the function

(
x 7→ b

(
t, y,PXxt

))
in

the next proposition.
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Proposition 3.11. Suppose the drift coefficient b is in the decomposable form (1.7) and
uniformly Lipschitz continuous in the third variable (1.10). Let (Xx

t )t∈[0,T ] be the unique
strong solution of (2.1) and U ⊂ R be an open and bounded subset. Then for every
1 < p <∞, t ∈ [0, T ] and y ∈ R,(

x 7→ b
(
t, y,PXxt

))
∈W 1,p(U).

Proof. Let {bn}n≥1 be the approximating sequence of b as defined in (3.9) and
(Xn,x

t )t∈[0,T ], n ≥ 1, the corresponding unique strong solutions of (3.10). For nota-
tional simplicity we define bn(x) := bn

(
t, y,PXn,xt

)
for every n ≥ 0. We proceed similar

to the proof of Theorem 3.3 and thus start by showing that {bn}n≥1 is weakly relatively
compact in W 1,p(U). Due to Lemma A.4 and the proof of Lemma 3.10

sup
n≥1
‖bn‖W 1,p(U) <∞.

Hence, {bn} is bounded in W 1,p(U) and thus weakly relatively compact by [30, Theorem
10.44]. Therefore, we can find a sub-sequence {nk}k≥1 and g ∈ W 1,p(U) such that bnk
converges weakly to g as k →∞.

Let φ ∈ C∞0 (U) be an arbitrary test-function and denote by φ′ if well-defined its first
derivative. Define

〈bn, φ〉 :=

∫
U

bn(x)φ(x)dx.

Due to Lemma A.4

〈bn − b, φ′〉 ≤ ‖φ′‖Lp(U)|U |
1
p sup
x∈U
|bn(x)− b(x)| <∞,

where U is the closure of U , and since by Proposition 3.8∣∣bn (t, y,PXn,xt

)
− b

(
t, y,PXxt

)∣∣
≤
∣∣bn (t, y,PXn,xt

)
− bn

(
t, y,PXxt

)∣∣+
∣∣bn (t, y,PXxt )− b (t, y,PXxt )∣∣

≤ CK
(
PXn,xt

,PXxt
)

+
∣∣bn (t, y,PXxt )− b (t, y,PXxt )∣∣ −−−−→n→∞

0,

we get limn→∞〈bn − b, φ′〉 = 0. Thus,

〈b, φ′〉 = lim
k→∞

〈bnk , φ′〉 = − lim
k→∞

〈
b′nk , φ

〉
= −〈g′, φ〉 ,

where b′nk and g′ are the first variation processes of bnk and g, respectively.

Proof of Proposition 3.4. Let (bn)n≥1 be the approximating sequence of b as defined in
(3.9) and (Xn,x

t )t∈[0,T ] be the corresponding unique strong solutions of (3.10). We define
for n ≥ 0

Ψn := exp

{
−
∫ t

0

∫
R

bn
(
u, y,PXn,xu

)
LX

n,x

(du, dy)

}
+

∫ t

0

exp

{
−
∫ t

s

∫
R

bn
(
u, y,PXn,xu

)
LX

n,x

(du, dy)

}
∂xbn

(
s, y,PXn,xs

)
|y=Xn,xs

ds,

which is well-defined for all n ≥ 0 due to Lemma A.5 and Proposition 3.11. For every
t ∈ [0, T ] the sequence {Xn,x

t }n≥1 converges weakly in L2(Ω,W 1,2(U)) to Xx
t by the proof

of Theorem 3.3. Hence, it suffices to show for every f ∈ L2([0, T ]) and g ∈ C∞0 (U) that

〈W (Ψn −Ψ0) (f), g〉 −−−−→
n→∞

0.
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Define for every n ≥ 0

Ln(s, t, x) := exp

{
−
∫ t

s

∫
R

bn
(
u, y,PXn,xs

)
LB

x

(du, dy)

}
, and

En(x) := E

(∫ T

0

bn
(
u,Bxu,PXn,xs

)
+ f(u)dBu

)
.

Applying Girsanov’s theorem and Minkowski’s inequality yields

〈W (Ψn −Ψ0) (f), g〉

≤
∫
U

g(x)E [|Ln(0, t, x)− L0(0, t, x)| En(x)] dx

+

∫
U

g(x)E [|En(x)− E0(x)|L0(0, t, x)] dx

+

∫
U

∫ t

0

g(x)E
[
|Ln(s, t, x)− L0(s, t, x)|

∣∣∂xbn (s, y,PXn,xs

)∣∣
y=Bxs

En(x)
]
dsdx

+

∫
U

∫ t

0

g(x)E
[
|En(x)− E0(x)|L0(s, t, x)

∣∣∂xbn (s, y,PXn,xs

)∣∣
y=Bxs

]
dsdx

+

∫
U

∫ t

0

g(x)E
[∣∣∂xbn (s, y,PXn,xs

)
− ∂xb

(
s, y,PXxs

)∣∣
y=Bxs

L0(s, t, x)E0(x)
]
dsdx.

Note that for any 1 < p <∞,

sup
n≥0

sup
s∈[0,T ]

ess sup
x∈U

E
[∣∣∂xbn (s, y,PXn,xs

)
|y=Bxs

∣∣p] <∞, (3.20)

due to Lemma 3.13 and the proof of Lemma 3.10. Hence, we get by Hölder’s inequality,
Lemma A.4, and Lemma A.5 that for q := 2(1+ε)

2+ε and p := 2(1+ε)
ε , where ε > 0 is sufficiently

small with regard to Lemma A.4,

〈W (Ψn −Ψ0) (f), g〉

.
∫
U

g(x)

(
sup

s,t∈[0,T ]

E [|Ln(s, t, x)− L0(s, t, x)|p]
1
p + E [|En(x)− E0(x)|q]

1
q

)
dx

+

∫
U

∫ t

0

g(x)E
[∣∣∂xbn (s, y,PXn,xs

)
− ∂xb

(
s, y,PXxs

)∣∣p
y=Bxs

] 1
p

dsdx.

The first two summands converge due to Lemma A.6, Lemma A.7, and dominated conver-
gence. For the third summand we use that

(
x 7→ b

(
t, y,PXxt

))
∈W 1,p(U). Consequently,

by dominated convergence and [40, Lemma 2.1.3] we get that∫
U

∫ t

0

g(x)E
[∣∣∂xbn (s, y,PXn,xs

)
− ∂xb

(
s, y,PXxs

)∣∣p
y=Bxs

] 1
p

dsdx −−−−→
n→∞

0.

Representation (3.2) is a direct consequence of equation (3.1) and Proposition 3.1.

3.3 Hölder continuity

We complete Section 3 by proving Hölder continuity of the unique strong solution
(Xx

t )t∈[0,T ] to mean-field SDE (2.1) in time and space.

Theorem 3.12. Suppose the drift coefficient b is in the decomposable form (1.7) and
uniformly Lipschitz continuous in the third variable (1.10). Let (Xx

t )t∈[0,T ] be the unique
strong solution of the mean-field SDE (2.1). Then for every compact subset K ⊂ R there
exists a constant C > 0 such that for all s, t ∈ [0, T ] and x, y ∈ K,

E[|Xx
t −Xy

s |2] ≤ C(|t− s|+ |x− y|2). (3.21)
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In particular, there exists a continuous version of the random field (t, x) 7→ Xx
t with

Hölder continuous trajectories of order α < 1
2 in t ∈ [0, T ] and α < 1 in x ∈ R.

To prove Theorem 3.12 we need the following extension of Lemma 3.10 to include
also ∂xXx

t .

Lemma 3.13. Suppose the drift coefficient b is in the decomposable form (1.7) and
uniformly Lipschitz continuous in the third variable (1.10). Let (Xx

t )t∈[0,T ] be the unique
strong solution of (2.1). Then for any compact subset K ⊂ R and p ≥ 1, there exists a
constant C > 0 such that

sup
t∈[0,T ]

ess sup
x∈K

E [(∂xX
x
t )
p
] ≤ C.

Proof. The proof follows by Lemma 3.10 and the application of Fatou’s lemma:

E [(∂xX
x
t )
p
] ≤ lim inf

n→∞
E
[
(∂xX

n,x
t )

p] ≤ C.
Proof of Theorem 3.12. Let s, t ∈ [0, T ] and x, y ∈ K be arbitrary. Consider the approxi-
mating sequence {Xn,x}n≥1 as defined in (3.10). Note first that similar to (3.18) it can
be shown that for every n ≥ 1

E
[
|Xn,x

t −Xn,y
t |

2
] 1

2

. |x− y|+ |x− y| ess sup
x∈conv(K)

E
[
|∂xXn,x

t |
2
] 1

2

.

Since ess sup
x∈conv(K)

E
[
|∂xXn,x

u |
2
]

is bounded uniformly in n ≥ 1 and t ∈ [0, T ] due to

(3.10), there exists a constant C1 > 0 such that for all n ≥ 1 and t ∈ [0, T ]

E
[
|Xn,x

t −Xn,y
t |

2
] 1

2 ≤ C1|x− y|.

Moreover, we have similar to (3.11) that there exists a constant C2 > 0 such that for
every n ≥ 1 and x ∈ K

E
[
|Xn,x

t −Xn,x
s |

2
] 1

2 ≤ C2|t− s|
1
2 .

Consequently, there exists a constant C > 0 such that for all n ≥ 1

E
[
|Xn,x

t −Xn,y
s |

2
]
≤ C(|t− s|+ |x− y|2).

Finally, using Fatou’s lemma applied to a subsequence and that Xn,x
t converges to Xx

t in
L2(Ω) by Proposition 3.8, yields the result.

4 Bismut-Elworthy-Li formula

In this section we turn our attention to finding a Bismut-Elworthy-Li type formula, i.e.
with the help of Proposition 3.4 we give a probabilistic representation of type (1.11) for
∂xE[Φ(Xx

T )] for functions Φ merely satisfying some integrability condition. The following
lemma prepares the grounds for the main result in Theorem 4.2.

Lemma 4.1. Suppose the drift coefficient b is in the decomposable form (1.7) and
uniformly Lipschitz continuous in the third variable (1.10). Let (Xx

t )t∈[0,T ] be the unique
strong solution of the corresponding mean-field SDE (2.1) and U ⊂ R be an open and
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bounded subset. Furthermore, consider the functional Φ ∈ C1,1
b (R). Then for every

t ∈ [0, T ] and 1 < p <∞,

(x 7→ E [Φ(Xx
t )]) ∈W 1,p(U).

Moreover, for almost all x ∈ U

∂xE [Φ(Xx
t )] = E [Φ′(Xx

t )∂xX
x
t ] , (4.1)

where Φ′ denotes the first derivative of Φ.

Proof. It is readily seen that (x 7→ E[Xx
t ]) ∈ LipC1

(U,R) for some constant C1 > 0 due to
(3.18) and Proposition 3.8. Therefore, we get with the assumptions on the functional
Φ that there exists a constant C2 > 0 such that (x 7→ E[Φ(Xx

t )]) ∈ LipC2
(U,R). Hence,

E[Φ(Xx
t )] is almost everywhere and weakly differentiable on U and for almost all x ∈ U

∂xE[Φ(Xx
t )] = lim

h→0

E[Φ(Xx+h
t )]− E[Φ(Xx

t )]

h
= E

[
lim
h→0

Φ(Xx+h
t )− Φ(Xx

t )

h

]
= E [Φ′(Xx

t )∂xX
x
t ] ,

where we used dominated convergence and the chain rule. Finally, we can conclude
from (4.1) using Lemma 3.13 and the boundedness of Φ′ that (x 7→ E [Φ(Xx

t )]) ∈W 1,p(U)

for every 1 < p <∞.

Theorem 4.2. Suppose the drift coefficient b is in the decomposable form (1.7) and
uniformly Lipschitz continuous in the third variable (1.10). Let (Xx

t )t∈[0,T ] be the unique
strong solution of the corresponding mean-field SDE (2.1), K ⊂ R be a compact subset
and Φ ∈ L2p(R;ωT ), where p := 1+ε

ε , ε > 0 sufficiently small with regard to Lemma A.4,
and ωT is as defined in (3.14). Then, for every open subset U ⊂ K, t ∈ [0, T ] and
1 < q <∞,

(x 7→ E [Φ(Xx
t )]) ∈W 1,q(U),

and for almost all x ∈ K

∂xE[Φ(Xx
T )] = E

[
Φ(Xx

T )

∫ T

0

(
a(s)∂xX

x
s + ∂xb

(
s, y,PXxs

)
|y=Xxs

∫ s

0

a(u)du

)
dBs

]
, (4.2)

where ∂xXx
s is given in (3.1) and a : R→ R is any bounded, measurable function such

that ∫ T

0

a(s)ds = 1.

Remark 4.3. Note that in the case of an SDE the derivative (4.2) collapses to the
representation

E

[
Φ(Xx

T )

∫ T

0

a(s)∂xX
x
s dBs

]

established in [2], where the first variation process ∂xXx has the representation

∂xX
x
t = exp

{
−
∫ t

0

∫
R

b(u, y)LX
x

(du, dy)

}
.

Hence, one can speak of a derivative free representation. Regarding mean-field SDEs,
the derivative ∂xb

(
s, y,PXxs

)
still appears in the representation of ∂xXx.
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Remark 4.4. In [3] we show that for the special case of mean-field SDEs of type (1.12),
the expectation functional E[Φ(Xx

t )] is even continuously differentiable in x for irregular
drift coefficients under certain additional assumptions on the functions b̂ and ϕ given in
(1.12).

Proof of Theorem 4.2. We start by showing the result for Φ ∈ C1,1
b (R). In this case the

derivative ∂xE[Φ(Xx
T )] exists by Lemma 4.1 and admits representation (4.1). Further-

more, by (3.2) for any s ≤ T ,

∂xX
x
T = DsX

x
T∂xX

x
s +

∫ T

s

DuX
x
T∂xb

(
u, y,PXxu

)
|y=Xxu

du.

Recall that DsX
x
T = 0 for s ≥ T . Thus for any bounded function a : R → R with∫ T

0
a(s)ds = 1,

∂xX
x
T =

∫ T

0

a(s)

(
DsX

x
T∂xX

x
s +

∫ T

s

DuX
x
T∂xb

(
u, y,PXxu

)
|y=Xxu

du

)
ds

=

∫ T

0

a(s)DsX
x
T∂xX

x
s ds+

∫ T

0

∫ T

s

a(s)DuX
x
T∂xb

(
u, y,PXxu

)
|y=Xxu

duds.

We look at each summand individually starting with the first one. Since Φ ∈ C1,1
b (R),

Φ(Xx
T ) is Malliavin differentiable and

E

[
Φ′(Xx

T )

∫ T

0

a(s)DsX
x
T∂xX

x
s ds

]
= E

[∫ T

0

a(s)DsΦ(Xx
T )∂xX

x
s ds

]
.

Due to the fact that s 7→ a(s)∂xX
x
s is an adapted process satisfying

E

[∫ T

0

(a(s)∂xX
x
s )

2
ds

]
<∞

by Lemma 3.13, we can apply the duality formula [17, Corollary 4.4] and get

E

[∫ T

0

a(s)DsΦ(Xx
T )∂xX

x
s ds

]
= E

[
Φ(Xx

T )

∫ T

0

a(s)∂xX
x
s dBs

]
.

For the second summand note that by (3.16) and the proof of Lemma 3.10

sup
u,s∈[0,T ]

E
[∣∣Φ′(Xx

T )a(s)DuX
x
T∂xb

(
u, y,PXxu

)
|y=Xxu

∣∣] <∞.
Hence, the integral∫ T

0

∫ T

0

E
[∣∣Φ′(Xx

T )a(s)DuX
x
T∂xb

(
u, y,PXxu

)
|y=Xxu

∣∣] duds
exists and is finite by Tonelli’s Theorem. Consequently, we can interchange the order of
integration to deduce

E

[
Φ′(Xx

T )

∫ T

0

∫ T

s

a(s)DuX
x
T∂xb

(
u, y,PXxu

)
|y=Xxu

duds

]
(4.3)

= E

[∫ T

0

DuΦ(Xx
T )∂xb

(
u, y,PXxu

)
|y=Xxu

∫ u

0

a(s)dsdu

]
.
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Furthermore, u 7→ ∂xb
(
u, y,PXxu

)
|y=Xxu

is an F -adapted process. Hence, we can apply
the duality formula [17, Corollary 4.4] and get

E

[∫ T

0

DuΦ(Xx
T )∂xb

(
u, y,PXxu

)
|y=Xxu

∫ u

0

a(s)dsdu

]

= E

[
Φ(Xx

T )

∫ T

0

∂xb
(
u, y,PXxu

)
|y=Xxu

∫ u

0

a(s)dsdBu

]
.

Putting all together provides representation (4.2) for Φ ∈ C1,1
b (R).

By standard arguments, we can now approximate Φ ∈ L2p(R;ωT ) by a smooth
sequence {Φn}n≥1 ⊂ C∞0 (R) such that Φn → Φ in L2p(R;ωT ) as n→∞. Define

un(x) := E [Φn(Xx
T )] and

u(x) := E

[
Φ(Xx

T )

∫ T

0

(
a(s)∂xX

x
s + ∂xb(s,X

x
s ,PXxs )|y=Xxs

∫ s

0

a(u)du

)
dBs

]
.

First, we obtain that u is well-defined using Hölder’s inequality, Itô’s isometry and
Lemma A.4. Indeed,

|u(x)| ≤ E
[
Φ(Xx

T )2
] 1

2

× E

(∫ T

0

(
a(s)∂xX

x
s + ∂xb(s,X

x
s ,PXxs )|y=Xxs

∫ s

0

a(u)du

)
dBs

)2
 1

2

≤ E

[
Φ(BxT )2E

(∫ T

0

b(u,Bxu, ρ
x
u)dBu

)] 1
2

× E

[∫ T

0

(
a(s)∂xX

x
s + ∂xb(s,X

x
s ,PXxs )|y=Xxs

∫ s

0

a(u)du

)2

du

] 1
2

. E
[
|Φ(BxT )|2p

] 1
2p

<∞,

(4.4)

where the last inequality holds due to Lemma 3.10 and the proof of Proposition 3.11.
Similar to the proof of Proposition 3.11 it is left to show that 〈u′n − u, φ〉U for any test-
function φ ∈ C∞0 (U) as n → ∞, where U ⊂ K is an open set. Since the bounds in (4.4)
hold for almost all x ∈ U ⊂ K, we get exactly in the same way that

|u′(x)− u(x)| ≤ C(x)E
[
|Φn(BxT )− Φ(BxT )|2p

] 1
2p

= C(x)

(∫
R

1√
2πT

|Φn(y)− Φ(y)|2p e−
(y−x)2

2T dy

) 1
2p

≤ C(x)

(
e
x2

2T

√
2πT

∫
R

|Φn(y)− Φ(y)|2p e−
y2

4T dy

) 1
2p

= C(x)

(
e
x2

2T

√
2πT

) 1
2p

‖Φn − Φ‖L2p(R;ωT ) ,

where C(x) > 0 is bounded for almost every x ∈ K and where we have used

e−
(y−x)2

2t = e−
y2

4t e−
(y−2x)2

4t e
x2

2t ≤ e−
y2

4t e
x2

2t .
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Hence, for any open subset U ⊂ K, we get

lim
n→∞

〈u′n(x)− u(x), φ〉U = 0.

Thus u′ = u for almost every x ∈ K.

Remark 4.5. Note that for one-dimensional mean-field SDEs with additive noise (i.e.
σ ≡ 1) Theorem 4.2 extends the Bismut-Elworthy-Li formula in [1] to irregular drift
coefficients. More precisely, by changing the order of integration in (4.3) we are actually
able to further develop the formula in [1] such that the Malliavin weight is given in terms
of an Itô integral as opposed to an anticipative Skorohod integral in [1].

A Technical results

Lemma A.1. Let b : [0, T ] × R × P1(R) → R be a measurable function satisfying the
linear growth condition (1.5). Furthermore, let (Ω,F ,F,P, B,Xx) be a weak solution of
(2.2). Then, for 1 ≤ p <∞, and every compact set K ⊂ R,

sup
x∈K

E

[
sup
t∈[0,T ]

|b(t,Xx
t , µt)|p

]
<∞. (A.1)

In particular, b(·, Xx
· , µ·) ∈ Lp([0, T ]× Ω), 1 ≤ p <∞. Furthermore,

sup
x∈K

E

[
sup
t∈[0,T ]

|Xx
t |p
]
<∞. (A.2)

Proof. Note first that supt∈[0,T ]K(µt, δ0)dt is well-defined and finite. Indeed, since µ ∈
C([0, T ];P1(R)) and K(·, δ0) is continuous, the supremum over t ∈ [0, T ] of K(µt, δ0) is
attained. Furthermore, we can write

K(µt, δ0) = sup
h∈Lip1

∣∣∣∣∫
R

h(y)µt(dy)− h(0)

∣∣∣∣ ≤ sup
h∈Lip1

∫
R

|h(y)− h(0)|dµt(dy)

≤
∫
R

|y|µt(dy) <∞,
(A.3)

where the last term is finite by the definition of P1(R). Therefore, we get due to the
linear growth of b that

|Xx
t | =

∣∣∣∣x+

∫ t

0

b(s,Xx
s , µs)ds+Bt

∣∣∣∣ . |x|+ T + |Bt|+
∫ t

0

|Xx
s |ds.

Thus, Grönwall’s inequality yields that there exist constants C1 and C2 such that

|Xx
t | ≤ C1

(
1 + |x|+ sup

s∈[0,T ]

|Bxs |

)
, and

|b(t,Xx
t , µt)| ≤ C2

(
1 + |x|+ sup

s∈[0,T ]

|Bxs |

)
.

(A.4)

The boundedness of (A.1) is a direct consequence of (A.4) and Doob’s maximal inequality.

We define the complete probability space (Ω,F ,Q) carrying a Brownian motion B. In
the following lemma we will prove the existence of an equivalent measure Pµ induced
by the drift coefficient b.
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Lemma A.2. Let b : [0, T ] × R × P1(R) → R be a measurable function satisfying the
linear growth condition (1.5). Then the Radon-Nikodym derivative

dPµ

dQ
= E

(∫ T

0

b(s,Bxs , µs)dBs

)
(A.5)

is well-defined and yields a probability measure Pµ ∼ Q. If (Ω,F ,F,Pµ, Bµ, Xx) is a
weak solution of (2.2), the Radon-Nikodym derivative

dQµ

dPµ
= E

(
−
∫ T

0

b(s,Xx
s , µs)dB

µ
s

)
(A.6)

is well-defined and yields a probability measure Qµ equivalent to Pµ. Moreover,
(Xx

t )t∈[0,T ] is a Qµ-Brownian motion starting in x.

Proof. This is a direct consequence of Beneš’ result (cf. [27, Corollary 3.5.16]) and
(A.4).

Lemma A.3. Let b : [0, T ]×R×P1(R)→ R be a measurable function satisfying the linear
growth condition (1.5). Then, there exists an ε > 0 such that for any µ ∈ C([0, T ];P1(R)),

E

E (∫ T

0

b(u,Bxu, µu)dBu

)1+ε
 <∞. (A.7)

Proof. First, we rewrite

E

E (∫ T

0

b(u,Bxu, µu)dBu

)1+ε


= E

[
exp

{∫ T

0

(1 + ε)b(u,Bxu, µu)dBu −
1

2

∫ T

0

(1 + ε)|b(u,Bxu, µu)|2du

}]

= E

[
E

(∫ T

0

(1 + ε)b(u,Bxu, µu)dBu

)
exp

{
1

2

∫ T

0

ε(1 + ε)|b(u,Bxu, µu)|2du

}]

= E

[
exp

{
1

2

∫ T

0

ε(1 + ε)|b(u,Xε,x
u , µu)|2du

}]
,

where in the last step by Girsanov’s theorem Xε,x denotes a weak solution of

dXε,x
t = (1 + ε)b(t,Xε,x

t , µt)dt+ dBt, Xε,x
0 = x ∈ R, t ∈ [0, T ].

Since b satisfies the linear growth condition (1.5), we have that

|Xε,x
t | ≤ |x|+ (1 + ε)

∫ t

0

|b(u,Xε,x
u , µu)|du+ |Bt|

≤ |x|+ C(1 + ε)

∫ t

0

(1 + |Xε,x
u |+K(µu, δ0))du+ |Bt|.

Therefore, Grönwall’s inequality gives us

|Xε,x
t | ≤ (1 + ε)

(
T + |x|+ sup

s∈[0,T ]

|Bs|+ sup
u∈[0,T ]

K(µu, δ0)

)
eC(1+ε)T ,
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and thus, we can find a constant Cε,µ depending on ε, µ and T such that limε→0 Cε,µ
exists, is finite, and

|b(t,Xε,x
t , µt)| ≤ Cε,µ

(
1 + |x|+ sup

s∈[0,T ]

|Bs|

)
.

Hence,

E

[
exp

{
1

2

∫ T

0

ε(1 + ε)|b(u,Xε,x
u , µu)|2du

}]

≤ E

exp

1

2
Tε(1 + ε)C2

ε,µ

(
1 + |x|+ sup

s∈[0,T ]

|Bs|

)2

 .

Clearly, limε→0 ε(1 + ε)C2
ε,µ = 0 and therefore we can choose ε > 0 sufficiently small such

that (A.7) holds.

Lemma A.4. Let b : [0, T ] × R × P1(R) → R be a measurable function satisfying the
linear growth condition (1.5). Furthermore, let (Ω,F ,G,P, B,Xx) be a weak solution of
the mean-field SDE (2.1). Then,

|b(t,Xx
t ,PXxt )| ≤ C

(
1 + |x|+ sup

s∈[0,T ]

|Bs|

)
(A.8)

for some constant C > 0. Consequently, for any compact set K ⊂ R, and 1 ≤ p < ∞,
there exists ε > 0 such that the following boundaries hold:

sup
x∈K

E

[
sup
t∈[0,T ]

|b(t,Xx
t ,PXxt )|p

]
<∞

sup
x∈K

sup
t∈[0,T ]

E [|Xx
t |p] <∞

sup
x∈K

E

E (∫ T

0

b(u,Bxu,PXxu )dBu

)1+ε
 <∞

Proof. Due to the proofs of Lemma A.1 and Lemma A.3, it suffices to show (A.8). Note
first that K(PXxt , δ0) ≤ E[|Xx

t |] for every t ∈ [0, T ] by (A.3). Hence, it is enough to show
that E[|Xx

t |] ≤ C(1 + |x|) for every t ∈ [0, T ] and some constant C > 0. Since (Xx
t )t∈[0,T ]

is a weak solution of (2.1) and b fulfills the linear growth condition (1.5), we get

E[|Xx
t |] . |x|+

∫ t

0

1 + E[|Xx
s |] +K(PXxs , δ0)ds+ E[|Bt|] . 1 + |x|+

∫ t

0

E[|Xx
s |]ds.

Consequently E[|Xx
t |] ≤ C(1+|x|) by Grönwall’s inequality which concludes the proof.

Lemma A.5. Suppose the drift coefficient b : [0, T ] × R × P1(R) → R is in the decom-
posable form (1.7) and uniformly Lipschitz continuous in the third variable (1.10). Let
(Xx

t )t∈[0,T ] be the unique strong solution of (2.1). Furthermore, {bn}n≥1 is the approx-
imating sequence of b as defined in (3.9) and (Xn,x

t )t∈[0,T ], n ≥ 1, the corresponding
unique strong solutions of (3.10). Then, for all λ ∈ R and any compact subset K ⊂ R,

sup
n≥0

sup
s,t∈[0,T ]

sup
x∈K

E

[
exp

{
−λ
∫ t

s

∫
R

bn
(
s, y,PXn,xs

)
LB

x

(ds, dy)

}]
<∞.
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Proof. Recall that bn can be decomposed into bn = b̃n + b̂ for all n ≥ 0. Here b̃n is
uniformly bounded in n ≥ 0. Hence, by [2, Lemma A.2]

sup
n≥0

sup
s,t∈[0,T ]

sup
x∈K

E

[
exp

{
−λ
∫ t

s

∫
R

b̃n
(
s, y,PXn,xs

)
LB

x

(ds, dy)

}]
<∞.

Moreover, ‖∂2b̂‖∞ <∞ by definition. Consequently,

sup
n≥0

sup
s,t∈[0,T ]

sup
x∈K

E

[
exp

{
−λ
∫ t

s

∫
R

b̂
(
s, y,PXn,xs

)
LB

x

(ds, dy)

}]
= sup
n≥0

sup
s,t∈[0,T ]

sup
x∈K

E

[
exp

{
λ

∫ t

s

∂2b̂
(
s,Bxs ,PXn,xs

)
ds

}]
<∞.

Lemma A.6. Suppose the drift coefficient b : [0, T ] × R × P1(R) → R is in the decom-
posable form (1.7) and uniformly Lipschitz continuous in the third variable (1.10). Let
(Xx

t )t∈[0,T ] be the unique strong solution of (2.1). Furthermore, {bn}n≥1 is the approx-
imating sequence of b as defined in (3.9) and (Xn,x

t )t∈[0,T ], n ≥ 1, the corresponding

unique strong solutions of (3.10). Then for any compact subset K ⊂ R and q := 2(1+ε)
2+ε ,

ε > 0 sufficiently small with regard to Lemma A.4,

sup
x∈K

E

[∣∣∣∣∣E
(∫ T

0

bn(t, Bxt ,PXn,xt
)dBt

)
− E

(∫ T

0

b(t, Bxt ,PXxt )dBt

)∣∣∣∣∣
q] 1

q

−−−−→
n→∞

0.

Proof. For the sake of readability we use the abbreviation bn(Xk,x
t ) = bn(t, Bxt ,PXk,xt

)

for n, k ≥ 0. First using inequality (2.5), Lemma A.4 and Burkholder-Davis-Gundy’s
inequality yields

An(T, x) := E

[∣∣∣∣∣E
(∫ T

0

bn(Xn,x
t )dBt

)
− E

(∫ T

0

b(Xx
t )dBt

)∣∣∣∣∣
q] 1

q

≤ E

[∣∣∣∣∣
∫ T

0

bn(Xn,x
t )− b(Xx

t )dBt +
1

2

∫ T

0

bn(Xn,x
t )2 − b(Xx

t )2dt

∣∣∣∣∣
q

(
E

(∫ T

0

bn(Xn,x
t )dBt

)
+ E

(∫ T

0

b(Xx
t )dBt

))q] 1
q

. E

∣∣∣∣∣
∫ T

0

(bn(Xn,x
t )− b(Xx

t ))
2
dt

∣∣∣∣∣
p
2

 1
p

+ E

[∣∣∣∣∣
∫ T

0

bn(Xn,x
t )2 − b(Xx

t )2dt

∣∣∣∣∣
p] 1

p

,

where p := 1+ε
ε . Due to its definition bn is of linear growth uniformly in n ≥ 0 and thus

we get with Lemma A.4 that

E
[∣∣bn(Xn,x

t )2 − b(Xx
t )2
∣∣p] 1

p

. E
[
|bn(Xn,x

t )− b(Xx
t )|2p

] 1
2p

and by Minkowski’s integral as well as Cauchy-Schwarz’ inequality, we have

An(T, x)

.

(∫ T

0

E
[
|bn(Xn,x

t )− b(Xx
t )|2p

] 2
2p

dt

) 1
2

+

∫ T

0

E
[
|bn(Xn,x

t )− b(Xx
t )|2p

] 1
2p

dt

.

(∫ T

0

E
[
|bn(Xn,x

t )− b(Xx
t )|2p

] 2
2p

dt

) 1
2

.
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Using the triangle inequality and (µ 7→ b(t, y, µ)) ∈ LipC(P1(R)) for every t ∈ [0, T ] and
y ∈ R yields

E
[
|bn(Xn,x

t )− b(Xx
t )|2p

] 1
2p

≤ E
[
|bn(Xn,x

t )− bn(Xx
t )|2p

] 1
2p

+ E
[
|bn(Xx

t )− b(Xx
t )|2p

] 1
2p

≤ CK
(
PXn,xt

,PXxt
)

+Dn(t, x) ≤ CE [|Xn,x
t −Xx

t |] +Dn(t, x),

where Dn(t, x) := E
[
|bn(Xx

t )− b(Xx
t )|2p

] 1
2p

, t ∈ [0, T ]. With Girsanov’s Theorem and

Jensen’s inequality we get

E [|Xn,x
t −Xx

t |] = E

[
|Bxt |

∣∣∣∣E (∫ t

0

bn(Xn,x
s )dBs

)
− E

(∫ t

0

b(Xx
s )dBs

)∣∣∣∣]

. E

[∣∣∣∣E (∫ t

0

bn(Xn,x
s )dBs

)
− E

(∫ t

0

b(Xx
s )dBs

)∣∣∣∣q
] 1
q

= An(t, x).

Consequently, An(T, x) .
(∫ T

0
(An(t, x) +Dn(t, x))2dt

) 1
2

and therefore

A2
n(T, x) .

∫ T

0

A2
n(t, x)dt+

∫ T

0

D2
n(t, x)dt.

Hence, we get with Grönwall’s inequality

A2
n(T, x) ≤ C

∫ T

0

D2
n(t, x)dt,

for some constants C > 0 independent of x ∈ K, n ≥ 0 and t ∈ [0, T ] and as a consequence
it suffices to show

sup
x∈K

∫ T

0

D2
n(t, x)dt −−−−→

n→∞
0. (A.9)

Note first

D2
n(t, x) = E

[∣∣bn (t, Bxt ,PXxt )− b (t, Bxt ,PXxt )∣∣2p] 2
2p

=

(∫
R

∣∣bn (t, y,PXxt )− b (t, y,PXxt )∣∣2p 1√
2πt

e−
(y−x)2

2t dy

) 2
2p

≤ e
x2

2pt

(∫
R

∣∣bn (t, y,PXxt )− b (t, y,PXxt )∣∣2p 1√
2πt

e−
y2

4t dy

) 2
2p

,

where we have used e−
(y−x)2

2t = e−
y2

4t e−
(y−2x)2

4t e
x2

2t ≤ e−
y2

4t e
x2

2t . Furthermore, by Theo-
rem 3.12 there exists a constant C > 0 such that for all t ∈ [0, T ] and x, y ∈ K

K
(
PXxt ,PXyt

)
≤ E

[
|Xx

t −X
y
t |

2
] 1

2 ≤ C|x− y|.

Consequently the function x 7→ PXxt is continuous for all t ∈ [0, T ]. Thus PXKt := {PXxt :

x ∈ K} ⊂ P1(R) is compact as an image of a compact set under a continuous function.
Therefore due to the definition of the approximating sequence

sup
x∈K

∣∣bn (t, y,PXxt )− b (t, y,PXxt )∣∣ = sup
µ∈P

XKt

|bn(t, y, µ)− b(t, y, µ)| −−−−→
n→∞

0,
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and hence D2
n(t, x) converges to 0 uniformly in x ∈ K. Consequently,

∫ T
0
D2
n(t, x)dt

converges uniformly to 0 by Lemma A.4 and dominated convergence, which proves the
result.

Lemma A.7. Suppose the drift coefficient b : [0, T ] × R × P1(R) → R is in the decom-
posable form (1.7) and uniformly Lipschitz continuous in the third variable (1.10). Let
(Xx

t )t∈[0,T ] be the unique strong solution of (2.1). Furthermore, {bn}n≥1 is the approx-
imating sequence of b as defined in (3.9) and (Xn,x

t )t∈[0,T ], n ≥ 1, the corresponding
unique strong solutions of (3.10). Then for any compact subset K ⊂ R, s, t ∈ [0, T ], s ≤ t
and p ≥ 1,

sup
x∈K

E

[∣∣∣∣exp{−∫ t

s

∫
R

b
PXn
n (u, y)LBx (du, dy)

}
− exp

{
−
∫ t

s

∫
R

bPXn (u, y)LBx (du, dy)

}∣∣∣∣p] 1
p

−−−−→
n→∞

0,

where bPXnn (u, y) := bn
(
u, y,PXn,xu

)
for all n ≥ 0.

Proof. We first use inequality (2.5) to obtain with Lemma A.5

E

[∣∣∣∣exp

{
−
∫ t

s

∫
R

bPXnn (u, y)LBx(du, dy)

}
− exp

{
−
∫ t

s

∫
R

bPXn (u, y)LBx(du, dy)

}∣∣∣∣p] 1
p

≤ E
[∣∣∣∣∫ t

s

∫
R

bPXnn (u, y)LBx(du, dy)−
∫ t

s

∫
R

bPXn (u, y)LBx(du, dy)

∣∣∣∣p
×
(

exp

{
−
∫ t

s

∫
R

bPXnn (u, y)LBx(du, dy)

}
+ exp

{
−
∫ t

s

∫
R

bPXn (u, y)LBx(du, dy)

})p] 1
p

. E

[∣∣∣∣∫ t

s

∫
R

bPXnn (u, y)LBx(du, dy)−
∫ t

s

∫
R

bPXn (u, y)LBx(du, dy)

∣∣∣∣2p
] 1

2p

.

We define the time-reversed Brownian motion B̂t := BT−t, t ∈ [0, T ], and the Brownian
motion Wt, t ∈ [0, T ], with respect to the natural filtration of B̂. By [2, Theorem 2.10],
Burkholder-Davis-Gundy’s inequality and Cauchy-Schwarz’ inequality

E

[∣∣∣∣∫ t

s

∫
R

b
PXn
n (u, y)− bPXn (u, y)LBx (du, dy)

∣∣∣∣2p
] 1

2p

= E

[∣∣∣∣∫ t

s
b
PXn
n (u,Bx

u)− bPXn (u,Bx
u)dBu +

∫ T−s

T−t
b
PXn
n (T − u, B̂x

u)− bPXn (T − u, B̂x
u)dWu

−
∫ T−s

T−t

(
b
PXn
n (T − u, B̂x

u)− bPXn (T − u, B̂x
u)
) B̂u

T − u
du

∣∣∣∣∣
2p
 1

2p

. E

[(∫ t

s

(
b
PXn
n (u,Bx

u)− bPXn (u,Bx
u)
)2

du

)p] 1
2p

+ E

[(∫ T−s

T−t

(
b
PXn
n (T − u, B̂x

u)− bPXn (T − u, B̂x
u)
)2

du

)p] 1
2p

+

∫ T−s

T−t

∥∥∥bPXnn (T − u, B̂x
u)− bPXn (T − u, B̂x

u)
∥∥∥
L4p(Ω)

∥∥∥∥∥ B̂u

T − u

∥∥∥∥∥
L4p(Ω)

du.

Similar to the proof of Lemma A.6 one obtains the result.

B Hida spaces

In order to prove Proposition 3.8, we need the definition of the Hida test function and
distribution space (cf. [17, Definition 5.6]). Furthermore we state the central theorem
used in the proof of Proposition 3.8, followed by a further helpful criterion for relative
compactness using modulus of continuity.
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Definition B.1. Let I be the set of all finite multi-indices and {Hα}α∈I be an orthogonal
basis of the Hilbert space L2(Ω) defined by

Hα(ω) :=

m∏
j=1

hαj

(∫
R

ej(t)dWt(ω)

)
,

where hn is the n-th hermitian polynomial, en the n-th hermitian function and W a
standard Brownian motion. Furthermore, we define for every α = (α1, . . . αm) ∈ I,

(2N)α :=

m∏
j=1

(2j)αj .

(i) We define the Hida test function Space S as

S :=

{
φ =

∑
α∈I

aαHα ∈ L2(Ω) : ‖φ‖k <∞ ∀k ∈ R

}
,

where the norm ‖ · ‖k is defined by

‖φ‖k :=

√∑
α∈I

α!a2
α(2N)αk.

Here, S is equipped with the projective topology.

(ii) The Hida distribution space S∗ is defined by

S∗ :=

{
φ =

∑
α∈I

aαHα ∈ L2(Ω) : ∃k ∈ R s.t. ‖φ‖−k <∞

}
,

where the norm ‖ · ‖−k is defined by

‖φ‖−k :=

√∑
α∈I

α!a2
α(2N)−αk.

Here, S∗ is equipped with the inductive topology.

Theorem B.2 (Mitoma). The following statements are equivalent:

(i) A is relatively compact in C([0, T ];S∗),

(ii) For any φ ∈ S, {f(·)[φ] : f ∈ A} is relatively compact in C([0, T ];R).

Proof. [26, Theorem 2.4.4]

In the following we state a version of the Arzelà-Ascoli theorem which is used in the
proof of Proposition 3.8 and can be found in [27, Theorem 2.4.9]

Theorem B.3. The set A ⊂ C([0, T ],R) is relatively compact if and only if

sup
f∈A
|f(0)| <∞, and

lim
δ→0

sup
f∈A

sup{‖f(t)− f(s)‖ : s, t ∈ [0, T ], |t− s| < δ} = 0.
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