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Abstract

For d ≥ 2 and n ∈ N, let Wn denote the uniform law on self-avoiding walks beginning
at the origin in the integer lattice Zd, and write Γ for a Wn-distributed walk. We show
that the closing probability Wn

(
||Γn|| = 1

)
that Γ’s endpoint neighbours the origin is

at most n−4/7+o(1) for a positive density set of odd n in dimension d = 2. This result is
proved using the snake method, a general technique for proving closing probability
upper bounds, which originated in [3] and was made explicit in [8]. Our conclusion
is reached by applying the snake method in unison with a polygon joining technique
whose use was initiated by Madras in [13].
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1 Introduction

Self-avoiding walk was introduced in the 1940s by Flory and Orr [6, 17] as a model
of a long polymer chain in a system of such chains at very low concentration. It is well
known among the basic models of discrete statistical mechanics for posing problems that
are simple to state but difficult to solve. Two recent surveys are the lecture notes [1]
and [11, Section 3].

1.1 The model

We will denote by N the set of non-negative integers. Let d ≥ 2. For u ∈ Rd, let
||u|| denote the Euclidean norm of u. A walk of length n ∈ N with n > 0 is a map
γ : {0, · · · , n} → Zd such that ||γ(i+1)−γ(i)|| = 1 for each i ∈ {0, · · · , n−1}. An injective
walk is called self-avoiding. A self-avoiding walk γ of length n ≥ 2 is said to close (and to
be closing) if ||γ(n)|| = 1. When the missing edge connecting γ(n) and γ(0) is added, a
polygon results.

Definition 1.1. For n ≥ 4 an even integer, let γ : {0, . . . , n − 1} → Zd be a closing
self-avoiding walk. For 1 ≤ i ≤ n−1, let ui denote the unordered nearest neighbour edge
in Zd with endpoints γ(i− 1) and γ(i). Let un denote γ’s missing edge, with endpoints
γ(n− 1) and γ(0). (Note that we have excluded the case n = 2 so that un is indeed not
among the other ui.) We call the collection of edges

{
ui : 1 ≤ i ≤ n

}
the polygon of γ. A

self-avoiding polygon in Zd is defined to be any polygon of a closing self-avoiding walk
in Zd. The polygon’s length is its cardinality.

We will usually omit the adjective self-avoiding in referring to walks and polygons.
Recursive and algebraic structure has been used to analyse polygons in such domains as
strips, as [2] describes.

Note that the polygon of a closing walk has length that exceeds the walk’s by one.
Polygons have even length and closing walks, odd.

Let SAWn denote the set of self-avoiding walks γ of length n that start at 0, i.e., with
γ(0) = 0. We denote by Wn the uniform law on SAWn. The walk under the law Wn will
be denoted by Γ. The closing probability is Wn

(
Γ closes

)
.

1.2 A combinatorial view of the closing probability

Let the walk number cn equal the cardinality of SAWn. By equation (1.2.10) of [14],
the limit limn∈N c

1/n
n exists and is positive and finite; it is called the connective constant

and denoted by µ, and we have cn ≥ µn.
Define the polygon number pn to be the number of length n polygons up to translation.

By (3.2.5) and (3.2.9) of [14], limn∈2N p
1/n
n ∈ (0,∞) exists and coincides with µ, and

pn ≤ (d− 1)µn.
The closing probability may be written in terms of the polygon and walk numbers.

There are 2n closing walks whose polygon is a given polygon of length n, since there are
n choices of missing edge and two of orientation. Thus,

Wn

(
Γ closes

)
=

2(n+ 1)pn+1

cn
, (1.1)

for any n ∈ N (but non-trivially only for odd values of n).

1.3 Corrections to exponential growth

We define the real-valued polygon number deficit and walk number excess exponents
θn and ξn according to the formulas

pn = n−θn · µn for n ∈ 2N (1.2)
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and
cn = nξn · µn for n ∈ N . (1.3)

Since cn ≥ µn and pn ≤ (d − 1)µn, lim infn∈2N θn and infn∈N ξn are non-negative in any
dimension d ≥ 2.

1.4 Closing probability upper bounds: a review

An interesting first task regarding closing probability upper bounds is to show that
Wn

(
Γn closes

)
→ 0 as n→∞ for any d ≥ 2; this question was posed by Itai Benjamini to

the authors of [3] who showed an upper bound of n−1/4+o(1) whenever d ≥ 2. One way
of approaching the question – not the method of [3] – is to improve the above stated
lim infn∈2N

(
ξn−1 + θn

)
≥ 0 so that the right-hand side takes the form 1 + χ, for some

χ > 0, in which case, a closing probability upper bound of the form n−χ+o(1) will result
from (1.1).

Hara and Slade [10, Theorem 1.1] used the lace expansion to prove that cn ∼ Cµn

when d ≥ 5, but the problem of showing that cnµ−n tends to infinity as n→∞ appears
to be open when d equals two or three (in which cases, it is anticipated to be true). As
such, this combinatorial approach to closing probability upper bounds has depended
on advances on the polygon rather than the walk side. Madras and Slade [14, Theorem
6.1.3] have proved that θn ≥ d/2 + 1 when d ≥ 5 for spread-out models, in which
the vertices of Zd are connected by edges below some bounded distance. Thus, the
conclusion that the closing probability decays as fast as n−d/2 has been reached for
such models when d ≥ 5. (In passing: this conclusion may be expected to be sharp,
but the opposing lower bound is not known to the best of the author’s knowledge.)
When the model is nearest neighbour, the upper bound is in essence known for d ≥ 5

in an averaged sense: [10, Theorem 1.3] states that
∑
n n

aWn(Γ closes) < ∞ for any
a < d/2− 1; in fact, the counterpart to this closing probability bound for a walk ending
at any given displacement from the origin is also proved, uniformly in this displacement.

It is interesting to note that, while the problem of showing that lim supn∈2N θn is finite
is open, it is known from classical results that, for any dimension d ≥ 2, lim infn∈2N θn <

∞. Indeed, a technique [14, Theorem 3.2.4] that rearranges two self-avoiding bridges
into a closing walk (and, by the addition of the missing edge, into a polygon) combines
with the subsequential availability of bridges of length n (meaning bnµ

−n ≥ n−1−o(1)

for infinitely many n), an availability which is due to the divergence of the bridge
generating function at its critical point [14, Corollary 3.1.8], to yield the inference that
lim infn∈2N θn ≤ d+ 5.

In dimension d = 2, Madras [13] showed that lim inf θn ≥ 1/2 in 1995. To show this,
he introduced a polygon joining technique of which we will also make use in the present
article (and which is reviewed in Section 4). His technique has recently been exploited
to prove the next result, [9, Theorem 1.3].

Definition 1.2. The limit supremum density of a set A of even, or odd, integers is

lim sup
n

∣∣A ∩ [0, n]
∣∣

|2N ∩ [0, n]|
= lim sup

n
n−1

∣∣A ∩ [0, 2n]
∣∣ .

When the corresponding limit infimum density equals the limit supremum density, we
naturally call it the limiting density.

Theorem 1.3. Let d = 2. For any δ > 0, the limiting density of the set of n ∈ 2N for
which θn ≥ 3/2− δ is equal to one.

As such, the combinatorial perspective offered by (1.1) alongside polygon joining via
Theorem 1.3 has yielded the inference that Wn

(
Γ closes

)
≤ n−1/2+o(1) on a full density

set of odd n when d = 2.
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This bound complements the n−1/4+o(1) general dimensional upper bound from [3].
In fact, the method of [3] was reworked in [8] to achieve the following n−1/2+o(1) bound.

Theorem 1.4. Let d ≥ 2. For any ε > 0 and n ∈ 2N+ 1 sufficiently high,

Wn

(
Γ closes

)
≤ n−1/2+ε .

The method of proof of this result was not a combinatorial analysis via (1.1) but rather
a probabilistic approach called the snake method (about which more shortly).

We may summarise this review of existing closing probability upper bounds as follows.
An upper bound of the form n−1/2+o(1) in dimension d = 2 has been obtained in two very
different ways. Via combinatorics and polygon joining, Theorem 1.3 asserts this bound
for typical odd n. Via the probabilistic snake method, Theorem 1.4 asserts the bound for
each d ≥ 2 and for all high n.

1.5 The main result

This article’s principal conclusion strengthens this upper bound when d = 2 beyond
the threshold of one-half in the two existing methods.

Theorem 1.5. Let d = 2.

1. For any ε > 0, the bound

Wn

(
Γ closes

)
≤ n−4/7+ε

holds on a set of n ∈ 2N+ 1 of limit supremum density at least 1/1250.

2. Suppose that the limits θ := limn∈2N θn and ξ := limn∈N ξn exist in [0,∞]. Then
θ + ξ ≥ 5/3. Since

Wn

(
Γ closes

)
= n−θ−ξ+1+o(1) (1.4)

as n → ∞ through odd values of n by (1.1), the closing probability is seen to be
bounded above by n−2/3+o(1).

(When θ + ξ =∞, (1.4) should be interpreted as asserting a superpolynomial decay
in n for the left-hand side.)

However far from rigorous the hypotheses of Theorem 1.5(2) may be, their validity
is uncontroversial. For example, the limiting value θ is predicted to exist and to satisfy
a relation with the Flory exponent ν for mean-squared radius of gyration. The latter
exponent is specified by the putative formula EWn ||Γ(n)||2 = n2ν+o(1), where EWn

denotes the expectation associated with Wn (and where note that Γ(n) is the non-
origin endpoint of Γ); in essence, ||Γ(n)|| is supposed to be typically of order nν . The
hyperscaling relation that is expected to hold between θ and ν is θ = 1 + dν where the
dimension d ≥ 2 is arbitrary. In d = 2, ν = 3/4 and thus θ = 5/2 is expected. That
ν = 3/4 was predicted by the Coulomb gas formalism [15, 16] and then by conformal
field theory [4, 5]. We mention also that ξ = 11/32 is expected when d = 2; in light of the
θ = 5/2 prediction and (1.1), Wn

(
Γ closes

)
= n−ψ+o(1) with ψ = 59/32 is expected. The

11/32 value was predicted by Nienhuis in [15] and can also be deduced from calculations
concerning SLE8/3: see [12, Prediction 5]. We will refer to ψ as the closing exponent.

1.6 The snake method and polygon joining in unison

We have mentioned that the snake method is a probabilistic tool for proving closing
probability upper bounds. It is introduced in [8]; (it originated, though was not made
explicit, in [3]). The method states a condition that must be verified in order to achieve
some such upper bound. In [8], this condition was verified with the use of a technique
we may call Gaussian pattern fluctuation, in order to obtain Theorem 1.4.
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This article is devoted to proving Theorem 1.5. We will obtain the result by a second
use of the snake method. In order to verify the necessary condition, we will replace the
use of pattern fluctuation with the technique of polygon joining seen in [13, 9].

That is, Theorem 1.5 pushes above the threshold of one-half for the exponent in
the closing probability upper bound by combining the combinatorial and probabilistic
perspectives that had been used in the two proofs that led to the lower border of this
threshold. The first part of the theorem is probably the more significant conclusion.
Theorem 1.5(2) is only a conditional result, but it serves a valuable expository purpose:
its proof is that of the theorem’s first part with certain technicalities absent.

Structure of the paper. It will by now be apparent that some groundwork is needed
before the proof of Theorem 1.5 may be given. The two elements that must be reviewed
(and analysed) are the polygon joining technique and the snake method. After some
general notation in Section 2, the respective reviews are contained in Sections 3, 4
and 5 and in Section 6. The proof of the main result then appears in the remaining
eight sections, of which the first, Section 7, offers an exposition. See the beginning
of Section 3 for a summary of the content of the joining material in the ensuing three
sections and the beginning of Section 8 for a summary of the structure of the sections
giving the proof of Theorem 1.5.

A few words on possible reading of related works. This article is intended to be
read on its own. It is nonetheless the case that, since this article makes use of a fairly
subtle combination of existing techniques, the reader may benefit from reading some
of the related material. For example, the application of the snake method made here
is rather more technical than the one in [8], and it is imaginable that reading parts of
that article might bring the reader a certain familiarity with the method that would be
a useful (though not necessary) preparation for reading the present one. Our polygon
joining method refines that in [9] and again some review of that work is not necessary
but possibly helpful. We also mention that the online article [7] gathers together the
content of the three articles [9], [8] and the present work, while also providing some
further exposition and highlighting some other connections between the concepts in
the articles; the reader who wishes to study all the various theorems collectively is
encouraged to consult this work.

Alternatively, optional further reading may be selected by noting the outside inputs
used by this paper. Theorem 1.3 and Corollary 3.3 are proved in [9]: they are Theorem 1.3

and Corollary 4.6 of that article. Lemma 6.1 and Theorem 6.3 appear in [8]: see
Lemma 2.2 and Theorem 3.2 in that work. The latter two results concern the application
and setup of the snake method. It is worth pointing out that their proofs are respectively
almost trivial and fairly short (three to four pages in the latter case). It is thus suggested
to the reader who wishes to make a moderate attempt at understanding the paper’s
inputs to read the proofs of these results from Sections 2.2 and 3.2 of [8] when their
statements are reached.

Acknowledgments. I am very grateful to a referee for a thorough discussion of an
earlier version of [7]. Indeed, the present form of Theorem 1.5(1) is possible on the
basis of a suggestion made by the referee that led to a strengthening of the original
version of [9, Theorem 1.3]. I thank a second referee for a thorough reading and valuable
comments. I thank Hugo Duminil-Copin and Ioan Manolescu for many stimulating and
valuable conversations about the central ideas in the paper. I thank Wenpin Tang for
useful comments on a draft version of [7]. I would also like to thank Itai Benjamini for
suggesting the problem of studying upper bounds on the closing probability.
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2 Some general notation and tools

2.0.1 Cardinality of a finite set A

This is denoted by either #A or |A|.

2.0.2 Multi-valued maps

For a finite set B, let P(B) denote its power set. Let A be another finite set. A multi-
valued map from A to B is a function Ψ : A → P(B). An arrow is a pair (a, b) ∈ A × B
for which b ∈ Ψ(a); such an arrow is said to be outgoing from a and incoming to b. We
consider multi-valued maps in order to find lower bounds on |B|, and for this, we need
upper (and lower) bounds on the number of incoming (and outgoing) arrows. This next
lemma is an example of such a lower bound.

Lemma 2.1. Let Ψ : A→ P(B). Set m to be the minimum over a ∈ A of the number of
arrows outgoing from a, and M to be the maximum over b ∈ B of the number of arrows
incoming to b. Then |B| ≥ mM−1|A|.
Proof. The quantities M |B| and m|A| are upper and lower bounds on the total number
of arrows.

2.0.3 Denoting walk vertices and subpaths

For i, j ∈ N with i ≤ j, we write [i, j] for
{
k ∈ N : i ≤ k ≤ j

}
. For a walk γ : [0, n]→ Zd

and j ∈ [0, n], we write γj in place of γ(j). For 0 ≤ i ≤ j ≤ n, γ[i,j] denotes the subpath
γ[i,j] : [i, j]→ Zd given by restricting γ.

2.0.4 Notation for certain corners of polygons

Definition 2.2. The Cartesian unit vectors are denoted by e1 and e2 and the coordinates
of u ∈ Z2 by x(u) and y(u). For a finite set of vertices V ⊆ Z2, we define the northeast
vertex NE(V ) in V to be that element of V of maximal e2-coordinate; should there be
several such elements, we take NE(V ) to be the one of maximal e1-coordinate. That
is, NE(V ) is the uppermost element of V , and the rightmost among such uppermost
elements if there are more than one. (Rightmost means of maximal e1-coordinate.) Using
the four compass directions, we may similarly define eight elements of V , including the
lexicographically minimal and maximal elements of V , WS(V ) and EN(V ). We extend
the notation to any self-avoiding walk or polygon γ, writing for example NE(γ) for
NE(V ), where V is the vertex set of γ. For a polygon or walk γ, set ymax(γ) = y

(
NE(γ)

)
,

ymin(γ) = y
(
SE(γ)

)
, xmax(γ) = x

(
EN(γ)

)
and xmin(γ) = x

(
WN(γ)

)
. The height h(γ) of γ

is ymax(γ)− ymin(γ) and its width w(γ) is xmax(γ)− xmin(γ).

2.0.5 Polygons with northeast vertex at the origin

For n ∈ 2N, let SAPn denote the set of length n polygons φ such that NE(φ) = 0. The set
SAPn is in bijection with equivalence classes of length n polygons where polygons are
identified if one is a translate of the other. Thus, pn = |SAPn|.

We write Pn for the uniform law on SAPn. A polygon sampled with law Pn will be
denoted by Γ, as a walk with law Wn is.

There are 2n ways of tracing the vertex set of a polygon φ of length n: n choices of
starting point and two of orientation. We now select one of these ways. Abusing notation,
we may write φ as a map from [0, n] to Z2, setting φ0 = NE(φ), φ1 = NE(φ) − e1, and
successively defining φj to be the previously unselected vertex for which φj−1 and φj
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form the vertices incident to an edge in φ, with the final choice φn = NE(φ) being made.
Note that φn−1 = NE(φ)− e2.

2.0.6 Plaquettes

The shortest non-empty polygons contain four edges. Certain such polygons play an
important role in several arguments and we introduce notation for them now.

Definition 2.3. A plaquette is a polygon with four edges. Let φ be a polygon. A plaquette
P is called a join plaquette of φ if φ and P intersect at precisely the two horizontal edges
of P . Note that when P is a join plaquette of φ, the operation of removing the two
horizontal edges in P from φ and then adding in the two vertical edges in P to φ results
in two disjoint polygons whose lengths sum to the length of φ. We use symmetric
difference notation and denote the output of this operation by φ∆P .

The operation may also be applied in reverse: for two disjoint polygons φ1 and φ2,
each of which contains one vertical edge of a plaquette P , the outcome

(
φ1 ∪ φ2

)
∆P of

removing P ’s vertical edges and adding in its horizontal ones is a polygon whose length
is the sum of the lengths of φ1 and φ2.

3 A very brief overview of polygon joining

The next three sections define and explain our method of polygon joining. In the
present section, we set the scene with a brief review of pertinent concepts. Section 4
reviews the local details of Madras’ joining procedure. Section 5 introduces and analyses
the detailed mechanism for joining that we will use to prove Theorem 1.5.

Recall that the two-dimensional Theorem 1.3 is proved in [9] via polygon joining.
Since it may be conceptually useful, we now recall some elements of [9] and give a very
brief overview of the method of proof of its conclusion that θn ≥ 3/2− o(1) for typical n.
Section 3 of [9] is a heuristical discussion of polygon joining which expands on the next
few paragraphs. We review three joining arguments, the third one leading to the above
conclusion.

Consider first a pair of polygons in d = 2 of say equal length n. The second may
be pushed to a location where it is disjoint from, and to the right of, the first, so that
there exists a plaquette whose left vertical edge lies in the first polygon and whose
right vertical edge lies in the second. The reverse operation in the latter paragraph of
Definition 2.3 may be applied to this plaquette and a single polygon of length 2n results.
A moment’s thought shows that, since the original pair of polygons had equal length,
the location of the concerned plaquette is identifiable from the image polygon. Thus,
polygon joining in its simplest guise yields the polygon superadditivity bound p2n ≥ p2

n.
The next polygon joining argument is due to Madras [13]. The first polygon may be

oriented to have height at least n1/2. Vertically displacing the second before attempting
joining should yield order n1/2 locations for joining and thus p2n ≥ n1/2p2

n and in essence
θn ≥ 1/2.

The third joining argument is performed in [9]: working with n/2 in place of n, we
vary the length pair for the concerned polygons from (n/2, n/2) to (n/2 − j, n/2 + j)

where j varies over choices such that |j| ≤ n/4, and we seem to obtain

pn ≥ n1/2−o(1)

n/4∑
j=−n/4

pn/2−jpn/2+j (3.1)

whence lim infm∈2N θm ≥ 3/2− o(1). In fact, some care is needed to derive this bound. To
obtain it, it must be the case that a typical length-n polygon formed by such joinings is
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such that the plaquette used to join is identifiable among at most no(1) possible locations
(we can call this circumstance efficient plaquette identification). The join plaquette in
question is ‘global’ in the rough sense that it borders two macroscopic chambers. Here
is the precise definition from [9], of which we will again make use.

Definition 3.1. For n ∈ 2N, let φ ∈ SAPn. A join plaquette P of φ is called global if the
two polygons comprising φ∆P may be labelled φ` and φr in such a way that

• every rightmost vertex in φ is a vertex of φr;

• and NE(φ) is a vertex of φ`.

Write GJφ for the set of global join plaquettes of the polygon φ.

For example, the four edges that form the boundary of the unit square shaded red in
each of the polygons φ in the lower part of Figure 1 are a plaquette belonging to GJφ.

In [9], efficient plaquette identification is proved to work only in the case that the
image polygon length lies in a set HPN of indices of high polygon number. Next we state
Definition 4.1 and Corollary 4.6 of [9].

Definition 3.2. For ζ > 0, the set HPNζ ⊆ 2N of ζ-high polygon number indices is given
by

HPNζ =
{
n ∈ 2N : pn ≥ n−ζµn

}
.

Corollary 3.3. For all ζ > 0 and C2 > 0, there exist C3, C4 > 0 such that, for n ∈ HPNζ ,

Pn
( ∣∣GJΓ

∣∣ ≥ C3 log n
)
≤ C4n

−C2 .

Thus, when n ∈ HPNζ , a form of (3.1) is obtained, in [9, Proposition 4.2].
Many of these ideas will also be needed in the present article, which is why we have

just informally recounted them.

4 Madras’ polygon joining procedure

When a pair of polygons is close, there may not be a plaquette whose vertical edges
are divided between the two elements of the pair in the manner discussed above. Local
details of the structure of the two polygons in the locale of near contact must be broken
into cases and a suitable local modification made in each one, in order to join the pair
of polygons. Madras [13] defined such a joining technique which works in a general
way. For the most part, the precise details of this mechanism need not be the focus of
the reader’s attention; it is only in the proof of one technical result, Lemma 5.11, that
they must be analysed, (and even then the result is plausible without this analysis). In
this section, we explain in rough terms the principal relevant features. The reader who
would like to see a detailed overview is invited to read [9, Section 4.1] where Madras’
polygon joining technique is reviewed in detail and the specifics of the notation that we
use in relation to it are given; a figure depicting the various cases also appears there.

In outline, then, here is Madras’ technique: consider two polygons τ and σ of lengths
n and m for which the intervals[

ymin(τ)− 1, ymax(τ) + 1
]

and
[
ymin(σ)− 1, ymax(σ) + 1

]
intersect .

Madras’ procedure joins τ and σ to form a new polygon of length n + m + 16 in the
following manner. The polygon σ is first pushed far to the right and then back to the
left until it is a few units from touching τ . A local modification is made to both polygons
around the contact point, with a net gain in length to both polygons of eight. The
modification causes the polygons to reach closer to one another horizontally by four, five
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Figure 1: Two pairs of Madras joinable polygons and the Madras join polygon of each
pair. The junction plaquette is shaded red (or, a touch pedantically, the interior of the
union of its constituent edges is), while the circle or disk indicates an aspect of the
detailed mechanism of Madras joining omitted in our overview.

or six units and a horizontal translational adjustment of the right polygon in one or other
direction may be needed in order to obtain the desired outcome, which is a polygon pair
for which there exists a plaquette in the locale of modification with left vertical edge
in the left polygon and right vertical edge in the right polygon. The reverse operation
in Definition 2.3 applied to this plaquette then yields a joined polygon of length n+ 16.
This polygon is defined to be the Madras join polygon J(τ, σ). The plaquette used at the
final step of the construction of this polygon is called the junction plaquette.

Sometimes a pair of polygons are located in such a relative position (with the right
polygon a few units away from the left near the point of contact) that in the above
procedure, no horizontal adjustment is needed. In this case, the pair is called Madras
joinable.

5 Polygon joining in preparation for the proof of Theorem 1.5

Our purpose in this section is to specify the polygon pairs that we will join to prove
Theorem 5 and discuss some properties of the joining.

It may be apparent from the review in Section 3 that, in the proof of Theorem 1.3 that
appears in [9], certain left polygons are Madras joined to other right polygons. It serves
our purpose of specifying the polygon joining details needed for Theorem 1.5’s proof to
recall the definitions and some properties of these polygons, and we do so in the first
of this section’s six subsections. In the second subsection, we refine the definitions of
these polygon types, and also of the joining mechanism for them. The polygons that are
formed under the new, stricter, mechanism will be called regulation global join polygons:
in the third subsection, these polygons are defined and their three key properties stated.
The remaining three subsections prove these properties in turn.
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5.1 Left and right polygons

Let φ be a polygon. Recall from Definition 2.2 the notation ymax(φ) and ymin(φ), as
well as the height h(φ) and width w(φ).

Definition 5.1. For n ∈ 2N, let SAPl
n denote the set of left polygons φ ∈ SAPn such that

• h(φ) ≥ w(φ) (and thus, by a trivial argument, h(φ) ≥ n1/2),

• and y
(
ES(φ)

)
≤ 1

2

(
ymin(φ) + ymax(φ)

)
.

Let SAPr
n denote the set of right polygons φ ∈ SAPn such that

• h(φ) ≥ w(φ).

Lemma 5.2. For n ∈ 2N,∣∣SAPl
n

∣∣ ≥ 1
4 ·
∣∣SAPn

∣∣ and
∣∣SAPr

n

∣∣ ≥ 1
2 ·
∣∣SAPn

∣∣ .
Proof. An element φ ∈ SAPn not in SAPr

n is brought into this set by right-angled rotation.
If, after the possible rotation, it is not in SAPl

n, it may brought there by reflection in the
x-axis.

Definition 5.3. A Madras joinable polygon pair (φ1, φ2) is called globally Madras joinable
if the junction plaquette of the join polygon J(φ1, φ2) is a global join plaquette of J(φ1, φ2).

Both polygon pairs in the upper part of Figure 1 are globally Madras joinable.
The next result is [9, Lemma 4.11].

Lemma 5.4. Let n,m ∈ 2N and let φ1 ∈ SAPl
n and φ2 ∈ SAPr

m.
Every value

k ∈
[
y
(
ES(φ1)

)
, y
(
ES(φ1)

)
+ min

{
n1/2/2,m1/2

}
− 1
]

(5.1)

is such that φ1 and some horizontal shift of φ2 + ke2 is globally Madras joinable.
Write GlobalMJ(φ1,φ2) for the set of ~u ∈ Z2 such that the pair φ1 and φ2 + ~u is globally

Madras joinable. Then ∣∣GlobalMJ(φ1,φ2)

∣∣ ≥ min
{
n1/2/2,m1/2

}
.

5.2 Left and right polygons revisited

We will refine these notions now, specifying new left and right polygon sets SAPleft
n

and SAPright
n . Each is a subset of its earlier counterpart.

In order to specify SAPleft
n , we now define a left-long polygon. Let φ ∈ SAPn. We

employ the notationally abusive parametrization φ : [0, n] → Z2 such that φ0 = φn =

NE(φ) and φ1 = NE(φ) − e1. If j ∈ [0, n] is such that φj = SE(φ), note that φ may be
partitioned into two paths φ[0,j] and φ[j,n]. The two paths are edge-disjoint, and the
first lies to the left of the second: indeed, writing H for the horizontal strip

{
(x, y) ∈

R2 : y
(
SE(φ)

)
≤ y ≤ y

(
NE(φ)

)}
, the set H \ ∪j−1

i=0 [φi, φi+1] has two unbounded connected
components; one of these, the right component, contains H ∩

{
(x, y) ∈ R2 : x ≥ C

}
for

large enough C; and the union of the edges [φi, φi+1], j ≤ i ≤ n− 1, excepting the points
φj = SE(φ) and φn = NE(φ), lies in the right component. It is thus natural to call φ[0,j]

the left path, and φ[j,n], the right path. We call φ left-long if j ≥ n/2 and right-long if
j ≤ n/2.

For n ∈ 2N, let SAPleft
n denote the set of left-long elements of SAPl

n. We simply set
SAPright

n equal to SAPr
n. Note that ITA in Figure 2 is an element of SAPleft

n .
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Figure 2: Illustrating Lemma 5.4 with two polygons, ITA and ALB. Denoting the polygons’
lengths by n and m, note that the translates of ITA and ALB with NE = 0 belong to SAPl

n

and SAPr
m. The start of the counterclockwise tour of ITA from NE(ITA) dictated by

convention is marked by an arrow. The depicted polygons are globally Madras joinable
after a horizontal shift of ALB, with the necessary surgery to ITA occurring in a vicinity
of ES(ITA). Vertical shifts of ALB that leave this polygon in an easterly line of sight from
ES(ITA) will maintain this state of affairs.

Lemma 5.5. For n ∈ 2N,∣∣SAPleft
n

∣∣ ≥ 1
8 ·
∣∣SAPn

∣∣ and
∣∣SAPright

n

∣∣ ≥ 1
2 ·
∣∣SAPn

∣∣ .
Proof. The second assertion has been proved in Lemma 5.2. In regard to the first, write
the three requirements for an element φ ∈ SAPn to satisfy φ ∈ SAPleft

n in the order:
h(φ) ≥ w(φ); φ is left-long; and y

(
ES(φ)

)
≤ 1

2

(
ymin(φ) + ymax(φ)

)
. These conditions may

be satisfied as follows.

• The first property may be ensured by a right-angled counterclockwise rotation if it
does not already hold.

• It is easy to verify that, when a polygon is reflected in a vertical line, the right path
is mapped to become a sub-path of the left path of the image polygon. Thus, a
right-long polygon maps to a left-long polygon under such a reflection. (We note
incidentally the asymmetry in the definition of left- and right-long: this last state-
ment is not always true vice versa.) A polygon’s height and width are unchanged
by either horizontal or vertical reflection, so the first property is maintained if a
reflection is undertaken at this second step.

• The third property may be ensured if necessary by reflection in a horizontal line.
The first property’s occurrence is not disrupted for the reason just noted. Could the
reflection disrupt the second property? When a polygon is reflected in a horizontal
line, NE and SE in the domain map to SE and NE in the image. The left path maps
to the reversal of the left path, (and similarly for the right path). Thus, any left-long
polygon remains left-long when it is reflected in such a way. We see that the second
property is stable under the reflection in this third step.
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Each of the three operations has an inverse, and thus #SAPleft
n ≥ 1

8#SAPn.

5.3 Regulation global join polygons: three key properties

Definition 5.6. Let k, ` ∈ 2N satisfy k/2 ≤ ` ≤ 35k. Let RGJk,` denote the set of
regulation global join polygons (with length pair (k, `)), whose elements are formed by
Madras joining the polygon pair

(
φ1, φ2 + ~u

)
, where

1. φ1 ∈ SAPleft
k ;

2. φ2 ∈ SAPright
` ;

3. ymax

(
φ2 + ~u

)
∈
[
y
(
ES(φ1)

)
, y
(
ES(φ1)

)
+ bk1/2/10c − 1

]
;

4. and
(
φ1, φ2 + ~u

)
is Madras joinable.

Let RGJ denote the union of the sets RGJk,` over all such choices of (k, `) ∈ 2N× 2N.

Note that Lemma 5.4 implies that whenever a polygon pair is joined to form an
element of RGJ, this pair is globally Madras joinable.

The three key properties of regulation polygons are now stated as propositions.

5.3.1 An exact formula for the size of RGJk,`

Proposition 5.7. Let k, ` ∈ 2N satisfy k/2 ≤ ` ≤ 35k. For any φ ∈ RGJk,`, there is a
unique choice of φ1 ∈ SAPleft

k , φ2 ∈ SAPright
` and ~u ∈ Z2 for which φ = J

(
φ1, φ2 + ~u

)
. We

also have that ∣∣RGJk,`
∣∣ = bk1/2/10c ·

∣∣SAPleft
k

∣∣ ∣∣SAPright
`

∣∣ .
5.3.2 Law of the initial path of a given length in a random regulation polygon

We show that initial subpaths in regulation polygons are distributed independently of
the length of the right polygon.

Definition 5.8. Write Pleft
n for the uniform law on SAPleft

n .

Proposition 5.9. Let k, ` ∈ 2N satisfy k/2 ≤ ` ≤ 35k. Let j ∈ N satisfy j ≤ k/2− 1. For
any φ ∈ SAPleft

k ,

Pk+`+16

(
Γ[0,j] = φ[0,j]

∣∣∣Γ ∈ RGJk,`

)
= Pleft

k

(
Γ[0,j] = φ[0,j]

)
.

5.3.3 Regulation polygon joining is almost injective

We reviewed in Section 3 how a form of (3.1) is obtained in [9] by establishing efficient
plaquette identification. We need something similar in our present endeavour. This next
result is a counterpart to [9, Proposition 4.2].

Proposition 5.10. For any Θ > 0, there exist c > 0 and n0 ∈ N such that the following
holds. Let i ≥ 4 be an integer and let n ∈ 2N∩

[
2i+2, 2i+3

]
satisfy n ≥ n0. Suppose that R

is a subset of 2N∩[2i, 2i+1] that contains an element k∗ such that max
{
θk∗ , θn−16−k∗

}
≤ Θ.

Then ∣∣∣∣ ⋃
j∈R

RGJj,n−16−j

∣∣∣∣ ≥ c n1/2

log n

∑
j∈R

pj pn−16−j .

Section 5 concludes with three subsections consecutively devoted to the proofs of
these propositions.
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5.4 Proof of Proposition 5.7

We need only prove the first assertion, the latter following directly. To do so, it is
enough to determine the junction plaquette associated to the Madras join that forms φ.
By Lemma 5.4, any such polygon pair (φ1, φ2 + ~u) is globally Madras joinable. Recalling
Definition 5.3, the associated junction plaquette is thus a global join plaquette of φ.

By planarity, the complement of the union of the edges that comprise φ is a bounded
region in R2. Also by planarity, the removal from the closure of this region of the closed
unit square associated to any of φ’s global join plaquettes will disconnect NE(φ) and
ES(φ). From this, we see that

• each global join plaquette of φ has one horizontal edge traversed in the outward
journey along φ from NE(φ) to ES(φ), and one traversed on the return journey;

• and the set of φ’s global join plaquettes is totally ordered under a relation in which
the upper element is both reached earlier on the outward journey and later on the
return.

We thus infer that the map that sends a global join plaquette P of φ to the length of
the polygon in φ∆P that contains NE(φ) = 0 is injective. Since this length must equal
k + 8 for any admissible choice of φ1 ∈ SAPleft

k , φ2 ∈ SAPright
` and ~u ∈ Z2, this choice is

unique, and we are done.

Note further that the set of join locations stipulated by the third condition in Defi-
nition 5.6 is restricted to an interval of length of order k1/2. The restriction causes the
formula in Proposition 5.7 to hold. It may be that many elements of SAPleft

k and SAPright
`

have heights much exceeding k1/2, so that, for pairs of such polygons, there are many
more than an order of k1/2 choices of translate for the second element that result in a
globally Madras joinable polygon pair. The term regulation has been attached to indicate
that a specific rule has been used to produce elements of RGJ and to emphasise that
such polygons do not exhaust the set of polygons that we may conceive as being globally
joined.

5.5 Deriving Proposition 5.9

The next result is needed for this derivation.

Lemma 5.11. Consider a globally Madras joinable polygon pair (φ1, φ2). Let j ∈ N be
such that φ1

j equals SE(φ1). The join polygon J(φ1, φ2) has the property that the initial
subpaths φ1

[0,j−1] and J(φ1, φ2)[0,j−1] coincide.

Proof. The detailed structure of Madras joining from [9, Section 4.1] will be needed.
Since (φ1, φ2) is globally Madras joinable, the northeast vertex of the join polygon
coincides with NE(φ1). As such, it suffices to confirm that, absent its final edge, φ1’s left
path φ1

[0,j−1] forms part of J(φ1, φ2).

Suppose that a vertex v in φ1 is such that the horizontal line segment extending to
the right from v intersects the vertex set of φ1 only at v. Any such v must equal φ1

i for
some i ≥ j (i.e., must lie in the right path of φ1), because any vertex of the left path of
φ1, except its endpoint SE(φ1), is directly to the left of some other vertex of φ1.

Review [9, Figure 1]. Applied to the present context, each sketch depicts a locale
of φ1 in which surgery (and joining) will occur. A special vertex Y is marked by a circle
or a disc in each sketch. Recall from the Madras join construction that the horizontal
line segment emanating rightwards from Y has no intersection with the vertex set of φ1,
except possibly at its leftmost point; moreover, this is also true when Y is replaced by
either Y − e2 or Y + e2.

Thus, we see that, whichever case for [9, Figure 1] obtains, any vertex of φ1 lying
in
{
Y − e2, Y, Y + e2

}
has the form φ1

i for i ≥ j. Inspection of the figure shows that the
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Figure 3: A case in the proof of Lemma 5.11. The polygon φ1 depicted on the left lies
in SAPn for some n ∈ 2N. The polygon is indexed counterclockwise from NE(φ1) as the
arrows indicate. Recalling [9, Figure 1], the circle in the left sketch, and the disk in
the right, marks the point Y used in the formation of the right sketch τmod with τ = φ1,
(during the process of Madras joining with an undepicted φ2). Case IIcii obtains for φ1.
The left sketch disk marks a vertex v as discussed in the proof. Emboldened is the left
path of φ1, which passes undisturbed by the surgery from the left sketch to the right to
form an initial subpath of the postsurgical polygon.

surgery conducted to form the Madras join polygon leaves φ1
[0,j−1] unaltered: in case IIb,

this inference depends on further noting that both Y − e1 and Y − e1 + e2 take the form
φ1
i for i ≥ j; in case IIci, it depends on noting that Y − e2 − e1 and Y − e1 take such a

form. (Case IIcii is illustrated in Figure 3.) Moreover, this assertion of constancy under
surgery includes cases IIIa, IIIb, IIIci and IIIcii which are not depicted but are discussed
in the caption of [9, Figure 1].

In fact, in all cases other than case IIa, even φ1
[0,j] suffers no alteration in surgery. It

is case IIa and the possibility that Y + e2 = SE(φ1) that leads us to claim merely that
φ1

[0,j−1] = J(φ1, φ2)[0,j−1] in Lemma 5.11.

Proof of Proposition 5.9. By the first assertion in Proposition 5.7, we find that the
conditional distribution of Pk+`+16 given that Γ ∈ RGJk,` has the law of the output in this
procedure:

• select a polygon according to the law Pleft
k ;

• independently select another uniformly among elements of SAPright
` ;

• choose one of the b 1
10 k

1/2c vertical displacements specified in Definition 5.6 uni-
formly at random, and shift the latter polygon by this displacement;

• translating the displaced polygon by a suitable horizontal shift, Madras join the
first and the translated second polygon to obtain the output.

Denote by φ1 the element of SAPleft
k selected in the first step. This polygon is left-long;

let m ≥ k/2 satisfy φ1
m = SE(φ1). By Lemma 5.11, the output polygon has an initial

subpath that coincides with the left path φ1
[0,m−1] of φ1 (absent the final edge). Since

j ≤ k/2 − 1 ≤ m − 1, we see that the initial length j subpath of the output polygon
coincides with φ1

[0,j]. Thus, its law is that of Γ[0,j] where the polygon Γ is distributed

according to Pleft
k .

5.6 Proof of Proposition 5.10

This argument is based on the proof of [9, Lemma 4.12], (which is the principal
component of Proposition 4.2 in that paper). We mentioned in Section 3 that efficient
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plaquette identification is proved to work in [9] only when the length of the joined
polygon lies in the index set HPNζ (for a suitable choice of ζ > 0). It is Corollary 3.3 that
demonstrates that identification is efficient. We use this approach again now.

Let Θ > 0, i ≥ 4 and n ∈ 2N∩ [2i+2, 2i+3]. Suppose that a set R contains an element k∗

in the way that Proposition 5.10 describes. We begin by pointing out that for any choice
of ζ exceeding 2Θ, the assertion that n ∈ HPNζ holds provided that n is at least the
value n0(ζ) = µ16/(ζ−2Θ). That this is true follows from the straightforward pn ≥ pn−16,
polygon superadditivity pn−16 ≥ pk∗pn−16−k∗ (see [14, (3.2.3)]) and the hypothesised
max

{
θk∗ , θn−16−k∗

}
≤ Θ.

We now consider a multi-valued map Ψ : A → P(B). We take A =
⋃
j∈R SAPleft

j ×
SAPright

n−16−j and B = ∪j∈R RGJj,n−16−j (which is a subset of SAPn ∩ RGJ). Note the
indices concerned in specifying A are non-negative because maxR ≤ 2i+1, n ≥ 2i+2 and
i ≥ 3 ensure that n−16−j ≥ 0 whenever j ∈ R. (Moreover, the choice (k, `) = (j, n−16−j)
in Definition 5.6 does satisfy the bounds stated there. We use i ≥ 4 to verify that k/2 ≤ `.)
We specify Ψ so that the generic domain point (φ1, φ2) ∈ SAPleft

j × SAPright
n−16−j , j ∈ R, is

mapped to the collection of length-n polygons formed by Madras joining φ1 and φ2 + ~u

as ~u ranges over the subset of GlobalMJ(φ1,φ2) specified for the given pair (φ1, φ2) by
conditions (3) and (4) in Definition 5.6. (That this set is indeed a subset of GlobalMJ(φ1,φ2)

is noted after Definition 5.6.)
We have that

∣∣Ψ((φ1, φ2)
)∣∣ = bj1/2/10c. Since j ≥ 2i and n ≤ 2i+3, we have that

j ≥ 2−3n, so that
∣∣Ψ((φ1, φ2)

)∣∣ ≥ b 1
102−3/2n1/2c.

Applying Lemma 5.5, we learn that the number of arrows in Ψ is at least

2−4 · b 1
102−3/2n1/2c

∑
j∈R

pjpn−16−j . (5.2)

For a constant C6 > 0, denote by

Hn = Hn(C6) =
{
φ ∈ B :

∣∣GJφ∣∣ ≥ C6 log n
}

the set of length-n polygons with a high number of global join plaquettes.
We now set the value of C6 > 0. Specify a parameter ζ = 2Θ + 1, and recall that

n ∈ HPNζ is known provided that n ≥ n0(ζ). We set the parameter C6 equal to the
value C3 furnished by Corollary 3.3 applied with C2 taking the value 2Θ + 1 and for
the given value of ζ (which happens to be the same value). This use of the corollary
also provides a value of C4, and, since Pn

(
|GJΓ| ≥ C6 log n

)
= p−1

n |Hn|, we learn that
|Hn| ≤ C4n

−(2Θ+1)pn.
There are two cases to analyse, the first of which is specified by at least one-half of

the arrows in Ψ pointing to Hn. In the first case, we have

n× C4n
−(2Θ+1)pn ≥ max

{
|Ψ−1(φ)| : φ ∈ Hn

}
×
∣∣Hn

∣∣ ≥ 1
2#
{

arrows in Ψ
}

≥ 2−5b 1
102−3/2n1/2c

∑
j∈R

pjpn−16−j ≥ αn1/2pk∗pn−16−k∗ ≥ αn1/2n−2Θµn−16 .

where the value of α may be chosen to equal 1
102−7 since n is supposed to be least n0,

and the latter quantity may be increased if need be. The consecutive inequalities are
due to:

∣∣Ψ−1(φ)
∣∣ ≤ n for φ ∈ SAPn; the first case obtaining; the lower bound (5.2); the

membership of R by the hypothesised index k∗; and the hypothesised properties of k∗.
We have found that pn ≥ c n1/2µn with c = µ−16αC−1

4 . Since pn ≤ µn (as noted in the
introduction), the first case ends in contradiction if we stipulate that the hypothesised
lower bound n0 on n is at least c−2 = 100·214µ32C4 (where this bound has a Θ-dependence
that is transmitted via C4).

EJP 24 (2019), paper 49.
Page 16/43

http://www.imstat.org/ejp/

https://doi.org/10.1214/18-EJP249
http://www.imstat.org/ejp/


Self-avoiding polygons and walks

The set of preimages under Ψ of a given φ ∈ B ⊂ SAPn may be indexed by the junction
plaquette associated to the Madras join polygon J(φ1, φ2) that equals φ. Recalling
Definition 5.3, this plaquette is a global join plaquette of φ. Thus,

|Ψ−1(φ)| ≤ |GJφ| for any φ ∈ B . (5.3)

We find then that, when the second case obtains,

|B| ≥
∣∣B \Hn

∣∣ ≥ C−1
6

(
log n

)−1 × 2−5b 1
102−3/2n1/2c

∑
j∈R

pjpn−16−j .

Recalling the definition of the set B completes the proof of Proposition 5.10.

6 The snake method: general elements

In this section, we recall from [8] the snake method. The method is used to prove
upper bounds on the closing probability, and assumes to the contrary that to some
degree this probability has slow decay. For the technique to be used, two ingredients
are needed.

1. A charming snake is a walk or polygon γ many of whose subpaths beginning at
NE(γ) have high conditional closing probability, when extended by some common
length. It must be shown that charming snakes are not too atypical.

2. A general procedure is then specified in which a charming snake is used to man-
ufacture huge numbers of alternative self-avoiding walks. These alternatives
overwhelm the polygons in number and show that the closing probability is very
small, contradicting the assumption.

The first step certainly makes use of the assumption of slow decay on the closing
probability. It is not however a simple consequence of this assumption. After this section,
we will carry out the first step via the polygon joining apparatus we have constructed to
prove Theorem 1.5; in [8], the first step was implemented via a technique of Gaussian
pattern fluctuation to prove the general dimensional Theorem 1.4.

This section is devoted to explaining the second step, which is formulated as a general
tool, valid in any dimension d ≥ 2.

6.1 Some necessary notation and tools

To set up the apparatus of the method, we present some preliminaries.

6.1.1 The two-part decomposition

In the snake method, we represent any given walk γ in a two-part decomposition. This
consists of an ordered pair of walks (γ1, γ2) that emanate from a certain common vertex
and that are disjoint except at that vertex. The two walks are called the first part and
the second part. To define the decomposition, consider any walk γ of length n. We first
mention that the common vertex is chosen to be the northeast vertex NE(γ). Choosing
j ∈ [0, n] so that γj = NE(γ), the walk γ begins at γ0 and approaches NE(γ) along the
subwalk γ[0,j], and then continues to its endpoint γn along the subwalk γ[j,n]. The reversal
←−γ [0,j] of the first walk, and the second walk γ[j,n], form a pair of walks that emanate
from NE(γ). (When j equals zero or n, one of the walks is the length zero walk that only
visits NE(γ); in the other cases, each walk has positive length.) The two walks will be
the two elements in the two-part decomposition; all that remains is to order them, to
decide which is the first part. If one of the walks visits NE(γ)− e1 at its first step, then it
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Figure 4: The two-part decomposition of a walk of length eleven.

is set equal to γ1; of course, γ2 is then the other walk. If neither visits NE(γ)− e1, then
one of the walks has length zero. This walk is γ1 in this case.

We use square brackets to indicate the two-part decomposition, writing γ = [γ1, γ2].
As a small aid to visualization, it is useful to note that if the first γ1 part of a two-

dimensional walk γ for which NE(γ) = 0 has length j, then γ1 : [0, j]→ Z2 satisfies

• γ1
0 = 0 and γ1

1 = −e1;

• y
(
γ1
i

)
≤ 0 for all i ∈ [0, j];

• γ1
i 6∈ N× {0} for any i ∈ [1, j].

6.1.2 Notation for walks not beginning at the origin

Let n ∈ N. We write SAW∗n for the set of self-avoiding walks γ of length n (without
stipulating the location γ0). We further write SAW0

n for the subset of SAW∗n whose
elements γ verify NE(γ) = 0. Naturally, an element γ ∈ SAW0

n is said to close (and
be closing) if ||γn − γ0|| = 1. The uniform law on SAW0

n will be denoted by W0
n. The

sets SAW0
n and SAWn are in bijection via a clear translation; we will use this bijection

implicitly.

6.1.3 First parts and closing probabilities

First part lengths with low closing probability are rare, as the following result, [8, Lemma
2.2], attests.

Lemma 6.1. Let n ∈ 2N + 1 be such that, for some α′ > 0, Wn

(
Γ closes

)
≥ n−α

′
. For

any δ′ > 0, the set of i ∈ [0, n] for which

#
{
γ ∈ SAW0

n : |γ1| = i
}
≥ nα

′+δ′ ·#
{
γ ∈ SAW0

n : |γ1| = i , γ closes
}

has cardinality at most 2n1−δ′ .

6.1.4 Possible first parts and their conditional closing probabilities

For n ∈ N, let Firstn ⊆ SAWn denote the set of walks γ : [0, n] → Z2 whose northeast
vertex is γ0 = 0. We wish to view Firstn as the set of possible first parts of walks
φ ∈ SAW0

m of some length m that is at least n. (We could in fact be more restrictive
in specifying Firstn, stipulating if we wish that any element γ satisfies γ1 = −e1. As it
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Figure 5: Left: the bold φ ∈ SAW14 and dashed γ ∈ SAW3 are such that [φ, γ] is a
two-part decomposition. Note that φ ∈ First14,14+3 ∩ Firstc14,14+4. Right: An element of
∩∞m=1First14,14+m.

stands, Firstn actually contains all possible second parts. What matters, however, is only
that Firstn contains all possible first parts.)

Note that, as Figure 5 illustrates, for given m > n, only some elements of Firstn
appear as such first parts, and we now record notation for the set of such elements. Write
Firstn,m ⊆ Firstn for the set of γ ∈ Firstn for which there exists an element φ ∈ SAWm−n
(necessarily with NE(φ) = 0) such that [γ, φ] is the two-part decomposition of some
element χ ∈ SAWm with NE(χ) = 0.

In this light, we now define the conditional closing probability

qn,m : Firstn,m → [0, 1] , qn,m(γ) = W0
m

(
Γ closes

∣∣∣Γ1 = γ
)
,

where here m,n ∈ N satisfy m > n; note that since γ ∈ Firstn,m, the event in the
conditioning on the right-hand side occurs for some elements of SAWm, so that the
right-hand side is well-defined.

We also identity a set of first parts with high conditional closing probability: for α > 0,
we write

HighFirstαn,m =
{
γ ∈ Firstn,m : qn,m(γ) > m−α

}
.

6.2 The snake method: recall of its general apparatus

6.2.1 Parameters

The snake method has three exponent parameters:

• the inverse charm α > 0;

• the snake length β ∈ (0, 1];

• and the charm deficit η ∈ (0, β).

It has two index parameters:

• n ∈ 2N+ 1 and ` ∈ N, with ` ≤ n.

6.2.2 Charming snakes

Here we define these creatures.

Definition 6.2. Let α > 0, n ∈ 2N+1, ` ∈ [0, n], γ ∈ First`,n, and k ∈ [0, `] with `−k ∈ 2N.
We say that γ is (α, n, `)-charming at (or for) index k if

W0
k+n−`

(
Γ closes

∣∣∣ |Γ1| = k , Γ1 = γ[0,k]

)
> n−α . (6.1)

EJP 24 (2019), paper 49.
Page 19/43

http://www.imstat.org/ejp/

https://doi.org/10.1214/18-EJP249
http://www.imstat.org/ejp/


Self-avoiding polygons and walks

(The event that |Γ1| = k in the conditioning is redundant and is recorded for empha-
sis.) Note that an element γ ∈ First`,n is (α, n, `)-charming at index k if in selecting a
length n− ` walk beginning at 0 uniformly among those choices that form the second
part of a walk whose first part is γ[0,k], the resulting (k + n− `)-length walk closes with
probability exceeding n−α. (Since we insist that n is odd and that ` and k share their
parity, the length k + n− ` is odd; the condition displayed above could not possibly be
satisfied if this were not the case.) Note that, for any ` ∈ [0, n], γ ∈ First`,n is (α, n, `)-
charming at the special choice of index k = ` precisely when γ ∈ HighFirstα`,n. When
k < ` with k + n − ` of order n, the condition that γ ∈ First`,n is (α, n, `)-charming at
index k is almost the same as γ[0,k] ∈ HighFirstαk,k+n−`; (the latter condition would involve
replacing n by k + n− ` in the right-hand side of (6.1)).

For n ∈ 2N+ 1, ` ∈ [0, n], α, β > 0 and η ∈ (0, β), define the charming snake set

CSα,`,nβ,η =
{
γ ∈ First`,n : γ is (α, n, `)-charming

for at least nβ−η/4 indices belonging to the interval
[
`− nβ , `

]}
.

A charming snake is an element of CSα,`,nβ,η and, as such, it is a walk. To a charming snake

γ, however, is associated the sequence
(
γ[0,`−nβ ], γ[0,`−nβ+1], · · · , γ[0,`]

)
of nβ + 1 terms.

This sequence may be depicted as evolving as an extending snake does; since γ ∈ CSα,`,nβ,η ,
the sequence has many (α, n, `)-charming elements, for each of which there is a high
conditional closing probability for extensions of a shared continuation length n− `.

6.2.3 A general tool for the method’s second step

For the snake method to produce results, we must work with a choice of parameters for
which β − η − α > 0. (The method could be reworked to handle equality in some cases.)
Here we present the general tool for carrying out the method’s second step. The tool
asserts that, if β − η − α > 0 and even a very modest proportion of snakes are charming,
then the closing probability drops precipitously.

Theorem 6.3. Let d ≥ 2. Set c = 2
1

5(4d+1) > 1 and set K = 20(4d + 1) log(4d)
log 2 . Suppose

that the exponent parameters satisfy δ = β − η − α > 0. If the index parameter pair (n, `)

satisfies n ≥ K1/δ and

Pn+1

(
Γ[0,`] ∈ CSα,`,nβ,η

)
≥ c−n

δ/2 , (6.2)

then
Wn

(
Γ closes

)
≤ 2(n+ 1) c−n

δ/2 .

The proof appears in [8, Section 3.2].
Note that since the closing probability is predicted to have polynomial decay, the

hypothesis (6.2) is never satisfied in practice. For this reason, the snake method
will always involve argument by contradiction, with (6.2) being established under a
hypothesis that the closing probability is, to some degree, decaying slowly.

7 An impression of the ideas for the main proof

We have assembled the principal inputs needed to prove Theorem 1.5 and will begin
proving this result in the next section. The proof is rather technical and delicate, and,
before we begin it, we attempt to set the reader’s bearings by giving a necessarily
impressionistic account of the ideas that drive the derivation.

Remember that our basic aim in this paper to prove that, when d = 2, the closing
probability has a rate of decay more rapid than n−1/2−ε, for some ε > 0. Since we
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will proceed by proof by contradiction, it is helpful to reflect on the circumstance
that the opposite case holds, which we may summarise by the informal assertion that
Wn(Γ closes) ≥ n−1/2−o(1). In this section, we will refer to this bound, assumed for the
present purpose of exposition to hold for all high odd n, as the standing assumption.
Recalling (1.1) and cn ≥ µn, our assumption forces pn ≥ n−3/2−o(1)µn for even n. (The
opposing bound pn ≤ n−3/2+o(1)µn holds for typical such n by Theorem 1.3. The standing
assumption thus yields the perhaps provocatively implausible bound cn ≤ no(1)µn for
typical n. This remark is however an aside, because we will make no use of this bound.)

The lower bound on polygon number forces all sufficiently high even numbers to
be high polygon number indices in the sense of Definition 3.2, so that the hypothesis
n ∈ HPNζ of Corollary 3.3 (for any given ζ > 3/2) is verified for high even n. This means
that the circumstance of efficient plaquette identification obtains, so that a form of (3.1)
holds for large even n.

Now, the right-hand side of (3.1) is an expression for the number of ways of joining
together pairs of polygons each of size of order n, provided that a set of order n1/2

possibilities is used for each pair of polygons. More joinings may be possible, but we
do not know this for sure: we will call the Madras join polygons arising from a specific
set of order n1/2 join locations ‘regulation global join polygons’ in the upcoming proof,
though here we prefer to call them simply ‘global join polygons’, to emphasise their key
geometric feature of being comprised of two chambers of the same order of length.

Now a very distinctive geometric feature obtains under the standing assumption:
a non-negligible fraction (of size at least n−o(1)) of polygons of length a given high
even value n must be global join polygons. We may call this feature ‘ample supply of
global join polygons’. The reason that such polygons are in ample supply is that, if
these special polygons represented only a negligible fraction of polygons of a given high
length, then (3.1) could be improved by the presence of an addition factor of nε on its
right-hand side, and the inference that pnµ−n ≤ n−3/2−ε would result, contrary to the
bound pn ≥ n−3/2−o(1)µn that has been seen to follow from the standing assumption.

The ample supply of global join polygons will play a critical role in validating the
snake method hypothesis (6.2). Under the standing assumption, we will endeavour to
verify this hypothesis with the parameter choice β = 1; this choice reflects the ambition
to implement the method in its strongest form, in which a charming snake whose length
is macroscopic (of order n) must be shown to be not atypical. We further set, for reasons
that will shortly be discussed, α = 1/2 + o(1) and η = o(1). (The bound that δ = β − η−α
be positive is satisfied; when we turn later to rigorous argument, the consideration that
δ > 0 dictates the degree to which we succeed in showing that the closing probability
decays more quickly than n−1/2.)

To explain the basic meaning of the method hypothesis (6.2), first recall that we
have been treating n in the preceding paragraphs as a general parameter and thus
permitting it to be even. In the snake method, however, it is fixed at given high odd
value, (reflecting its role as the length of a closing walk). So fixing n, we also make
a choice of the parameter ` ≤ n of the same order as n. Think of a journey travelled
counterclockwise along a typical polygon under Pn+1. To each moment of the journey
– to each vertex of the polygon – corresponds the first part of the walk formed by the
removal from the polygon of the edge over which the traveller will next pass. Since
we take β = 1, the journey includes order n steps, so that the traveller passes over a
macroscopic part of the polygon. To each first part, we consider a second part of fixed
length n − `, chosen uniformly among the choices of second part that are admissible
given the first part. The hypothesis (6.2) is satisfied when it is with at least modest
probability (for simplicity, say at least n−o(1)), that a non-negligible fraction of these first
parts (specifically, at least n1−o(1) of them) are charming in the sense that this random
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selection of second part has a probability at least n−1/2−o(1) of closing the first part, i.e.,
of ending next to the non-origin endpoint of the given first part.

Roughly speaking, this choice of cutoff n−1/2−o(1), dictated by setting α = 1/2 + o(1),
is compatible with the standing assumption that the closing probability decays at rate
very close to n−1/2. Indeed, if we were to vary the form of the hypothesis (6.2) a little
(calling the new version the ‘simple’ form of the hypothesis), we could readily deduce
that many first parts have the requisite property. In order to specify the simple form
of hypothesis (6.2), we adopt the definition that, for a polygon of length n + 1, a first
part, of a length k of order n/2, is ‘simply’ charming if, when a second part extension of
length n− k is sampled, it closes the first part with probability at least n−1/2−o(1).

Because the closing walks so formed correspond to polygons of length n, it is now a
direct consequence of our standing assumption that, for a typical polygon sampled from
Pn+1, most first parts are simply charming. Indeed, the number of first parts that fail to
be simply charming is bounded above by Lemma 6.1. (The proof of this result appears
in [8], but it is very straightforward.) That is, simply charming first parts are typical,
with n1−o(1) exceptions permitted among order n lengths of first part.

Our discussion has led us to a clear expression of the challenge we face in imple-
menting the snake method. The hypothesis (6.2) is validated in its ‘simple’ form, that is,
when we are prepared to decrease the second part length as the first part length rises
(so that the sum of lengths equals n). In its actual form, of course, we must accept that
the second part length remains fixed (at the value n− `) even as the first part length k
increases over a range of order n values. In fact, the simple version of the hypothesis
has been comfortably validated. From the form of (6.2), we see that actually charming
first parts must be shown to represent a non-negligible, n−o(1), fraction of all first parts
for a non-negligible fraction of all length n+ 1 polygons; but first parts have been seen to
be simply charming apart from a small, n1−o(1)-sized, set of violations, with probability
at least 1− n−o(1).

It is the ample supply of global join polygons that allows us to bridge the gap between
the simple and actual forms of the snake method hypothesis. Building this bridge is a
matter of understanding a certain similarity of measure between the polygon laws Pn+1

and Pm+1, where m is odd and of order n. We are trying to gain an understanding that
there is at least probability n−o(1) that a first part of a given length k arising from the
law Pn+1 will have the property that a length n− ` second part will close with probability
at least n−1/2−o(1). By considering the choice m = n− `+ k, we have this information
for typical such k in the case that the polygon law is Pm+1 in place of Pn+1: this is the
deduction made from knowing that the snake method hypothesis is valid in its simple
form.

To build the bridge, recall that a non-negligible, m−o(1), fraction of length-(m + 1)

polygons are global join polygons. There is an attractive random means of mapping
such polygons into their length-(n+ 1) counterparts. Any such polygon is comprised of
a left polygon and a right polygon. Pull out the right polygon, replace it by a polygon,
uniformly chosen among the space of polygons whose length exceeds the removed
polygon’s by n−m (whatever the sign of this difference), and rejoin the new polygon in
one of the order n1/2 spots that we regard as admissible for the formation of globally
joined polygons.

The resulting polygon has length n+ 1; (clearly, we are neglecting the details of the
Madras join construction here). Moreover, this random function, mapping the space of
length-(m+1) globally joined polygons to the space of their length-(n+1) counterparts, is
roughly measure-preserving when projected to first parts that do not reach the location
where surgery occurs (and thus are undisturbed by surgery).

The probability that a first part of given length k fails the simple charm test, when
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Figure 6: For k given of order n, the two large balls respectively represent the laws
Pm+1 and Pn+1, where m = k + n − `. Imagine that each ball is partitioned into tiny
disjoint cells that represent the polygons of the length in question. Inside the two balls,
the cells associated to polygons whose length-k first part fails to be charming for a
second part extension of length n− ` are depicted in red. The smaller ball on the left
represents globally joined polygons of length m+ 1. These are transported in a roughly
area preserving way to the interior of the ellipse on the right, which represents globally
joined polygons of length n+ 1. Under the standing assumption, the red region on the
left has smaller area than does the ball, so that much of the ellipse interior on the right is
seen to be not red. Moreover, the ellipse interior on the right represents a non-negligible
area of the right-hand ball. Thus, even though the right-hand ball may be predominately
red outside the ellipse, a non-negligible region on the right is not red, so that length k
first parts are not atypically charming under Pn+1.

polygon length equals m + 1 = n − ` + k + 1, is low enough that it is much smaller
than the proportion of length-(m + 1) polygons that are global join polygons. (Ample
supply of global join polygons means that the latter proportion, while not of unit order,
is non-negligible. When we reprise these arguments rigorously, parameter choices may
be made, in correspondance to different o(1) terms, so that the failure probability for
the simple charm test for a given length first part will indeed be much smaller than the
global join polygon proportion.)

Consider now the random mapping of globally joined polygons of length m+ 1 into
their length n+ 1 counterparts (and consult Figure 6 for an illustration of the argument).
This map roughly preserves measure, so that the charm evinced by a length-k first part
(namely, that a length-(n− `) second part closes with probability at least n−1/2−o(1)) is
seen to be typical not only under a uniformly chosen globally joined polygon of length
m+ 1 but also under the counterpart measure for length n+ 1. By the ample supply of
globally joined polygons, a non-negligible fraction of length-(n+ 1) polygons are globally
joined. Therefore, a non-negligible, n−o(1), fraction of such polygons are charming at
index k.

By varying k over order n values, we find that the snake method hypothesis (6.2) is
verified under the standing assumption, because it must be the case that, with probability
at least n−o(1), the Pn+1-sampled polygon has at least n1−o(1) indices lengths at which it
is charming. Naturally, Theorem 6.3 then applies to show that the closing probability
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has a rapid decay, in contradiction to the standing assumption.
In this way, the standing assumption is seen to be false, and the aim of showing that

the closing probability decays as quickly as n−1/2−ε is achieved subsequentially (for
some positive ε). The argument demonstrates both the beauty and horror of the author’s
experience of self-avoiding walk: it is rather delicate and intricate, and it achieves
a specific inference, regarding closing probability, by examining in detail interesting
geometric questions about walks and polygons, concerning say the proportion of large
polygons that are globally joined; however, it leaves these questions unsettled.

8 Proving Theorem 1.5(2)

The paper has seven further sections, and these are devoted to proving Theorem 1.5.
We will gather the two set of preliminaries we have assembled and prove the theorem
using the snake method implemented via polygon joining.

To summarise the structure of the rest of the paper, we mention first that we will
begin with Theorem 1.5(2) because the proof of the first part of the theorem shares the
framework of the second but is slightly more technical. We first reduce (in the rest of
this section) Theorem 1.5(2) to Proposition 8.1; in Section 9, we state the conclusions of
the three main steps that lead to the proof of the proposition; and in the three ensuing
sections, we prove the results associated to the respective steps and thereby complete
the proof of Theorem 1.5(2). Section 13 presents a counterpart to Proposition 8.1 for
Theorem 1.5(1) and collects some useful statements for the proof of this part of the
main theorem, which proof is presented with the same three step structure in the final
Section 14.

Focussing now on the proof of Theorem 1.5(2), note that it is enough to suppose
the existence of θ and ξ and to argue that θ + ξ ≥ 5/3, since the latter assertion of
Theorem 1.5(2) was justified as it was stated. In order to prove this inequality by finding
a contradiction, we suppose that θ + ξ < 5/3. The sought contradiction is exhibited in
the next result.

Proposition 8.1. Let d = 2. Assume that the limits θ := limn∈2N θn and ξ = limn∈N ξn
exist. Suppose further that θ + ξ < 5/3. Then, for some c > 1 and δ > 0, the set of
n ∈ 2N+ 1 for which

Wn

(
Γ closes

)
≤ c−n

δ

intersects the shifted dyadic scale
[
2i − 1, 2i+1 − 1

]
for all but finitely many i ∈ N.

Proof of Theorem 1.5(2). The non-negative limits θ and ξ are hypothesised to exist. If
their sum is finite, then the formula (1.4) exhibits a polynomial decay. When the sum is
less than 5/3, this contradicts Proposition 8.1.

It remains of course to derive the proposition. Assume throughout the derivation that
the proposition’s hypotheses are satisfied. Define an exponent χ so that θ + ξ = 3/2 + χ.
Since ξ ≥ 0 and θ ≥ 3/2 (classically and by Theorem 1.3), χ is non-negative. Note that
Wn

(
Γ closes

)
equals n−1/2−χ+o(1), and also that we are supposing that χ < 1/6.

The proof of Proposition 8.1 is an application of the snake method. We now set the
snake method exponent parameters for this application, taking

• the snake length β equal to one;

• the inverse charm α equal to 1/2 + 2χ+ 4ε;

• and the deficit η equal to χ+ 8ε;

where henceforth in proving Proposition 8.1, ε > 0 denotes a given but arbitrarily small
quantity. The quantity δ = β − η − α = 1/2 − 3χ − 12ε must be positive if the snake
method is to work, and thus we choose ε < (1/6− χ)/4.
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9 Three steps to the proof of Proposition 8.1

The argument leading to Proposition 8.1 has three principal steps. We explain these
now in outline, stating the conclusion of each one. The proofs follow, in the three sections
that follow this one.

9.1 Step one: finding many first parts with high closing probability

The outcome of the first step may be expressed as follows, using the high conditional
closing probability set notation HighFirst introduced in Subsection 6.1.4.

Proposition 9.1. For i ∈ N sufficiently high, there exists m′ ∈ 2N ∩
[
2i+3, 2i+4

]
such

that, writing K ′ for the set of values k ∈ N, 2i ≤ k ≤ 2i + 2i−2, that satisfy

Pm′+k
(

Γ[0,k] ∈ HighFirstαk,k+m′−1

)
≥ 1− 2−iχ ,

we have that |K ′| ≥ 2−8m′.

This first step is a soft, Fubini, argument: such index pairs (k,m′+k) are characteristic
given our assumption on closing probability decay, and the proposition will follow from
Lemma 6.1.

9.2 Step two: individual snake terms are often charming

To apply the snake method, we must verify its fundamental hypothesis (6.2) that
charming snakes are not rare under the uniform polygon law. Proposition 9.1 is not
adequate for verifying this hypothesis, because the polygon law index m′+k is a variable
that changes with k. We want a version of the proposition where this index is fixed. The
next assertion, which is the conclusion of our second step, is such a result. Note from the
differing forms of the right-hand sides in the two results that a behaviour determined to
be highly typical in Proposition 9.1 has a counterpart in Proposition 9.2 which is merely
shown to be not unusual.

Proposition 9.2. For each i ∈ N sufficiently high, there exist m ∈ 2N ∩
[
2i+4, 2i+5

]
and

m′ ∈
[
2i+3, 2i+4

]
such that, writing K for the set of values k ∈ N, 1 ≤ k ≤ m−m′, that

satisfy

Pm
(

Γ[0,k] ∈ HighFirstαk,k+m′−1

)
≥ m−η+ε ,

we have that |K| ≥ 2−9m.

The second step, leading to the proof of this proposition, is quite subtle. Expressed in
its simplest terms, the idea of the proof is that the subscript index in P can be changed
from the k-dependent m′ + k in Proposition 9.1 to the k-independent m in the new result
by using the polygon joining technique. This index change involves proving a similarity
of measure between polygon laws with distinct indices on a given dyadic scale. The
set of regulation global join polygons introduced in Section 5 provides a convenient
reservoir of macroscopically joined polygons whose left polygons are shared between
polygon laws of differing index, so that this set provides a means by which this similarity
may be proved. Figure 7 offers some further outline of how we will exploit the ample
supply of regulation polygons to prove similarity of measure.

9.3 Step three: applying the snake method Theorem 6.3

In this step, it is our goal to use Proposition 9.2 in order to verify the snake method
hypothesis (6.2). In the step, we will fix the method’s two index parameters: for i ∈ N
given, we will use Proposition 9.2 to take n equal to m− 1, and ` equal to m−m′.
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Figure 7: The snake method via polygon joining. Black dots mark vertices of polygons
γ: fixing a typical m′ ∈ 2N, assign a black dot at each vertex γj , m′/4 ≤ j ≤ 3m′/4, of
a polygon γ of length of order m′, that has the property that SAW0

m′+j

(
Γ closes

∣∣ |Γ1| =
j,Γ1 = γ[0,j]

)
≥ (m′)−1/2−χ−ε. Our assumptions readily imply that most polygons γ

with length n′ of order say 2m′ will have a black dot at γn′−m′ . What about at other
locations γj where j is also of order m′? A black dot is likely to appear at Γj when Γ

is Pj+m′ -distributed. If we can make a comparison of measure, showing that the laws
Pj+m′ and Pn′ are to some degree similar, then the black dot will be known to also
appear at γj in a typical sample of Pn′ . Applying this for many such j, black dots will
appear along the course of a typical length n′ polygon. These black dots index charming
snake terms and permit the use of the snake method. Comparison of measure will be
undertaken in Proposition 11.2 by the use of polygon joining. Lemma 11.1 shows that
a non-negligible proportion of polygons are regulation global join polygons; thus, such
polygons themselves typically have black dots m′ steps from their end. The law of the
left polygon under the uniform law on regulation polygons of a given length is largely
unchanged as that total length is varied on a given dyadic scale, because the length
discrepancy can be absorbed by altering the length of the right polygon. Indeed, in the
above sketches, we deplete the length of the right polygon in a possible extension of the
depicted first part, as the length of this first part shortens; in this way, we show that
first parts typically arising in regulation polygons at one length are also characteristic in
such polygons with lengths on the same scale.

We may now emphasise why the proposition is useful for this verification goal. Note
that maxK ≤ `. Since n− ` = m′ − 1, we have that, for k ∈ [1, `], the walk γ ∈ First`,n is
(α, n, `)-charming at index k if and only if

W0
k+m′−1

(
Γ closes

∣∣∣ ∣∣Γ1
∣∣ = k , Γ1

[0,k] = γ[0,k]

)
> n−α ;

note the displayed condition is almost the same as γ[0,k] ∈ HighFirstαk,m′+k−1, the latter
occurring when n−α is replaced by (m′ + k − 1)−α, a change which involves only a
bounded factor.

Thus, Proposition 9.2 shows that individual snake terms are charming with probability
at least m−χ−o(1). It will be a simple Fubini argument that will allow us to verify (6.2) by
confirming that it is not rare that such terms gather together to form charming snakes.
Theorem 6.3 may be invoked to prove Proposition 8.1 immediately. The third step will
provide this Fubini argument.

The next three sections are devoted to implementing these three steps. In referring
to the dyadic scale index i ∈ N in results stated in these sections, we will sometimes
neglect to record that this index is assumed to be sufficiently high.
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10 Step one: the proof of Proposition 9.1

Before proving this result, we review its meaning in light of Figure 7. Proposition 9.1
is a precisely stated counterpart to the assertion in the figure’s caption that a black dot
typically appears m′ steps from the end of a polygon drawn from Pn′ where n′ has order
2m′ (or say 2i+3). Note the discrepancy that we have chosen α to be marginally above
1/2 + 2χ while in the caption a choice just above 1/2 + χ was made. The extra margin
permits 1− 2−iχ rather than 1− o(1) in the conclusion of the proposition. We certainly
need the extra margin; we will see how at the end of step two.

Consider two parameters ε2 > ε1 > 0. (During the proof of Proposition 9.2, we will
ultimately set ε2 = 4ε1 and ε1 = ε, where ε > 0 is the parameter that has been used to
specify the three snake method exponents.)

Definition 10.1. Let i ∈ N. An index pair (k, j) ∈ N×2Nwill be called closing probability
typical on dyadic scale i if

• k ∈
[
2i, 2i + 2i−2

]
and j ∈

[
2i+4, 2i+5

]
;

• and, for any a ≥ 0,

Pj
(

Γ[0,k] /∈ HighFirst
1/2+(a+1)χ+ε2
k,j−1

)
≤ (j − 1)−(aχ+ε2−ε1) . (10.1)

Proposition 10.2. For all i ∈ N high enough, there exists k ∈ 2N ∩
[
2i+4, 2i+4 + 2i

]
for

which there are at least 2i−4 values of j ∈ 2N ∩ [0, 2i−2] with the index pair
(
2i + j, k + j

)
closing probability typical on dyadic scale i.

When we prove Proposition 9.2 in step two, we will in fact do so using a direct
consequence of Proposition 10.2, rather than Proposition 9.1. The latter result, a
byproduct of the proof of Proposition 10.2, has been stated merely because it permitted
us to make a direct comparison between steps one and two in the preceding outline. As
such, our goal in step one is now to prove Proposition 10.2.

Definition 10.3. Define E to be the set of pairs (k, j) ∈ N× 2N,

• where k ∈
[
2i, 2i + 2i−2

]
and j ∈

[
2i+4, 2i+5

]
;

• and the pair (k, j) is such that

#
{
γ ∈ SAW0

j−1 : |γ1| = k
}

(10.2)

< (j − 1)1/2+χ+ε1 ·#
{
γ ∈ SAW0

j−1 : |γ1| = k, γ closes
}
.

We will now apply Lemma 6.1 to show that membership of E is typical. The application
is possible because by hypothesis there is a lower bound on the decay of the closing
probability. Indeed, we know that Wn

(
Γ closes

)
≥ n−1/2−χ−o(1). Thus, the lemma with

α′ = 1/2 + χ+ ε1/2 and δ′ = ε1/2 proves the following.

Lemma 10.4. Provided the index i ∈ N is sufficiently high, for each j ∈ 2N∩
[
2i+4, 2i+5

]
,

the set of k ∈
[
2i, 2i + 2i−2

]
such that (k, j) 6∈ E has cardinality at most 2j1−ε1/2 ≤

2
(
2i+5

)1−ε1/2.

Lemma 10.5. Any pair (k, j) ∈ E is closing probability typical on dyadic scale i.

Proof. We must verify that (k, j) verifies (10.1) for any a ≥ 0. Recalling the notation
W0
j−1 from Subsection 6.1.2, note that the assertion

W0
j−1

(
Γ1 /∈ HighFirst

1/2+(a+1)χ+ε2
k,j−1

∣∣∣ Γ closes , |Γ1| = k
)
≤ (j − 1)−(aχ+ε2−ε1) (10.3)
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is a reformulation of this condition. Note that

#
{
γ ∈ SAW0

j−1 : |γ1| = k , γ1 /∈ HighFirst
1/2+(a+1)χ+ε2
k,j−1

}
(10.4)

is at least the product of (j − 1)1/2+(a+1)χ+ε2 and

#
{
γ ∈ SAW0

j−1 : |γ1| = k , γ1 /∈ HighFirst
1/2+(a+1)χ+ε2
k,j−1 , γ closes

}
.

The quantity (10.4) is bounded above by (10.2); thus is (10.3) obtained.

Proof of Proposition 10.2. By Lemma 10.5, it is enough to argue that there exists
k ∈ 2N∩

[
2i+4, 2i+4 + 2i

]
for which there are at least 2i−4 values of j ∈ 2N∩ [0, 2i−2] with(

2i + j, k + j
)
∈ E.

By Lemma 10.4,

∑
j∈2N∩[2i+4+2i−2,2i+4+2i]

2i+2i−2∑
`=2i

11(`,j)∈E (10.5)

≥
(

2i−2 + 1− 2
(
2i+5

)1−ε1/2) · 1
2

(
2i − 2i−2

)
.

As Figure 8 illustrates, the left-hand side here is bounded above by

∑
k∈2N∩[2i+4,2i+4+2i]

2i+2i−2∑
`=2i

11(`,k+`−2i)∈E . (10.6)

There being 2i−1 + 1 ≤ 2i indices k ∈ 2N ∩
[
2i+4, 2i+4 + 2i

]
, one such k satisfies

2i+2i−2∑
`=2i

11(`,k+`−2i)∈E ≥ 3
8

(
2i−2 + 1− 2

(
2i+5

)1−ε1/2)
. (10.7)

Noting that 3
4

(
2i+5

)1−ε1/2 ≤ 1
82i−2, we obtain the sought statement and so conclude the

proof.

Proof of Proposition 9.1. Proposition 10.2 furnishes the existence of a minimal Q ∈
2N ∩

[
2i+4, 2i+4 + 2i

]
such that there are at least 2i−4 values of k ∈ 2N ∩ [0, 2i−2] with(

2i + k,Q+ k
)

closing probability typical on dyadic scale i.
Let

(
k1, . . . , k2i−4

)
be an increasing sequence of such values of k associated to the

value Q. Set m′ = Q − 2i and note that m′ ∈
[
2i+3, 2i+4

]
. Take a = 1 in (10.1) and

specify that ε2 = 4ε alongside ε2 > ε1 to find that, for all j ∈ [1, 2i−4], 2i + kj ∈ K ′. Thus,
|K ′| ≥ 2i−4 ≥ 2−8m′.

This completes the proof of the proposition.

We end this section by recording the explicit artefact that will be used in step two.

Definition 10.6. Set L = 2i−4. We specify a constant difference sequence of index pairs
(rj , sj), 1 ≤ j ≤ L. Its elements are closing probability typical for dyadic scale i, the
difference sj − rj is independent of j and takes a value in [2i+4 − 2i, 2i+4], and

{
rj : 1 ≤

j ≤ L
}

is increasing. Moreover, rj ∈ 2N∩ [2i, 2i+2i−2] and sj ∈ 2N∩ [2i+4, 2i+4 +2i+2i−2]

for each j ∈ [1, L].

Indeed, we may work with the sequence constructed in the preceding proof, setting
rj = 2i + kj and sj = Q+ kj for j ∈

[
1, L

]
.

We are en route to Proposition 9.2, and take the opportunity to mention how its
two parameters m and m′ will be specified. The latter will be chosen, as it was in the
proof of Proposition 9.1, to be the value of the constant difference in the sequence in
Definition 10.6, while the former will be taken equal to sL in this definition.
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Figure 8: Illustrating the proof of Proposition 10.2. The dots depict elements of E. The
quantity (10.5) is the number of dots in the middle rectangle; (in these terms, ` is the x-
coordinate in the sketch and j is the negative y-coordinate). Similarly, the quantity (10.6)
is the number of dots in the parallelogram bounded by dashed lines. In (10.7), we find a
diagonal, such as the one depicted with a pointed line, on which many dots lie.

11 Step two: deriving Proposition 9.2

The key tool for this proof is similarity of measure between polygon laws with distinct
indices, with the reservoir of regulation global join polygons providing the mechanism
for establishing this similarity. Recall that these polygons were introduced and discussed
in Section 5; the reader may wish to review this material now.

This step two section has three subsections. In the first, we provide a piece of appa-
ratus, which augments the regulation polygon properties discussed in Section 5, that we
will need in order to state our similarity of measure result. This result, Proposition 11.2,
is stated and proved in the next subsection. The final subsection gives the proof of
Proposition 9.2.

11.1 Relating polygon laws Pn for distinct n via global join polygons

The next lemma shows that there is an ample supply of regulation polygons in the
sense that they are not rare among all polygons. In contrast to the regulation polygon
tools in Section 5, Lemma 11.1 is contingent on our standing assumption that the
hypotheses of Proposition 8.1 are satisfied. (In fact, it is the existence and finiteness of θ
and ξ that are needed, rather than the condition θ + ξ < 5/3.)

Define Ri := 2N ∩
[
2i, 2i+1

]
.

Lemma 11.1. Let ϕ > 0. For any i ∈ N sufficiently high, and n ∈ 2N ∩
[
2i+4, 2i+5

]
,

Pn

(
Γ ∈

⋃
k∈Ri+2

RGJk,n−16−k

)
≥ n−χ−ϕ .

The set Ri may be thought as a set of regular indices j ∈ 2N ∩
[
2i, 2i+1

]
, with θj for

example being neither atypically high nor low. As we prove Theorem 1.5(2), all indices
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are regarded as regular, so that we make the trivial specification Ri = 2N ∩
[
2i, 2i+1

]
;

the set will be respecified non-trivially in the proof of Theorem 1.5(1).
(As we explained in the three-step outline, the snake method parameters, including

n, will be set for the proof of Proposition 8.1 at the start of step three. Until then, we are
treating n as a free variable.)

Proof of Lemma 11.1. Note that the probability in question is equal to the ratio of the
cardinality of the union

⋃
j∈Ri+2

RGJj,n−16−j and the polygon number pn.
In order to bound below the numerator in this ratio, we aim to apply Proposition 5.10

with the role of i ∈ N played by i + 2 and with R = Ri+2. In order to do so, set
θ = supn∈2N θn, a quantity that is finite by hypothesis. Set the proposition’s Θ equal
to θ. The index k∗ in the proposition may then be any element of Ri+2. Applying the
proposition, we find that there exists c = c(Θ) > 0 such that∣∣∣ ⋃

j∈Ri+2

RGJj,n−16−j

∣∣∣ ≥ c
n1/2

log n

∑
j∈Ri+2

pjpn−16−j .

The existence of θ implies that pmµ−m ∈
[
m−θ−ϕ,m−θ+ϕ

]
whenever m ≥ m0(ϕ).

Since i ∈ N is supposed sufficiently high, we thus find that

Pn
(

Γ ∈
⋃

j∈Ri+2

RGJj,n−16−j

)
≥ µ−16c

n1/2

log n

∑
j∈Ri+2

j−(θ+ϕ)(n− 16− j)−(θ+ϕ) · nθ−ϕ ≥ 2−4µ−16c
n3/2−θ−3ϕ

log n
,

where we used #Ri+2 ≥ 2i+1 ≥ 2−4n. Noting that θ ≤ 3/2 + χ and relabelling ϕ > 0

completes the proof.

11.2 Similarity of measure

We may now state our similarity of measure Proposition 11.2. Recall from Defini-
tion 10.6 the constant difference sequence (rj , sj), 1 ≤ j ≤ L, and also the regular index
set Ri+2 in the preceding subsection.

Proposition 11.2. For each j ∈ [1, L], there is a subset Dj ⊆ Firstrj satisfying

Psj

(
Γ[0,rj ] 6∈ Dj , Γ ∈ RGJk,sj−16−k for some k ∈ Ri+2

)
≤ 4µ16s−10

j (11.1)

such that, for each φ ∈ Dj ,

PsL

(
Γ[0,rj ] = φ

)
≥ 1

40 C
−1
8

(
log sL

)−1( 3
16

)θ
s−4ε
L

× Psj

(
Γ[0,rj ] = φ , Γ ∈ RGJk,sj−16−k for some k ∈ Ri+2

)
.

Preparing for the proof, we define, for each γ ∈ SAPsj , 1 ≤ j ≤ L, the set of γ’s
regulation global join indices

τγ =
{
k ∈ Ri+2 : γ ∈ RGJk,sj−16−k

}
.

For γ ∈ SAPsj , the map sending k ∈ τγ to the junction plaquette associated to the

join of elements of SAPleft
k and SAPright

sj−16−k is an injective map into GJγ : see the first
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assertion of Proposition 5.7. Thus, |τγ | ≤
∣∣GJγ∣∣. Corollary 3.3 implies that there exists a

constant C8 > 0 such that

PsL

(∣∣τΓ∣∣ ≥ C8 log sL

)
≤ C8 s

−4θ−22
L , (11.2)

where here we have reintroduced θ = supn∈2N θn, a quantity which we recall is finite by
hypothesis; (this finiteness permits the application of the corollary).

We make use of this constant to specify for each j ∈ [1, L] a set Dj ⊆ Firstrj of
length rj first parts that, when extended to form a length sL polygon, do not typically
produce far-above-average numbers of regulation joinings. We define

Dj =
{
φ ∈ Firstrj : PsL

(∣∣τΓ∣∣ ≤ C8 log sL

∣∣∣Γ[0,rj ] = φ
)
≥ 1− C8 s

−2θ−11
L

}
,

The use of the next lemma lies in its final part, which establishes the Psj -rarity
assertion (11.1). The first two parts of the lemma are steps towards the third. The
rarity under PsL of the length rj initial path failing to be in Dj is a direct consequence of
definitions, as the first part of the lemma shows, but a little work is needed to make the
change of index L→ j.

Lemma 11.3. Let j ∈ [1, L].

1. We have that
PsL

(
Γ[0,rj ] ∈ D

c
j

)
≤ s−2θ−11

L .

2. Let k ∈ Ri+2. Then

Pleft
k

(
Γ[0,rj ] 6∈ Dj

)
≤ 16µ16s−11

L .

3. We have that

Psj

(
Γ[0,rj ] 6∈ Dj , Γ ∈ RGJk,sj−16−k for some k ∈ Ri+2

)
≤ 4µ16s−10

j .

Proof (1). Note that

PsL

(∣∣τΓ∣∣ ≥ C8 log sL

)
≥ PsL

(∣∣τΓ∣∣ ≥ C8 log sL , Γ[0,rj ] ∈ D
c
j

)
= PsL

(
Γ[0,rj ] ∈ D

c
j

)
PsL

(∣∣τΓ∣∣ ≥ C8 log sL

∣∣∣Γ[0,rj ] ∈ D
c
j

)
≥ C8s

−2θ−11
L PsL

(
Γ[0,rj ] ∈ D

c
j

)
.

Lemma 11.3(1) thus follows from (11.2).

(2). In light of the preceding part, it suffices to prove

Pleft
k

(
Γ[0,rj ] 6∈ Dj

)
≤ 16µ16s2θ

L PsL

(
Γ[0,rj ] 6∈ Dj

)
. (11.3)

We will derive this bound with a simple joining argument. Note that sL ≥ k + 16 since
sL ≥ 2i+4, k ≤ 2i+3 and i ≥ 1. Consider the map

Ψ :
{
φ ∈ SAPleft

k : φ[0,rj ] ∈ D
c
j

}
× SAPright

sL−k−16 →
{
φ ∈ SAPsL : φ[0,rj ] ∈ D

c
j

}
defined by setting Ψ(φ1, φ2) equal to the join polygon J(φ1, φ2 + ~u), where the second
argument is chosen so that the pair is globally Madras joinable. (A choice of ~u ensuring
that the pair is globally joinable may be made by placing the second polygon strictly
below the x-axis and then displacing it horizontally to the rightmost location at which it
is Madras joinable to the first polygon.)
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We now wish to apply Lemma 5.11 to learn that Ψ(φ, φ′)[0,rj ] = φ[0,rj ], so that Ψ’s
image lies in the stated set. In order to do so, it is enough to verify that rj ≤ k/2 − 1,
since φ ∈ SAPk is left-long. This bound follows from k ≥ 2i+2, rj ≤ 2i + 2i−2 (as noted in
Definition 10.6), and i ≥ 1.

The decomposition uniqueness in Proposition 5.7 shows that Ψ is injective. Thus, by
considering Ψ, we find that

#
{
φ ∈ SAPsL : φ[0,rj ] ∈ D

c
j

}
≥ #

{
φ ∈ SAPleft

k : φ[0,rj ] ∈ D
c
j

}
#
{
φ ∈ SAPright

sL−k−16

}
.

By Lemma 5.5,

PsL
(
Γ[0,rj ] ∈ D

c
j

)
≥ 1

16P
left
k

(
Γ[0,rj ] ∈ D

c
j

)
p−1
sL pkpsL−k−16 .

Note that p−1
sL pkpsL−k−16 ≥ µ−16s−2θ

L , where recall that θ = supn∈2N θn. In this way, we
obtain (11.3).

(3). We first make the key observation that, for k ∈ Ri+2 and j′ ∈ [1, L],

Psj′

(
Γ[0,rj ] = φ

∣∣∣Γ ∈ RGJk,sj′−16−k

)
= Pleft

k

(
Γ[0,rj ] = φ

)
. (11.4)

Proposition 5.9 implies this, provided that its hypotheses that rj ≤ k/2 − 1 and k/2 ≤
sj′ − 16 − k ≤ 35k are valid. That the first inequality holds has been noted in the
proof of the lemma’s second part. That the second holds follows from 2i+3 ≥ k ≥ 2i+2,
2i+5 ≥ sj′ ≥ 2i+4 and i ≥ 2.

The quantity on the left-hand side of the inequality in Lemma 11.3(3) is at most∑
k∈Ri+2

Psj

(
Γ[0,rj ] 6∈ Dj , Γ ∈ RGJk,sj−16−k

)
and thus by (11.4) with j′ = j, at most |Ri+2|maxk∈Ri+2

Pleft
k

(
Γ[0,rj ] 6∈ Dj

)
. We may now

apply the second part of the lemma as well as the bounds |Ri+2| ≤ 4−1sL and sL ≥ sj to
obtain Lemma 11.3(3). (This upper bound on |Ri+2| is due to |Ri+2| = 2i+1 + 1 ≤ 2i+2 and
sL ≥ 2i+4.)

Lemma 11.4. Recall that L = 2i−4. Let j ∈ [1, L].

1. For φ ∈ Dj ,

PsL

(
Γ[0,rj ] = φ

)
≥ 1

400 C
−1
8

(
log sL

)−1
s−2ε
L µ−16

∑
k∈Ri+2

Pleft
k

(
Γ[0,rj ] = φ

)
k1/2pkµ

−k .

2. For φ ∈ Firstrj ,

Psj

(
Γ[0,rj ] = φ , Γ ∈ RGJk,sj−16−k for some k ∈ Ri+2

)
≤ 1

10

(
16
3

)θ
µ−16 · s2ε

j

∑
k∈Ri+2

Pleft
k

(
Γ[0,rj ] = φ

)
k1/2pkµ

−k .

Proof: (1). Note that PsL
(
Γ[0,rj ] = φ

)
is at least

PsL

(
Γ[0,rj ] = φ , Γ ∈

⋃
k∈Ri+2

RGJk,sL−16−k ,
∣∣τΓ∣∣ ≤ C8 log sL

)
≥

(
C8 log sL

)−1 ∑
k∈Ri+2

PsL

(
Γ[0,rj ] = φ , Γ ∈ RGJk,sL−16−k ,

∣∣τΓ∣∣ ≤ C8 log sL

)
.
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The summand in the last line may be written

PsL

(
Γ[0,rj ] = φ , Γ ∈ RGJk,sL−16−k

)
− PsL

(
Γ[0,rj ] = φ , Γ ∈ RGJk,sL−16−k ,

∣∣τΓ∣∣ > C8 log sL

)
,

with the subtracted term here being at most

PsL

(
Γ[0,rj ] = φ ,

∣∣τΓ∣∣ > C8 log sL

)
≤ C8s

−2θ−11
L PsL

(
Γ[0,rj ] = φ

)
since φ ∈ Dj . We noted at the end of the preceding proof that |Ri+2| ≤ 4−1sL. Thus,
PsL

(
Γ[0,rj ] = φ

)
is at least

(
C8 log sL

)−1 ∑
k∈Ri+2

PsL

(
Γ[0,rj ] = φ , Γ ∈ RGJk,sL−16−k

)
(11.5)

−
(
C8 log sL

)−1
4−1sL · C8s

−2θ−11
L PsL

(
Γ[0,rj ] = φ

)
.

Taking j′ = L in (11.4) and using Proposition 5.7, we learn that the summand in the
first line satisfies

PsL

(
Γ[0,rj ] = φ , Γ ∈ RGJk,sL−16−k

)
(11.6)

= Pleft
k

(
Γ[0,rj ] = φ

)
PsL

(
Γ ∈ RGJk,sL−16−k

)
= Pleft

k

(
Γ[0,rj ] = φ

)
· p−1
sL · b

1
10 k

1/2c ·
∣∣SAPleft

k

∣∣ ∣∣SAPright
sL−16−k

∣∣ ,
and thus by Lemma 5.5 (as well as k ≥ 2i+2 and i ≥ 7) is at least

Pleft
k

(
Γ[0,rj ] = φ

)
· p−1
sL ·

1
20 k

1/2 · 1
8pk ·

1
2psL−16−k .

Returning to (11.5), we find that PsL
(
Γ[0,rj ] = φ

)
is at least(

1 + 4−1
(

log sL
)−1

s−2θ−10
L

)−1(
C8 log sL

)−1 1
320 p

−1
sL

×
∑

k∈Ri+2

Pleft
k

(
Γ[0,rj ] = φ

)
k1/2pkpsL−16−k (11.7)

≥
(
C8 log sL

)−1 1
400 p

−1
sL µ

sL−16

×
∑

k∈Ri+2

Pleft
k

(
Γ[0,rj ] = φ

)
k1/2pkµ

−k(sL − 16− k)−θ−ε .

Using psL ≤ µsLs−θ+εL , we obtain Lemma 11.4(1).

(2). For φ ∈ Firstrj ,

Psj

(
Γ[0,rj ] = φ , Γ ∈ RGJk,sj−16−k for some k ∈ Ri+2

)
≤

∑
k∈Ri+2

Psj

(
Γ[0,rj ] = φ , Γ ∈ RGJk,sj−16−k

)
.

By taking j′ = j in (11.4), we see that the two equalities in the display (11.6) hold with
sj in place of sL. Since

∣∣SAPleft
k

∣∣ ≤ pk and
∣∣SAPright

sj−16−k
∣∣ ≤ psj−16−k, the last sum is seen
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to be at most

1
10 p
−1
sj

∑
k∈Ri+2

Pleft
k

(
Γ[0,rj ] = φ

)
k1/2pkpsj−16−k (11.8)

≤ 1
10s

θ+ε
j µ−16

∑
k∈Ri+2

Pleft
k

(
Γ[0,rj ] = φ

)
k1/2pkµ

−k(sj − 16− k)−θ+ε

≤ 1
10

(
16
3

)θ
µ−16 · s2ε

j

∑
k∈Ri+2

Pleft
k

(
Γ[0,rj ] = φ

)
k1/2pkµ

−k ,

where we used 2i+5 ≥ sj ≥ 2i+4, k ≤ 2i+3 and i ≥ 3 in the form sj − 16− k ≥ 3sj/16.

Proof of Proposition 11.2. A consequence of Lemmas 11.3(3) and 11.4.

11.3 Obtaining Proposition 9.2 via similarity of measure

This subsection is devoted to the next proof.

Proof of Proposition 9.2. Note that the right-hand side of the bound

PsL

(
Γ[0,rj ] ∈ HighFirst

1/2+2χ+ε2
rj ,sj−1

)
≥ PsL

(
Γ[0,rj ] ∈ HighFirst

1/2+2χ+ε2
rj ,sj−1 , Γ[0,rj ] ∈ Dj

)
is, by the similarity of measure Proposition 11.2, at least the product of the quantity
c
(

log sL
)−1

s−4ε
L and the probability

Psj

(
Γ[0,rj ] ∈ HighFirst

1/2+2χ+ε2
rj ,sj−1 , Γ ∈ RGJk,sj−16−k for some k ∈ Ri+2 , Γ[0,rj ] ∈ Dj

)
,

where the constant c equals 1
40C

−1
8

(
3
16

)θ
. Note further that

• Psj

(
Γ[0,rj ] ∈ HighFirst

1/2+2χ+ε2
rj ,sj−1

)
≥ 1− (sj − 1)−(χ+ε2−ε1), by (10.1) with a = 1; and

• Psj

(
Γ /∈ RGJk,sj−16−k for every k ∈ Ri+2

)
≤ 1 − s−(χ+ε2/2)

j , by Lemma 11.1 with

ϕ = ε2/2.

Also recall (11.1). Thus,

PsL

(
Γ[0,rj ] ∈ HighFirst

1/2+2χ+ε2
rj ,sj−1

)
≥ c

(
log sL

)−1
s−4ε
L

(
s
−(χ+ε2/2)
j − (sj − 1)−(χ+ε2−ε1) − 4µ16s−10

j

)
.

Recall that sj ≥ 2i+4. Provided that the index i ∈ N is supposed to be sufficiently

high, the displayed right-hand side is thus at least 1
2c
(

log sL
)−1

s
−χ−ε2/2−4ε
L if we insist

that ε2 > 2ε1 as well as χ+ ε2 < 10 (the latter following from χ < 1/6 and the harmlessly
assumed ε2 < 1).

We are now ready to obtain Proposition 9.2. We must set the values of the quantities
m and m′ in the proposition’s statement. We take m = sL and m′ equal to the constant
difference sj − rj between the terms in any pair in the sequence constructed in Defini-
tion 10.6. Recalling the bound on this difference stated in the definition, we see that
2i+3 ≤ m′ ≤ 2i+4 ≤ m ≤ 2i+5. Set ε2 = 4ε1 and ε1 = ε, so that χ+ε2/2+4ε = χ+6ε < η−ε
and 1/2 + 2χ + ε2 = α. Note that rj belongs to the set K specified in Proposition 9.2
whenever j ∈ [1, L], because rj = sj − m′ ≤ m − m′. Thus, #K ≥ 2i−4 ≥ 2−9m, and
Proposition 9.2 is proved.
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12 Step three: completing the proof of Proposition 8.1

As we explained in this step’s outline, we set the snake method index parameters
at the start of step three. For a given sufficiently high choice of i ∈ N, Proposition 9.2
specifies m and m′. We then set the two index parameters, with n equal to m− 1 and `
equal to m−m′.

For γ ∈ SAPn+1, set

Xγ =
∑̀
k=0

11γ[0,k]∈HighFirstα
k,m′+k−1

.

Recall that γ[0,`] ∈ First`,n is (α, n, `)-charming at an index k ∈ [1, `] if

W0
k+n−`

(
Γ closes

∣∣∣ ∣∣Γ1
∣∣ = k , Γ1 = γ[0,k]

)
> n−α ;

on the other hand, for given k ∈ [1, `], the property that such a γ satisfies γ[0,k] ∈
HighFirstαk,n−`+k takes the same form with n−α replaced by the slightly larger quantity
(n− `+ k)−α. Since n− ` = m′ − 1 and β = 1, we find that, for any γ ∈ SAPn+1,

Xγ ≥ nβ−η/4 implies that γ[0,`] ∈ CSα,`,nβ,η . (12.1)

We now show that
Pn+1

(
XΓ ≥ n1−η+ε/2

)
≥ n−η+ε/2 . (12.2)

To derive this, consider the expression

S =
∑

γ∈SAPn+1

∑̀
k=0

11γ[0,k]∈HighFirstα
k,m′+k−1

.

Recall that pn+1 denotes #SAPn+1; using Proposition 9.2 in light of n+ 1 = m,

S = pn+1

∑̀
k=0

Pn+1

(
Γ[0,k] ∈ HighFirstαk,m′+k−1

)
≥ pn+1 ·#K · (n+ 1)−η+ε ≥ pn+1 · 2−9n · 2−1n−η+ε .

Let q denote the left-hand side of (12.2). Note that

S ≤ pn+1 ·
(
q
(
`+ 1

)
+ (1− q)n1−η+ε/2

)
.

From the lower bound on S, and n ≥ `,

q
(
n+ 1

)
+ n1−η+ε/2 ≥ 2−10 n1−η+ε ,

which implies for sufficiently high n that q ≥ n−η+ε/2; in this way, we obtain (12.2).
Trivially, n1−η+ε/2 ≥ n1−η/4 (for all n ∈ N, including our choice of n). Since the snake

length exponent β is set to one, we learn from (12.1) and (12.2) that

Pn+1

(
Γ[0,`] ∈ CSα,`,nβ,η

)
≥ Pn+1

(
XΓ ≥ n1−η+ε/2

)
≥ n−η+ε/2 .

Thus, if the dyadic scale parameter i ∈ N is chosen so that n ≥ 2i+4 is sufficiently
high, the charming snake presence hypothesis (6.2) is satisfied. By Theorem 6.3,
Wn

(
Γ closes

)
≤ 2(n + 1)c−n

δ/2. This deduction has been made for some value of
n ∈ (2N + 1) ∩

[
2i+4 − 1, 2i+5 − 1], where here i ∈ N is arbitrary to the right of a

finite interval. Relabelling c > 1 to be any value in (1, c1/2) completes the proof of
Proposition 8.1.
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13 Preparing for the proof of Theorem 1.5(1)

This argument certainly fits the template offered by the proof of Theorem 1.5(2). We
will present the proof by explaining how to modify the statements and arguments used
in the preceding derivation.

Recall first of all that the hypotheses of Theorem 1.5(2) implied the existence of the
closing exponent, and that we chose to label χ ∈ R such that Pn

(
Γ closes

)
= n−1/2−χ+o(1)

for odd n; moreover, χ could be supposed to be non-negative. Specifically, it was the
lower bound Pn

(
Γ closes

)
≥ n−1/2−χ−o(1) that was invoked, in part one of the preceding

proof.
In the present proof, the closing exponent is not hypothesised to exist, and so we

must abandon this usage of χ. However, this parameter will be used again, with the
basic role of 1/2 + χ as the exponent in such a closing probability lower bound being
maintained.

Definition 13.1. For ζ > 0, define the set of indices HCPζ ⊆ 2N of ζ-high closing
probability,

HCPζ =
{
n ∈ 2N : Wn−1

(
Γ closes

)
≥ n−ζ

}
.

For χ > 0 arbitrary, we introduce the closing probability

Hypothesis CPχ. The set 2N \ HCP1/2+χ has limit supremum density in 2N less than
1/1250.

We begin the proof by the same type of reduction as was used in the earlier derivation.
Here is the counterpart to Proposition 8.1.

Proposition 13.2. Let d = 2. Let χ ∈ (0, 1/14), and assume Hypothesis CPχ. For some
c > 1 and δ > 0, the set of odd integers n satisfying n+ 1 ∈ HCP1/2+χ and

Wn

(
Γ closes

)
≤ c−n

δ

intersects the dyadic scale
[
2i, 2i+1

]
for all but finitely many i ∈ N.

Proof of Theorem 1.5(1). The two properties of the index n asserted by the proposi-
tion’s conclusion are evidently in contradiction for n sufficiently high. Thus Hypothe-
sis CPχ is false whenever χ ∈ (0, 1/14). This implies the result.

The rest of the article is dedicated to proving Proposition 13.2. The three step plan
of attack for deriving Proposition 8.1 will also be adopted for the new proof. Of course
some changes are needed. We must cope with a deterioration in the known regularity of
the θ-sequence. We begin by overviewing what we know in the present case and how the
new information will cause changes in the three step plan.

In the proof of Theorem 1.5(2) via Proposition 8.1, we had the luxury of assuming the
existence of the closing exponent. Throughout the proof of Proposition 13.2 (and thus
henceforth), we instead fix χ ∈ (0, 1/14), and suppose that Hypothesis CPχ holds. Thus,
our given information is that the closing probability is at least n−1/2−χ for a uniformly
positive proportion of indices n in any sufficiently long initial interval of positive integers.

We may state and prove right away the θ-sequence regularity offered by this informa-
tion.

Proposition 13.3. Let ε ∈ (0, 1). For all but finitely many values of i ∈ N,

#
{
j ∈ 2N ∩

[
2i, 2i+1

]
: 3/2− ε ≤ θj ≤ 3/2 + χ+ ε

}
≥ 2i−1

(
1− 1

300

)
.

Proof. Theorem 1.3 implies that, for all but finitely many values of i ∈ N,

#
{
j ∈ 2N ∩

[
2i, 2i+1

]
: θj ≤ 3/2− ε

}
≤ 1

600 2i−1 . (13.1)
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Thus, it is enough to show that, also for all but finitely many i,

#
{
j ∈ 2N ∩

[
2i, 2i+1

]
: θj > 3/2 + χ+ ε

}
≤ 1

600 2i−1 . (13.2)

We will invoke Hypothesis CPχ as we verify (13.2). First, we make a

Claim. For any ϕ > 0, the set HCP1/2+χ ∩
{
n ∈ 2N : θn > 3/2 + χ+ ϕ

}
is finite.

To see this, note that 2npn/cn−1 ≥ n−1/2−χ if n ∈ HCP1/2+χ. From cn−1 ≥ µn−1 and
pn = µnn−θn follows n−θn ≥ 1

2µn
−3/2−χ for such n, and thus the claim.

The claim implies that, under Hypothesis CPχ, the set
{
n ∈ 2N : θn > 3/2 + χ + ε

}
has limit supremum density at most 1/1250. From this, (13.2) follows directly.

That is, the weaker regularity information forces a positive proportion of the polygon
number deficit exponents θn to lie in any given open set containing the interval [3/2, 3/2+

χ]. In the proof of Theorem 1.5(1), we knew this for the one-point set {3/2 + χ}, for all
high n.

In the three step plan, we will adjust step one so that the constant difference sequence
constructed there incorporates the θ-regularity that Proposition 13.3 shows to be typical,
as well as a closing probability lower bound permitted by Hypothesis CPχ.

In step two, the weaker regularity will lead to a counterpart Lemma 14.6 to the
regulation polygon ample supply Lemma 11.1. Where before we found a lower bound on
the probability that a polygon is regulation global join of the form n−χ−o(1), now we will
find only a bound n−2χ−o(1).

Continuing this step, the mechanism of measure comparison for initial subpaths
of polygons drawn from the laws Pn for differing lengths n is no longer made via all
regulation global join polygons but rather via such polygons whose length index lies in a
certain regular set. The new similarity of measure result counterpart to Proposition 11.2
will be Proposition 14.7. It will be applied at the end of step two to prove a slight variant
of Proposition 9.2, namely Proposition 14.4.

This last result will yield Proposition 13.2 in step three by a verbatim argument to
that by which Proposition 8.1 followed from Proposition 9.2.

14 The three steps for Proposition 13.2’s proof in detail

In a first subsection of this section, we reset the snake method’s parameters to handle
the weaker information available. In the following three subsections, we state and prove
the assertions associated to each of the three steps.

14.1 The snake method exponent parameters

Since χ < 1/14, we may fix a parameter ε ∈
(
0, (1/2− 7χ)/14

)
, and do so henceforth.

The three exponent parameters are then set so that

• β = 1;

• α = 1/2 + 3χ+ 5ε;

• and η = 4χ+ 9ε.

Note that the quantity δ = β − η − α, which must be positive if the method to work, is
equal to 1/2− 7χ− 14ε. The constraint imposed on ε ensures this positivity.

14.2 Step one

The essential conclusion of the first step one was the construction of the constant
difference sequence in Definition 10.6. Now our aim is similar.
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Fixing as previously two parameters ε2 > ε1 > 0 (which in the present case we
will ultimately set ε2 = 5ε1 and ε1 = ε in terms of our fixed parameter ε), we adopt
the Definition 10.1 of a closing probability typical index pair on dyadic scale i, where
of course the parameter χ is fixed in the way we have explained. An index pair (k, j)

that satisfies this definition is called regularity typical for dyadic scale i if moreover
j ∈ HCP1/2+χ and

3/2− ε ≤ θj ≤ 3/2 + χ+ ε . (14.1)

We then replace Definition 10.6 with the following.

Definition 14.1. Set L = 2i−4. We specify a constant difference sequence of index
pairs (rj , sj), 1 ≤ j ≤ L, whose elements are regularity typical for dyadic scale i, with
sj − rj independent of j and valued in [2i+4 − 2i, 2i+4], and

{
rj : 1 ≤ j ≤ L

}
increasing.

Moreover, sj ∈ 2N ∩ [2i+4, 2i+4 + 2i + 2i−2] for each j ∈ [1, L].

Our job in step one is to construct such a sequence. First, recall the set E of index
pairs (k, j) specified in Definition 10.3. Let E′ be the subset of E consisting of such pairs
for which j ∈ HCP1/2+χ and (14.1) holds. Counterpart to Lemma 10.4, we have:

Lemma 14.2. Provided that the index i ∈ N is sufficiently high, except for at most
1

1002i+3 values of j ∈ 2N ∩
[
2i+4, 2i+5

]
, the set of k ∈

[
2i, 2i + 2i−2

]
such that (k, j) 6∈ E′

has cardinality at most 2
(
2i+5

)1−ε1 .

Proof. Proposition 13.3 implies that the set of j ∈ 2N ∩
[
2i+4, 2i+5

]
satisfying (14.1) – a

set containing all second coordinates of pairs in E′ – has cardinality at least
(
1− 1

300

)
2i+3.

Invoking Hypothesis CPχ, we see that, of these values of j, at most (2i+4 + 1) 1
1250 ≤

1
6002i+3 fail the test of membership of HCP1/2+χ. We claim that the set of remaining
values of j satisfies the statement in the lemma. Indeed, all these values belong to
HCP1/2+χ. As such, we are able to invoke Lemma 6.1, as we did in proving Lemma 10.4,

but this time with α′ = 1/2 + χ and δ′ = ε1, to find that at most 2
(
2i+5

)1−ε1 values of
k ∈

[
2i, 2i + 2i−2

]
violate the condition (10.2).

Analogously to Proposition 10.2,

Proposition 14.3. There exists k ∈ 2N ∩
[
2i+4, 2i+4 + 2i

]
for which there are at least

2i−4 values of j ∈ 2N ∩ [0, 2i−2] with the index pair
(
2i + j, k + j

)
regularity typical on

dyadic scale i.

Proof. Using Lemma 14.2, we find, analogously to (10.5),

∑
j∈2N∩[2i+4+2i−2,2i+4+2i]

2i+2i−2∑
`=2i

11(`,j)∈E′

≥
(

2i−2 + 1− 2
(
2i+5

)1−ε1) · ( 1
2

(
2i − 2i−2

)
− 1

1002i+3
)
.

The argument for Proposition 10.2 now yields the result.

We may now conclude step one, because the proof of Proposition 9.1 is valid with the
notion of regularity typical replacing closing probability typical; thus, we have specified
a constant difference sequence in the sense of Definition 14.1. (Incidentally, the unused
Proposition 9.1 is seen to be valid with right-hand side strengthened to 1− 2−2iχ if we
choose ε2 = 5ε and ε2 > ε1 by considering a = 2 in (10.1).)

14.3 Step two

The new version of Proposition 9.2 differs from the original only in asserting that the
constructed m belongs to HCP1/2+χ.
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Proposition 14.4. For each i ∈ N sufficiently high, there exist m ∈ 2N ∩
[
2i+4, 2i+5

]
∩

HCP1/2+χ and m′ ∈
[
2i+3, 2i+4

]
such that, writing K for the set of values k ∈ N, 1 ≤ k ≤

m−m′, that satisfy

Pm
(

Γ[0,k] ∈ HighFirstαk,k+m′−1

)
≥ m−η+ε ,

we have that |K| ≥ 2−9m.

In this step, we provide a suitable similarity of measure result, Proposition 14.7, and
use it to derive Proposition 14.4.

Before doing so, we must adapt our regulation polygon tools to cope with the weaker
regularity that we are hypothesising. The ample regulation polygon supply Lemma 11.1
will be replaced by Lemma 14.6.

In preparing to state the new lemma, recall that Lemma 11.1 was stated in terms of
a regular index set Ri+2 that was specified in a trivial way. Recalling that L = 2i−4, we
now specify a non-trivial counterpart set Rχ+ε

n,i+2 when n is an element in the sequence{
sj : 1 ≤ j ≤ L

}
from step one.

Definition 14.5. For j ∈
[
1, L

]
, define Rχ+ε

sj ,i+2 to be the set of k ∈ 2N ∩
[
2i+2, 2i+3

]
such

that
max

{
θk, θsj−16−k, θsL−16−k

}
≤ 3/2 + χ+ ε and θsj−16−k ≥ 3/2− ε .

Here is the new ample supply lemma.

Lemma 14.6. Let j ∈ [1, L]. Then

Psj

(
Γ ∈ RGJk,sj−16−k for some k ∈ Rχ+ε

sj ,i+2

)
≥ c

log sj
sj
−(2χ+3ε) ,

where c > 0 is a universal constant.

The similarity of measure Proposition 11.2 is replaced by the next result.

Proposition 14.7. For each j ∈ [1, L], there is a subset Dj ⊆ Firstrj satisfying

Psj

(
Γ[0,rj ] 6∈ Dj , Γ ∈ RGJk,sj−16−k for some k ∈ Rχ+ε

sj ,i+2

)
≤ 4µ16s−10

j (14.2)

such that, for each φ ∈ Dj ,

PsL

(
Γ[0,rj ] = φ

)
≥ 1

40 C
−1
8

(
3
16

)3/2(
log sL

)−1
s−2χ−4ε
L

× Psj

(
Γ[0,rj ] = φ , Γ ∈ RGJk,sj−16−k for some k ∈ Rχ+ε

sj ,i+2

)
.

In the rest of this subsection of step two proofs, we prove in turn Lemma 14.6 and
Propositions 14.7 and 14.4.

14.3.1 Deriving Lemma 14.6

We will use the next result.

Lemma 14.8. For i ∈ N with i ≥ 6, and n ∈ 2N ∩
[
2i+4, 2i+5

]
,∣∣Rχ+ε

sj ,i+2

∣∣ ≥ ( 9
10 −

1
32

)
2i+1 .

Proof. It is enough to prove two claims.
For ϕ > 0, set Kϕsj ,i+2 =

{
k ∈ 2N ∩

[
2i+2, 2i+3

]
: max

{
θk, θsj−16−k

}
≤ 3/2 + ϕ

}
.

Claim 1. The set Kχ+ε
sj ,i+2 \ R

χ+ε
sj ,i+2 has cardinality at most 2i−4.

Claim 2.
∣∣Kχ+ε
sj ,i+2

∣∣ ≥ 9
10 2i+1.
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Proof of Claim 1. Note that k ∈ Kχ+ε
sj ,i+2 \ R

χ+ε
sj ,i+2 implies that either sj − 16− k belongs to

the union up to index i+ 4 (in the role of i) of the sets in (13.1), or sL − 16− k belongs
to the comparable union of the sets in (13.2). (The reason that the index here is i+ 4 is
because sj and sL are at most 2i+4 + 2i + 2i−2 ≤ 2i+5 in view of Definition 14.1.) Thus,
the cardinality in question is at most 4

6002i+3, where the factor of four accomodates the
two alternatives as well as the sum over indices of dyadic scales up to index i+ 4. We
obtain Claim 1.
Proof of Claim 2. For ϕ > 0, define the set of ϕ-high θ values on dyadic scale i,

HighΘϕ
i =

{
k ∈ 2N ∩

[
2i, 2i+1

]
: θk ≥ 3/2 + ϕ

}
,

and also set Sϕsj ,i+2 = 2N ∩
[
2i+2, 2i+3

]
\ Kϕsj ,i+2. We have then that, for any ϕ > 0,

Sϕsj ,i+2 ⊆ HighΘϕ
i+2 ∪

{
k ∈ 2N ∩

[
2i+2, 2i+3

]
: θsj−16−k ≥ 3/2 + ϕ

}
;

the latter set in the right-hand union is a subset of

2N∩
[
2i+3− 24, 2i+3

]
∪
{
k ∈ 2N∩

[
2i+2, 2i+3− 24

]
: sj − 16−k ∈ HighΘϕ

i+3 ∪ HighΘϕ
i+4

}
,

because 2i+3 ≤ sj − 16− k ≤ 2i+5 for k ∈
[
2i+2, 2i+3 − 24

]
. Thus,

#Sχ+ε
sj ,i+2 ≤ #HighΘχ+ε

i+2 + #HighΘχ+ε
i+3 + #HighΘχ+ε

i+4 + 9 ,

so that (13.2) implies
∣∣Sχ+ε
sj ,i+2

∣∣ ≤ 7
600 2i+1 + 9 ≤ 1

10 2i+1 (for i ≥ 6). Thus, we obtain
Claim 2.

Proof of Lemma 14.6. The proof is similar to that of Lemma 11.1. Now, the probability
in question equals the ratio of

∣∣⋃
l∈Rχ+ε

sj,i+2
RGJl,sj−16−l

∣∣ and psj .

To bound the numerator below, we again seek to apply Proposition 5.10 with the role
of i ∈ N played by i+ 2, but now with n = sj and R = Rχ+ε

sj ,i+2. Set Θ in the proposition to

be 3/2 + χ+ ε. Any element of Rχ+ε
sj ,i+2 may act as k∗ ∈ R in the way that the proposition

demands, by the definition of Rχ+ε
sj ,i+2; (and Lemma 14.8 shows that Rχ+ε

sj ,i+2 is non-empty

if i ≥ 6). Applying the proposition and then using Lemma 14.8, 2i+1 ≥ 2−4sj , and the
definition of Rχ+ε

sj ,i+2, we find that∣∣∣∣ ⋃
l∈Rχ+ε

sj,i+2

RGJl,sj−16−l

∣∣∣∣ ≥ c s
1/2
j

log sj
·
(

9
10 −

1
32

)
2−4sj · µsj−16s

−(3+2χ+2ε)
j ,

which is at least a small constant multiple of µsj
(

log sj
)−1

s
−3/2−2χ−2ε
j .

The ratio’s denominator is bounded above with the bound psj ≤ µsj sj−3/2+ε which
is due to the lower bound in (14.1) with sj playing the role of j. The lemma follows by
relabelling c > 0.

14.3.2 Deriving Proposition 14.7.

We begin by respecifying the set τγ . For each γ ∈ SAPsj , 1 ≤ j ≤ L, we now set

τγ =
{
k ∈ Rχ+ε

sj ,i+2 : γ ∈ RGJk,sj−16−k

}
.

Note that Rχ+ε
sj ,i+2 has replaced Ri+2 here. As we comment on the needed changes, it

is understood that this replacement is always made.
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We reinterpret the quantity θ to be 3/2 + χ + ε. The constant C8 > 0 may again
be chosen in order that (11.2) be satisfied. Indeed, since (rL, sL) is by construction
regularity typical on dyadic scale i, we have that sL is an element of HCP1/2+χ and thus
also of HPN3/2+χ+o(1). Corollary 3.3 is thus applicable with n = sL, so that (11.2) results.

The set Dj for j ∈ [1, L] is specified as before, and Lemma 11.3(1) is also obtained, by
the verbatim argument.

The definition of θ has been altered in order to maintain the validity of Lemma 11.3(3).
The moment in the proof of this result where the new definition is needed is in deriving
the bound

p−1
sL pkpsL−16−k ≥ µ−16s−2θ

L (14.3)

for k ∈ Rχ+ε
sj ,i+2 in the proof of Lemma 11.3(2) (which is needed to prove the third part).

That k ∈ Rχ+ε
sj ,i+2 ensures that both θk and θsL−16−k are at most 3/2 + χ + ε = θ, from

which follows (14.3), and thus Lemma 11.3(2) and (3).
The weaker form of the inference that we may make in view of the weaker available

regularity information is evident in the counterpart to Lemma 11.4. Note the presence
of the new factors of s−χL and sχj in the two right-hand sides.

Lemma 14.9. Recall that L = 2i−4. Let j ∈ [1, L].

1. For φ ∈ Dj ,

PsL

(
Γ[0,rj ] = φ

)
≥ 1

400 C
−1
8

(
log sL

)−1
s−χ−2ε
L µ−16

×
∑

k∈Rχ+ε
sj,i+2

Pleft
k

(
Γ[0,rj ] = φ

)
k1/2pkµ

−k .

2. For φ ∈ Firstrj ,

Psj

(
Γ[0,rj ] = φ , Γ ∈ RGJk,sj−16−k for some k ∈ Rχ+ε

sj ,i+2

)
≤ 1

10

(
16
3

)3/2
µ−16 · sχ+2ε

j

∑
k∈Rχ+ε

sj,i+2

Pleft
k

(
Γ[0,rj ] = φ

)
k1/2pkµ

−k .

Proof (1). The earlier proof runs its course undisturbed until PsL
(
Γ[0,rj ] = φ

)
is found

to be at least the expression in the double line ending at (11.7). The proof of this part is
then completed by noting the bound

p−1
sL psL−16−k ≥ µ−16−ks−χ−2ε

L

for k ∈ Rχ+ε
sj ,i+2. This bound is due to θsL−16−k ≤ 3/2 + χ+ ε and θsL ≥ 3/2− ε, the latter

being the lower bound in (14.1) with j = sL.

(2). The left-hand side of the claimed inequality is bounded above by (11.8). The proof is
then completed by invoking the bound

p−1
sj psj−16−k ≤ µ−16−k( 16

3

)3/2
sχ+2ε
j (14.4)

for k ∈ Rχ+ε
sj ,i+2. To derive this bound, note that

psj−16−k ≤ µsj−16−k(sj − 16− k
)−3/2+ε ≤ µsj−16−k( 16

3

)3/2
s
−3/2+ε
j ,

where the first inequality follows from θsj−16−k ≥ 3/2−ε, which is due to k ∈ Rχ+ε
sj ,i+2; and

where the second depends on sj − 16− k ≥ 3sj/16, which we saw at the corresponding
moment in the derivation that is being adapted, as well as on 0 ≤ ε ≤ 3/2.
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We also have

psj ≥ µsjs
−3/2−χ−ε
j

due to the upper bound in (14.1) with the role of j played by sj .

The last two displayed inequalities combine to yield (14.4).

Proof of Proposition 14.7. A consequence of Lemmas 11.3(3) and 14.9.

14.3.3 Proof of Proposition 14.4.

Note that the right-hand side of the bound

PsL

(
Γ[0,rj ] ∈ HighFirst

1/2+3χ+ε2
rj ,sj−1

)
≥ PsL

(
Γ[0,rj ] ∈ HighFirst

1/2+3χ+ε2
rj ,sj−1 , Γ[0,rj ] ∈ Dj

)
is, by Proposition 14.7, at least the product of c1

(
log sL

)−1
s−2χ−4ε
L and

Psj

(
Γ[0,rj ] ∈ HighFirst

1/2+3χ+ε2
rj ,sj−1 ,Γ ∈ RGJk,sj−16−k for some k ∈ Rχ+ε

sj ,i+2 , Γ[0,rj ] ∈ Dj

)
(14.5)

where c1 = 1
40 C

−1
8

(
3
16

)3/2
.

Recall that the index pair (rj , sj) is regularity, and thus closing probability, typical on
dyadic scale i. We may thus apply (10.1) with sj playing the role of j and with a = 2 to
find that

• Psj

(
Γ[0,rj ] ∈ HighFirst

1/2+3χ+ε2
rj ,sj−1

)
≥ 1− (sj − 1)−(2χ+ε2−ε1).

Also recall

• that, by Lemma 14.6, the quantity Psj

(
Γ /∈ RGJk,sj−16−k for every k ∈ Rχ+ε

sj ,i+2

)
is

at most 1 − c
(

log sj
)−1

s
−(2χ+3ε)
j ; and

• the inequality (14.2).

The three inequalities stated or recalled in these bullet points may be used to find a
lower bound on the expression (14.5). We see then that

PsL

(
Γ[0,rj ] ∈ HighFirst

1/2+3χ+ε2
rj ,sj−1

)
≥ c1

(
log sL

)−1
s−2χ−4ε
L

(
c

log sj
s
−(2χ+3ε)
j − (sj − 1)−(2χ+ε2−ε1) − 4µ16s−10

j

)
.

Provided that the index i ∈ N is supposed to be sufficiently high, the right-hand side
is at least 1

2c1c
(

log sL
)−2

s−4χ−7ε
L ≥ s−4χ−8ε

L = s−η+ε
L if we insist that ε2 − ε1 > 3ε as well

as 2χ+ ε2 − ε1 < 10. We may set ε2 = 5ε1 and ε1 = ε, because we imposed at the outset
that χ ∈ (0, 1/14) and in Section 14.1 the condition ε ∈

(
0, (1/2 − 7χ)/14

)
, and these

choices do ensure the stated bounds. Note that α = 1/2 + 3χ+ ε2 results from this choice.

We may now obtain Proposition 14.4. We set the values of m and m′ as we did in
proving Proposition 9.2, taking m = sL and m′ equal to the constant difference sj − rj
associated to any element in the sequence (rj , sj) from Definition 14.1 (in place of course
of Definition 10.6). The bound #K ≥ 2i−4 ≥ 2−9m holds as in the earlier proof. Note
however that we are also claiming that m ∈ HCP1/2+χ. This holds because m = sL is the
second coordinate of a regularity typical index pair for dyadic scale i. Proposition 14.4 is
proved.
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14.4 Step three

At the start of the earlier step three, the index parameters n and ` were respectively
set equal to m− 1 and m−m′, where Proposition 9.2 provided m and m′. We now make
the same choice, with Proposition 14.4 providing the latter two quantities.

Proof of Proposition 13.2. The completion of the proof of Proposition 8.1 in Section 12
applies verbatim after recalling that the snake method’s parameter δ = β − η − α is
positive, and noting that the method’s index parameter n satisfies n + 1 ∈ HCP1/2+χ

because it has been set equal to m− 1 where m is specified in Proposition 14.4.
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