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Abstract

It is known from the work of Baik, Deift and Johansson [3] that we have Tracy-Widom
fluctuations for the longest increasing subsequence of uniform permutations. In this
paper, we prove that this result holds also in the case of the Ewens distribution and
more generally for a class of random permutations with distribution invariant under
conjugation. Moreover, we obtain the convergence of the first components of the
associated Young tableaux to the Airy Ensemble as well as the global convergence
to the Vershik-Kerov-Logan-Shepp shape. Using similar techniques, we also prove
that the limiting descent process of a large class of random permutations is stationary,
one-dependent and determinantal.
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1 Introduction and statement of results

1.1 Monotonous subsequences

Let Sn be the symmetric group, namely the group of permutations of {1, . . . , n}. Given
σ ∈ Sn, a subsequence (σ(i1), . . . , σ(ik)) is an increasing (resp. decreasing) subsequence
of σ of length k if i1 < i2 < · · · < ik and σ(i1) < · · · < σ(ik) (resp. σ(i1) > · · · > σ(ik)).
We denote by `(σ) (resp. `(σ)) the length of the longest increasing (resp. decreasing)
subsequence of σ. For example, for the permutation

σ =

(
1 2 3 4 5

5 3 2 1 4

)
,

we have `(σ) = 2 and `(σ) = 4. The study of the limiting behaviour of `(σn) when σn is a
uniform random permutation is known as Ulam’s problem: Ulam [39] conjectured that
the limit

lim
n→∞

E(`(σn))√
n
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exists. Vershik and Kerov [40] proved that this limit is equal to 2. The asymptotic
fluctuations were studied by Baik, Deift and Johansson. They proved the following result:

Theorem 1.1. [3] If σn is a random permutation with the uniform distribution on Sn

then

lim
n→∞

P

(
`(σn)− 2

√
n

n
1
6

≤ s
)

= F2(s),

where F2 is the cumulative distribution function of the Tracy-Widom distribution.

The Tracy-Widom distribution appears in many problems of random growth, inte-
grable probability and as the distribution of the rescaled largest eigenvalue of many
models of random matrices [9, 6]. F2 can be expressed as the Fredholm determinant of
the Airy kernel on L2(s,∞), as well as in terms of the Hastings-McLeod solution of the
Painlevé II equation [37]. Those problems are known as a part of the Kardar-Parisi-Zhang
dimension 1+1 universality class. Apart the uniform case, Mueller and Starr [31] studied
the longest increasing subsequence for Mallows distribution.

This work’s first aim is to study the limiting behaviour of other distributions of random
permutations, in particular, to prove a similar result to that of Baik, Deift and Johansson
(Theorem 1.1). More precisely, we are interested in a class of random permutations
which are stable under conjugation for which we provide a sufficient condition to obtain
the Tracy-Widom fluctuations. It includes the Ewens distributions and other distributions
appearing in genetics, random fragmentations and coagulation processes [13, 26, 24, 4].

For the remainder of this article, we denote by (σn)n≥1 a sequence of random
permutations with joint distribution P such that for all positive integer n, σn ∈ Sn. We
denote by #(σ) the number of cycles of a permutation σ. For example, the identity of Sn

has n cycles. We prove the following.

Theorem 1.2. Assume that the sequence of random permutations (σn)n≥1 satisfies:

• For all positive integer n, σn is stable under conjugation i.e. ∀σ, ρ ∈ Sn,

P(σn = σ) = P(σn = ρ−1σρ). (H1)

• The number of cycles is such that: For all ε > 0,

lim
n→∞

P

(
#(σn)

n
1
6

> ε

)
= 0. (H2)

Then for all s ∈ R,

lim
n→∞

P

(
`(σn)− 2

√
n

n
1
6

≤ s
)

= lim
n→∞

P

(
`(σn)− 2

√
n

n
1
6

≤ s
)

= F2(s). (TW)

The idea of the proof we give in Subsection 3.1 is to construct a coupling between
any distribution satisfying these hypotheses and the uniform distribution in order to
use Theorem 1.1. Let us illustrate Theorem 1.2 with the Ewens distributions that were
introduced by Ewens [13] to describe the mutation of alleles.

Definition 1.3. Let θ be a non-negative real number. We say that a random permutation
σn follows the Ewens distribution with parameter θ if for all σ ∈ Sn,

P(σn = σ) =
θ#(σ)−1∏n−1
i=1 (θ + i)

.

Note that when θ = 1, the Ewens distribution is just the uniform distribution on Sn,
whereas when θ = 0, we have the uniform distribution on permutations having a unique
cycle. For general θ, the Ewens distribution is clearly invariant under conjugation since
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it only involves the cycles’ structure of θ. For our purpose, a useful property is that, if σn
follows the Ewens distribution with parameter θ > 0, then the number of cycles #(σn) is

the sum of n independent Bernoulli random variables with parameters
{

θ
θ+i

}
0≤i≤n−1

.

For further reading, we recommend [1, 30, 8]. This already yields the following:

Corollary 1.4. Let (θn)n≥1 be a sequence of non-negative real numbers such that:

lim
n→∞

θn log(n)

n
1
6

= 0. (H’2)

If σn follows the Ewens distribution with parameter θn, then we have Tracy-Widom
fluctuations (TW).

Proof. For n ≥ 3 and θn > 0, we have

E(#(σn)) =

n−1∑
i=0

θn
i+ θn

= 1 +
θn

1 + θn
+

n−1∑
i=2

θn
i+ θn

≤ 2 + θn

n−1∑
i=2

∫ i+1

i

dt

t− 1
≤ 2 + θn log(n),

whereas when θn = 0, we have #(σn)
a.s
= 1. Thus, under (H’2), (H2) follows from Markov

inequality.

We will apply Theorem 1.2 for a generalized version of the Ewens distributions in
Section 2. We give also other applications for random virtual permutations in Subsection
1.4.

The proof of Theorem 1.1 uses determinantal point processes properties obtained
from the Plancherel measure which is also the law of the shape of the Robinson-Schensted
correspondence of random uniform permutations, see [22]. We will study in the next
subsection this correspondence in the non-uniform setting and we give a more general
result, see Theorem 1.6.

1.2 The Robinson–Schensted correspondence of random permutations

In this subsection, we study, under appropriate scalings, the limiting shape and the
limiting distribution of the first components of the image of a ralphaandom permutation
stable under conjugation by the Robinson-Schensted correspondence.

Let n be a positive integer. A Young diagram λ = {λi}i≥1 of size n is a partition of n i.e.

• ∀i ≥ 1, λi ∈ N,

• ∀i ≥ 1, λi+1 ≤ λi,
•
∑∞
i=1 λi = n.

We can represent a Young diagram by boxes of size 1× 1 such that the row i contains
exactly λi boxes. For example, if λ = (4, 2, 1, 0), we have the diagram

,

where 0 = (0)i≥1. Let Yn be the set of Young diagrams of size n. For example,

Y4 = {(4, 0), (3, 1, 0), (2, 2, 0), (2, 1, 1, 0), (1, 1, 1, 1, 0)}

=

 , , , ,

 .
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In the sequel of this paper, for a young diagram λ, we denote by λ′ its conjugate
defined by λ′ = (λ′i)i≥1 where λ′i := |{j;λj ≥ i}|. For example, if λ = (4, 2, 1, 0), λ′ =

(3, 2, 1, 1, 0).
We will use the well-known application on the symmetric group Sn with values in

Yn known as the shape of the image of a permutation σ by the Robinson–Schensted
correspondence [33, 35] or the Robinson–Schensted–Knuth correspondence [27]. We
denote it by

λ(σ) = {λi(σ)}i≥1.

We will not include here algorithmic details. For further reading, we recommend [34,
Chapter 3]. For our purpose, a useful property of this transform is that

λ1(σ) = `(σ), λ′1(σ) = `(σ). (1.1)

When σn follows the uniform law, the distribution of λ(σn) on Yn is known as the
Plancherel measure. In this case, after appropriate scaling, λ(σn) converges at the edge
to the Airy ensemble. For the definition of the Airy ensemble, which is the determinantal
point process associated with the Airy kernel, see for example [37].

In the remainder of this paper, we denote by F2,k(s1, s2, . . . , sk) := P(∀i ≤ k, ξi ≤ si)
the cumulative distribution of the top right k particles of the Airy ensemble (ξi)i≥1.

Theorem 1.5. [7, Theorem 5][17, Theorem 1.4] Assume that σn follows the uniform
distribution on Sn. Then for all real numbers s1, s2, . . . , sk,

lim
n→∞

P

(
∀i ≤ k, λi(σn)− 2

√
n

n
1
6

≤ si
)

= F2,k(s1, s2, . . . , sk).

For distributions satisfying the same assumptions as in Theorem 1.2, we have the
same asymptotic as in the uniform setting at the edge.

Theorem 1.6. Assume that the sequence of random permutations (σn)n≥1 satisfies (H1)
and (H2). Then for all positive integer k, for all real numbers s1, s2, . . . , sk,

lim
n→∞

P

(
∀i ≤ k, λi(σn)− 2

√
n

n
1
6

≤ si
)

= lim
n→∞

P

(
∀i ≤ k, λ

′
i(σn)− 2

√
n

n
1
6

≤ si
)

= F2,k(s1, s2, . . . , sk). (Ai)

Clearly, the convergence (Ai) holds for the Ewens distributions under the hypothesis
(H’2).

Using (1.1), Theorem 1.2 is a direct application of this theorem for k = 1. The proof
we provide in Subsection 3.2 is a generalization of the proof of Theorem 1.2. We give
separate proofs of Theorem 1.2 and Theorem 1.6 because the proof of Theorem 1.2 is
simpler and does not require any knowledge of the representations of the symmetric
group. Moreover, we believe that understanding the proof of Theorem 1.2 is helpful to
understand the main idea of the proof of Theorem 1.6.

The typical shape under the Plancherel measure was studied separately by Logan
and Shepp [28] and Vershik and Kerov [40]. Stronger results are proved by Vershik
and Kerov [41]. In 1993, Kerov studied the limiting fluctuations but did not publish his
results. See [16] for further details. Let Lλ(σ) be the height function of λ(σ) rotated by
3π
4 and extended by the function x 7→ |x| to obtain a function defined on R. For example,

if λ(σ) = (7, 5, 2, 1, 1, 0) the associated function Lλ(σ) is represented by Figure 1. For the
Plancherel measure we have the following result.

Theorem 1.7. [41, Theorem 4] Assume that σn follows the uniform distribution. Then
for all ε > 0,

lim
n→∞

P

(
sup
s∈R

∣∣∣∣ 1√
2n
Lλ(σn)

(
s
√

2n
)
− Ω(s)

∣∣∣∣ < ε

)
= 1,
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−7−6−5−4−3−2−1 1 2 3 4 5 6 7

1

2

33
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7

8

Figure 1: L(7,5,2,1,1,0)

where

Ω(s) :=

{
2
π (s arcsin(s) +

√
1− s2) if |s| < 1

|s| if |s| ≥ 1
.

Under weaker conditions than those of Theorem 1.6, we show a similar result. For
the remainder of this paper, we will refer to this limiting shape as the Vershik-Kerov-
Logan-Shepp shape. This convergence is closely related to the Wigner’s semi-circular
law. For further details, one can see [21, 20, 19].

Theorem 1.8. Assume that the sequence of random permutations (σn)n≥1 satisfies (H1)
and that for all ε > 0,

lim
n→∞

P

(
#(σn)

n
> ε

)
= 0. (H3)

Then for all ε > 0,

lim
n→∞

P

(
sup
s∈R

∣∣∣∣ 1√
2n
Lλ(σn)

(
s
√

2n
)
− Ω(s)

∣∣∣∣ < ε

)
= 1. (VKLS)

We will prove this result in Subsection 3.2 using the same coupling as in the proof of
Theorem 1.2.

1.3 The descent process

Let n be a positive integer and σ ∈ Sn. We define

D(σ) := {i ∈ {1, . . . , n− 1}; σ(i+ 1) < σ(i)}. (1.2)

For example,

for σ =

(
1 2 3 4 5

5 3 1 4 2

)
, D(σ) = {1, 2, 4}.

When σ is random, D(σ) is known as the descent process.
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Figure 2: Illustration of the Vershik-Kerov-Logan-Shepp convergence

Theorem 1.9. ([5, Theorem 5.1]) Assume that σn follows the uniform distribution on
Sn. Then for all A ⊂ {1, 2, . . . , n− 1},

P(A ⊂ D(σn)) = det([k0(j − i)]i,j∈A),

where, ∑
i∈Z

k0(i)zi =
1

1− ez
.

We say that the descent process is determinantal with kernel K0(i, j) := k0(j − i).
Determinantal point processes were introduced by Macchi [29] to describe fermions in
quantum mechanics. For further reading we refer for example to [18].

In the non-uniform setting, the descent process is already studied for the Mallows’s
law with Kendall tau metric: it is also determinantal with different kernels. See [5,
Proposition 5.2]. Using similar techniques as in the previous subsections, we show that
for a large class of random permutations, the limiting descent process is determinantal
with the same kernel as the uniform setting.

Theorem 1.10. Assume that the sequence of random permutations (σn)n≥1 satisfies
(H1) and

lim
n→∞

P(σn(1) = 1) = 0. (H4)

Then for all finite set A ⊂ N∗ := {1, 2, . . . },

lim
n→∞

P(A ⊂ D(σn)) = det([k0(j − i)]i,j∈A). (DPP)

We will prove this result in Subsection 3.4 but before that let us illustrate it by the
Ewens distributions (see Definition 1.3).

Corollary 1.11. Let (θn)n≥1 be a sequence of non-negative real numbers. Assume that
σn follows the Ewens distribution with parameter θn. If

lim
n→∞

θn
n

= 0.
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Then the limiting descent process is determinantal with kernel K0 (DPP).

Proof. Using the Chinese restaurant process interpretation of the Ewens measures, see
for example [1, Part II Section 11], we have

P(σn(n) = n) =
θn

θn + n− 1
.

By the stability under conjugation,

lim
n→∞

P(σn(1) = 1) = lim
n→∞

P(σn(n) = n) = lim
n→∞

θn
θn + n− 1

≤ lim
n→∞

θn
n− 1

= 0.

We can now conclude using Theorem 1.10.

When θn = 0 (the uniform measure on permutations having a unique cycle), we
have a stronger result. For all positive integers n and m such that m ≥ n + 2, for all
A ⊂ {1, . . . , n},

P(A ⊂ D(σm)) = det([k0(j − i)]i,j∈A).

In other terms, in this case, the restriction of the descent process of σn+2 to {1, 2, . . . , n}
is determinantal with kernel K0. This result is a direct consequence of the main result of
[11].

1.4 Virtual permutations

We give in this subsection another application of previous theorems. Virtual permu-
tations are introduced by Kerov, Olshanski and Vershik [23] as the projective limit of
Sn. We are interested in this article only in random virtual permutations stable under
conjugation also known as central measures as defined and totally characterized by
Tsilevich [38]. Those measures are the counterpart for random permutations of the
Kingman exchangeable random partitions [26, 24].

Let n be a positive integer and πn be the projection of Sn+1 on Sn obtained by
removing n+ 1 from the cycles’ structure of the permutation. For example,

π3((1, 3) (2, 4)) = π3((1, 4, 3) (2)) = π3((1, 3) (2) (4)) = (1, 3) (2).

We define the space of virtual permutations S∞ as the projective limit of Sn as n goes
to infinity:

S∞ := {(σ̂n)n≥1; ∀n ≥ 1, πn(σ̂n+1) = σ̂n} = lim
←−

Sn.

Therefore, a random virtual permutation is a sequence (σn)n≥1 of random permu-
tations such that πn(σn+1)

a.s
= σn. We say that it is stable under conjugation if for all

positive integer n, σn is stable under conjugation. In this case, the number of cycles can
be expressed in terms of probabilities of fixed points.

Corollary 1.12. Let (σn)n≥1 be a random virtual permutation stable under conjugation.
Assume that

lim
n→∞

P(σn(1) = 1) = 0. (H’4)

Then we have the Vershik-Kerov-Logan-Shepp limiting shape (VKLS). Moreover, if

P(σn(1) = 1) = o
(
n−

5
6

)
. (H”2)

Then we have Tracy-Widom fluctuations (TW) and the convergence at the edge to the
Airy ensemble (Ai).
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Proof. By construction, for all random virtual permutation (σn)n≥1 and for all positive
integer n,

#(σn) = #(πn(σn+1)) = #(σn+1)− 1σn+1(n+1)=n+1.

Consequently,

E(#(σn)) =

n∑
i=1

P(σi(i) = i) =

n∑
i=1

P(σi(1) = 1).

Moreover, under the hypothesis (H”2) we have

n∑
i=1

P(σi(1) = 1) = o(n
1
6 ).

We can then conclude using Theorem 1.6. Similarly, using the hypothesis (H’4) we
obtain:

n∑
i=1

P(σi(1) = 1) = o(n).

We can then conclude using Theorem 1.8.

According to [38, Section 2] there exists a one-to-one correspondence between the
set of probability distributions on S∞ stable under conjugation and the set of probability
distributions on

Σ :=

{
(xi)i≥1; x1 ≥ x2 ≥ · · · ≥ 0,

∑
i

xi ≤ 1

}
.

Let 0 ≤ a ≤ 1. We denote

Σa :=

{
(xi)i≥1; x1 ≥ x2 ≥ · · · ≥ 0,

∑
i

xi = a

}
.

Let ν be a probability measure on Σ. We denote by (σνn)n≥1 a random virtual permutation
stable under conjugation such that the associated distribution on Σ is ν. We will study
this correspondence in three parts:

• Let x = (xi)i≥1 ∈ Σ1. If ν = δx, then for all positive integer n, for all σ ∈ Sn,

f(n, x, σ) := P(σδxn = σ) =
∏
j≥1

rj !

((j − 1)!)rj

∑
m

∏
i≥1

xmii . (1.3)

Here, rj is the number of cycles of length j of σ and the sum is over all sequences
of non-negative integers m = (mi)i≥1 such that ∀j ≥ 1, |{i;mi = j}| = rj . For more
details, see [38, Section 2].

Corollary 1.13. If xn = o(n−α) with α > 6, then we have Tracy-Widom fluctuations
(TW) and the convergence at the edge to the Airy ensemble (Ai).

Corollary 1.14. If xn = o(n−α) with α > 1, then we have the Vershik-Kerov-Logan-
Shepp limiting shape (VKLS).

We give a proof of Corollary 1.13 and Corollary 1.14 in Subsection 3.3. A trivial
application of these corollaries is when xi = δ1(i). In this case, σδxn follows the
Ewens distribution with parameter θ = 0.

• If ν(Σ1) = 1, ν is called a 1-measure. In this case, the distribution of (σνn)n≥1 is a
mixture of the previous distributions i.e. for all positive integer n, for all σ ∈ Sn,
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P(σνn = σ) =

∫
x∈Σ1

f(n, x, σ)dν(x). (1.4)

Corollary 1.15. Assume that ν is a 1-measure and∫
x∈Σ1

∞∑
i=1

(1− (1− xi)n) dν(x) = o
(
n

1
6

)
,

then we have Tracy-Widom fluctuations (TW) and the convergence at the edge to
the Airy ensemble (Ai).

Corollary 1.16. Assume that ν is a 1-measure. We have then the Vershik-Kerov-
Logan-Shepp limiting shape (VKLS).

We will prove Corollary 1.15 and Corollary 1.16 in Subsection 3.3. To explain
the relation with the Ewens distributions, we need first to introduce the Poisson-
Dirichlet distributions. Let θ > 0 and let 1 ≥ x1 ≥ x2 ≥ · · · ≥ 0 be a Poisson point
process on (0, 1] with intensity λ(t) = θ exp(−t)

t . We define the random variable
S :=

∑
i≥1 xi. It is proved that the sum S is almost surely finite. We can find a

proof for example in [15]. The point process x̂ :=
(
xi
S

)
i≥1

defines a measure on Σ1

known as the Poisson-Dirichlet distribution with parameter θ. It was introduced
by Kingman [26] and it is a useful tool to study some problems of combinatorics,
analytic number theory, statistics and population genetics. See [25, 10, 2, 36].

The Poisson-Dirichlet distribution with parameter θ > 0 represents also the limiting
distribution of normalized cycles’ lengths of the Ewens distribution with the same
parameter, see [2]. As a consequence, using the description of these measures in
[38, Section 2], if ν follows the Poisson-Dirichlet distribution with parameter θ, σνn
follows the Ewens measure with same parameter θ. In this case, the hypotheses of
Corollaries 1.15 and 1.16 are satisfied.

• In the general case, the correspondence is given by the formula:

P(σνn = σ) =

∫
x∈Σ

f(n, x, σ)dν(x),

where

f(n, x, σ) :=


∏
j≥1

rj !
((j−1)!)rj

∑
m

∏
i≥1 x

mi
i if

∑∞
i=1(xi) = 1∑l

j=0

(
l
j

)
xj0(1− x0)n−jf(n− j, y, σj) if 0 <

∑∞
i=1(xi) < 1

1σ=Idn if
∑∞
i=1(xi) = 0

. (1.5)

Here, rj is the number of cycles of length j of σ and the sum is over all sequences
of non-negative integers m = (mi)i≥1 such that ∀j ≥ 1, |{i;mi = j}| = rj , y := x∑

i xi
,

x0 := 1−
∑∞
i=1 xi, l is the number of fixed points of σ, σj is the permutation obtained

by removing j fixed points of σ and Idn is the identity of Sn. For more details, we
recommend [38, Section 2].

In the general case, we do not expect the Tracy-Widom fluctuations neither for `
nor for ` (see Section 2). We limit then our study to the case where there exists
0 < x0 < 1 such that ν(Σ1−x0) = 1. Unlike all previous examples when `(σn) and
`(σn) have the same asymptotic fluctuations, in this case, the expected length of the
longest increasing subsequence is larger than (1−x0)n and we will show that there
exist some cases where the expected length of the longest decreasing subsequence
is asymptotically proportional to

√
n with Tracy-Widom fluctuations.
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Corollary 1.17. Let 0 < x0 < 1 and ν be a probability measure on Σ satisfying

ν (Σ1−x0
) = 1. Let ν̂ be the 1-measure such that dν̂(x) = dν

(
x

1−x0

)
. If there exists

a positive integer k such that for all real numbers s1, s2, . . . , sk,

lim
n→∞

P

(
∀1 ≤ i ≤ k, λ

′
i(σ

ν̂
n)− 2

√
n

n
1
6

≤ si
)

= F2,k(s1, . . . , sk),

then for all real numbers s1, s2, . . . , sk,

lim
n→∞

P

(
∀1 ≤ i ≤ k,

λ′i(σ
ν
n)− 2

√
(1− x0)n

((1− x0)n)
1
6

≤ si

)
= F2,k(s1, . . . , sk).

In particular, for all real s,

lim
n→∞

P

(
`(σνn)− 2

√
(1− x0)n

((1− x0)n)
1
6

≤ s

)
= F2(s).

This corollary is a direct application of Proposition 2.1. Here are some examples of
measures ν that meet the assumptions of the previous corollary:

– When ν = δx and xi = o( 1
i6+ε ).

– When dν(x) = dPD(β)( xα ), β ≥ 0, 0 < α ≤ 1 and PD(β) is Poisson-Dirichlet
distribution with parameter β.

In fact:

– If ν = δx and xi = o( 1
i6+ε ), then ν̂ = δ x∑

i≥1 xi
satisfies hypotheses of Corollary

1.13.
– If dν(x) = dPD(β)( xα ), then dν̂(x) = dPD(β)(x) and σ̂n follows the Ewens

distribution with parameter β. We can then conclude using Corollary 1.6.

For the descent process, we have the following result:

Theorem 1.18. If there exists 0 ≤ x0 ≤ 1 such that ν(Σ1−x0
) = 1, then for all finite

set A ⊂ N∗,
lim
n→∞

P(A ⊂ D (σνn)) = det([kx0
(j − i)]i,j∈A),

with ∑
l∈Z

kx0
(l)zl =

1

1− (1 + x0z)e(1−x0)z
=

−1

z +
∑∞
l=1 âl(x0)zl+1

, (1.6)

where

âl(x0) :=
(1− x0)l+1

(l + 1)!
+
x0(1− x0)l

l!
. (1.7)

The proof of this result we suggest in Subsection 3.4 consists in studying in a first
step the case where the corresponding measure ν is concentrated on Σ1. We prove
that the limiting point process is determinantal with kernel (i, j) 7→ k0(j − i). In a
second step, we prove that the kernel depends only on

∑
i≥1 xi.

Theorem 1.18 implies that for a general random virtual permutation stable under
conjugation, we have the following result.

Corollary 1.19. For any probability measure ν on Σ,

lim
n→∞

P(A ⊂ D (σνn)) =

∫
Σ

det
([
k1−

∑
i xi

(j − i)
]
i,j∈A

)
dν(x). (1.8)
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For the total number of descents we have

Proposition 1.20. For any probability measure ν on Σ,

lim
n→∞

E(|D(σνn)|)
n

=
1

2

1−
∫

Σ

(
1−

∑
i

xi

)2

dν(x)

 .

We will prove Corollary 1.19 and Proposition 1.20 in Subsection 3.4.

Acknowledgments. The author would like to acknowledge many extremely useful
conversations with Adrien Hardy and Mylène Maïda, their supervision of this work and
their great help to elaborate and to ameliorate the coherence of this paper. This work is
partially supported by Labex CEMPI (ANR-11-LABX-0007-01).

2 Further discussion

In previous subsections, except for Corollary 1.4, the applications are for virtual
permutations, but with the same logic, we can prove a similar result as Corollary 1.17
for some permutations non compatible with projections.

Proposition 2.1. Let (Pn)n≥1 be a sequence of probability measures stable under
conjugation. Assume that there exists a positive integer k such that for all real numbers
s1, s2, . . . , sk,

lim
n→∞

Pn

({
σ ∈ Sn, ∀1 ≤ i ≤ k,

λ′i(σ)− 2
√
n

n
1
6

≤ si
})

= F2,k(s1, . . . , sk). (H5)

Let 0 ≤ x0 < 1 and (σn)n≥1 be a sequence of random permutations such that for all
positive integer n, for all σ ∈ Sn,

P(σn = σ) :=

l∑
j=0

(
l

j

)
xj0(1− x0)n−jPn−j(σ

j), (2.1)

where l is the number of fixed points of σ and σj is the permutation obtained by removing
j fixed points of σ. Then for all real numbers s1, s2, . . . , sk,

lim
n→∞

P

(
∀1 ≤ i ≤ k,

λ′i(σn)− 2
√

(1− x0)n

((1− x0)n)
1
6

≤ si

)
= F2,k(s1, . . . , sk).

We prove this result in Subsection 3.3. An interpretation of the random permutation
defined by equation (2.1) is the following. Let n be a positive integer. We construct
a subset A of {1, 2, . . . , n} as follows: for every 1 ≤ i ≤ n, with probability x0, i ∈ A

independently from other points. The points of A are then fixed points of σn. After that,
we permute the elements of {1, 2, . . . , n} \ A according to the probability distribution
Pn−|A|. In particular, A is a subset of all fixed points of σn.

As a consequence, recalling (1.5), if there exists 0 < x0 < 1 such that ν (Σ1−x0
) = 1,

then the number of fixed points of σνn is larger than a binomial random variable with
parameters x0 and n. Consequently,

E(`(σνn)) ≥ nx0.

In this case, we conjecture that the fluctuations are Gaussian.

Conjecture 2.2. Let 0 < x0 < 1, ν be a probability measure on Σ satisfying ν(Σ1−x0
) = 1

and ν̂ be the 1-measure satisfying dν̂(x) = dν( x
1−x0

). If

lim
n→∞

P
(
σν̂n(1) = 1

)
= 0,
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then ∀s ∈ R,

lim
n→∞

P

(
`(σνn)− x0n√
x0(1− x0)n

≤ s

)
=

∫ s

−∞

1√
2π
e
−x2
2 dx.

One bound is simple to prove by the remark above.

A possible generalization of the Ewens distributions is the following.

Definition 2.3. Let θ̂ = (θ̂i)i≥1 be a sequence of positive real numbers, we say that σn
follows the generalized Ewens distribution on Sn with parameter θ̂ if for all σ ∈ Sn,

P(σn = σ) =

∏
i≥1 θ̂

ri(σ)
i∑

σ∈Sn
∏
i≥1 θ̂

ri(σ)
i

.

Here, ri(σ) is the number of cycles of σ of length i.

This generalization was studied in some cases in details by Ercolani and Ueltschi [12].
In the general case, it is not obvious to have a good control on the number of cycles.
Nevertheless, by using some results of Ercolani and Ueltschi, we can conclude in some
cases.

Corollary 2.4. Let (σn)n≥1 be a sequence of random permutations such that for all
positive integer n, σn follows the generalized Ewens distribution with parameter θ̂ =

(θ̂i)i≥1. Assume that θ̂ satisfies one of the following hypotheses:

• θ̂i = ei
γ

, γ > 1,

• limi→∞
∑i−1
k=1

θ̂k θ̂i−k
θ̂i

= 0,

• limi→∞ θ̂i = θ,

• limi→∞
θ̂i
iγ = 1, where 0 ≤ γ < 1

7 ,

• θ̂i = iγ , γ < −1.

Then we have Tracy-Widom fluctuations (TW) and the convergence at the edge to the
Airy ensemble (Ai).

For the descent process, we have the convergence for a larger class of parameters.

Corollary 2.5. Let (σn)n≥1 be a sequence of random permutations such that for all posi-
tive integer n, σn follows the generalized Ewens distribution with parameter θ̂ = (θ̂i)i≥1.

Assume that θ̂ meets one of the hypotheses of the previous corollary or limi→∞
θ̂i
iγ = 1,

where γ ≥ 0. We have then the convergence of D(σn) to the determinantal point process
with kernel K0 (DPP).

Corollaries 2.4 and 2.5 are a direct application from the computations of Ercolani
and Ueltschi. In particular, we use the following results:

Lemma 2.6. Let θ̂ = {θ̂i}i≥1 and {σn}n≥1 be a sequence of random permutations follow-
ing the generalized Ewens distribution with parameter θ̂.

• If θ̂i = ei
γ

with γ > 1, then #(σn)
P→ 1 [12, Theorem 3.1].

• If θ̂i → θ, then 1
θ log(n)E(#(σn))→ 1 [12, Theorem 6.1].

• If θ̂i = i−γ with γ > 1, then #(σn)
d→ 1 +

∑
i Poisson{θi} [12, Theorem 7.1].

• If
∑n−1
k=1

θ̂k θ̂n−k
θ̂n

→ 0, then #(σn)
P→ 1 [12, Theorem 3.1].

• If θ̂i
iγ → 1 with γ > 0, then limn→∞ n

−γ
γ+1E(#(σn)) =

(
Γ(γ)
γγ

) 1
γ+1

[12, Theorem 5.1].
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Using this lemma, it is obvious that (H2) is satisfied under the assumptions of
Corollary 2.4. Moreover, (H4) can be replaced by

lim
n→∞

E

(
#(σn)

n

)
→ 0.

This result is a consequence of the stability under conjugation. Indeed,

P(σn(1) = 1) =
1

n

n∑
i=1

P(σn(i) = i) ≤ E
(

#(σn)

n

)
.

Using this observation, it is obvious that (H4) is satisfied under assumptions of Corollary
2.5.

Pitman [32] introduced a two-parameters generalization of the Ewens distribution.
Using the same notations as in [32], we can apply Theorems 1.6 for α < 1

6 and Theorem
1.8 for α < 1.

The bound n
1
6 of Theorem 1.2 may not be optimal. The best counterexample we

found is when the number of cycles is of order
√
n for the general case and of order n

for virtual random permutations. Nevertheless, using the same lines of proof, we can
obtain the convergence of `(σn)√

n
with optimal hypotheses.

Proposition 2.7. Assume that the sequence of random permutations (σn)n≥1 satisfies
(H1) and the number of cycles is such that: For all ε > 0,

lim
n→∞

P

(
#(σn)√

n
> ε

)
= 0,

then ∀ε > 0,

lim
n→∞

P

(∣∣∣∣`(σn)√
n
− 2

∣∣∣∣ > ε

)
= lim
n→∞

P

(∣∣∣∣`(σn)√
n
− 2

∣∣∣∣ > ε

)
= 0.

In this case, the bound
√
n in the second condition is optimal.

3 Proof of results

3.1 Proof of Theorem 1.2

The key argument of our proof is the following lemma:

Lemma 3.1. For any permutation σ and for any transposition τ ,

|`(σ ◦ τ)− `(σ)| ≤ 2, |`(σ)− `(σ ◦ τ)| ≤ 2.

Proof. Let σ be a permutation. By definition of `(σ), there exists i1 < i2 < · · · < i`(σ) such
that σ(i1) < · · · < σ(i`(σ)). Let τ = (j, k) be a transposition and i′1, i

′
2, . . . , i

′
m be the same

sequence as i1, i2, . . . , i`(σ) after removing j and k if needed. We have σ(i′1) < · · · < σ(i′m).
In particular, `(σ)− 2 ≤ m ≤ `(σ). Knowing that ∀i /∈ {j, k}, σ ◦ τ(i) = σ(i), then

σ ◦ τ(i′1) < · · · < σ ◦ τ(i′m).

Therefore,

`(σ)− `(σ ◦ τ) ≤ 2.

We obtain the second inequality by replacing σ by σ ◦ τ . For `(σ) the proof is similar.
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Id

(1, 2) (2, 3)(1, 3)

(1, 2, 3) (1, 3, 2)

1
31

3

1
3

1
2

1
2

1
2

1
2

1
2

1
2

11

Figure 3: The transition probabilities of T on S3

σ3 T (σ3) T 2(σ3)

Id 1/6 0 0

(1, 2) 1/6 1/18 0

(1, 3) 1/6 1/18 0

(2, 3) 1/6 1/18 0

(1, 2, 3) 1/6 5/12 1/2

(1, 3, 2) 1/6 5/12 1/2

Table 1: The transition probabilities for the uniform setting

Let σn be a random permutation stable under conjugation. To prove Theorem 1.2,
the idea is to modify σn to obtain a random permutation stable under conjugation with
only one cycle. We define the following Markov operator T. If the realisation σ of σn
has one cycle, σ remains unchanged (T (σ) = σ). Otherwise, we choose with uniform
probability two different cycles C1 and C2, and then independently two elements i ∈ C1

and j ∈ C2 uniformly within each cycle. In this case, T (σ) = σ ◦ (i, j). For example, for
n = 3, transitions’ probabilities of T are given in Figure 3. We denote by T k(σn) the
random permutation obtained after applying k times the operator T . Table 1 sums up
distributions after different steps if we start from the uniform distribution on S3. Note
that for all positive integer i < n,

#(T i(σn))
a.s
= max(#(σn)− i, 1). (3.1)

Lemma 3.2. If (σn)n≥1 is stable under conjugation, then for all positive integer n, the
law of Tn−1(σn) is the uniform distribution on the set of permutations with a unique
cycle. More formally,

P
(
Tn−1(σn) = σ

)
=

1

(n− 1)!
1#(σ)=1.

Proof. First, by construction, if σn is stable under conjugation, T (σn) is also stable under
conjugation. Indeed, if σ̂1, σ̂2 ∈ Sn then
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P(T (σn) = σ̂1) =
∑
σ∈Sn

∑
i<j

(
1#(σ̂1)=#(σ)−11σ−1◦ σ̂1=(i,j)

Cσ(i)Cσ(j)
(

#(σ)
2

) + 1#(σ)=11σ=σ̂1

)
P(σn = σ)

=
∑
σ∈Sn

∑
i<j

(
1#(σ̂3)=#(σ)−11σ̂3=(σ̂2(i),σ̂2(j))

Cσ̂2◦σ◦σ̂−1
2

(σ̂2(i))Cσ̂2◦σ◦σ̂−1
2

(σ̂2(j))
(

#(σ)
2

) + 1#(σ)=11σ=σ̂1

)
×P(σn = σ̂2 ◦ σ ◦ σ̂−1

2 )

=
∑
σ∈Sn

∑
i<j

(
1#(σ̂3)=#(σ)−11σ−1◦ σ̂3=(i,j)

Cσ(i)Cσ(j)
(

#(σ)
2

) + 1#(σ)=11σ=σ̂3

)
×P(σn = σ)

=P(T (σn) = σ̂3),

where Cσ(i) is the length of the cycle of σ containing i and σ̂3 = σ̂2◦ σ̂1◦σ̂−1
2 . In particular,

the law of Tn−1(σn) is stable under conjugation. Moreover, using (3.1),

#(Tn−1 (σn))
a.s
= max(#(σn)− n+ 1, 1) = 1. (3.2)

Knowing that all elements of Sn with a unique cycle belong to the same class of
conjugation, they are equally distributed and Lemme 3.2 follows from (3.2).

The previous Lemma is equivalent to say that Tn−1(σn) follows the Ewens distribution
on Sn with parameter θ = 0.

Proof of Theorem 1.2. Equality (3.1) implies that Tn−1(σn)
a.s
= T#(σn)−1(σn). Therefore

using Lemma 3.1, we obtain almost surely that:

|`(Tn−1(σn))− `(σn)| = |`(T#(σn)−1(σn))− `(σn)| ≤ 2(#(σn)− 1).

Thus, if σn satisfies the hypothesis (H2), then ∀ε > 0,

P

(∣∣∣∣`(Tn−1(σn))− `(σn)

n
1
6

∣∣∣∣ > ε

)
= 0. (3.3)

Using Lemma 3.2, Tn−1(σn) does not depend on the law of σn. Therefore, it is enough
to prove Theorem 1.2 for one particular case. In fact, the convergence (TW) has been
obtained for the uniform setting, see Theorem 1.1. By choosing (σn)n≥1 a sequence
of random permutations following the uniform distribution, we have then (TW) for the
Ewens distribution with parameter θ = 0. For the general case, if the sequence (σn)n≥1

satisfies (H1) and (H2), we can conclude using Lemma 3.2 and (3.3).
The same argument can be applied for the length of longest decreasing subsequence.

3.2 Proof of results related to the Robinson–Schensted transform of random
permutations

To prove Theorems 1.6 and 1.8 we need to recall a well-known property of the
Robinson–Schensted correspondence. Let σ ∈ Sn. We denote

I1(σ) : = {s ⊂ {1, 2, . . . , n}; ∀i, j ∈ s, (i− j)(σ(i)− σ(j)) ≥ 0},
D1(σ) : = {s ⊂ {1, 2, . . . , n}; ∀i, j ∈ s, (i− j)(σ(i)− σ(j)) ≤ 0},

Ik+1(σ) : = {s ∪ s′, s ∈ Ik, s
′ ∈ I1},

Dk+1(σ) : = {s ∪ s′, s ∈ Dk, s
′ ∈ D1}.

We have then
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Lemma 3.3. [14] For any permutation σ ∈ Sn,

max
s∈Ii(σ)

|s| =
i∑

k=1

λk(σ), max
s∈Di(σ)

|s| =
i∑

k=1

λ′k(σ).

In particular,

max
s∈I1(σ)

|s| = λ1(σ) = `(σ), max
s∈D1(σ)

|s| = λ′1(σ) = `(σ).

This result is proved first by Greene [14] (see also [34, Theorem 3.7.3]). It will be the
keystone to prove Theorem 1.6 and Theorem 1.8 as it implies the following lemma which
is the counterpart of Lemma 3.1.

Lemma 3.4. For any permutation σ and transposition τ ,∣∣∣∣∣
i∑

k=1

λk(σ)− λk (σ ◦ τ)

∣∣∣∣∣ ≤ 2,

∣∣∣∣∣
i∑

k=1

λ′k(σ)− λ′k (σ ◦ τ)

∣∣∣∣∣ ≤ 2. (3.4)

Moreover,

|λi(σ)− λi (σ ◦ τ)| ≤ 4, |λ′i(σ)− λ′i (σ ◦ τ)| ≤ 4. (3.5)

Proof. Let σ be a permutation and τ = (l,m) be a transposition. We have then for all
integer i,

{s \ {l,m}, s ∈ Ii(σ)} ⊂ Ii(σ ◦ τ)

and similarly

{s \ {l,m}, s ∈ Di(σ)} ⊂ Di(σ ◦ τ).

Consequently, by Lemma 3.3,

i∑
k=1

λk(σ)− λk(σ ◦ τ) ≥ −2,

i∑
k=1

λ′k(σ)− λ′k(σ ◦ τ) ≥ −2.

Using the same argument with σ ◦ τ instead of σ, (3.4) follows. Moreover, since

λi+1 =

i+1∑
k=1

λk −
i∑

k=1

λk, λ′i+1 =

i+1∑
k=1

λ′k −
i∑

k=1

λ′k,

the triangle inequality yields (3.5).

Proof of Theorem 1.6. Similarly to the proof of Theorem 1.2, we will use the same
Markov operator T to compare our random permutation with the uniform distribution.
Using Lemma 3.4 and the equality (3.1) we obtain∣∣λi(σn)− λi

(
Tn−1(σn)

)∣∣ ≤ 4(#(σn)− 1). (3.6)

Consequently, under (H2), ∀ε > 0,

lim
n→∞

P

(∣∣∣∣∣λi(σn)− λi
(
Tn−1(σn)

)
n

1
6

∣∣∣∣∣ > ε

)
= 0. (3.7)

The remainder of the proof is similar to the proof of Theorem 1.2.
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~v ~u
o

Figure 4: Cλ for λ = (7, 5, 2, 1, 1, 0)

We will now prove Theorem 1.8.
Let (O,~x, ~y) be the canonical frame of the Euclidean plane and ~u :=

√
2

2 (~x + ~y),

~v :=
√

2
2 (~y − ~x). Let λ ∈ Yn. Using the convention λ0 = ∞, let Cλ be the curve

obtained by connecting the points with coordinates (0, λ0), (0, λ1), (1, λ1), (1, λ2), . . . ,

(i, λi), (i, λi+1), . . . in the axes system (O,−→u ,−→v ) as in Figure 4. By construction Cλ
is the curve of Lλ. This yields the following.

Lemma 3.5. Let α, β ∈ N and A the point such that
−→
OA = α~u+ β~v. If A ∈ Cλ, then

λα+1 ≤ β ≤ λα. (3.8)

We have also the following result.

Lemma 3.6. For all i ∈ Z,

√
2

2
Lλ

(√
2

2
i

)
± i

2
∈ N, (3.9)

Proof. Let M be such that
−−→
OM = s1~u+ s2~v. By construction, if M ∈ Cλ then s1, s2 ≥ 0

and either s1 ∈ N or s2 ∈ N. If we apply this observation to M defined by

−−→
OM :=

√
2

2
i~x+ Lλ

(√
2

2
i

)
~y =

(√
2

2
Lλ

(√
2

2
i

)
+
i

2

)
−→u +

(√
2

2
Lλ

(√
2

2
i

)
− i

2

)
−→v ,

we obtain (3.9).

To prove Theorem 1.8, our main lemma is the following.

Lemma 3.7. Let n,m ∈ N∗, λ = (λi)i≥1 ∈ Yn, µ = (µi)i≥1 ∈ Ym. Then,

sup
s∈R

(Lλ(s)− Lµ(s))
2 ≤ 4 max

i≥1

∣∣∣∣∣
i∑

k=1

(λk − µk)

∣∣∣∣∣ . (3.10)

Proof. Note that for any i ∈ Z, s 7→ Lλ(s) and s 7→ Lµ(s) are affine functions on[√
2

2 i,
√

2
2 (i+ 1)

]
and thus (3.10) is equivalent to

sup
i∈Z

(
Lλ

(√
2

2
i

)
− Lµ

(√
2

2
i

))2

≤ 4 max
i≥1

∣∣∣∣∣
i∑

k=1

(λk − µk)

∣∣∣∣∣ .
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~v ~u

o

k−4 = −1 k2 = 2

−6 −5 −4 −3 −2 −1 1 2 3 4 5 6

1

2

33

4

5

6

7

8

~y

~x

Figure 5: An example where λ = (7, 5, 2, 1, 1, 0) and µ = (4, 4, 3, 3, 3, 1, 0)

Let i ∈ Z. It follows from Lemma 3.6 that there exists ki ∈ Z such that,

Lµ

(√
2

2
i

)
− Lλ

(√
2

2
i

)
= ki
√

2.

To simplify notations, we denote

j :=
√

2Lλ

(√
2

2
i

)
.

Let A and B be the points such that

−→
OA :=

√
2

2
(i~x+ j~y) =

i+ j

2
~u+

j − i
2

~v,
−−→
OB : =

√
2

2
(i~x+ (j + 2ki)~y)

=
i+ j + 2ki

2
~u+

j − i+ 2ki
2

~v.

Clearly A ∈ Cλ and B ∈ Cµ. By Lemma 3.6, i+j2 , j−i2 ∈ N. We can then apply Lemma 3.5.
In the case where ki > 0, we have

λ i+j
2 +1 ≤

j − i
2

, µ i+j
2 +ki

≥ j − i
2

+ ki.

Using the fact that (λl)l≥1 and of (µl)l≥1 are decreasing, we have,

2 max
l≥1

∣∣∣∣∣
l∑

k=1

(λk − µk)

∣∣∣∣∣ ≥
i+j
2 +ki∑

l= i+j
2 +1

µl − λl ≥

i+j
2 +ki∑

l= i+j
2 +1

µ i+j
2 +ki

− λ i+j
2 +1 ≥ k

2
i .
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Monotonous subsequences and the descent process of invariant random permutations

Similarly, in the case where ki < 0,

−2 max
l≥1

∣∣∣∣∣
l∑

k=1

(λk − µk)

∣∣∣∣∣ ≤
i+j
2∑

l= i+j
2 +1+ki

µl − λl ≤

i+j
2∑

l= i+j
2 +1+ki

µ i+j
2 +ki+1 − λ i+j2 ≤ −k

2
i .

This yields

4 max
i≥1

∣∣∣∣∣
i∑

k=1

(λk − µk)

∣∣∣∣∣ ≥ max
i∈Z

(√
2ki

)2

= sup
s∈R

(Lλ(s)− Lµ(s))
2
.

Proof of Theorem 1.8. Using (3.1) and Lemma 3.4, we have almost surely,

max
i≥1

∣∣∣∣∣
i∑

k=1

(
λk(σn)− λk

(
Tn−1(σn)

))∣∣∣∣∣ ≤ 2(#(σn)− 1). (3.11)

By Lemma 3.7 we obtain

sup
s∈R

1√
2n

∣∣∣Lλ(σn)

(
s
√

2n
)
− Lλ(Tn−1(σn))

(
s
√

2n
)∣∣∣ ≤ 2

√
#(σn)− 1

n
. (3.12)

Under (H3), ∀ε > 0,

lim
n→∞

P

(
sup
s∈R

1√
2n

∣∣∣Lλ(σn)

(√
2n
)
− Lλ(Tn−1(σn))

(
s
√

2n
)∣∣∣ < ε

)
= 1. (3.13)

If σn follows the uniform distribution, (VKLS) is obtained by Vershik and Kerov [41],
see Theorem 1.7, and consequently we have (VKLS) for the Ewens distribution with
parameter θ = 0. For a random permutation σn stable under conjugation (H1), Tn−1(σn)

follows the Ewens distribution with parameter θ = 0 and if σn satisfies moreover (H3),
we can conclude using (3.13).

3.3 Proofs of the applications to virtual permutations

We will prove in this subsection Corollaries 1.13, 1.14, 1.15 and 1.16 and Proposition
2.1. We will not give details of the proof of Corollary 1.17 because it is a direct application
of Proposition 2.1.

We can have a combinatorial interpretation of (1.5). Let x = (xi)i≥1 ∈ Σ. At the
beginning, we have an infinite number of circles {Cn}n∈Z. At each step n ≥ 1 we choose
an integer posn with probability distribution

∑
j≥1 xjδj + (1−

∑
i≥1 xi)δ0 independently

from the past. We insert then the number n uniformly on the circle Cposn if posn > 0 and
on the circle C−n if posn = 0 . At each step, one reads the elements on each non-empty
circle counterclockwise to get a cycle. For example, if pos1 = 4, pos2 = 1, pos3 = 4,
pos4 = 0 and pos5 = 0, we obtain the permutation (1, 3)(2)(4)(5). With this description,
we have

E
(
#
(
σδxn
))

= n

1−
∑
i≥1

xi

+

∞∑
i=1

(1− (1− xi)n).

Proof of Corollary 1.13 and Corollary 1.14. In both corollaries, since
∑
i≥1 xi = 1, we

have

E
(
#
(
σδxn
))

=

∞∑
i=1

(1− (1− xi)n).
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Monotonous subsequences and the descent process of invariant random permutations

If α > 6, there exists a real number β such that 5
6(α−1) < β < 1

6 . Moreover there exists

n0 such that ∀n > n0, xn < n−α. For any n > (n0)
1
β and under hypothesis of Corollary

1.13, we have

E
(
#
(
σδxn
))

=

∞∑
i=1

(1− (1− xi)n) ≤ nβ + n

∞∑
[nβ ]+1

n−α

≤ nβ +
1

α− 1
n
(
nβ
)(−α+1)

= o
(
n

1
6

)
.

Then Corollary 1.13 follows from Theorem 1.6. If α > 1 and under hypothesis of Corollary
1.14, there exists n0 such that ∀n > n0, xn < n−α and let n > (n0)

1
α we have

E
(
#
(
σδxn
))

=

∞∑
i=1

(1− (1− xi)n) ≤ n 1
α + n

∞∑
[n

1
α ]+1

n−α

≤ n 1
α +

1

α− 1
n
(
n

1
α

)(−α+1)

= o(n).

Then Corollary 1.14 follows from Theorem 1.8.

Proof of Corollary 1.15 and Corollary 1.16.

E(#(σνn)) =
∑
σ∈Sn

(
#(σ)

∫
x∈Σ1

f(n, x, σ)dν(x)

)
=

∫
x∈Σ1

∑
σ∈Sn

#(σ)f(n, x, σ)dν(x)

=

∫
x∈Σ1

∞∑
i=1

(1− (1− xi)n) dν(x).

Therefore, we obtain Corollary 1.15 thanks to Theorem 1.6 .
Moreover,

∫
x∈Σ1

∑∞
i=1 (1− (1− xi)n) dν(x) = o(n) is always satisfied. Indeed, we have

for any 0 ≤ y ≤ 1 and n ≥ 1,

1− (1− y)n ≤ ny.

Let x = (xi)i≥1 ∈ Σ. Fix ε > 0. Since
∑∞
i=1 xi ≤ 1, there exists n0 such that∑∞

i=n0+1 xi < ε. Then

1

n

∞∑
i=1

(1− (1− xi)n) ≤ 1

n

n0∑
i=1

1 +

∞∑
i=n0+1

xi ≤
n0

n
+ ε.

So that for any x = (xi)i≥1 ∈ Σ,

lim
n→∞

1

n

∞∑
i=1

(1− (1− xi)n) = 0.

Since 1
n

∑∞
i=1(1 − (1 − xi)n) ≤ 1, we can conclude using the dominated convergence

theorem that

lim
n→∞

∫
x∈Σ1

1

n

∞∑
i=1

(1− (1− xi)n)dν(x) = 0.

Therefore, we obtain 1.16 thanks to Theorem 1.8.
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Proof of Proposition 2.1. An interpretation of the random permutation defined by equa-
tion (2.1) is the following. Let n be a positive integer. We construct a subset An of
{1, 2, . . . , n} as follows: for every 1 ≤ i ≤ n, with probability x0, i ∈ An independently
from other points. The points of An are then fixed points of σn. After that, we permute
the elements of {1, 2, . . . , n} \An according to the probability distribution Pn−|An|.

The main idea is that a decreasing subsequence cannot have more than one element
belonging to An. Moreover, a decreasing subsequence of the restriction of σn on
{1, 2, . . . , n} \An is a decreasing subsequence of σn. In other words, for all real number
s, for all 1 ≤ j ≤ n,

Pj({σ ∈ Sj , `(σ) ≤ s− 1}) ≤ P(`(σn) ≤ s||An| = n− j) ≤ Pj({σ ∈ Sj , `(σ) ≤ s}).

More generally, using Lemma 3.3, we have for all real numbers s1, . . . , sk,

Pj({σ ∈ Sj ,∀i < k, λ′i(σ) ≤ si − 2i+ 1}) ≤ P(∀i < k, λ′i(σn) ≤ si||An| = n− j)
≤ Pj({σ ∈ Sj ,∀i < k, λ′i(σ) ≤ si}).

Consequently,

Pj({σ ∈ Sj ,∀i < k, λ′i(σ) ≤ si − 2k + 1}) ≤ P(∀i < k, λ′i(σn) ≤ si||An| = n− j)
≤ Pj({σ ∈ Sj ,∀i < k, λ′i(σ) ≤ si}).

In the sequel of the proof, let s1, . . . , sk be k real numbers and ε > 0. As |An| is a
random binomial variable with parameters n and x0, and using the central limit theorem,
there exist n0, α > 0 such that, n0 >

α2

(1−x0)2 and ∀n > n0,

P(||An| − nx0| < α
√
n) > 1− ε. (3.14)

We denote by pnj := P(|An| = n− j), x̃0 := 1− x0, k̃ = 2k − 1 and by λi := λ′i − 2
√
nx̃0. As

P

(
∀i ≤ k,

λ′i(σn)

(nx̃0)
1
6

≤ si

)
=

n∑
j=0

P

(
∀i ≤ k,

λ′i(σn)

(nx̃0)
1
6

≤ si

∣∣∣∣∣|An| = n− j

)
pnj ,

we have

P

(
∀i ≤ k,

λ′i(σn)

(nx̃0)
1
6

≤ si

)
≤ ε+

bnx̃0+α
√
nc∑

j=dnx̃0−α
√
ne
Pj

({
σ ∈ Sj ,∀i ≤ k,

λ′i(σ)

(nx̃0)
1
6

≤ si

})
pnj

(3.15)

and

P

(
∀i ≤ k,

λ′i(σn)

(nx̃0)
1
6

≤ si

)
≥
bnx̃0+α

√
nc∑

j=dnx̃0−α
√
ne
Pj

({
σ ∈ Sj ,∀i ≤ k,

λ′i(σ) + k̃

(nx̃0)
1
6

≤ si

})
pnj .

(3.16)

Here, bxc and dxe are respectively the floor and the ceiling functions.
If |j − nx̃0| < α

√
n, then∣∣∣√j −√nx̃0

∣∣∣ ≤ α
√
n√

j +
√
nx̃0

≤ α√
x̃0

.
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Thus,

Pj

({
σ ∈ Sj ,∀i ≤ k,

λ′i(σ) + k̃

(nx̃0)
1
6

≤ si

})

≥ Pj

({
σ ∈ Sj ,∀i ≤ k,

λ′i(σ)− 2
√
j

j
1
6

≤ h(si, n)− 2α+ k̃

j
1
6

})

and

Pj

({
σ ∈ Sj ,∀i ≤ k,

λ′i(σ)

(nx̃0)
1
6

≤ si

})

≤ Pj
({

σ ∈ Sj ,∀i ≤ k,
λ′i(σ)− 2

√
j

j
1
6

≤ −h(−si, n) +
2α

j
1
6

})
.

where, h(s, n) = s
(

1− α√
n

) 1
6

if s > 0 and h(s, n) = s
(

1 + α√
n

) 1
6

otherwise.

By the continuity and the monotony on each variable of F2,k, there exists δ > 0 such
that:

F2,k(s1, . . . , sk)− ε < F2,k(s1 − δ, . . . , sk − δ)
< F2,k(s1 + δ, . . . , sk + δ) < F2,k(s1, . . . , sk) + ε.

Moreover, there exists n1 > n0 such that for all n > n1, for all j > nx̃0 − α
√
n, for all

i < k,

si − δ ≤ h(si, n)− 2α+ k̃

j
1
6

and

si + δ > −h(−si, n) +
2α

j
1
6

.

Consequently, if n > n1, inequalities (3.15) and (3.16) become respectively:

P

(
∀i ≤ k,

λ′i(σn)

(nx̃0)
1
6

≤ si

)
≤

ε+

bnx̃0+α
√
nc∑

j=dnx̃0−α
√
ne
Pj

({
σ ∈ Sj ,∀i ≤ k,

λ′i(σ)− 2
√
j

j
1
6

≤ si + δ

})
pnj (3.17)

and

P

(
∀i ≤ k,

λ′i(σn)

(nx̃0)
1
6

≤ si

)

≥
bnx̃0+α

√
nc∑

j=dnx̃0−α
√
ne
Pj

({
σ ∈ Sj ,∀i ≤ k,

λ′i(σ)− 2
√
j

j
1
6

≤ si − δ
})

pnj . (3.18)

Under (H5),

Pj

({
σ ∈ Sj ,∀i ≤ k,

λ′i(σ)− 2
√
j

j
1
6

≤ si + δ

})
−−−→
j→∞

F2,k(s1 + δ, . . . , sk + δ),
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and

Pj

({
σ ∈ Sj ,∀i ≤ k,

λ′i(σ)− 2
√
j

j
1
6

≤ si − δ
})
−−−→
j→∞

F2,k(s1 − δ, . . . , sk − δ).

Therefore, since dnx̃0 − α
√
ne → ∞, there exists n2 > n1 such that ∀n > n2,

∀j ≥ dnx̃0 − α
√
ne,

F2,k(s1 − δ, . . . , sk − δ)− ε < Pj
({

σ ∈ Sj ,∀i ≤ k,
λ′i(σ)− 2

√
j

j
1
6

≤ si − δ
})

< Pj

({
σ ∈ Sj ,∀i ≤ k,

λ′i(σ)− 2
√
j

j
1
6

≤ si + δ

})
< F2,k(s1 − δ, . . . , sk − δ) + ε.

Finally, if n > n2, using (3.14), inequalities (3.17) and (3.18) become

(F2,k(s1, . . . , sk)− 2ε)(1− ε) < P

(
∀i ≤ k,

λ′i(σn)

(nx̃0)
1
6

≤ si

)
< F2,k(s1, . . . , sk) + 3ε,

and the proof of the proposition is therefore complete.

3.4 Proof of results for the descent process

In this subsection, we prove the convergence of the descent process for some ran-
dom permutations stable under conjugation (Theorem 1.10). We prove also results of
convergence for virtual permutations (Theorem 1.18, Corollary 1.19 and Proposition
1.20).

Let A be a finite subset of N∗ and m := max(A) and let A′ = {1, 2, . . . ,m + 1}. The
idea of the proof of Theorem 1.10 is to study the descent process under the condition
{σn(A′) ∩A′ = ∅} and to show that it does not depend on the law of σn.

Lemma 3.8. Let En := {σ ∈ Sn, σ(A′) ∩ A′ = ∅}. Assume that the law of σn is stable
under conjugation and P(σn ∈ En) > 0.Then for any b1, b2, . . . , bm+1 distinct elements of
{1, . . . , n},

P(σn(1) = b1, . . . , σn(m+ 1) = bm+1|En) =
1mini(bi)>m+1(

n−m−1
m+1

) .

Proof. The event En reads as the disjoint union of the events {σ(1) = b1, . . . , σ(m +

1) = bm+1} where b1, b2, . . . , bm+1 are distinct elements of {m + 2,m + 3, . . . , n}. Let
b1, b2, . . . , bm+1 and c1, c2, . . . , cm+1 verify the previous condition. Let σ̂ ∈ Sn be a permu-
tation such that for any 1 ≤ i ≤ m+1, σ̂(ci) = bi and σ̂(j) = j if j /∈ ({bi}i≤m+1∪{ci}i≤m+1).
By invariance under conjugation, we have

P(σn(1) = b1, . . . , σn(m+ 1) = bm+1)

= P(σ̂ ◦ σn ◦ σ̂−1(1) = b1, . . . , σ̂ ◦ σn ◦ σ̂−1(m+ 1) = bm+1)

= P(σn(1) = c1, . . . , σn(m+ 1) = cm+1)

and thus

P(σn(1) = b1, . . . , σn(m+ 1) = bm+1|En) = P(σn(1) = c1, . . . , σn(m+ 1) = cm+1|En)

and the lemma follows.
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Proof of Theorem 1.10. Under (H4),

P(σn ∈ En) ≥ 1−
m+1∑
i=1

P(σn(i) ≤ m+ 1)

= 1− (m+ 1)

(
P(σn(1) = 1) +

m(1− P(σn(1) = 1))

n− 1

)
−−−−→
n→∞

1.

Similarly, if σ̃n follows the uniform distribution on Sn, we have P(σ̃n ∈ En) → 1.

Therefore, since the law of σn is invariant under conjugation (H1) we can use Lemma
3.8 for n large enough to get

P(A ⊂ D(σn)|En) = P(A ⊂ D(σ̃n)|En).

Thus,
lim
n→∞

(P(A ⊂ D(σn))− P(A ⊂ D(σ̃n))) = 0.

Since σ̃n satisfies (DPP) by Theorem 1.9, this concludes the proof.

Before proving Theorem 1.18, we need to recall that a point process X on a discrete
space X is fully characterised by its correlation function (we denote it by ρ). Given A a
finite subset of X,

ρ(A) := P(A ⊂ X).

It is called determinantal with kernel K if for all A finite subset of X,

ρ(A) = det ([K(i, j)]i,j∈A) . (3.19)

A point process defined on N∗ is 1-dependent if for all A and B finite subsets of N∗ such
that the distance between A and B is larger than 1, ρ(A ∩ B) = ρ(A)ρ(B). It is called
stationary on N∗ if for all positive integer k, for all finite subset A ⊂ N∗, ρ(A) = ρ(A+ k).

To prove Theorem 1.18, we will use the following result.

Theorem 3.9. [5] A stationary 1-dependent simple point process on N∗ is determinantal
with kernel K given by K(i, j) = k(j − i) and∑

i∈Z
k(i)zi =

−1

z +
∑
i≥1 aiz

i+1
,

where ai := ρ({1, 2, . . . , i}).

Proof of Theorem 1.18. If x0 = 1, the theorem is obvious since D(σνn) = δ∅. Next we split
the proof into two steps depending on whether x0 = 0 or not.

Step 1 : We assume x0 = 0 so that ν(Σ1) = 1. Using equalities (1.3) and (1.4) we
obtain:

P(σνn(1) = 1) =
∑

σ∈Sn,σ(1)=1

P(σνn = σ) =
∑

σ∈Sn,σ(1)=1

∫
Σ1

f(n, x, σ)dν(x)

=

∫
Σ1

∑
σ∈Sn,σ(1)=1

f(n, x, σ)dν(x)

=

∫
Σ1

P(σδxn (1) = 1)dν(x).

Using Beppo Levi theorem, it is thus enough to prove

P(σδxn (1) = 1)→ 0.
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Using the same combinatorial interpretation as in the beginning of Subsection 3.3, we
have for any x ∈ Σ1,

P(σδxn (1) = 1) =
∑
i≥1

P(σδxn (1) = 1|pos1 = i)P(pos1 = i) =
∑
i≥1

xi(1− xi)n−1.

Let ε > 0. Since
∑
i xi = 1, there exists n0 such that (

∑
i>n0

xi) <
ε
2 and

P(σδxn (1) = 1) =
∑
i≥1

xi(1− xi)n−1 ≤
n0∑
i=1

xi(1− xi)n−1 +
ε

2
.

As for all i ≤ n0, xi(1−xi)n−1 converges to 0 when n goes to infinity, there exists n1 such
that for n > n1

∑n0

i=1 xi(1− xi)n−1 < ε
2 and therefore

P(σδxn (1) = 1)→ 0.

Theorem 1.18 follows from Theorem 1.10 when x0 = 0.
Step 2: we now assume that 0 < x0 < 1 and ν(Σ1−x0

) = 1. We have

P(σνn(1) = 1) = x0 +

∫
Σ

∑
i≥1

xi(1− xi)n−1dν(x) ≥ x0 > 0,

which prevents the use of Theorem 1.10. The strategy is instead to use Theorem 3.9,
namely to prove that the limiting process is stationary, 1-dependent and its correlation
function is such that ∀k ≥ 1,

ρ({1, 2, . . . , k}) =
(1− x0)k+1

(k + 1)!
+
x0(1− x0)k

k!
.

To do so we need to prove this result in the particular case dν1(x) := dPD(1)( x
1−x0

) since
for any finite subset B,

lim
n→∞

(P(B ⊂ D (σνn))− P(B ⊂ D(σν1n ))) = 0. (3.20)

Indeed, letB be a finite subset ofN∗ andB′ := B∪(B+1). We use the same interpretation
of the random virtual permutations in this case as in the proof of Proposition 2.1. We
choose a random subset An of {1, 2, . . . , n} of fixed points where each point belongs to An
with probability x0 independently from the others. After that, we permute the elements
according to Pn−|An|, where (Pn)n≥1 is the probability distribution on S∞ associated to
ν̂ where dν̂(x) = dν( x

1−x0
). Let Cn := An ∩B′ and

En := {σ ∈ Sn,∀i ∈ B′ \ Cn, σ(i) > max(B′)}.

We have

P (B ⊂ D (σνn)|En) =
∑
X⊂B′

P (B ⊂ D (σνn)|En, Cn = X)P(Cn = X).

With similar arguments as in the proof of Lemma 3.8, it is not difficult to show that
the quantity P(B ⊂ D (σνn) |En, Cn = X) is defined for n > |B′|+ max(B′) and does not

depend on ν. Moreover, P(Cn = X) = x
|X|
0 (1− x0)|B

′|−|X|. Thus P (B ⊂ D (σνn)|En) does
not depend on ν. We have

P(σνn ∈ En) =
∑
X⊂B′

P(σνn ∈ En|Cn = X)P(Cn = X)

≥ 1−
∑
X⊂B′

∑
j∈B′\X

P(σνn(j) ≤ max(B′)|Cn = X)P(Cn = X).
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Moreover, using the notation pk := P(σν̂k(1) = 1) and observing that pk → 0 as k → ∞
thanks to Step 1, we have

P(σνn(j) ≤ max(B′)|Cn =X)

=

n−|B′|∑
k=0

P(σνn(j) ≤ max(B′)|Cn = X, |An| = |X|+ n− |B′| − k)

× P(|An| = |X|+ n− |B′| − k|Cn = X)

=

n−|B′|∑
k=0

x
n−|B′|−k
0 (1− x0)k

(
n− |B′|

k

)
× P(σνn(j) ≤ max(B′)|Cn = X, |An| = |X|+ n− |B′| − k)

≤ xn−|B
′|

0 + x
n−|B′|−1
0 (1− x0)(n− |B′|)

+

n−|B′|∑
k=2

x
n−|B′|−k
0 (1− x0)k

(
n− |B′|

k

)
×
(
pk+|B′|−|X| +

max(B′)

|B′| − |X|+ k − 1

)
−−−−→
n→∞

0.

This yields

lim
n→∞

P(σνn ∈ En) = 1

and therefore the claim (3.20) is proven.
We compute now

lim
n→∞

P(B ⊂ D(σν1n )).

The finite subset B can be decomposed as B =
⋃l
i=1Bi where each Bi consists in

consecutive elements of N∗ and the distance between Bi and Bj is larger than one if
i 6= j. For example,

B = {1, 2, 3, 5, 6, 8, 11, 12} = {1, 2, 3} ∪ {5, 6} ∪ {8} ∪ {11, 12}.

Note that every finite subset has a such decomposition. Let B′i := Bi ∪ (Bi + 1). We have
B′ := B ∪ (B + 1) =

⋃l
i=1B

′
i and if i 6= j, then B′i ∩ B′j = ∅. From now we assume that

n > |B′|+ max(B′). We have

P(B ⊂ D(σν1n )|En) =
∑
X⊂B′

P(B ⊂ D(σν1n )|Cn = X,En)P(Cn = X). (3.21)

If B ∩ X 6= ∅, then P(B ⊂ D(σν1n )|Cn = X,En) = 0. Indeed, conditionally on En, if
i ∈ B ∩X, then σν1n (i) = i and σν1n (i + 1) is either equal to i + 1 or larger than max(B′)

and in both cases, there is no descent on i. Consequently, (3.21) becomes

P(B ⊂ D(σν1n )|En) =
∑

X⊂B′\B

P(B ⊂ D(σν1n )|Cn = X,En)P(Cn = X)

=
∑

U⊂{1,2,...,l}

P

(
B ⊂ D(σν1n )

∣∣∣∣∣Cn =
⋃
i∈U

(B′i \Bi), En

)

× P

(
Cn =

⋃
i∈U

(B′i \Bi), En

)
.
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The second equality comes from the fact that B′i \Bi contains exactly one element. We
denote by U c := {1, 2, . . . , l} \ U and by W (U) :=

⋃
(
⋃
i∈U Bi

⋃
i∈Uc B

′
i). We have

P

(
B ⊂ D(σν1n )

∣∣∣∣∣Cn =
⋃
i∈U

(B′i \Bi), En

)
=
|E2|
|E1|

,

where

E1 =
{

(ek)k∈W (U),∀k ∈W (U), max(B′) < ek ≤ n, i 6= j ⇒ ei 6= ej
}

and

E2 :=

{
(ek)k∈W (U) ∈ E1,∀k ∈

l⋃
i=1

Bi \
⋃
i∈U
{max(Bi)}, ek+1 < ek

}
.

Therefore,

|E1| :=
(n−max(B′))!

(n−max(B)′ − |W (U)|)!
,

and

|E2| =
(n−max(B′))!

(n−max(B′)−
∑
i∈U |Bi|)!

∏
i∈U |Bi|!

×
(n−max(B′)−

∑
i∈U |Bi|)!

(n−max(B′)−
∑
i∈U |Bi| −

∑
i∈Uc |B′i|)!

∏
i∈Uc |B′i|!

=
(n−max(B′))!

(n−max(B′)− |W (U)|)!
∏
i∈U |Bi|!

∏
i∈Uc |B′i|!

.

As a consequence,

P

(
B ⊂ D(σν1n )

∣∣∣∣∣Cn =
⋃
i∈U

(B′i \Bi), En

)
=
|E2|
|E1|

=
1∏

i∈U |Bi|!
∏
i∈Uc |B′i|!

.

Then

P(B ⊂ D(σν1n )|En) =
∑

U⊂{1,2,...,l}

x
|U |
0 (1− x0)|B|+l−|U |∏
i∈U |Bi|!

∏
i∈Uc |B′i|!

=

l∏
i=1

(1− x0)|Bi|

|Bi|!

(
x0 +

1− x0

|Bi|+ 1

)

=

l∏
i=1

â|Bi|(x0),

where we recall that

âk(x0) =
(1− x0)k+1

(k + 1)!
+
x0(1− x0)k

k!
.

This implies that the limiting process is stationary and 1-dependent. Consequently by
Theorem 3.9 it is determinantal and the kernel satisfies (1.6).

Corollary 1.19 is at the same time a generalization and a direct application of Theorem
1.18.
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Proof of Corollary 1.19. We denote by f(n, x, σ) := P
(
σδxn = σ

)
(see (1.5)), by ρ(n, x, .)

the correlation function of the descent process of σδxn and by ρlim(x0, .) the correlation
function of the determinantal process with kernel Kx0

(i, j) := kx0
(j − i). Let A be a finite

subset of N∗. We have

P(A ⊂ D(σνn)) =
∑

σ∈Sn,A⊂D(σ)

P(σνn = σ) =
∑

σ∈Sn,A⊂D(σ)

∫
Σ

f(n, x, σ)dν(x)

=

∫
Σ

∑
σ∈Sn,A⊂D(σ)

f(n, x, σ)dν(x)

=

∫
Σ

ρ(n, x,A)dν(x).

Using the convergence of ρ(n, x,A) to ρlim(1 −
∑
i≥1 xi, A) and the dominated conver-

gence theorem, we obtain:

P(A ⊂ D(σνn)) −−−−→
n→∞

∫
Σ

ρlim

1−
∑
i≥1

xi, A

 dν(x).

Using this corollary, we can now proove Proposition 1.20.

Lemma 3.10. For any random permutation σn stable under conjugation, P(i ∈ D(σn))

does not depend on i.

Proof. Let 1 ≤ i < n. We have

P(i ∈ D(σn)) = P(i ∈ D(σn)|σn(i) = i, σn(i+ 1) = i+ 1)P(σn(i) = i, σn(i+ 1) = i+ 1)

+ P(i ∈ D(σn)|σn(i) = i, σn(i+ 1) 6= i+ 1)P(σn(i) = i, σn(i+ 1) 6= i+ 1)

+ P(i ∈ D(σn)|σn(i) 6= i, σn(i+ 1) = i+ 1)P(σn(i) 6= i, σn(i+ 1) = i+ 1)

+ P(i ∈ D(σn)|σn(i) /∈ {i, i+ 1}, σn(i+ 1) /∈ {i, i+ 1})
× P(σn(i) /∈ {i, i+ 1}, σn(i+ 1) /∈ {i, i+ 1})
+ P(i ∈ D(σn)|σn(i) = i+ 1, σn(i+ 1) /∈ {i, i+ 1})
× P(σn(i) = i+ 1, σn(i+ 1) /∈ {i, i+ 1})
+ P(i ∈ D(σn)|σn(i) /∈ {i, i+ 1}, σn(i+ 1) = i)

× P(σn(i) /∈ {i, i+ 1}, σn(i+ 1) = i)

+ P(i ∈ D(σn)|σn(i) = i+ 1, σn(i+ 1) = i)

× P(σn(i) = i+ 1, σn(i+ 1) = i).

Using the stability under conjugation, we obtain,

P(i ∈ D(σn)|σn(i) = i, σn(i+ 1) = i+ 1) = 0

P(i ∈ D(σn)|σn(i) = i, σn(i+ 1) 6= i+ 1) =
i− 1

n− 2

P(i ∈ D(σn)|σn(i) 6= i, σn(i+ 1) = i+ 1) =
n− i− 1

n− 2

P(i ∈ D(σn)|σn(i) /∈ {i, i+ 1}, σn(i+ 1) /∈ {i, i+ 1}) =
1

2

P(i ∈ D(σn)|σn(i) = i+ 1, σn(i+ 1) /∈ {i, i+ 1}) =
i− 1

n− 2

P(i ∈ D(σn)|σn(i) /∈ {i, i+ 1}, σn(i+ 1) = i) =
n− i− 1

n− 2

P(i ∈ D(σn)|σn(i) = i+ 1, σn(i+ 1) = i) = 1.
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We have then, using again the stability under conjugation,

P(i ∈ D(σn)) = P(σn(1) = 1, σn(2) 6= 2)

+ P(σn(1) = 2, σn(2) = 1)

+ P(σn(1) /∈ {1, 2}, σn(2) = 1)

+
1

2
P(σn(1) /∈ {1, 2}, σn(2) /∈ {1, 2})

and the lemma follows.

Proof of Proposition 1.20. Let ν be a probability measure on Σ. By Lemma 3.10 and by
using (1.7) and (1.8) for A = {1}, we obtain

E(|D(σνn)|)
n

=
n− 1

n
P (1 ∈ D(σνn))→

∫
Σ

â1

1−
∑
i≥1

xi

 dν(x)

=
1

2

1−
∫

Σ

(
1−

∑
i

xi

)2

dν(x)

 .
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