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Abstract

For the local time Lx
t of super-Brownian motionX starting from δ0, we study its asymp-

totic behavior as x→ 0. In d = 3, we find a normalization ψ(x) = ((2π2)−1 log(1/|x|))1/2

such that (Lx
t −(2π|x|)−1)/ψ(x) converges in distribution to standard normal as x→ 0.

In d = 2, we show that Lx
t − π−1 log(1/|x|) converges a.s. as x→ 0. We also consider

general initial conditions and get some renormalization results. The behavior of the
local time allows us to derive a second order term in the asymptotic behavior of a
related semilinear elliptic equation.

Keywords: super-Brownian motion; local time; semilinear elliptic equation.
AMS MSC 2010: 60J55; 60J68; 35J61.
Submitted to EJP on November 18, 2017, final version accepted on October 4, 2018.
Supersedes arXiv:1711.06447.

1 Introduction and main results

1.1 Introduction

Super-Brownian motion arises as a scaling limit of critical branching random walks.
Let MF = MF (R

d) be the space of finite measures on (Rd,B(Rd)) equipped with the
topology of weak convergence of measures, and (Ω,F ,Ft, P ) be a filtered probability
space. Let C([0,∞),MF (R

d)) denote the space of continuous functions from [0,∞) to
MF (R

d) with the compact open topology. A Super -Brownian Motion X starting at µ ∈
MF (R

d) is a continuousMF (R
d)-valued strong Markov process defined on (Ω,F ,Ft, P )

with X0 = µ a.s. We write Xt(φ) for
∫
Rd φ(y)Xt(dy). It is well known that super-

Brownian motion is the solution to the following martingale problem (see [13], II.5): For
any φ ∈ C2

b (R
d),

Xt(φ) = X0(φ) +Mt(φ) +

∫ t

0

Xs(
∆

2
φ)ds, (1.1)

where Mt(φ) is a continuous Ft-martingale such that M0(φ) = 0 and the quadratic
variation ofM(φ) is

[M(φ)]t =

∫ t

0

Xs(φ
2)ds.
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Renormalization of local times

The martingale problem uniquely determines the law PX0
of super-Brownian motion X

on C([0,∞),MF (R
d)).

Local times of superprocesses have been studied by many authors (cf. [15], [2], [1],
[10], [11]. In a recent work, [12] obtain the exact Hausdorff dimension of the boundary
of super-Brownian motion, defined as the boundary of the set of points where the local
time is positive. Now we recall that [15] has proved that for d ≤ 3, there exists a random
function Lx

t such that for any φ ∈ Cb(R
d),∫ t

0

Xs(φ)ds =

∫
Rd

φ(x)Lx
t dx.

Lx
t is called the local time of X at point x ∈ Rd and time t ≥ 0, which is jointly lower

semi-continuous and is monotone increasing in t ≥ 0. It also can be defined as

Lx
t := lim

ε→0

∫ t

0

Xs(p
x
ε )ds,

where pxε (y) = pε(y − x) is the transition density of d-dimensional Brownian motion. The
joint continuity of Lx

t is given in Theorem 3 of [15], which we now recall.

Theorem A. ([15]) Let d ≤ 3 and X0 = µ ∈ MF (R
d). Then there is a version of the

local time Lx
t which is jointly continuous on the set of continuity points of µqt(x), where

qt(x) =
∫ t

0
ps(x)ds and µqt(x) =

∫
µ(dy)

∫ t

0
ps(y − x)ds.

Remark 1.1. When d = 1, µqt(x) is always jointly continuous (see Proposition 3.1 in
[15]), so the above theorem implies that there is a version of the local time Lx

t that is
always jointly continuous, which is also a result of [9]. When d ≥ 4, we have

∫ t

0
Xs(·)ds is

a.s. a singular measure, ∀t > 0 and so local times do not exist. See Exercise III.5.1 of
[13] or [6] for more discussions.

It is also natural to consider the case under the canonical measure Nx0
. Theorem

II.7.3(a) in [13] gives the existence of a σ-finite measure Nx0
on C([0,∞),MF (R

d)), and
it is defined to be the weak limit of NPN

δx0
(XN

· ∈ ·) as N → ∞, where XN
· under PN

δx0

is the approximating branching particle system starting from a single particle at x0
(see Ch.p. II.3 of [13]). In this way, Nx0

describes the contribution of a cluster from
a single ancestor at x0 and the super-Brownian motion is then obtained by a Poisson
superposition of such clusters. In fact, we have

Xt =

∫
νt Ξ(dν), t > 0, has law PX0

,

where Ξ is a Poisson point process with intensity NX0
=
∫
Nx0

(·)X0(dx0) (see, e.g.,
Theorem II.7.3(c) in [13]). The existence of the local time Lx

t under Nx0
then follows

from this decomposition and the existence under Pδx0
. Therefore the local time Lx

t may
be decomposed as

Lx
t =

∫
Lx
t (ν) Ξ(dν)

d
=
∑
i

Lx
t (νi).

Perhaps surprisingly Lx
t will be jointly continuous on {(t, x) : t ≥ 0, x ∈ Rd}, Nx0 -a.e..

1.2 Main results

Theorem 1.2. Let d ≤ 3. Then for all x0 ∈ Rd, we have Nx0 -a.e. that Lx
t is jointly

continuous on {(t, x) : t ≥ 0, x ∈ Rd}. Moreover, we have

lim
t↓0

sup
x
Lx
t = 0,Nx0 -a.e..
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Renormalization of local times

As is indicated in the remark after Theorem A, Lx
t is jointly continuous for all t ≥ 0

and x in d = 1. Now we focus on the case X0 = δ0 in d = 2 and d = 3. The continuity
of µqt(x) with µ = δ0 fails for x = 0 and t ≥ 0, while Theorem 1.2 tells us that the local
time is jointly continuous everywhere under the canonical measure N0. We are then
interested in the asymptotic behavior of local time Lx

t , under the law Pδ0 , as x → 0

in d = 2 and 3. By Lemma 1 in [15], we have for any X0 ∈ MF (R
d) and for any fixed

ε > 0,
Lx
t − Lx

ε is jointly continuous on {(t, x) : t ≥ ε, x ∈ Rd}, PX0
-a.s.. (1.2)

This also follows by the Markov Property at time ε and the fact that µ = Xε will satisfy
the condition on Theorem A that µqt(x) is jointly continuous for all t and x. On the other
hand we expect that when d = 2 or 3, the singularity in the initial condition leads to the
singularity of the local time, leading to our main results below.

Convention on Constants Constants whose value is unimportant and may change
from line to line are denoted C, while constants whose values will be referred to later
and appear initially in say, Theorem i.j are denoted ci.j .

Notations IfM is a metric space equipped with a metric d, let (ξt)t∈T be a collection

of M -valued random vectors. We denote convergence in probability P by ξt
P−→ ξt0 as

t→ t0 if for any ε > 0, we have

P (d(ξt, ξt0) > ε) → 0 as t→ t0.

We denote weak convergence, or convergence in distribution, by ξt
d−→ ξt0 as t→ t0 if for

any φ ∈ Cb(M),
Eφ(ξt) → Eφ(ξt0) as t→ t0.

Theorem 1.3. Let c1.3 = 1/(2π) and ψ(x) = (2c21.3 log(1/|x|))1/2, and X be a super-
Brownian motion in d = 3 with initial condition X0 = δ0. Then for each 0 < t ≤ ∞(

X,
Lx
t − c1.3/|x|
ψ(x)

)
d−→
(
X,Z

)
as x→ 0,

where Z denotes a random variable with standard normal law which is independent of
X. The weak convergence occurs on the space (C([0,∞),MF (R

3))×R).
Theorem 1.4. Let c1.4 = 1/π and X be a super-Brownian motion in d = 2 with initial
condition X0 = δ0. Then with Pδ0 -probability one,

lim
x→0

Lx
t − c1.4 log

1

|x|
= c1.4(Xt(g0)−Mt(g0)), ∀ 0 < t ≤ ∞,

where g0(y) = log |y| andMt(g0) is an Ft-martingale defined in terms of the martingale
measure associated with super-Brownian motion, and both terms on the right-hand side
are a.s. finite.

Remark 1.5. (a) The independence of Z and X is suggested by (1.2) and that (Lx
ε −

c1.3/|x|)/ψ(x) converges in distribution for all ε > 0. We also use the same idea to prove
the independence of X and Z in Section 3.2.

(b) The re-centering constants taking the forms of c1.3/|x| in d = 3 and c1.4 log(1/|x|)
in d = 2 are both suggested by setting φ to be these two potential functions in the
martingale problem (1.1). The scaling by ψ(x) in Theorem 1.3 is necessary since the
variance of the local time blows up in d = 3, but not in d = 2. It will become clearer in
Theorem 1.8 below for the general initial condition case, where a scaling may or may
not be needed for the local time in d = 3.

EJP 23 (2018), paper 109.
Page 3/45

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP231
http://www.imstat.org/ejp/


Renormalization of local times

Compared to the a.s. convergence case in Theorem 1.4 when d = 2, we also establish
the following a.s. convergence result in d = 3.

Theorem 1.6. Let X be a super-Brownian motion in d = 3 with initial condition X0 = δ0.
Then for any α > 0, with Pδ0 -probability one,

lim
x→0

Lx
t − c1.3/|x|
1/|x|α

= 0, ∀ 0 < t ≤ ∞.

Remark 1.7. While Theorem 1.3 tells us that the re-centered local time has an Gaus-
sian type oscillation of order (log(1/|x|))1/2 for x near 0 in d = 3, the above theorem
furthermore implies that with Pδ0 -probability one, this oscillation will be killed by any
polynomial decay.

Let the extinction time ζ of X be defined as ζ = ζX = inf{t ≥ 0 : Xt(1) = 0}. Then we
have Lx

∞ = Lx
ζ . We know that ζ < ∞ a.s. (see Chp II.5 in [13]), and so can use (1.2) to

see that limx→0(L
x
∞ − Lx

t ) is finite a.s. for all t > 0. On the other hand, Theorem 1.4 and
Theorem 1.6 above imply that limx→0 L

x
t = ∞, ∀0 < t ≤ ∞ with Pδ0 -probability one in

d = 2 and d = 3, and so we can see that the singularity in the initial condition indeed
leads to the singularity of the local time after a positive time. [12] use the t = ∞ case in
their work on the dimension of the boundary of super-Brownian motion. In the meantime,
it would be interesting to find functions ψ̄1 or ψ̄2 so that with Pδ0 -probability one, for all
0 < t ≤ ∞,

lim sup
x→0

Lx
t − c1.3/|x|
ψ̄1(x)

= 1, or lim inf
x→0

Lx
t − c1.3/|x|
ψ̄2(x)

= −1,

and we state it as an open problem.

1.3 General initial conditions

Now that we have the above results for the case X0 = δ0, we will then consider the
general initial condition case X0 = µ ∈MF (R

d).

1.3.1 The case d=3

The following Tanaka formula is from Theorem 6.1 in [2]: If µ(φx) < ∞ with φx(y) =

c1.3/|y − x|, then
Lx
t = µ(φx) +Mt(φx)−Xt(φx), (1.3)

whereMt(φx) is an Ft-martingale which is defined in terms of the martingale measure
associated with super-Brownian motion. In particular, we haveM0(φx) = 0 andMt(φx)

has quadratic variation

[M(φx)]t =

∫ t

0

Xs(φ
2
x)ds. (1.4)

The condition µ(φx) <∞ on (1.3) suggests that we define the set of “bad” points by

D = {x0 ∈ R3 :

∫
1

|y − x0|
µ(dy) = ∞}. (1.5)

We show that D is a Lebesgue null set and in particular Dc is dense in R3 (see Lemma
7.4). Then we can consider the behavior of the local time as x → x0 for x ∈ Dc and
x0 ∈ D. One can show that (t0, x0) is a continuity point of µqt(x) for all t0 ≥ 0 if and
only if x0 is a continuity point of

∫
1/|y − x|µ(dy) (see Appendix B(ii)). So Theorem A

asserts joint continuity of Lx
t on {(t, x) : t ≥ 0, x is a continuity point of

∫
1/|y−x|µ(dy)}.

Therefore the following is a partial converse to Sugitani’s Theorem A in d = 3:
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Renormalization of local times

Theorem 1.8. Let X be a super-Brownian motion in d = 3 with initial condition X0 =

µ ∈ MF (R
3) and D be defined as (1.5). Then for any point x0 ∈ D, with Pµ-probability

one we have for any t > 0, x 7→ Lx
t is discontinuous at x0. Moreover, we have

lim
x∈Dc,x→x0

Lx
t = ∞ in probability.

Now that the discontinuity of Lx
t is established for points in D, we extend Theorem

1.3 to such points in part (a) of the following theorem and show that different asymptotic
behavior is possible in part (b).

Theorem 1.9. Let X be a super-Brownian motion in d = 3 with initial condition X0 =

µ ∈MF (R
3). Let x0 ∈ D,

(a) If xn ∈ Dc satisfies ∫
log+(1/|y − xn|)µ(dy) → ∞ as xn → x0,

then for all 0 < t ≤ ∞,

Lxn
t −

∫
c1.3/|y − xn|µ(dy)

(2c21.3
∫
µ(dy) log+(1/|y − xn|))1/2

d−→ Z as xn → x0, (1.6)

where Z is a r.v. with standard normal law in R.

(b) If xn ∈ Dc satisfies∫
log+(1/|y − xn|)µ(dy) →

∫
log+(1/|y − x0|)µ(dy) <∞ as xn → x0,

then for all 0 < t ≤ ∞,

Lxn
t −

∫
c1.3

|y − xn|
µ(dy)

Pµ−−→Mt(φx0)−Xt(φx0) as xn → x0, (1.7)

where the right hand side is Pµ-a.s. finite.

Remark 1.10. By using the same arguments in Section 3.2, we can get the joint conver-
gence in distribution of X and the renormalized local time in Theorem 1.9(a) towards
(X,Z), with Z independent of X, exactly as in Theorem 1.3.

1.3.2 The case d=2

Theorem 1.11. Let X be a super-Brownian motion in d = 2 with initial condition
X0 = µ ∈MF (R

2). Then there is a jointly continuous version of

Lx
t −

∫
1

π
log+

1

|y − x|
µ(dy)

on {(t, x) : t > 0, x ∈ R2}.
For any t > 0, (qt(y)− (1/π) log+(1/|y|)) can be extended to be a bounded continuous

function on R2 by (C.2) in Appendix C. This shows that the above theorem includes
Sugitani’s Theorem A for t > 0, and it also gives a partial converse to Sugitani’s Theorem
A in d = 2. The more interesting case is where the potential kernel blows up and Theorem
1.11 gives a true renormalization of the local time. It is easy to combine the continuity
implicit in Theorem 1.11 with that of Theorem A to conclude the following Corollary:

Corollary 1.12. There is a jointly continuous version of the above renormalized local
time on {(t, x) : t > 0, x ∈ R2}

⋃
{(0, x) : x is a continuity point of

∫
log+(1/|y−x|)µ(dy)}.
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Renormalization of local times

1.4 Application to semilinear PDE

Consider the super-Brownian motion with initial condition µ ∈ MF in d = 3. It has
been shown (see Theorem 3.3 of [8] and Lemma 2.1 of [12]) that for each λ > 0,

Eµ

(
exp

(
−λLx

∞

))
= exp

(
−
∫
V λ(y − x)µ(dy)

)
, (1.8)

where V λ(x) is the unique solution to

∆

2
V λ(x) =

1

2
(V λ(x))2 − λδ0, V λ(x) > 0. (1.9)

Note that the above equation is interpreted in a distributional sense.
Such semilinear singular PDEs have been studied by a number of authors in the 80’s:

[16], [5], [4]. It is known (see p. 187 in [4]) that the unique solution V λ is smooth in
R3\{0}, and near the origin

V λ(x)

λ/(2π|x|)
→ 1 as x→ 0. (1.10)

It’s also shown in Remark 1(b) of [4] that

|V λ(x)− λ
1

2π

1

|x|
| ≤ C(| log |x||+ 1) for x 6= 0.

Our aim is to find the exact second order term as x→ 0. Let µ = δ0 in (1.8) to see that
Eδ0(exp(−λLx

∞)) = exp(−V λ(x)). A good intuition from Theorem 1.3 that

Lx
∞ − c1.3/|x|

(2c21.3 log(1/|x|))1/2
d−→ Z (1.11)

implies
Lx
∞ − c1.3/|x| ≈law (2c21.3 log(1/|x|))1/2Z as x ≈ 0,

and hence we expect that when x goes to 0,

e−(V λ(x)−λc1.3/|x|) = Eδ0e
−λ(Lx

∞−c1.3/|x|) ≈ Ee−λ(2c21.3 log(1/|x|))1/2Z = e
1
2λ

22c21.3 log(1/|x|).

In Section 8 we will show that this intuition is correct and prove the following:

Theorem 1.13. Let V λ(x) be the solution of the semilinear elliptic equation (1.9). Then

V λ(x)− λ/(2π|x|)
λ2 log(1/|x|)/(4π2)

→ −1, as x→ 0 in R3.

Organization of the paper Section 2 gives the main ideas of the proofs of the main
results, Theorem 1.2, 1.3 and 1.4. In fact we give a complete proof of Theorem 1.2 and
present conditional proofs of Theorem 1.3 and 1.4 assuming some intermediate results.
The proof of Theorem 1.3 and 1.4 will then be finished in Sections 3 and 4. The cumulants
of super-Brownian motion discussed in Section 4 may be of independent interests. Here
we establish moment estimates following the strategy of Sugitani. Section 5 contains the
proof of Theorem 1.6. Sections 6 and 7 are devoted to the cases under general initial
conditions and finally Section 8 is the application to PDE.
Acknowledgments. This work was done as part of the author’s graduate studies at
the University of British Columbia. I would like to thank my supervisor, Professor
Edwin Perkins, for telling me about this problem and for many helpful discussions and
suggestions throughout this work. I also thank two anonymous referees for their careful
reading of the manuscript and for their valuable comments which made the paper more
readable.
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Renormalization of local times

2 Proof of the main results

2.1 Continuity under canonical measure (Theorem 1.2)

Proof of Theorem 1.2. Fix ε, δ > 0. Conditioning on FX
ε and on Xε 6= 0, by Markov

property and Theorem II 7.3(c) of [13], our canonical cluster decomposition according to
ancestors at time ε implies

Xt+ε =

∫
νt Ξ

ε(dν), ∀ t ≥ 0, (2.1)

where Ξε is Poisson point process with intensity NXε
. Let ζ = ζX = inf{t ≥ 0 : Xt(1) = 0}

denote the extinction time of X. Then for any t ≥ 0,

Lx
t+ε − Lx

ε =

∫
Lx
t (ν) Ξ

ε(dν) ≥
∫
Lx
t (ν) 1{ζ>δ} Ξε(dν)

d
=

Nδ∑
i=1

Lx
t (X

i). (2.2)

where Nδ is a Poisson random variable of parameter NXε(ζ > δ) = 2Xε(1)/δ, given Nδ,
(xi : i ≤ Nδ) are i.i.d. with law Xε/Xε(1), and given Nδ and (xi) the Xi are i.i.d. with law
Nxi(X ∈ ·|ζ > δ). Recall (1.2) that for any X0 ∈MF (R

d) and any fixed ε > 0, we have

Lx
t − Lx

ε is jointly continuous on {(t, x) : t ≥ ε, x ∈ Rd}, PX0 -a.s..

Together with the compactness of the support of local times (see Corollary III.1.7 of
[13]), we have

lim
t↓0

sup
x
Lx
t+ε − Lx

ε = 0, Pδ0 -a.s.. (2.3)

Since we have Nδ = 1 with positive probability, we conclude from (2.2) and (2.3) that for
Xε-almost all x0,

lim
t↓0

sup
x
Lx
t = 0, Nx0

(·|ζ > δ)-a.e..

Since Nx0
(ζ > δ) <∞, the above holds Nx0

(·, ζ > δ)-a.e.. Let δ ↓ 0 to conclude that

lim
t↓0

sup
x
Lx
t = 0, Nx0 -a.e.. (2.4)

Next use (2.1) to see that for t ≥ δ,

Lx
t+ε − Lx

δ+ε =

∫
(Lx

t (ν)− Lx
δ (ν)) Ξ

ε(dν)

=

∫
(Lx

t (ν)− Lx
δ (ν)) 1{ζ>δ} Ξε(dν)

d
=

Nδ∑
i=1

(Lx
t (X

i)− Lx
δ (X

i)). (2.5)

The last equality is the same with the one in (2.2). By (1.2) we have

Lx
t+ε − Lx

δ+ε is jointly continuous on {(t, x) : t ≥ δ, x ∈ Rd}, PX0
-a.s..

Since we have Nδ = 1 with positive probability, we conclude from (2.5) that

Lx
t − Lx

δ is jointly continuous on {(t, x) : t ≥ δ, x ∈ Rd}, Nx0
(·|ζ > δ)-a.e..

SinceNx0
(ζ > δ) <∞, the above holdsNx0

(·, ζ > δ)-a.e. and furthermore use Lx
t −Lx

δ = 0

for the case ζ ≤ δ to conclude

Lx
t − Lx

δ is jointly continuous on {(t, x) : t ≥ δ, x ∈ Rd}, Nx0
-a.e.. (2.6)

Now we are ready to finish the proof. By (2.4), we can choose ω outside a null set
N1 such that supx L

x
t → 0 as t ↓ 0. By (2.6), we can choose ω outside a null set N2(δ)
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Renormalization of local times

such that Lx
t − Lx

δ is jointly continuous on {(t, x) : t ≥ δ, x ∈ Rd}. Now take δ = 1/n and
N = ∪∞

n=1N2(1/n) ∪N1 to see that for ω ∈ N c, if we fix any ε > 0, then for any t > 0, we
can find some n ≥ 1 such that supx L

x
1/n < ε and 1/n < t. Note we have

Lx
t − Lx′

t′ = [(Lx
t − Lx

1/n)− (Lx′

t′ − Lx′

1/n)] + Lx
1/n − Lx′

1/n.

Then use the joint continuity of Lx
t − Lx

1/n on {(t, x) : t ≥ 1/n, x ∈ Rd} to see that there is

some γ = γ(ε) > 0 such that |(Lx
t − Lx

1/n)− (Lx′

t′ − Lx′

1/n)| < ε if |(t′, x′)− (t, x)| < γ, and
so conclude

|Lx
t − Lx′

t′ | ≤ 3ε, if |(t′, x′)− (t, x)| < γ.

Hence (t, x) 7→ Lx
t is jointly continuous on {(t, x) : t > 0, x ∈ Rd}, Nx0

-a.e.. The t = 0 case
follows immediately from (2.4).

2.2 Weak renormalization of the local times in d=3 (Theorem 1.3)

Recall the Tanaka formula (1.3) for the case µ = δ0. Then for x 6= 0 we have

Lx
t − c1.3/|x|

(2c21.3 log(1/|x|))1/2
=

Mt(φx)

(2c21.3 log(1/|x|))1/2
− Xt(φx)

(2c21.3 log(1/|x|))1/2
. (2.7)

For the second term on the right-hand side of (2.7), recall a result of concentration of
mass from Theorem III.3.4 in [13].

Lemma 2.1. Let d = 2 or 3. Then there is some constant c2.1(d) > 0 such that for all
X0 ∈MF (R

d), PX0
-a.s. we have

∀δ > 0, ∃ r0(δ, ω) > 0 so that sup
y∈Rd,t≥δ

Xt(B(y, r)) ≤ c2.1(d)ψ̄(r) ∀r ∈ (0, r0),

where ψ̄(r) = r2(log+(1/r))4−d.

For the case d = 3 with X0 = δ0, we use Lemma 2.1 to see that with Pδ0 -probability
one, there exist some r0(t, ω) ∈ (0, 1] and some constant C > 0 such that∫

|y−x|<r0

1

|y − x|
Xt(dy) ≤

∞∑
n=0

2n+1

r0

∫
1(

r0
2n+1

≤ |y − x| < r0
2n

)Xt(dy)

≤
∞∑

n=0

2n+1

r0
sup
x∈Rd

Xt(B(x,
r0
2n

)) ≤
∞∑

n=0

2n+1

r0
· c2.1(3)(

r0
2n

)2 log+(
2n

r0
) ≤ C.

and hence∫
1

|y − x|
Xt(dy) ≤

1

r0
Xt(1) +

∫
|y−x|<r0

1

|y − x|
Xt(dy) ≤

1

r0
Xt(1) + C. (2.8)

Therefore
Xt(φx)

(2c21.3 log(1/|x|))1/2
a.s.−−−→ 0, as x→ 0. (2.9)

Lemma 2.2. For any 0 < t <∞,

Mt(φx)

(2c21.3 log(1/|x|))1/2
d−→ Z as x→ 0,

where Z is standard normal on the line.

With the above lemma, we are ready to turn to the
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Renormalization of local times

Proof of Theorem 1.3. For 0 < t <∞, by (2.7), (2.9) and the above lemma, we may apply
Theorem 25.4 in [3] to get

Lx
t − c1.3/|x|

(2c21.3 log(1/|x|))1/2
d−→ Z as x→ 0. (2.10)

For t = ∞, recall the extinction time ζ = ζX = inf{t ≥ 0 : Xt(1) = 0} of X, we have
Lx
∞ = Lx

ζ and 0 < ζ < ∞ a.s.. Fix ε > 0. If ζ ≤ ε, then Lx
∞ − Lx

ε = 0 for all x. If ζ > ε,
then it follows that

lim
x→0

Lx
ζ − Lx

ε = L0
ζ − L0

ε <∞, Pδ0 -a.s.

by (1.2) with t = ζ. So we conclude that

lim
x→0

Lx
ζ − Lx

ε

(2c21.3 log(1/|x|))1/2
= 0, Pδ0 -a.s.. (2.11)

Now using (2.10) with t = ε and (2.11), we apply Theorem 25.4 in [3] to get

Lx
∞ − c1.3/|x|

(2c21.3 log(1/|x|))1/2
=

Lx
ζ − Lx

ε

(2c21.3 log(1/|x|))1/2
+

Lx
ε − c1.3/|x|

(2c21.3 log(1/|x|))1/2
d−→ Z as x→ 0.

The proof of the joint convergence in distribution of X and the renormalized local time
above towards (X,Z), with Z independent of X, will be given in Section 3.2.

In order to prove Lemma 2.2, we observe that [M(φx)]t/(2c
2
1.3 log(1/|x|)) is the

quadratic variation of martingale Mt(φx)/(2c
2
1.3 log(1/|x|))1/2. By using the Dubins-

Schwarz theorem (see [14], Theorem V1.6 and V1.7), with an enlargement of the under-
lying probability space, we can construct some Brownian motion Bx(t) in R depending
on x such that

Mt(φx)

(2c21.3 log(1/|x|))1/2
= Bx

( [M(φx)]t
2c21.3 log(1/|x|)

)
. (2.12)

In Section 3.1 we will prove that

[M(φx)]t
2c21.3 log(1/|x|)

a.s.−−→ 1, (2.13)

and show that
Mt(φx)

(2c21.3 log(1/|x|))1/2
= Bx

( [M(φx)]t
2c21.3 log(1/|x|)

)
d−→ Z.

In order to prove (2.13), we recall from (1.4) that

[M(φx)]t =

∫ t

0

ds

∫
c21.3

|y − x|2
Xs(dy),

and the key observation is that in d = 3,

∆y log |y − x| = 1

|y − x|2
for y 6= x. (2.14)

Notation Throughout the paper, we define

gx(y) := log |y − x| for y ∈ Rd\{x}.

Then the martingale problem (1.1) suggests the following:

Proposition 2.3. Let d = 3 and x 6= 0 in R3. Then we have Pδ0 -a.s. that

1

2

∫ t

0

∫
1

|y − x|2
Xs(dy)ds = Xt(gx)− δ0(gx)−Mt(gx), ∀t ≥ 0,

where Xt(gx) is continuous in t andMt(gx) is a continuous L2 martingale.

The proof of Proposition 2.3 is involved and hence is deferred to Section 3.3.
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Renormalization of local times

2.3 Strong renormalization of the local times in d=2 (Theorem 1.4)

We notice that in d = 2, ∆gx = 2πδx holds in a distributional sense. Then again the
martingale problem (1.1) will suggest that

Xt(gx) = δ0(gx) +Mt(gx) + πLx
t . (2.15)

We will show that this intuition is correct and the proof indeed is very similar to that of
Proposition 2.3. In Section 3.3, the proofs of Proposition 2.3 and the following one will
be given.

Proposition 2.4 (Tanaka formula for d=2). Let d = 2 and x 6= 0 in R2. Then we have
Pδ0 -a.s. that

Lx
t − 1

π
log

1

|x|
=

1

π

[
Xt(gx)−Mt(gx)

]
, ∀t ≥ 0, (2.16)

where Xt(gx) is continuous in t andMt(gx) is a continuous L2 martingale.

Remark 2.5. [2] gives the following Tanaka formula for general initial condition X0 = µ

in d = 2: If
∫
µ(dy) log+(1/|y − x|) <∞, then

Xt(gα,x) = µ(gα,x) +Mt(gα,x) + α

∫ t

0

Xs(gα,x)ds− Lx
t , ∀t ≥ 0, Pµ-a.s., (2.17)

where

gα,x(y) :=

∫ ∞

0

e−αtpt(x− y)dt, for α > 0, x, y ∈ R2. (2.18)

We can see that gα,x is not well defined for α = 0 in the case d = 2 and our result
effectively extends this Tanaka formula to the α = 0 case. This extended Tanaka
formula (2.16) can be generalized to any compactly supported µ ∈ MF (R

2) such that∫
µ(dy) log+(1/|y − x|) <∞:

Lx
t =

1

π

[
Xt(gx)−Mt(gx)− µ(gx)

]
,∀t ≥ 0, Pµ-a.s.,

The proof is similar to those of Proposition 2.3, Proposition 2.4 and Proposition 7.1. The
idea is to find the appropriate dominating function by using the compact support of µ to
control the log+(|y − x|) part and by using Lemma 7.3 to control the log+(1/|y − x|) part.
We will not give the proof in this paper.

With Proposition 2.4 in hand, Theorem 1.4 would follow if we could establish the
continuity of Xt(gx) andMt(gx) in x for any fixed t > 0. Now we consider the two cases
d = 2 and d = 3 with X0 = δ0.

Lemma 2.6. For any u, v ∈ Rd\{0},∣∣∣ log |u| − log |v|
∣∣∣ ≤ |u− v|1/2(|u|−1/2 + |v|−1/2).

Proof. Let 0 < r1 < r2. Then by Cauchy-Schwartz,

log r2 − log r1 =

∫ r2

r1

x−1dx ≤
[ ∫ r2

r1

x−2dx
]1/2

(r2 − r1)
1/2 ≤ r

−1/2
1 (r2 − r1)

1/2.

The proof follows by replacing r1, r2 with |u|, |v| and a triangle inequality.

Lemma 2.7. Let d = 2 or 3. Then for any t > 0, with Pδ0 probability one, x 7→ Xt(gx) is
continuous for all x ∈ Rd.
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Proof. Fix any x, x′ ∈ Rd. Similar to the derivation of (2.8), we use Lemma 2.1 to see
that with Pδ0 -probability one, there is some r0(δ, ω) ∈ (0, 1] and some constant C(d) > 0

such that for all x ∈ Rd, ∫
Xt(dy)

1

|y − x|1/2
≤ 1

(r0)1/2
Xt(1) + C.

Then use Lemma 2.6 to get

|Xt(gx)−Xt(gx′)| ≤ |x− x′|1/2
∫ ( 1

|y − x|1/2
+

1

|y − x′|1/2
)
Xt(dy)

≤ 2|x− x′|1/2
( 1

(r0)1/2
Xt(1) + C

)
.

Note that Xt(1) <∞ a.s.. Let |x− x′| → 0 to conclude |Xt(gx)−Xt(gx′)| → 0 a.s..

Lemma 2.8. Let d = 2 or 3. Then for any t > 0, under Pδ0 there exists a version of
Mt(gx) that is continuous in x ∈ Rd.

For each n ≥ 1, by Burkholder-Davis-Gundy Inequality, there exists some Cn > 0 such
that

Eδ0

[∣∣Mt(gx)−Mt(gx′)
∣∣4n] ≤ CnEδ0

[( ∫ t

0

ds

∫
Xs(dy)(gx(y)− gx′(y))2

)2n]
(2.19)

for any x, x′ ∈ Rd. By Lemma 2.6, we have

(gx(y)− gx′(y))2 ≤ 2|x− x′|( 1

|y − x|
+

1

|y − x′|
). (2.20)

Then

Eδ0

[∣∣Mt(gx)−Mt(gx′)
∣∣4n] ≤ Cn(2|x− x′|)2n22n

× Eδ0

[( ∫ t

0

ds

∫
Xs(dy)

1

|y − x|
)2n

+
( ∫ t

0

ds

∫
Xs(dy)

1

|y − x′|
)2n]

. (2.21)

By using moment estimates from [15], we have the following lemma:

Lemma 2.9. Let d = 2 or 3 and X0 = µ ∈ MF (R
d). Fix any t > 0. Then for each n ≥ 1,

there exists some C = C(t, n, d, µ(1)) > 0 such that for all x ∈ Rd

Eµ

[( ∫ t

0

ds

∫
Xs(dy)

1

|y − x|
)2n] ≤ C <∞.

The proof of Lemma 2.9 will be given in Section 4. With Lemma 2.9 in hand, we can
proceed to the

Proof of Lemma 2.8. By using Lemma 2.9 and (2.21), we have

Eδ0

[∣∣Mt(gx)−Mt(gx′)
∣∣4n] ≤ Cn(2|x− x′|)2n22nC = C(t, n, d)|x− x′|2n.

By taking n large enough we may apply Kolmogorov’s continuity criterion to obtain a
continuous version ofMt(gx) in x.

Before proceeding to the proof of Theorem 1.4, we state the following lemma:

Lemma 2.10. Let hx(t) be a non-decreasing function on {t > 0} for each x 6= 0. If
limx→0 hx(q) = h0(q) for all rational q > 0, where h0(t) is continuous on {t > 0}, then
limx→0 hx(t) = h0(t) holds for all t > 0.
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Proof. This follows by the elementary density argument in Helly’s selection theorem.

Now we are ready to turn to the

Proof of Theorem 1.4. Proposition 2.4, Lemma 2.7 and Lemma 2.8 imply that for any
t > 0, we have Pδ0 -a.s. that L

x
t − (1/π) log(1/|x|) →Mt(g0)−Xt(g0) as x→ 0. Let qn be

all the rationals in {t > 0} and then choose ω outside a null set N such that for all n, we
have Lx

qn − (1/π) log(1/|x|) → Mqn(g0) −Xqn(g0) as x → 0. One can check that for any
T > 0, as ε ↓ 0,

sup
t≤T

|Mt(Pεg0)−Mt(g0)|
L2

−−→ 0, and sup
0<t≤T

|Xt(Pεg0)−Xt(g0)| → 0.

The proof will be given in (ii) and (iii) of Section 3.3.1. Therefore Mt(g0) and Xt(g0)

are continuous on {t > 0}. Note that for each x 6= 0, t 7→ Lx
t − (1/π) log(1/|x|) is a

non-decreasing function on {t > 0}. So use Lemma 2.10 to conclude that for all t > 0,
we have Lx

t − (1/π) log(1/|x|) →Mt(g0)−Xt(g0) as x→ 0. The t = ∞ case follows since
the extinction time ζ <∞, Pδ0 -a.s..

3 Remaining proof of renormalization in d=3 (Theorem 1.3)

3.1 Convergence in distribution

In Section 2.2 we have reduced the proof of the convergence in distribution of the
renormalized local time in Theorem 1.3 to the proof of Lemma 2.2. Now we will finish
the

Proof of Lemma 2.2. Proposition 2.3 and (1.4) imply

[M(φx)]t = 2c21.3

(
Xt(gx)− δ0(gx)−Mt(gx)

)
.

Note that δ0(gx) = − log(1/|x|). Then

[M(φx)]t − 2c21.3 log(1/|x|)
2c21.3 log(1/|x|)

=
2c21.3

(
Xt(gx)−Mt(gx)

)
2c21.3 log(1/|x|)

a.s.−−→ 0 as x→ 0.

The a.s. convergence follows from Lemma 2.7 and Lemma 2.8. Hence we have shown
that

τx(t) :=
[M(φx)]t

2c21.3 log(1/|x|)
a.s.−−→ 1, as x→ 0. (3.1)

Recall from (2.12) that we can find some Brownian motion Bx(t) such that

Mt(φx)

(2c21.3 log(1/|x|))1/2
= Bx

( [M(φx)]t
2c21.3 log(1/|x|)

)
:= Bx

τx(t)
.

Let h be a bounded and uniformly continuous function on R. Let ε > 0 and choose δ > 0

such that |h(x)− h(y)| < ε holds for any x, y ∈ R with |x− y| < δ. Then

Eδ0 |h(Bx
τx(t)

)− h(Bx
1 )| ≤ ε+ 2‖h‖∞ · Pδ0(|Bx

τx(t)
−Bx

1 | > δ).

If γ > 0, then

Pδ0(|Bx
τx(t)

−Bx
1 | > δ) ≤Pδ0(|Bx

τx(t)
−Bx

1 | > δ, |τx(t)− 1| < γ) + Pδ0(|τx(t)− 1| > γ)

≤Pδ0( sup
|s−1|≤γ

|Bx
s −Bx

1 | > δ) + Pδ0(|τx(t)− 1| > γ)

=P ( sup
|s−1|≤γ

|Bs −B1| > δ) + Pδ0(|τx(t)− 1| > γ)

< ε+ Pδ0(|τx(t)− 1| > γ), if we pick γ small enough.
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Since τx(t) converges a.s. to 1 by (3.1), for |x| small enough, we have Pδ0(|τx(t)− 1| >
γ) < ε and hence

Eδ0 |h(Bx
τx(t)

)− h(Bx
1 )| ≤ ε+ 2‖h‖∞2ε.

Therefore
Mt(φx)

(2c21.3 log(1/|x|))1/2
= Bx

τx(t)
d−→ Z as x→ 0,

and the proof is complete.

3.2 Independence of X and Z

Throughout this section we write E for Eδ0 for simplicity (suppressing the dependence
on initial condition δ0). Fix 0 < t < ∞ and a sequence xn → 0. Let Zxn

t = (Lxn
t −

c1.3/|xn|)/(2c21.3 log 1/|xn|)1/2. By tightness of each component in (X,Zxn
t ), we clearly

have tightness of (X,Zxn
t ) as xn → 0, so it suffices to show all weak limit points coincide.

By taking a subsequence we may assume that (X,Zxn
t ) converges weakly to (X,Z). Let

(X,Z) be defined on (Ω̃, F̃t, P̃ ) where X is super-Brownian motion and Z is standard
normal under P̃ . For any 0 < t1 < t2 < · · · < tm, let φ0 : R → R and ψi : MF → R,
1 ≤ i ≤ m be bounded continuous. We have

lim
n→∞

E
[
ψ1(Xt1) · · ·ψm(Xtm)φ0(Z

xn
t )
]
= Ẽ

[
ψ1(Xt1) · · ·ψm(Xtm)φ0(Z)

]
since we assume that (X,Zxn

t ) converges weakly to (X,Z).
Pick ε > 0 such that ε < t1 and ε < t. Let n→ ∞, by (1.2) we get

Zxn
t − Zxn

ε =
Lxn
t − Lxn

ε

(2c21.3 log(1/|xn|))1/2
→ 0 a.s., (3.2)

and hence (0, Zxn
t − Zxn

ε ) → (0, 0) a.s.. By Theorem 25.4 in [3]

(X,Zxn
ε ) = (X,Zxn

t )− (0, Zxn
t − Zxn

ε )
d−→ (X,Z).

Therefore since Zxn
ε ∈ FX

ε ,

I := Ẽ
[
ψ1(Xt1) · · ·ψm(Xtm) · φ0(Z)

]
= lim

n→∞
E
[
ψ1(Xt1) · · ·ψm(Xtm) · φ0(Zxn

ε )
]

= lim
n→∞

E
[
E
(
ψ1(Xt1) · · ·ψm(Xtm)

∣∣FX
ε

)
· φ0(Zxn

ε )
]

= lim
n→∞

E
[
EXε

(
ψ1(Xt1−ε) · · ·ψm(Xtm−ε)

)
· φ0(Zxn

ε )
]
.

Define
Fε(ν) := Eν

(
ψ1(Xt1−ε) · · ·ψm(Xtm−ε)

)
for ν ∈MF . We claim Fε ∈ Cb(MF ). For m = 1 we have

Fε(ν) = Eν

(
ψ1(Xt1−ε)

)
.

By Theorem II.5.1 in [13], if Ttψ(ν) ≡ Eνψ(Xt), then Tt : Cb(MF ) → Cb(MF ) so Fε =

Tt1−εψ1 ∈ Cb(MF ) since ψ1 ∈ Cb(MF ). For m = 2,

Fε(ν) = Eν

[
ψ1(Xt1−ε)Eν

(
ψ2(Xt2−ε)

∣∣FX
t1−ε

)]
= Eν

[
ψ1(Xt1−ε)P̄t2−t1ψ2(Xt1−ε)

]
.

It is then reduced to the case m = 1 with ψ̃1 = ψ1P̄t2−t1ψ2. The general case follows by a
simple induction in m.
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Therefore by the weak convergence of (X,Zxn
ε ) to (X,Z), we have

I = lim
n→∞

E
[
Fε(Xε) · φ0(Zxn

ε )
]
= Ẽ

[
Fε(Xε) · φ0(Z)

]
.

Blumenthal 0-1 law implies that F̃X
0+ :=

⋂
s>0 F̃X

s is trivial and so the martingale conver-
gence theorem gives us that as ε→ 0,

Fε(Xε) = Ẽ
(
ψ1(Xt1) · · ·ψm(Xtm)

∣∣F̃X
ε

)
L1

−−→ Ẽ
(
ψ1(Xt1) · · ·ψm(Xtm)

)
.

Therefore

Ẽ
[
ψ1(Xt1) · · ·ψm(Xtm) · φ0(Z)

]
= I = lim

ε→0
Ẽ
[
Fε(Xε) · φ0(Z)

]
=Ẽ
[
Ẽ
(
ψ1(Xt1) · · ·ψm(Xtm)

)
· φ0(Z)

]
= Ẽ

(
ψ1(Xt1) · · ·ψm(Xtm)

)
· Ẽφ0(Z).

The above functionals are a determining class on C([0,∞),MF )×R and so we get
weak convergence of (X,Zx

t ) to (X,Z) where the latter are independent.

3.3 Proofs of Proposition 2.3 and Proposition 2.4

We first consider d = 2 or d = 3. The standard mollifier η ∈ C∞(Rd) is defined by

η(x) := C(d) exp
( 1

|x|2 − 1

)
1|x|<1, (3.3)

the constant C(d) selected such that
∫
Rd ηdx = 1. For any N ≥ 1, if χN is the convolution

of η and the indicator function of the ball B(0, N), then

χN (x) =

∫
Rd

1{|x−y|<N}η(y)dy =

∫
|y|<1

1{|x−y|<N}η(y)dy. (3.4)

One can check that χN is a C∞ function with support in B(0, N + 1), and

χN (x) =

∫
|y|<1

1{|x−y|<N}η(y)dy =

∫
|y|<1

η(y)dy = 1 for |x| < N − 1.

Let x 6= 0. Recall that gx(y) = log |y − x|. Let (Pt) be the Markov semigroup of
d-dimensional Brownian motion, then for any ε > 0, Pεgx is a C∞ function and in
particular Pεgx · χN ∈ C2

b (R
d), so the martingale problem (1.1) implies that Pδ0 -a.s. we

have

Xt(Pεgx · χN ) = δ0(Pεgx · χN ) +Mt(Pεgx · χN ) +

∫ t

0

Xs(
∆

2
(Pεgx · χN ))ds, ∀t ≥ 0, (3.5)

whereMt(Pεgx · χN ) is a martingale with quadratic variation

[M(Pεgx · χN )]t =

∫ t

0

Xs

(
(Pεgx · χN )2

)
ds.

One can check that Pεgx · χN ↑ Pεgx as N ↑ ∞. Then use monotone convergence
theorem to see that δ0(Pεgx · χN ) → δ0(Pεgx). By the compactness of the support of
super-Brownian motion (see Corollary III.1.7 of [13]), we have with Pδ0 -probability one,
for N(ω) large enough,

∫∞
0
Xs(B(0, N)c)ds = 0 and so obtain

sup
t≤T

∣∣∣Xt(Pεgx · χN )−Xt(Pεgx)
∣∣∣→ 0 as N → ∞,
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and

sup
t≤T

∣∣∣ ∫ t

0

Xs(
∆

2
Pεgx · χN )ds−

∫ t

0

Xs(
∆

2
Pεgx)ds

∣∣∣→ 0 as N → ∞.

On the other hand, we can use Dominated Convergence Theorem to get

Eδ0

[(
sup
t≤T

|Mt(Pεgx · χN )−Mt(Pεgx)|
)2]

→ 0 as N → ∞.

Take appropriate subsequence Nk → ∞ to conclude with Pδ0 -probability one,

Xt(Pεgx) = δ0(Pεgx) +Mt(Pεgx) +

∫ t

0

Xs(
∆

2
Pεgx)ds, ∀t ≥ 0, (3.6)

whereMt(Pεgx) is a martingale with quadratic variation

[M(Pεgx)]t =

∫ t

0

Xs

(
(Pεgx)

2
)
ds.

Now we want to let ε ↓ 0 in (3.6) to establish a.s. convergence.

3.3.1 Prelimineries

Lemma 3.1. Let d ≥ 1, for any 0 < α < d, there exists a constant C = C(α, d) > 0 such
that for any x 6= 0 in Rd and t > 0,∫

Rd

pt(y)
1

|y − x|α
dy ≤ C

1

|x|α
.

Proof. Let δ = |x|/2. Then∫
Rd

pt(y)
1

|y − x|α
dy ≤ 1

δα
+

∫
|y−x|<δ

pt(y)
1

|y − x|α
dy

≤ 1

δα
+ (

1

2πt
)d/2e−

δ2

2t

∫ δ

0

1

rα
C(d)rd−1dr.

Note that

(
1

2πt
)d/2e−

δ2

2t ≤ sup
t>0

(
1

2πt
)d/2e−

δ2

2t = C(d)
1

δd
.

Therefore ∫
R3

pt(y)
1

|y − x|α
dy ≤ 1

δα
+ C(d)

1

δd
· C(d)
d− α

δd−α = C(α, d)
1

|x|α
.

Lemma 3.2. Let d > 1. Then∫ t

0

∫
1

|y − x|
ps(y)dyds ≤

2
√
d

d− 1

√
t, ∀x ∈ Rd.

Proof. Let B be a d-dimensional Brownian motion starting at 0 and ρt = |x + Bt| be a
d-dimensional Bessel process starting at |x|. Then for a standard Brownian motion β, we
have the sde

ρt = |x|+ βt + ((d− 1)/2)

∫ t

0

1/ρsds.

Take means in the above and use E(|x+Bt| − |x|) ≤ E(|Bt|) ≤
√
d
√
t. The result follows

since E(1/ρs) = E(1/|Bs − x|).
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Now we proceed to the convergence of each term in (3.6), except for the last, as ε ↓ 0.
Note that we are in the case d = 2 or d = 3. All the constants showing below in (i)–(iii)
depend only on d.

(i) Let B be a d-dimensional Brownian motion starting at 0. Let ε ↓ 0 to see that∣∣∣δ0(Pεgx)− δ0(gx)
∣∣∣ ≤ E

(∣∣∣ log |Bε − x| − log |x|
∣∣∣) ≤ E

[ |Bε|1/2

|x|1/2
]
+ E

[ |Bε|1/2

|Bε − x|1/2
]

≤|x|−1/2
(
E|Bε|

)1/2
+
(
E|Bε|

)1/2
·
(
C|x|−1

)1/2
≤ C|x|−1/2ε1/4 → 0.

The second inequality is by Lemma 2.6 and the third inequality is by Lemma 3.1.

(ii) We know from the proof of (i) that for y − x 6= 0,∫
pε(z)

∣∣∣ log |z − (y − x)| − log |y − x|
∣∣∣dz ≤ C|y − x|−1/2ε1/4. (3.7)

By Doob’s inequality, for any T > 0 we have

Eδ0

[(
sup
t≤T

|Mt(Pεgx)−Mt(gx)|
)2]

≤ 4Eδ0

[ ∫ T

0

Xs

(
(Pεgx − gx)

2
)
ds
]

≤C2ε1/2 ·
∫ T

0

∫
ps(y)

1

|y − x|
dyds ≤ CT 1/2ε1/2 → 0,

the second inequality by (3.7) and that Eδ0Xt(dy) = pt(y)dy by Lemma 2.2 of [9]
and the last inequality by Lemma 3.2. Take a subsequence εn ↓ 0 to obtain

sup
t≤T

|Mt(Pεngx)−Mt(gx)| → 0, Pδ0 -a.s..

(iii) By (3.7), for any T > 0 we have

sup
t≤T

∣∣∣Xt(Pεgx)−Xt(gx)
∣∣∣ ≤ Cε1/4 sup

t≤T

∫
|y − x|−1/2Xt(dy). (3.8)

By Corollary III.1.5 in [13], with Pδ0 -probability one, there is some δ′(ω) ∈ (0, 1]

such that for all 0 < t < δ′, the closed support of Xt is within the region {y : |y| <
3(t log(1/t))1/2}. Then pick δ < δ′ small enough such that 3(δ log(1/δ))1/2 < |x|/2
and hence

sup
t≤δ

∫
|y − x|−1/2Xt(dy) ≤ 21/2|x|−1/2 sup

t≤δ
Xt(1). (3.9)

On the other hand, similar to the derivation of (2.8), we use Lemma 2.1 to see that
with Pδ0 -probability one, there is some r0(δ, ω) ∈ (0, 1] and some constant C(d) > 0

such that

sup
δ≤t≤T

∫
|y − x|−1/2Xt(dy) ≤ r

−1/2
0 sup

δ≤t≤T
Xt(1) + C. (3.10)

Therefore by (3.9) and (3.10), with Pδ0 -probability one we have

sup
t≤T

∫
|y − x|−1/2Xt(dy) ≤ 21/2|x|−1/2 sup

t≤δ
Xt(1) + r

−1/2
0 sup

δ≤t≤T
Xt(1) + C,

and use (3.8) to conclude as ε ↓ 0,

sup
t≤T

∣∣∣Xt(Pεgx)−Xt(gx)
∣∣∣→ 0, Pδ0 -a.s..
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3.3.2 Proof of Proposition 2.3

Now we are in the case d = 3. The tricky part about the last term
∫ t

0
Xs

(
∆
2 Pεgx)ds in

(3.6) is that we are taking the Laplacian of convolution. By using the following lemma,
we can interchange the Laplacian with the convolution.

Lemma 3.3. In R3, for any ε > 0 and y 6= x, we have

∆yPεgx(y) =

∫
pε(y − z)

1

|z − x|2
dz.

Proof. See Appendix A for the proof.

Now we will turn to the

Proof of Proposition 2.3. For any T > 0 we have

Eδ0

(
sup
t≤T

∣∣∣ ∫ t

0

Xs(
∆

2
Pεgx)ds−

1

2

∫ t

0

∫
1

|y − x|2
Xs(dy)ds

∣∣∣)
≤1

2
Eδ0

(∫ T

0

∫ ∣∣∣∆yPεgx(y)−
1

|y − x|2
∣∣∣ Xs(dy)ds

)
=
1

2

∫ T

0

∫ ∣∣∣ ∫ pε(y − z)
1

|z − x|2
dz − 1

|y − x|2
∣∣∣ ps(y)dyds.

We use Lemma 3.3 for the equality above.

Claim 3.4. ∣∣∣ ∫ pε(y − z)
1

|z − x|2
dz − 1

|y − x|2
∣∣∣→ 0 as ε→ 0 for y 6= x. (3.11)

Proof. For w = y − x 6= 0,∣∣∣ ∫ pε(y − z)
1

|z − x|2
dz − 1

|y − x|2
∣∣∣ ≤ E

(∣∣∣ 1

|Bε − w|2
− 1

|w|2
∣∣∣)

= E
(∣∣∣|Bε − w| − |w|

∣∣∣ · |Bε − w|+ |w|
|Bε − w|2|w|2

)
≤ E

( |Bε|
|Bε − w|2|w|

)
+ E

( |Bε|
|Bε − w| |w|2

)
.

For the first term above, we use Holder’s inequality with 1/p = 1/5 and 1/q = 4/5 to get

E
(
|Bε| ·

1

|Bε − w|2|w|

)
≤ 1

|w|
·
(
E(|Bε|5)

)1/5
·
(
E
( 1

|Bε − w|5/2
))4/5

≤ 1

|w|

(
E(|Bε|5)

)1/5(
C|w|−5/2

)4/5
→ 0 as ε→ 0.

The last inequality is by Lemma 3.1. Similarly the second term converges to 0.

By Lemma 3.1, for all ε > 0 we have∣∣∣ ∫ pε(y − z)
1

|z − x|2
dz − 1

|y − x|2
∣∣∣ ≤ (C + 1)

1

|y − x|2
,

which is integrable w.r.t
∫ T

0
dsps(y)dy by Lemma 3.1. Then use Dominated Convergence

Theorem and (3.11) to conclude as ε ↓ 0,∫ T

0

ds

∫
R3

ps(y)dy
∣∣∣ ∫ pε(y − z)

1

|z − x|2
dz − 1

|y − x|2
∣∣∣→ 0,
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and hence

sup
t≤T

(∫ t

0

Xs

(∆
2
Pεgx)ds−

1

2

∫ t

0

∫
1

|y − x|2
Xs(dy)ds

)
L1

−−→ 0.

Take a subsequence εn ↓ 0 to obtain

sup
t≤T

(∫ t

0

Xs

(∆
2
Pεngx)ds−

1

2

∫ t

0

∫
1

|y − x|2
Xs(dy)ds

)
→ 0, Pδ0 -a.s..

The proof of Proposition 2.3 follows by (3.6) in d = 3 and the a.s. convergence (i)–(iii)
already established in Section 3.3.1 if we take appropriate subsequence εnk

↓ 0.

3.3.3 Proof of Proposition 2.4

Now we are in the case d = 2. For the last term
∫ t

0
Xs

(
∆
2 Pεgx)ds, compared to the d = 3

case in Lemma 3.3, we have the following result from Theorem 1 in Chp. 2.2 of [7].

Lemma 3.5. In R2, for any fixed ε > 0, we have

∆

2
Pεgx(y) = πpxε (y).

Proof of Proposition 2.4. By taking a subsequence εn goes to 0, we know from Theorem
6.1 in [1] that for any T > 0, supt≤T |

∫ t

0
Xs(p

x
εn)ds − Lx

t | → 0, Pδ0 -a.s.. The proof of
Proposition 2.4 follows by (3.6) in d = 2 and the a.s. convergence (i)-(iii) already
established in Section 3.3.1 if we take appropriate subsequences εnk

↓ 0.

4 Cumulants of super-Brownian motion

In Section 2.3 we have reduced the proof of Theorem 1.4 to the proof of Lemma 2.9,
which will be given at the end of this section. Note that we are in the case d = 2 or
3 with initial condition X0 = µ. We know from (3.30) and (3.31) in [15] that for φ ≥ 0

continuous with compact support,

Eµ

[
exp

(
θ

∫ t

0

Xs(φ)ds− θ

∫ t

0

µ(Psφ)ds
)]

= exp
(
2

∞∑
n=2

(
θ

2
)nµ
(
vn(t)

))
(4.1)

where vn(t), n ≥ 2 are given by{
v1(t, z) =

∫ t

0
Psφ(z)ds,

vn(t, z) =
∑n−1

k=1

∫ t

0
Pt−s

(
vk(s)vn−k(s)

)
(z)ds.

(4.2)

For vn, n ≥ 1 we have the following estimates.

Lemma 4.1. Let d = 2 or 3. For any nonnegative measurable function φ, let vn be
defined as in (4.2). If there exist some constants r, α, β ≥ 0 such that for all t ≥ 0 and
z ∈ Rd, we have |v1(t, z)| ≤ r((t+ α)1/2 + β). Then there exist some positive constants cn
such that

|vn(t, z)| ≤ cnr
n(t+ α)(n−1)/2((t+ α)1/2 + β)2n−1 (4.3)

holds for every t ≥ 0, z ∈ Rd and n ≥ 1 .

Proof. The case n = 1 follows by letting c1 = 1, so it suffices to show (4.3) in the case
n ≥ 2. Assuming it holds for every 1 ≤ k ≤ n− 1, then

|vn(t, z)| ≤
n−1∑
k=1

ckcn−kr
n

∫ t

0

∫
pt−s(z − y)(s+ α)(n−2)/2((s+ α)1/2 + β)2n−2dyds
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≤
n−1∑
k=1

ckcn−kr
n(t+ α)(n−2)/2

∫ t

0

((s+ α)1/2 + β)2n−2ds

≤
n−1∑
k=1

ckcn−kr
n(t+ α)(n−1)/2((t+ α)1/2 + β)2n−1.

Let cn =
∑n−1

k=1 ckcn−k to get (4.3).

If φ(y) = fx(y) := 1/|y − x|, then fx is not continuous everywhere and not compactly
supported. However, (4.1) holds for

∫ t

0
Xs(fx)ds−

∫ t

0
µ(Psfx)ds in a weak sense. If X is

a random variable, following [15] we say that

E
[
exp

(
θX
)]

= exp
( ∞∑

n=1

anθ
n
)

(4.4)

holds formally if E|X|n <∞ and

E(Xn) =
dn

dθn

(
exp

( n∑
k=1

akθ
k
))∣∣∣∣∣

θ=0

for every n ≥ 1. Note that if (4.4) actually holds, then it holds formally. We will then
prove the following lemma:

Lemma 4.2. Let d = 2 or 3. For all x ∈ Rd, let fx(y) = 1/|y − x|. Then for all t ≥ 0, we
have the following holds formally:

Eµ

[
exp

(
θ

∫ t

0

Xs(fx)ds− θ

∫ t

0

µ(Psfx)ds
)]

= exp
(
2

∞∑
n=2

(
θ

2
)nµ
(
vxn(t)

))
, (4.5)

where

vx1 (t, z) =

∫ t

0

ds

∫
ps(z − y)

1

|y − x|
dy,

and for n ≥ 2

vxn(t, z) =

n−1∑
k=1

∫ t

0

ds

∫
pt−s(z − y)(vxk(s, y)v

x
n−k(s, y))dy. (4.6)

Proof. For any 0 < ε < 1, let

fεx(z) := Pεfx(z) =

∫
pε(z − y)

1

|y − x|
dy.

Then fεx ∈ Cb(R
d). For any N ≥ 1, recall from (3.4) that χN is a C∞ function and

χN ↑ 1. Then fεx · χN is continuous with compact support and hence (4.1) holds for∫ t

0
Xs(f

ε
x · χN )ds −

∫ t

0
µ(Ps(f

ε
x · χN ))ds and in particular it holds formally. Let N → ∞,

then fεx · χN ↑ fεx. By monotone convergence theorem, we have formally (4.1) for∫ t

0
Xs(f

ε
x)ds−

∫ t

0
µ(Psf

ε
x)ds, that is to say,

Eµ

[( ∫ t

0

Xs(f
ε
x)ds−

∫ t

0

µ(Psf
ε
x)ds

)n]
=

dn

dθn

(
exp

(
2

n∑
k=2

(
θ

2
)nµ(vε,xn (t))

))∣∣∣∣
θ=0

(4.7)

where

vε,x1 (t, z) =

∫ t

0

ds

∫
ps(z − y)fεx(y)dy =

∫ t+ε

ε

ds

∫
ps(z − y)

1

|y − x|
dy,
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and

vε,xn (t, z) =

n−1∑
k=1

∫ t

0

ds

∫
pt−s(z − y)(vε,xk (s, y)vε,xn−k(s, y))dy.

By Lemma 3.2, for 0 < ε < 1,

vε,x1 (t, z) ≤
∫ t+1

0

∫
ps(z − y)

1

|y − x|
dyds ≤ 2d1/2

d− 1
(t+ 1)1/2 := r(t+ 1)1/2, (4.8)

and

vx1 (t, z) =

∫ t

0

∫
1

|y − x|
ps(z − y)dyds ≤ rt1/2. (4.9)

Then Lemma 4.1 applies and we have

vε,xn (t, z) ≤ cnr
n(t+ 1)(3n−2)/2, ∀n ≥ 1, (4.10)

and
vxn(t, z) ≤ cnr

nt(3n−2)/2, ∀n ≥ 1. (4.11)

Therefore by Dominated Convergence Theorem, we have vε,x1 (t, z) → vx1 (t, z) as ε → 0.
For n = 2, since for each 0 < s < t, we have (vε,x1 (s, y))2 → (vx1 (s, y))

2 as ε → 0 and
(vε,x1 (s, y))2 ≤ r2(t+ 1) by (4.8), which is integrable with respect to

∫ t

0
ds
∫
pt−s(z − y)dy.

Hence by Dominated Convergence Theorem

vε,x2 (t, z) =

∫ t

0

ds

∫
pt−s(z − y)(vε,x1 (s, y))2dy →

∫ t

0

∫
pt−s(z − y)(vx1 (s, y))

2dy = vx2 (t, z).

By a simple induction on n and by using (4.10), for every n ≥ 1 we have

vε,xn (t, z) → vxn(t, z) as ε→ 0.

Therefore for each t ≥ 0 and n ≥ 1, by (4.7) and Dominated Convergence Theorem we
have

lim
ε→0

Eµ

[( ∫ t

0

Xs(f
ε
x)ds−

∫ t

0

µ(Psf
ε
x)ds

)n]
= lim

ε→0

dn

dθn

(
exp

(
2

n∑
k=2

(
θ

2
)nµ(vε,xn (t))

))∣∣∣∣
θ=0

=
dn

dθn

(
exp

(
2

n∑
k=1

(
θ

2
)nµ(vxn(t))

))∣∣∣∣
θ=0

<∞. (4.12)

We know by (4.11) that the above term is finite. By (4.8), for all 0 < ε < 1∫ t

0

µ(Psf
ε
x)ds = µ(vε,x1 (t)) ≤ r(t+ 1)1/2µ(1). (4.13)

Then (4.12) implies

lim
ε→0

Eµ

[( ∫ t

0

Xs(f
ε
x)ds

)n]
<∞.

By Fatou’s lemma

Eµ

[( ∫ t

0

Xs(fx)ds
)n]

≤ lim inf
ε→0

Eµ

[( ∫ t

0

Xs(f
ε
x)ds

)n]
<∞. (4.14)

For all 0 < ε < 1, by Lemma 3.1 we have

fεx(y) =

∫
pε(y − z)

1

|z − x|
dz ≤ C

1

|y − x|
= Cfx(y) for y 6= x,
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so by (4.13)∣∣∣( ∫ t

0

Xs(f
ε
x)ds−

∫ t

0

µ(Psf
ε
x)ds

)n∣∣∣ ≤ 2n
(
C

∫ t

0

Xs(fx)ds
)n

+ 2n(r(t+ 1)1/2µ(1))n,

where the right-hand side is integrable w.r.t. Eµ by (4.14). Therefore Dominated
Convergence Theorem implies

Eµ

[( ∫ t

0

Xs(fx)ds−
∫ t

0

µ(Psfx)ds
)n]

= lim
ε→0

Eµ

[( ∫ t

0

Xs(f
ε
x)ds−

∫ t

0

µ(Psf
ε
x)ds

)n]
=
dn

dθn

(
exp

(
2

n∑
k=1

(
θ

2
)nµ(vxn(t))

))∣∣∣∣
θ=0

(by (4.12)).

Then (4.5) holds formally and the proof is complete.

The following lemma is from Lemma 3.1 in [15].

Lemma 4.3. Let X be a random variable such that (4.4) holds formally.

(i) If for some integer N there exists r, b > 0 such that

|an| ≤ brn, for 1 ≤ n ≤ 2N,

then there exists C = C(b,N) > 0 such that

E(X2N ) ≤ Cr2N .

(ii) If
∑∞

n=1 anθ
n
0 converges for some θ0 > 0, then

E
[
exp(|θX|)

]
<∞ for |θ| < θ0.

Now we will finish the

Proof of Lemma 2.9. We will show that the assumptions in Lemma 4.3(i) hold for the
case X =

∫ t

0
Xs(fx)ds−

∫ t

0
µ(Psfx)ds. By (4.11) we have

2(
1

2
)nµ(vxn(t)) ≤ cn

1

2n−1
t(3n−2)/2rnµ(1) := bnr

nµ(1).

Pick N ≥ 1. Let b = max1≤n≤2N bn. Then∣∣∣2(1
2
)nµ(vxn(t))

∣∣∣ ≤ bµ(1)rn, for 1 ≤ n ≤ 2N.

So by Lemma 4.3(i), there exists some C = C(bµ(1), N) = C(t,N, µ(1)) > 0 such that

Eµ

[( ∫ t

0

Xs(fx)ds−
∫ t

0

µ(Psfx)ds
)2N]

≤ Cr2N .

By (4.9), we have ∫ t

0

µ(Psfx)ds = µ(vx1 (t)) ≤ rt1/2µ(1)

and hence

Eµ

[( ∫ t

0

Xs(fx)ds
)2N]

≤ 22NCr2N + 22N (rt1/2µ(1))2N = C(t,N, d, µ(1)).

So the proof is complete.
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5 Rate of convergence in d=3 (Theorem 1.6)

This section completes the proof of Theorem 1.6. Before proceeding to the proof, we
state the following lemma:

Lemma 5.1. Let d ≥ 3. Then for any x 6= 0 in Rd and t ≥ 0 ,∫ t

0

∫
ps(y)

1

|y − x|2
dyds ≤ 2

d− 2

(
log+

1

|x|
+ 1 +

√
d
√
t
)
.

Proof. For ε > 0 and x 6= 0 in Rd, let hε,x(y) = log(|y − x|2 + ε). Then

∇hε,x(y) =
2(y − x)

|y − x|2 + ε

and

∆hε,x(y) =
(2d− 4)|y − x|2 + 2dε

(|y − x|2 + ε)2
.

Let Bt be a d-dimensional Brownian motion starting at 0. By Ito’s Lemma,

log(|Bt − x|2 + ε) = log(|x|2 + ε) +

∫ t

0

2(Bs − x)

|Bs − x|2 + ε
· dBs +

∫ t

0

(d− 2)|Bs − x|2 + dε

(|Bs − x|2 + ε)2
ds.

Let Hs =
2(Bs−x)

|Bs−x|2+ε , then

Mε
t :=

∫ t

0

Hs · dBs is a continuous local martingale.

Note that

E[(Mε
t )

2] ≤ E

∫ t

0

4|Bs − x|2

(|Bs − x|2 + ε)2
ds ≤ 4ε−2E

∫ t

0

|Bs − x|2ds <∞.

ThenMε is an L2 martingale. Now take means to see that

E log(|Bt − x|2 + ε) = log(|x|2 + ε) +

∫ t

0

E
(d− 2)|Bs − x|2 + dε

(|Bs − x|2 + ε)2
ds. (5.1)

By Fatou’s Lemma,∫ t

0

E
d− 2

|Bs − x|2
ds ≤ lim inf

ε→0

∫ t

0

E
(d− 2)|Bs − x|2 + dε

(|Bs − x|2 + ε)2
ds

= lim inf
ε→0

[
E log(|Bt − x|2 + ε)− log(|x|2 + ε)

]
= E log(|Bt − x|2)− log(|x|2).

The first equality is by (5.1) and the last equality follows from 0 ≤ log(|x|2+ε)−log(|x|2) ≤
2
√
ε/|x|. If |x| > 1, then

E log(|Bt − x|)− log |x| ≤ E log(|Bt|+ |x|)− log |x| ≤ E
|Bt|
|x|

≤ E|Bt|.

If |x| < 1, then

E log(|Bt − x|)− log |x| ≤ E|Bt − x|+ log+
1

|x|
≤ E|Bt|+ 1 + log+

1

|x|
.

Therefore∫ t

0

E
d− 2

|Bs − x|2
ds ≤ E log(|Bt − x|2)− log(|x|2) ≤ 2

(
E|Bt|+ 1 + log+

1

|x|

)
,

and the result follows since E|Bt| ≤
√
d
√
t.
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Now we will turn to the

Proof of Theorem 1.6. We claim it suffices to show that for any 0 < α < 1 and any fixed
t > 0, we have |x|α(Lx

t − c1.3/|x|) → 0 as x → 0, Pδ0 -a.s.. To see this, note that (1.2)
implies for any t ≥ δ, we have Lx

t − Lx
δ → L0

t − L0
δ as x → 0. Therefore by choosing ω

outside a null set N(δ), we have

lim
x→0

|x|α(Lx
t − c1.3/|x|) = lim

x→0
|x|α(Lx

δ − c1.3/|x|) + lim
x→0

|x|α(Lx
t − Lx

δ ) = 0, ∀t ≥ δ,

and this implies

lim
x→0

|x|α(Lx
t − c1.3/|x|) = 0, ∀t > 0, Pδ0 -a.s..

The t = ∞ case follows since the extinction time ζ < ∞, Pδ0 -a.s.. Fix any t > 0. Recall
the Tanaka formula (1.3) that

Lx
t − c1.3/|x| =Mt(φx)−Xt(φx), (5.2)

where φx(y) = c1.3/|y − x|. By using (2.8), we have Pδ0 -a.s. that

|x|αXt(φx) ≤ c1.3|x|α(r−1
0 Xt(1) + C) → 0 as x→ 0.

Therefore the proof of Theorem 1.6 follows if we show that for any t > 0,

|x|αMt(φx) → 0 as x→ 0, Pδ0 -a.s..

By taking a subsequence, e.g. {xn = (1/2n, 0, 0)}, that goes to 0, we have

Pδ0

(∣∣|xn|αMt(φxn)
∣∣ > 1

2nα/2

)
≤ C(t) + nα log 2

2nα

by using Lemma 5.1. Hence

|xn|αMt(φxn) → 0 as n→ ∞, Pδ0 -a.s..

by Borel-Cantelli Lemma. So it suffices to show that there is a jointly continuous version
of |x|αMt(φx) on B(0, 1) = {x ∈ R3 : |x| < 1}.

Fix any x, x′ ∈ B(0, 1). Without loss of generality we may assume |x| ≤ |x′| and
|x′| > 0. Then

Eδ0

(
(|x|αMt(φx)− |x′|αMt(φx′))2

)
= c21.3Eδ0

(∫ t

0

( |x|α

|y − x|
− |x′|α

|y − x′|

)2
Xs(dy)ds

)
≤ 2c21.3

∫ t

0

∫ ( |x|α

|y − x|
− |x|α

|y − x′|

)2
ps(y)dyds+ 2c21.3

∫ t

0

∫ ( |x|α

|y − x′|
− |x′|α

|y − x′|

)2
ps(y)dyds

=: 2c21.3(I + J). (5.3)

By Lemma 5.1 we have

J = (|x|α − |x′|α)2
∫ t

0

∫
1

|y − x′|2
ps(y)dyds ≤ |x− x′|2α2(log+ 1

|x′|
+ 1 +

√
3t)

≤ |x− x′|α(2|x′|)α2(log+ 1

|x′|
+ 1 +

√
3t) ≤ 4|x− x′|α(1/α+ 1 +

√
3t),

the last by |x′| < 1 and |x′|α log+(1/|x′|) ≤ 1/α.
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Now we deal with I. Since I = 0 if |x| = 0, we may assume x 6= 0. Note that for any
0 < γ < 1, ∣∣∣ 1

|y − xn|
− 1

|y − x0|

∣∣∣ ≤|xn − x0|γ
||y − xn| − |y − x0||1−γ

|y − xn||y − x0|

≤|xn − x0|γ
( 1

|y − x0|1+γ
+

1

|y − xn|1+γ

)
. (5.4)

Let γ = α/2 in (5.4) to see that

I ≤ |x|2α|x− x′|α
∫ t

0

∫ ( 1

|y − x|2+α
+

1

|y − x′|2+α

)
ps(y)dyds.

Use similar Ito’s Lemma arguments proving Lemma 5.1 above to conclude for any
0 < α < 1 and x 6= 0 in R3,∫ t

0

∫
1

|y − x|2+α
ps(y)dyds ≤

2

α(1− α)
|x|−α.

Therefore

I ≤ |x|2α|x− x′|αC(α)(|x|−α + |x′|−α) ≤ C(α)|x− x′|α,

the last follows since we assumed |x| ≤ |x′| ≤ 1. Therefore (5.3) becomes

Eδ0

(∫ t

0

( |x|α

|y − x|
− |x′|α

|y − x′|

)2
Xs(dy)ds

)
≤ r|x− x′|α(t1/2 + β), (5.5)

where r = 8
√
3c21.3 and β = β(α) with α ∈ (0, 1). Let φ(y) = (|x|α/|y − x| − |x′|α/|y − x′|)2

in (4.1), then the above gives |v1(t, z)| ≤ r|x − x′|α(t1/2 + β) holds for all z and t ≥ 0.
Apply Lemma 4.1 to get

|vn(t, z)| ≤ cnr
n|x− x′|nαt(n−1)/2(t1/2 + β)2n−1. (5.6)

By using the same arguments in proving Lemma 4.2, one can show that the following
holds formally:

Eδ0

[
exp

(
θ

∫ t

0

( |x|α

|y − x|
− |x′|α

|y − x′|

)2
Xs(dy)ds− θ

∫ t

0

( |x|α

|y − x|
− |x′|α

|y − x′|

)2
ps(y)dyds

)]
= exp

(
2

∞∑
n=2

(
θ

2
)nδ0

(
vn(t)

))
.

By (5.6), Lemma 4.3(i) implies

Eδ0

[( ∫ t

0

( |x|α

|y − x|
− |x′|α

|y − x′|

)2
Xs(dy)ds−

∫ t

0

( |x|α

|y − x|
− |x′|α

|y − x′|

)2
ps(y)dyds

)2N]
≤ C(t,N, α)|x− x′|2Nα

and by (5.5)

Eδ0

[( ∫ t

0

( |x|α

|y − x|
− |x′|α

|y − x′|

)2
Xs(dy)ds

)2N]
≤22N

(
C(t,N, α)|x− x′|2Nα + (r|x− x′|α(t1/2 + β))2N

)
= C(t,N, α)|x− x′|2Nα.
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By the Burkholder-Davis-Gundy Inequality, there exists some CN > 0 such that for all
x, x′ ∈ B(0, 1),

Eδ0

(
(|x|αMt(φx)− |x′|αMt(φx′))4N

)
≤CN (c1.3)

4NEδ0

(∫ t

0

( |x|α

|y − x|
− |x′|α

|y − x′|

)2
Xs(dy)ds

)2N
≤C(t,N, α)|x− x′|2Nα.

Take N large enough to apply Kolmogorov’s continuity criterion and so obtain a continu-
ous version of |x|αMt(φx) on x ∈ B(0, 1).

6 General initial condition in d=2

Now we are in the case d = 2. Recall the Tanaka formula (2.17) that if
∫
log+(1/|y −

x|)µ(dy) <∞, then

Lx
t − µ(gα,x) =Mt(gα,x) + α

∫ t

0

Xs(gα,x)ds−Xt(gα,x), (6.1)

where α > 0 and

gα,x(y) =

∫ ∞

0

e−αtpt(y − x)dt.

We prove in Appendix C(i) that gα,x(y)−(1/π) log+(1/|y−x|) = fα(y−x) where fα defined
in (C.1) can be extended to be a bounded continuous function on R2. Hence

x 7→
∫
(gα,x(y)−

1

π
log+

1

|y − x|
)µ(dy) is continuous on R2. (6.2)

So the joint continuity of Lx
t − µ(gα,x) would prove that there is a jointly continuous

version of

Lx
t −

∫
1

π
log+

1

|y − x|
µ(dy) =

(
Lx
t − µ(gα,x)

)
+

∫
(gα,x(y)−

1

π
log+

1

|y − x|
)µ(dy)

on {(t, x) : t > 0, x ∈ R2}
⋃
{(0, x) : x is a continuity point of

∫
log+(1/|y − x|)µ(dy)}.

By (3.44) from [15], for any 0 < γ ≤ 1, there exists some c = c(γ) > 0 such that

|pt(x)− pt(y)| ≤ ct−γ/2|x− y|γ(p2t(x) + p2t(y)), t > 0, x, y ∈ Rd. (6.3)

Then a simple calculation will give us

|gα,x(y)− gα,x′(y)| ≤ c(γ) |x− x′|γ
∫ ∞

0

e−αtt−γ/2(p2t(y − x) + p2t(y − x′))dt

≤c(γ) |x− x′|γ
(∫ ∞

0

t−γ/2 1

4πt
e−

|y−x|2
4t dt+

∫ ∞

0

t−γ/2 1

4πt
e−

|y−x′|2
4t dt

)
=c(γ) |x− x′|γ

(∫ ∞

0

1

|y − x|γ
4γ/2

4π

1

s1−(γ/2)
e−sds+

∫ ∞

0

1

|y − x′|γ
4γ/2

4π

1

s1−(γ/2)
e−sds

)
=C(γ) |x− x′|γ( 1

|y − x|γ
+

1

|y − x′|γ
). (6.4)

Now we proceed to the

Proof of Theorem 1.11. Fix any t > 0.
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(i) Mt(gα,x): Let γ = 1/2 and C(1/2) be as in (6.4). Then an argument similar to the
derivation of (2.21) shows that

Eµ

[∣∣Mt(gα,x)−Mt(gα,x′)
∣∣4n] ≤ Cn(C(1/2)|x− x′|)2n22n

× Eµ

[( ∫ t

0

ds

∫
Xs(dy)

1

|y − x|
)2n

+
( ∫ t

0

ds

∫
Xs(dy)

1

|y − x′|
)2n]

≤ Cn(C|x− x′|)2n22nC(t, n, µ(1)) (Lemma 2.9).

Therefore there exists a continuous version ofMt(gα,x) in x.

(ii)
∫ t

0
Xs(gα,x)ds: Let γ = 1 in (6.4). Then for each n ≥ 1,

Eµ

[∣∣ ∫ t

0

Xs(gα,x)ds−
∫ t

0

Xs(gα,x′)ds
∣∣2n] ≤ (C|x− x′|)2n22n

× Eµ

[
(

∫ t

0

ds

∫
Xs(dy)

1

|y − x|
)2n + (

∫ t

0

ds

∫
Xs(dy)

1

|y − x′|
)2n
]

≤ (C|x− x′|)2n22n · C(t, n, µ(1)) (Lemma 2.9).

Therefore there exists a continuous version of
∫ t

0
Xs(gα,x)ds in x.

(iii) Xt(gα,x): By using (6.4) with γ = 1, we have

|Xt(gα,x)−Xt(gα,x′)| ≤ C|x− x′|
∫
Xt(dy)(

1

|y − x|
+

1

|y − x′|
).

Note that with Pµ-probability one there exist some r0(t, ω) ∈ (0, 1] and some constant
C > 0 such that for all x,∫

Xt(dy)
1

|y − x|
≤ 1

r0
Xt(1) +

∫
|y−x|<r0

Xt(dy)
1

|y − x|
≤ 1

r0
Xt(1) + C.

Then
|Xt(gα,x)−Xt(gα,x′)| ≤ |x− x′| · C(r0)(Xt(1) + 1),

and the continuity of x 7→ Xt(gα,x) follows.

Combining (i), (ii) and (iii) above, for any fixed ε > 0, we have established that there
is a Pµ-a.s. continuous version of Lx

ε − µ(gα,x) in x. Then use (1.2) to conclude that
(Lx

t − µ(gα,x))− (Lx
ε − µ(gα,x)) = Lx

t − Lx
ε is jointly continuous on {(t, x) : t ≥ ε, x ∈ R2}.

Therefore by choosing ω outside a null set N(ε), we can see that there is a jointly
continuous version of Lx

t − µ(gα,x) on {(t, x) : t ≥ ε, x ∈ R2}. Now take ε = 1/n

and N = ∪∞
n=1N(1/n) to see that for ω ∈ N c, there is a jointly continuous version of

Lx
t − µ(gα,x) on {(t, x) : t > 0, x ∈ R2}.

Proof of Corollary 1.12. For points (0, x) such that x is a continuity point of
∫
log+(1/|y−

x|)µ(dy), it follows from Appendix C(ii) that (0, x) is a joint continuity point of µqt(x). By
Theorem A, we have (0, x) is a joint continuity point of Lx

t . Therefore such a point (0, x)
is a joint continuity point of Lx

t −
∫
(1/π) log+(1/|y − x|)µ(dy).

7 General initial condition in d=3

7.1 Smooth cutoff of logarithm

Now we are in the case d = 3. Recall η(x) defined as in (3.3). For each ε > 0, set

ηε(x) :=
1
ε3 η
(

x
ε

)
such that the function ηε are C∞ and satisfy

∫
R3 ηεdx = 1 with support
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in B(0, ε). If χ1/2 is the convolution of η1/4 and the indicator function of the ball B(0, 3/4),
then

χ1/2(x) =

∫
R3

1{|x−y|<3/4}η1/4(y)dy =

∫
|y|<1/4

1{|x−y|<3/4}η1/4(y)dy.

One can check that 0 ≤ χ1/2 ≤ 1 and χ1/2 is a C
∞ function with support in B(0, 1), and

χ1/2(x) ≡ 1 if |x| < 1/2. Now define ḡx(y) ≡ log |y−x| ·χ1/2(y−x) for y 6= x. By definition
we have

0 ≤ −ḡx(y) ≤ log+(1/|y − x|), y 6= x, (7.1)

and

−ḡx(y) = log+(1/|y − x|), 0 < |y − x| < 1/2. (7.2)

By (2.14) and (7.2), one can check that there is some constant C ≥ 1 such that

|∆ḡx(y)| ≤ C
1

|y − x|2
, y 6= x. (7.3)

Define

f̄(y) :=

{
−ḡ0(y)− log+(1/|y|), if y 6= 0,

0, if y = 0,
(7.4)

and

h̄(y) :=

{
∆ḡ0(y)− 1/|y|2, if y 6= 0,

0, if y = 0.
(7.5)

By using (7.2), one can check both f̄ and h̄ are in Cb(R
3).

Proposition 7.1. Let X be a super-Brownian motion in d = 3 with initial condition
µ ∈MF (R

3). For any x ∈ R3 with
∫
µ(dy) log+(1/|y − x|) <∞, we have Pµ-a.s.

Xt(ḡx) = µ(ḡx) +Mt(ḡx) +

∫ t

0

Xs(
∆

2
ḡx)ds, ∀t ≥ 0, (7.6)

where Xt(ḡx) is continuous in t andMt(ḡx) is a continuous L2 martingale.

Note that the proof of Proposition 7.1 is very similar to that of Proposition 2.4.
Since we have Pεḡx ∈ C2

b (R
3), it follows from the martingale problem (1.1) that with

Pµ-probability one, for all t ≥ 0 we have

Xt(Pεḡx) = µ(Pεḡx) +Mt(Pεḡx) +

∫ t

0

Xs

(∆
2
Pεḡx

)
ds, (7.7)

whereMt(Pεḡx) is a martingale with quadratic variation

[M(Pεḡx)]t =

∫ t

0

Xs

(
(Pεḡx)

2
)
ds.

Before proceeding to the proof of Proposition 7.1, we state some preliminary results.

7.1.1 Preliminaries

Lemma 7.2. Let d = 3. Then for any fixed ε > 0 and y 6= x, we have

∆yPεḡx(y) =

∫
pε(y − z)∆z ḡx(z)dz.

Proof. The proof is similar to that of Lemma 3.3.
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Lemma 7.3. For d ≥ 1, there exists a constant C = C(d) > 0 such that for any x 6= 0 in
Rd and t > 0 , ∫

pt(y) log
+ 1

|y − x|
dy ≤ C(1 + log+

1

|x|
).

Proof. The proof is similar to that of Lemma 3.1.

7.1.2 Proof of Proposition 7.1

(i) Compared to (3.7), we prove in Appendix B(i) that there is some constant C > 0

such that for any y 6= x and any 0 < ε < 1,∫
pε(y − z)|ḡx(z)− ḡx(y)|dz ≤ C|y − x|−1/2ε1/4. (7.8)

By (7.1) and Lemma 7.3, for all ε > 0 we have∫
pε(y − z)|ḡx(z)− ḡx(y)|dz ≤ C(1 + log+(1/|y − x|)), (7.9)

which is integrable w.r.t µ(dy) by assumption. Dominated Convergence Theorem
implies ∫

µ(dy)

∫
pε(y − z)|ḡx(z)− ḡx(y)|dz → 0 as ε→ 0,

and it follows that µ(Pεḡx) → µ(ḡx).

(ii) By using (7.8), it follows by the same argument in proving (ii) in Section 3.3.1 that
for any T > 0, there is some subsequence εn ↓ 0 such that

sup
t≤T

|Mt(Pεn ḡx)−Mt(ḡx)| → 0, Pµ-a.s..

(iii) For any T > 0 we have

Eµ

(
sup
t≤T

∣∣∣ ∫ t

0

Xs

(∆
2
Pεḡx)ds−

∫ t

0

Xs(
∆

2
ḡx)ds

∣∣∣) ≤ Eµ

(∫ T

0

Xs

(
|∆
2
Pεḡx − ∆

2
ḡx|
)
ds
)

=
1

2

∫
µ(dw)

∫ T

0

ds

∫
ps(w − y)

∣∣∣ ∫ pε(y − z)∆ḡx(z)dz −∆ḡx(y)
∣∣∣dy.

The last inequality is by Lemma 7.2. Recall h̄ defined as in (7.5). For y 6= x, we have

∆ḡx(y)−
1

|y − x|2
= h̄(y − x) where h̄ ∈ Cb(R

3). (7.10)

Then Dominated Convergence Theorem implies that as ε→ 0,∣∣∣ ∫ pε(y − z)h̄(z − x)dz − h̄(y − x)
∣∣∣ ≤ E|h̄(Bε − (y − x))− h̄(y − x)| → 0.

Together with (3.11) we have for y 6= x,∣∣∣ ∫ pε(y − z)∆ḡx(z)dz −∆ḡx(y)
∣∣∣ ≤ ∣∣∣ ∫ pε(y − z)

1

|z − x|2
dz − 1

|y − x|2
∣∣∣

+
∣∣∣ ∫ pε(y − z)h̄(z − x)dz − h̄(y − x)

∣∣∣→ 0 as ε→ 0.
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By (7.3) and Lemma 3.1, for y 6= x we have∣∣∣ ∫ pε(y − z)∆ḡx(z)dz −∆ḡx(y)
∣∣∣ ≤ C

∫
pε(y − z)

1

|z − x|2
dz + C

1

|y − x|2
≤ C

1

|y − x|2
,

which is integrable w.r.t.
∫
µ(dw)

∫ T

0
dsps(w−y)dy by Lemma 5.1 and the assumption

on µ. Therefore Dominated Convergence Theorem implies∫
µ(dw)

∫ T

0

ds

∫
ps(w − y)dy

∣∣∣ ∫ pε(y − z)∆ḡx(z)dz −∆ḡx(y)
∣∣∣→ 0 as ε→ 0,

and hence

sup
t≤T

∫ t

0

Xs

(
|∆
2
Pεḡx − ∆

2
ḡx|)ds

L1

−−→ 0.

Take a subsequence εn ↓ 0 to obtain

sup
t≤T

∣∣∣ ∫ t

0

Xs

(∆
2
Pεḡx)ds−

∫ t

0

Xs(
∆

2
ḡx)ds

∣∣∣→ 0, Pµ-a.s..

(iv) Fix any T > 0. Set 0 < δ < T , which will be chosen small enough below. Then we
have

sup
t≤T

|Xt(Pεḡx)−Xt(ḡx)| ≤ sup
t≤δ

|Xt(Pεḡx)−Xt(ḡx)|+ sup
δ≤t≤T

|Xt(Pεḡx)−Xt(ḡx)|.

For the second term on the right-hand side, we recall from (3.10) that with
Pµ-probability one, for any δ > 0, there is some r0(δ, ω) ∈ (0, 1] and some con-
stant C > 0 such that for any T > 0,

sup
δ≤t≤T

∫
|y − x|−1/2Xt(dy) ≤ r

−1/2
0 sup

δ≤t≤T
Xt(1) + C.

Therefore by (7.8) we have

sup
δ≤t≤T

|Xt(Pεḡx)−Xt(ḡx)| ≤ Cε1/4 sup
δ≤t≤T

∫
|y − x|−1/2Xt(dy)

≤ Cε1/4(r
−1/2
0 sup

δ≤t≤T
Xt(1) + C) → 0 as ε→ 0.

Now we deal with t ≤ δ. Let βk ↓ 0 satisfy µ
(
{y : |y − x| = βk}

)
= 0. Then use (7.8)

to get

sup
t≤δ

|Xt(Pεḡx)−Xt(ḡx)| ≤Cε1/4β−1/2
k sup

t≤δ
Xt(1)

+ sup
t≤δ

∫
|Pεḡx(y)− ḡx(y)|1|y−x|≤βk

Xt(dy).

By Lemma 7.3, for |y − x| ≤ βk < 1/4 we have
∫
pε(y − z) log+(1/|z − x|)dz ≤ C(1 +

log+(1/|y−x|)) ≤ 2C log+(1/|y−x|). Hence by (7.1) and (7.2), for |y−x| ≤ βk < 1/4

we have
|Pεḡx(y)− ḡx(y)| ≤ C log+(1/|y − x|) = C|ḡx(y)|.

So

sup
t≤δ

∫
|Pεḡx(y)− ḡx(y)|1|y−x|≤βk

Xt(dy) ≤ C sup
t≤δ

∫
|ḡx(y)|1|y−x|≤βk

Xt(dy)

≤C sup
t≤δ

(∫
|ḡx(y)|1|y−x|≤βk

Xt(dy)−
∫

|ḡx(y)|1|y−x|≤βk
µ(dy)

)
+ C

∫
|ḡx(y)|1|y−x|≤βk

µ(dy). (7.11)
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Use Dominated Convergence Theorem to get∫
|ḡx(y)|1|y−x|≤βk

µ(dy) ≤
∫

log+(1/|y − x|)1|y−x|≤βk
µ(dy) → 0 as βk → 0.

To handle the first term on the right hand side of (7.11) we may apply Fatou’s
lemma in (7.7) and use the convergence established in (i) to see that for all t ≤ δ,

Xt(|ḡx|)− µ(|ḡx|) =Xt(−ḡx)− µ(−ḡx)

≤ lim inf
εn→0

[
Mt(−Pεn ḡx) +

∫ t

0

Xs(−
∆

2
Pεn ḡx)ds

]
=Mt(−ḡx) +

∫ t

0

Xs(−
∆

2
ḡx)ds ≤ sup

t≤δ
Mt(|ḡx|) +

∫ δ

0

Xs(|
∆

2
ḡx|)ds.

(7.12)

For the last equality, we use the a.s. convergence established in (ii) and (iii) above.
Then

sup
t≤δ

(

∫
|ḡx(y)|1|y−x|≤βk

Xt(dy)−
∫

|ḡx(y)|1|y−x|≤βk
µ(dy))

≤ sup
t≤δ

(Xt(|ḡx|)− µ(|ḡx|)) + sup
t≤δ

(

∫
|ḡx(y)|1|y−x|>βk

Xt(dy)−
∫

|ḡx(y)|1|y−x|>βk
µ(dy)).

Let δ ↓ 0. Then the first term converges to 0 by (7.12). The second term follows
by the weak continuity of Xt with the choice of {βk}, in a way such that the set of
discontinuity points of the bounded function |ḡx(y)|1|y−x|>βk

is µ-null. Let ε→ 0 to
conclude that

sup
t≤T

|Xt(Pεḡx)−Xt(ḡx)| → 0, Pµ-a.s..

The proof of Proposition 7.1 follows by the a.s. convergence (i)–(iv) and (7.7).

7.2 Proof of Theorem 1.8

Recall from (1.5) that

D = {x0 ∈ R3 :

∫
1

|y − x0|
µ(dy) = ∞}.

Lemma 7.4. Let D be defined as in (1.5). Then D is a Lebesgue null set in R3 and in
particular Dc is dense in R3.

Proof. By Fubini’s Theorem, we have∫
dx

∫
1

|y − x|
1{|y−x|<1}µ(dy) = 2πµ(1) <∞,

and it follows that
∫

1
|y−x|1{|y−x|<1}µ(dy) <∞ for Lebesgue a.a. x ∈ R3. Therefore∫

1

|y − x|
µ(dy) ≤ µ(1) +

∫
1

|y − x|
1{|y−x|<1}µ(dy) <∞ for Lebesgue a.a. x ∈ R3,

that is to say, Dc has full measure. Hence Dc is dense.

Now we turn to the
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Proof of Theorem 1.8. Fix any x0 ∈ D. Since Dc is dense, there exists some sequence
xn ∈ Dc such that xn → x0 as n→ ∞. Fix any such sequence. By Fatou’s lemma

lim inf
n→∞

∫
1

|y − xn|
µ(dy) = ∞. (7.13)

Recall the Tanaka formula (1.3) and recall that φx(y) = c1.3/|y − x|. For xn ∈ Dc, since
µ(φxn

) <∞, we have

Lxn
t − µ(φxn

) =Mt(φxn
)−Xt(φxn

). (7.14)

Then

Pµ

(
Lxn
t <

1

2
µ(φxn

)
)
≤ Pµ

(
|Lxn

t − µ(φxn
)| > 1

2
µ(φxn

)
)

≤ Pµ

(
|Mt(φxn

)| > 1

4
µ(φxn

)
)
+ Pµ

(
|Xt(φxn

)| > 1

4
µ(φxn

)
)
.

Note that

Eµ

(
|Xt(φxn

)|
)
=

∫
µ(dy)

∫
pt(y − z)

c1.3
|z − x|

dz.

Fix any t > 0. For x, y ∈ R3, use the fact 1/|y − x| =
∫∞
0

2πps(y − x)ds to see that∫
pt(y)

1

|y − x|
dy =

∫
pt(y)dy

∫ ∞

0

2πps(y − x)ds =

∫ ∞

0

2πpt+s(x)ds

≤
∫ ∞

0

2πpt+s(0)ds =

∫
pt(y)dy

∫ ∞

0

2πps(y)ds =

∫
pt(y)

1

|y|
dy = C(t) <∞. (7.15)

Therefore we have
Eµ

(
|Xt(φxn)|

)
≤ c1.3C(t)µ(1), (7.16)

and

Pµ

(
|Xt(φxn

)| > 1

4
µ(φxn

)
)
≤ 4c1.3C(t)µ(1)

µ(φxn)
.

Next use Lemma 5.1 to get

Eµ

[
M2

t (φxn)
]
= Eµ

[ ∫ t

0

Xs(φ
2
xn
)ds
]
=

∫
µ(dy)

∫ t

0

ds

∫
ps(y − z)

c21.3
|z − xn|2

dz

≤2c21.3

∫
µ(dy)

(
(3t)1/2 + 1 + log+(1/|y − xn|)

)
≤ C(t)µ(1) + µ(φxn), (7.17)

and it follows that

Pµ

(
|Mt(φxn

)| > 1

4
µ(φxn

)
)
≤ 16(C(t)µ(1) + µ(φxn

))

(µ(φxn
))2

.

Together we have

Pµ

(
Lxn
t <

1

2
µ(φxn

)
)
≤ 4c1.3C(t)µ(1)

µ(φxn
)

+
16(C(t)µ(1) + µ(φxn))

(µ(φxn
))2

→ 0 by (7.13).

Hence Lxn
t → ∞ in probability since µ(φxn) → ∞. Take a subsequence xnk

→ x0 to get
L
xnk
t → ∞, Pµ-a.s. Therefore by choosing ω outside a null set N(t), we have L

xnk
t → ∞

as xnk
→ x0. Now take t = 1/n and N = ∪∞

n=1N(1/n) to see that for ω ∈ N c, we have
L
xnk
t → ∞ as xnk

→ x0 for all t > 0 since Lx
t is monotone in t. So we conclude that with

Pµ-probability one, we have for all t > 0, x 7→ Lx
t is discontinuous at x0.
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7.3 Proof of Theorem 1.9

7.3.1 Proof of Theorem 1.9(a)

The proof is similar to that of Theorem 1.3. Use (7.16) to see that

Xt(φxn)

(2c21.3
∫
µ(dy) log+(1/|y − xn|))1/2

L1

−−→ 0,

and hence convergence in probability follows. Then use the arguments in Section 2.2 to
see that the proof of Theorem 1.9(a) can be reduced to the proof of

[M(φxn
)]t

2c21.3
∫
log+(1/|y − xn|)µ(dy)

Pµ−−→ 1.

Note that

[M(φxn
)]t = c21.3

∫ t

0

ds

∫
Xs(dy)

1

|y − xn|2
.

Recall from (7.10) that∣∣∣∆ḡxn(y)−
1

|y − xn|2
∣∣∣ = |h̄(y − xn)| ≤ ‖h̄‖∞ <∞. (7.18)

Therefore it suffices to show ∫ t

0
Xs(

∆
2 ḡxn)ds∫

µ(dy) log+(1/|y − xn|)
Pµ−−→ 1. (7.19)

Since ∫
µ(dy) log+(1/|y − xn|) ≤

∫
µ(dy)

1

|y − xn|
<∞,

we may use Proposition 7.1 to get∫ t

0

Xs(
∆

2
ḡxn

)ds = Xt(ḡxn
)− µ(ḡxn

)−Mt(ḡxn
). (7.20)

Note that by (7.16), we have

Eµ

(
|Xt(ḡxn)|

)
≤ Eµ

[ ∫
Xt(dy)

1

|y − xn|

]
≤ C(t)µ(1).

Hence
Xt(ḡxn

)∫
µ(dy) log+(1/|y − xn|)

L1

−−→ 0.

Next we observe that

Eµ

[
M2

t (ḡxn
)
]
=Eµ

[ ∫ t

0

Xs((ḡxn
)2)ds

]
=

∫
µ(dy)

∫ t

0

ds

∫
ps(y − z)(ḡxn

(z))2dz

≤
∫
µ(dy)

∫ t

0

ds

∫
ps(y − z)

1

|z − xn|
dz ≤ (3t)1/2µ(1),

the last by Lemma 3.2. Therefore

Mt(ḡxn
)∫

µ(dy) log+(1/|y − xn|)
L2

−−→ 0.

Recall the bounded continuous function f̄ defined as in (7.4). Then we have∣∣∣− ḡxn
(y)− log+(1/|y − xn|)

∣∣∣ = |f̄(y − xn)| ≤ ‖f̄‖∞ <∞, (7.21)
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and it follows that

lim
n→∞

−µ(ḡxn
)∫

µ(dy) log+(1/|y − xn|)
= 1 + lim

n→∞

∫
f̄(y − xn)µ(dy)∫

µ(dy) log+(1/|y − xn|)
= 1.

Now use (7.20) to conclude∫ t

0
Xs(

∆
2 ḡxn

)ds∫
µ(dy) log+(1/|y − xn|)

=
Xt(ḡxn

)− µ(ḡxn
)−Mt(ḡxn

)∫
µ(dy) log+(1/|y − xn|)

Pµ−−→ 1,

and so the proof is complete.

7.3.2 Proof of Theorem 1.9(b)

Use (5.4) with γ = 1/2 to see that∣∣∣Xt(φxn)−Xt(φx0)
∣∣∣ ≤ c1.3|xn − x0|1/2

∫ ( 1

|y − x0|3/2
+

1

|y − xn|3/2
)
Xt(dy).

Similar to the derivation of (2.8), we use Lemma 2.1 to see that with Pµ-probability one,
there exist some r0(t, ω) ∈ (0, 1] and some constant C > 0 such that for all x ∈ R3,∫

Xt(dy)
1

|y − x|3/2
≤ 1

(r0)3/2
Xt(1) +

∫
|y−x|<r0

Xt(dy)
1

|y − x|3/2
≤ 1

(r0)3/2
Xt(1) + C.

Then it follows that∣∣∣Xt(φxn)−Xt(φx0)
∣∣∣ ≤ c1.3|xn − x0|1/2 · 2

( 1

(r0)3/2
Xt(1) + C

)
→ 0 as xn → x0,

that is to say
Xt(φxn

)
a.s.−−→ Xt(φx0

).

By (7.14) we can see that the proof of Theorem 1.9(b) is now reduced to the proof of
convergence ofMt(φxn) toMt(φx0) in probability. In fact, we will show the following L2

convergence:

Eµ

[(
Mt(φxn)−Mt(φx0)

)2]
= Eµ

[ ∫ t

0

Xs((φxn − φx0)
2)ds

]
=

∫
µ(dy)

∫ t

0

ds

∫
ps(y − z)(φxn(z)− φx0(z))

2dz → 0 as xn → x0.

For this I claim it suffices to show that when xn → x0,∫
µ(dy)

∫ t

0

ds

∫
ps(y − z)φ2xn

(z)dz →
∫
µ(dy)

∫ t

0

ds

∫
ps(y − z)φ2x0

(z)dz. (7.22)

To see this first note that by Lemma 5.1,∫
µ(dy)

∫ t

0

ds

∫
ps(y − z)φ2x0

(z)dz ≤ 2c21.3

∫
µ(dy)

(
(3t)1/2 + 1 + log+(1/|y − x0|)

)
<∞.

Hence the right hand side of (7.22) is finite. With respect to the measure
∫
µ(dy)

∫ t

0
dsps(y−

z)dz, by assuming (7.22), we use φ2xn
(z) → φ2x0

(z) to get the uniform integrability of
{φ2xn

}. Then

(φxn
− φx0

)2 ≤ 2(φxn
)2 + 2(φx0

)2 is uniformly integrable.

EJP 23 (2018), paper 109.
Page 33/45

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP231
http://www.imstat.org/ejp/


Renormalization of local times

Since (φxn
− φx0

)2 → 0 as n→ ∞, by its uniform integrability we have∫
µ(dy)

∫ t

0

ds

∫
ps(y − z)(φxn(z)− φx0(z))

2dz → 0.

In order to prove (7.22), we recall from (7.10) that for z 6= x,

∆ḡx(z)−
1

|z − x|2
= h̄(z − x), where h̄ ∈ Cb(R

3).

Then use Dominated Convergence Theorem to get∫
µ(dy)

∫ t

0

ds

∫
ps(y − z)h̄(z − xn)dz →

∫
µ(dy)

∫ t

0

ds

∫
ps(y − z)h̄(z − x0)dz.

Therefore it suffices to show∫
µ(dy)

∫ t

0

ds

∫
ps(y − z)∆ḡxn

(z)dz →
∫
µ(dy)

∫ t

0

ds

∫
ps(y − z)∆ḡx0

(z)dz. (7.23)

In order to prove (7.23), take means in Proposition 7.1 to get∣∣∣ ∫ µ(dy)

∫ t

0

ds

∫
ps(y − z)

∆

2
ḡxn

(z)dz −
∫
µ(dy)

∫ t

0

ds

∫
ps(y − z)

∆

2
ḡx0

(z)dz
∣∣∣

≤
∣∣∣µ(ḡxn)− µ(ḡx0)

∣∣∣+ Eµ

∣∣∣Xt(ḡxn)−Xt(ḡx0)
∣∣∣.

Recall from (7.21) that for y 6= x,

−ḡx(y)− log+(1/|y − x|) = f̄(y − x), where f̄ ∈ Cb(R
3).

Apply Dominated Convergence Theorem to get∫
f̄(y − xn)µ(dy) →

∫
f̄(y − x0)µ(dy),

and then µ(ḡxn
) → µ(ḡx0

) follows since we have assumed in Theorem 1.9(b) that∫
µ(dy) log+(1/|y − xn|) →

∫
µ(dy) log+(1/|y − x0|).

For the second term, we have

Eµ

∣∣∣Xt(ḡxn
)−Xt(ḡx0

)
∣∣∣ ≤ ∫ µ(dy)

∫
pt(y − z)|ḡxn

(z)− ḡx0
(z)|dz.

It suffices to show∫
µ(dy)

∫
pt(y − z)|ḡxn

(z)|dz →
∫
µ(dy)

∫
pt(y − z)|ḡx0

(z)|dz

by the same uniform integrability arguments above. We have∣∣∣ ∫ pt(y − z)|ḡxn(z)|dz −
∫
pt(y − z)|ḡx0(z)|dz

∣∣∣
=
∣∣∣ ∫ pt(xn − z)|ḡ0(z − y)|dz −

∫
pt(x0 − z)|ḡ0(z − y)|dz

∣∣∣
≤Ct−1/2|xn − x0|

∫
(p2t(xn − z) + p2t(x0 − z)) |ḡ0(z − y)|dz (by (6.3))

≤Ct−1/2|xn − x0|
∫
(p2t(xn − z) + p2t(x0 − z))

1

|z − y|
dz (by (7.1))

≤Ct−1/2|xn − x0| · C(t) (by (7.15)).
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Therefore ∣∣∣ ∫ µ(dy)

∫
pt(y − z)|ḡxn

(z)|dz −
∫
µ(dy)

∫
pt(y − z)|ḡx0

(z)|dz
∣∣∣

≤Ct−1/2|xn − x0| · C(t)µ(1) → 0 as xn → x0.

Combining the above we have proved (7.23) and the proof is now complete.

8 Application to PDE

Let V λ(x) be the solution to (1.9). In order to prove Theorem 1.13, we need to show
that the upper bound coincides with the lower bound as x → 0 and we will prove the
following two lemmas:

Lemma 8.1. (Lower bound)

lim inf
x→0

V λ(x)− λc1.3/|x|
c21.3λ

2 log(1/|x|)
≥ −1.

Lemma 8.2. (Upper bound)

lim sup
x→0

V λ(x)− λc1.3/|x|
c21.3λ

2 log(1/|x|)
≤ −1.

Recall from Section 1.4 that we have

Eδ0

(
exp(−λLx

∞)
)
= exp(−V λ(x)),

suggesting that we study the exponential moments of super-Brownian motion X starting
from δ0 in d = 3. The proofs of Lemma 8.1 and 8.2 will then follow in Section 8.2 and 8.3.

8.1 Exponential moments

In this section we give some exponential estimates of super-Brownian motion X

starting from δ0 in R3. The following lemma is from Lemma III.3.6 in [13].

Lemma 8.3. If f ≥ 0 is Borel measurable such that G(f, t) :=
∫ t

0
supx Psf(x)ds < 2, then

Eδ0

[
exp

(
Xt(f)

)]
≤ exp

{
δ0(Ptf)(1−

G(f, t)

2
)−1
}
<∞. (8.1)

Corollary 8.4. For any θ > 0, there exists some t0 > 0 such that for all 0 < t < t0

Eδ0

[
exp

(
θ

∫
1

|y − x|
Xt(dy)

)]
≤ C <∞, ∀x ∈ R3 (8.2)

for some constant C = C(t, θ) > 0.

Proof. Let f(y) = θ/|y − x|. Then by (7.15)

δ0(Ptf) =

∫
pt(y)

θ

|y − x|
dy ≤ C(t)θ <∞.

Next

G(f, t) =

∫ t

0

sup
z

∫
ps(z − y)

θ

|y − x|
dyds = θ

∫ t

0

∫
ps(y)

1

|y|
dyds ≤ θ(3t)1/2.

The second equality follows from (7.15) and the last inequality follows from Lemma 3.2.
Pick t small enough such that θ(3t)1/2 < 2. Then (8.2) holds by Lemma 8.3.
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Now let’s consider the exponential moment of the weighted occupation measure∫ t

0
Xs(·)ds. The following lemma will be useful.

Lemma 8.5. Let X be a random variable such that (4.4) holds formally. If
∑∞

n=1 anθ
n
0

converges for some θ0 > 0, then the following holds for |θ| < θ0:

E
[
exp

(
θX
)]

= exp
( ∞∑

n=1

anθ
n
)
.

Proof. We assume |θ| < θ0 throughout the proof. Since (4.4) holds formally and∑∞
n=1 anθ

n converges, for all n ≥ 1 we have

E(Xn) =
dn

dθn

(
exp

( n∑
k=1

akθ
k
))∣∣∣∣∣

θ=0

=
dn

dθn

(
exp

( ∞∑
k=1

akθ
k
))∣∣∣∣∣

θ=0

.

By Lemma 4.3(ii), for |θ| < θ0,

E
[
exp

(
|θX|

)]
<∞.

Then by Dominated Convergence Theorem,

E
[
exp

(
θX
)]

=

∞∑
n=1

θn

n!
E(Xn) =

∞∑
n=1

θn

n!

dn

dθn

(
exp

( ∞∑
k=1

akθ
k
))∣∣∣∣∣

θ=0

= exp
( ∞∑

k=1

akθ
k
)
.

The last equality is by the Taylor expansion of the analytic function exp
(∑∞

k=1 akθ
k
)
.

Proposition 8.6. For any θ > 0 there exists some t0 > 0 such that for any t < t0, we
have

Eδ0

[
exp

(
θ

∫ t

0

∫
1

|y − x|
Xs(dy)ds

)]
≤ C <∞, ∀x ∈ R3,

and

Eδ0

[
exp

(
θ

∫ t

0

Xs(1)ds
)]

≤ C <∞,

for some constant C = C(t, θ).

Proof. Recall that fx(y) = 1/|y − x|. Lemma 4.2 implies the following holds formally:

Eδ0

[
exp

(
θ

∫ t

0

Xs(fx)ds− θδ0(v
x
1 (t))

)]
= exp

(
2

∞∑
n=2

(
θ

2
)nδ0

(
vxn(t)

))
. (8.3)

We will show that the assumption in Lemma 8.5 holds for the case of (8.3). By using (4.9)
and (4.11), for all n ≥ 1 we have

2(
1

2
)nδ0(v

x
n(t)) ≤ cn

1

2n−1
t(3n−2)/2rn = 2t−1cn(

r

2
t3/2)n,

where r =
√
3, c1 = 1 and cn =

∑n−1
k=1 ckcn−k, n ≥ 2. Let

F (θ) :=

∞∑
n=1

cnθ
n.

By the definition of (cn), we have F (θ)−θ = (F (θ))2 and it gives F (θ) = 1/2− (1/4−θ)1/2
and that F (θ) has a positive radius of convergence. So

2

∞∑
n=2

(
θ

2
)nδ0

(
vxn(t)

)
≤ 2t−1

∞∑
n=1

cn(
rθ

2
t3/2)n = 2t−1F (

rθ

2
t3/2) <∞
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if we pick t small enough. Therefore for t small, (8.3) holds by Lemma 8.5. Hence

Eδ0

[
exp

(
θ

∫ t

0

Xs(fx)ds
)]

=exp
(
2

∞∑
n=1

(
θ

2
)nδ0

(
vxn(t)

))
≤ exp

(
2t−1F (

rθ

2
t3/2)

)
= C(t, θ) <∞.

The proof is even easier for
∫ t

0
Xs(1)ds.

Corollary 8.7. For any θ > 0, there exists some t0 > 0 such that for all t < t0

Eδ0

[
exp

(
θ

∫ t

0

Xs(ḡ
2
x)ds

)]
≤ C <∞, ∀x ∈ R3

for some constant C = C(t0, θ) > 0.

Proof. Recall from (7.1) that

|ḡx(y)|2 ≤
(
log+

1

|y − x|

)2
≤ 1

|y − x|
.

Then it follows immediately from Proposition 8.6.

Before proceeding to the proof of Lemma 8.1, we state another result:

Proposition 8.8. For x 6= 0 in R3, there exists some constant C > 0 such that

1

2

∫ t

0

∫
1

|y − x|2
Xs(dy)ds ≤ Xt(ḡx)− δ0(ḡx)−Mt(ḡx) + C

∫ t

0

Xs(1)ds (8.4)

holds for all t ≥ 0 Pδ0 -a.s..

Proof. By using Proposition 7.1 with µ = δ0, for x 6= 0 we have Pδ0 -a.s. that∫ t

0

Xs(
∆

2
ḡx)ds = Xt(ḡx)− δ0(ḡx)−Mt(ḡx), ∀t ≥ 0.

By (7.18) we have ∣∣∣∆ḡx(y)− 1

|y − x|2
∣∣∣ = |h̄(y − x)| ≤ ‖h̄‖∞ <∞,

and then the above result follows.

Throughout the rest of this Section for simplicity we write E for Eδ0 when there is
no confusion.

8.2 Lower bound

Recall that φx(y) = c1.3/|y − x|. For any σ ∈ R,

exp
(
− σMt(φx)−

1

2
σ2

∫ t

0

Xs(φ
2
x)ds

)
is an Ft-supermartingale and therefore

E
[
exp

(
− σMt(φx)−

1

2
σ2

∫ t

0

Xs(φ
2
x)ds

)]
≤ 1. (8.5)

As is shown later in the proof of upper bound in Section 8.3, the above supermartingale
is indeed a martingale, but we only need to address (8.5) for our use in this Section.
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Similarly we have

E
[
exp

(
− σMt(ḡx)−

1

2
σ2

∫ t

0

Xs(ḡ
2
x)ds

)]
≤ 1. (8.6)

Set t > 0, which will be chosen small enough below. Then for any p, q > 1 with
1/p+ 1/q = 1 we have

exp
(
− (V λ(x)− λ

c1.3
|x|

)
)
= E

[
exp

(
− λ(Lx

∞ − c1.3
|x|

)
)]

≤E
[
exp

(
− λ(Lx

t − c1.3
|x|

)
)]

= E
[
exp

(
− λ(Mt(φx)−Xt(φx))

)]
(by (7.14))

≤
(
E
[
exp

(
− pλMt(φx)

)])1/p(
E
[
exp

(
qλXt(φx)

)])1/q
. (8.7)

Use Corollary 8.4 with t > 0 chosen small enough to get

E
[
exp

(
qλXt(φx)

)]
≤ C(q, t, λ) <∞. (8.8)

By using (8.5) with σ = λp2, we have(
E
[
exp

(
− pλMt(φx)

)])1/p
=
(
E
[
exp

(
− pλMt(φx)−

1

2
p3λ2

∫ t

0

Xs(φ
2
x)ds

)
· exp

(1
2
p3λ2

∫ t

0

Xs(φ
2
x)ds

)])1/p
≤
(
E
[
exp

(
− p2λMt(φx)−

1

2
p4λ2

∫ t

0

Xs(φ
2
x)ds

)])1/p2

·
(
E
[
exp

(1
2
p3λ2q

∫ t

0

Xs(φ
2
x)ds

)])1/pq
≤
(
E
[
exp

(1
2
p3λ2q

∫ t

0

Xs(φ
2
x)ds

)])1/pq
. (8.9)

Let k = 1
2p

3λ2q. Then

E
[
exp

(1
2
p3λ2q

∫ t

0

Xs(φ
2
x)ds

)]
= E

[
exp

(
kc21.3

∫ t

0

∫
1

|y − x|2
Xs(dy)ds

)]
≤E
[
exp

(
2kc21.3(Xt(ḡx)− δ0(ḡx)−Mt(ḡx) + C

∫ t

0

Xs(1)ds)
)]

(Proposition 8.8)

≤ exp
(
2kc21.3 log

1

|x|
)
· E
[
exp

(
− 2kc21.3Mt(ḡx) + 2kc21.3 C

∫ t

0

Xs(1)ds
)]

≤ exp
(
2kc21.3 log

1

|x|
)
·
(
E
[
exp

(
− 4kc21.3Mt(ḡx)

)])1/2(
E
[
exp

(
4kc21.3C

∫ t

0

Xs(1)ds
)])1/2

.

(8.10)

The second inequality follows from Xt(ḡx) ≤ 0 and −δ0(ḡx) = log(1/|x|) for |x| small.
Proposition 8.6 implies that with t > 0 chosen small, we have(

E
[
exp

(
4kc21.3C

∫ t

0

Xs(1)ds
)])1/2

≤ C(k, t) <∞. (8.11)

Let θ = 4kc21.3 and use (8.6) with σ = 2θ to get(
E
[
exp

(
− 4kc21.3Mt(ḡx)

)])1/2
=
(
E
[
exp

(
− θMt(ḡx)− θ2

∫ t

0

Xs(ḡ
2
x)ds

)]
· exp

(
θ2
∫ t

0

Xs(ḡ
2
x)ds

)])1/2
≤
(
E
[
exp

(
− 2θMt(ḡx)− 2θ2

∫ t

0

Xs(ḡ
2
x)ds

)])1/4
·
(
E
[
exp

(
2θ2

∫ t

0

Xs(ḡ
2
x)ds

)])1/4
≤
(
E
[
exp

(
2θ2

∫ t

0

Xs(ḡ
2
x)ds

)])1/4
≤ C(θ, t) <∞. (8.12)
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The last inequality follows from Corollary 8.7 with t > 0 chosen small. Therefore (8.9),
(8.10), (8.11) and (8.12) imply that with t > 0 chosen sufficiently small, we have(

E
[
exp

(
− pλMt(φx)

)])1/p
≤ C exp

(
p2λ2c21.3 log

1

|x|
)
. (8.13)

In conclusion, (8.7), (8.8) and (8.13) imply that for |x| > 0 small

exp
(
− (V λ(x)− λ

c1.3
|x|

)
)
≤ C exp

(
p2λ2c21.3 log

1

|x|
)

for some constant C = C(p, t, λ) > 0, i.e.

V λ(x)− λ
c1.3
|x|

≥ −p2λ2c21.3 log
1

|x|
+ C.

Let x→ 0 to conclude

lim inf
x→0

V λ(x)− λc1.3/|x|
c21.3λ

2 log(1/|x|)
≥ −p2.

Since p > 1 can be chosen arbitrarily close to 1, we get

lim inf
x→0

V λ(x)− λc1.3/|x|
c21.3λ

2 log(1/|x|)
≥ −1. (8.14)

8.3 Upper bound

Set t > 0, which will be chosen small enough below. Then we have

exp
(
− (V λ(x)− λ

c1.3
|x|

)
)
= E

[
exp

(
− λ(Lx

∞ − c1.3
|x|

)
)]

=E
[
exp

(
− λ(Lx

∞ − Lx
t )
)
· exp

(
− λ(Mt(φx)−Xt(φx))

)]
(by (7.14))

≥E
[
exp

(
− λ(Lx

∞ − Lx
t )
)
· exp

(
− λMt(φx)

)]
=E
[
E
(
exp

(
− λ(Lx

∞ − Lx
t )
)∣∣Ft

)
· exp

(
− λMt(φx)

)]
=E
[
exp

(
−Xt(V

λ
x )
)
· exp

(
− λMt(φx)

)]
, (8.15)

where V λ
x (y) = V λ(y− x). We use the Markov property and (1.8) with µ = Xt for the last

equality. Next,

E
[
exp

(
−Xt(V

λ
x )− λMt(φx)

)]
=E
[
exp

(
−Xt(V

λ
x ) +

1

2
λ2
∫ t

0

Xs(φ
2
x)ds

)
· exp

(
− λMt(φx)−

1

2
λ2
∫ t

0

Xs(φ
2
x)ds

)]
=E
[
exp

(
−Xt(V

λ
x ) + c21.3λ

2(Xt(gx) + log
1

|x|
−Mt(gx))

)
× exp

(
− λMt(φx)−

1

2
λ2
∫ t

0

Xs(φ
2
x)ds

)]
(by Proposition 2.3)

=Ẽ
[
exp

(
−Xt(V

λ
x ) + c21.3λ

2(Xt(gx) + log
1

|x|
−Mt(gx))

)]
. (8.16)

We use Dawson’s Girsanov Theorem (see Chp. IV.1 in [13]) to change measure from P to
P̃ with

dP̃

dP

∣∣∣
Ft

= Rt := exp
(
− λMt(φx)−

1

2
λ2
∫ t

0

Xs(φ
2
x)ds

)
,

EJP 23 (2018), paper 109.
Page 39/45

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP231
http://www.imstat.org/ejp/


Renormalization of local times

where Rt is a martingale by Novikov’s Theorem since

E
[
exp

(1
2
λ2
∫ t

0

Xs(φ
2
x)ds

)]
<∞

by (8.10), (8.11) and (8.12) with x 6= 0 and t > 0 chosen small enough.

Note that P̃ � P , so every thing holds P̃ -a.s. as long as it holds P -a.s.. Therefore
x 7→Mt(gx) and x 7→ Xt(gx) is continuous P̃ -a.s.. For the Xt(V

λ
x ) term, we use (1.10) to

see that there is some δ > 0 such that

V λ
x (y) ≤ λ

1

|y − x|
for |y − x| < δ.

Since V λ is continuous on R3\{0} and vanishes at infinity, there is some Cδ > 0 such
that V λ

x (y) ≤ Cδ if |y − x| > δ. So

Xt(V
λ
x ) ≤ CδXt(1) + λ

∫
1

|y − x|
Xt(dy).

By (2.8), with P -probability one, there exist some r0(t, ω) ∈ (0, 1] and some constant
C > 0 such that ∫

1

|y − x|
Xt(dy) ≤

1

r0
Xt(1) + C.

Therefore
Xt(V

λ
x )

log(1/|x|)
a.s.−−→ 0 as x→ 0. (8.17)

Combining (8.15) and (8.16) and moving the log(1/|x|) term to the left, we get

exp
(
− (V λ(x)− λ

c1.3
|x|

+ c21.3λ
2 log

1

|x|
)
)

≥Ẽ
[
exp

(
−Xt(V

λ
x ) + c21.3λ

2Xt(gx)− c21.3λ
2Mt(gx)

)]
.

Then we have

lim inf
x→0

exp
(
− (V λ(x)− λ

c1.3
|x|

+ c21.3λ
2 log

1

|x|
)/ log

1

|x|
)

≥ lim inf
x→0

(
Ẽ
[
exp

(
−Xt(V

λ
x ) + c21.3λ

2Xt(gx)− c21.3λ
2Mt(gx)

)])1/ log 1
|x|

≥ lim inf
x→0

Ẽ
[
exp

((
−Xt(V

λ
x ) + c21.3λ

2Xt(gx)− c21.3λ
2Mt(gx)

)
/ log

1

|x|

)]
≥Ẽ lim inf

x→0

[
exp

((
−Xt(V

λ
x ) + c21.3λ

2Xt(gx)− c21.3λ
2Mt(gx)

)
/ log

1

|x|

)]
=Ẽ exp(0) = 1. (8.18)

The second inequality is by Jensen’s inequality applied to the power log(1/|x|) > 1 for
|x| small. The third inequality is by Fatou’s lemma. The last line follows from (8.17)
and the continuity of x 7→ Xt(gx) and x 7→ Mt(gx) (see Lemma 2.7 and Lemma 2.8). In
conclusion, (8.18) implies

lim sup
x→0

V λ(x)− λc1.3/|x|
c21.3λ

2 log(1/|x|)
≤ −1. (8.19)
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A Proof of Lemma 3.3

Idea of this proof is from Theorem 1 in Chapter 2.2 of [7].

Proof of Lemma 3.3. For any fixed s > 0, ps(y) = (2πs)−3/2e−|y|2/2s ∈ C∞(R3) vanishes
at infinity. Then we have

‖Dps‖L∞(R3) <∞ and ‖∆ps‖L∞(R3) <∞.

HereDu = Dxu = (ux1
, ux2

, ux3
) denotes the gradient of uwith respect to x = (x1, x2, x3).

For any δ ∈ (0, 1),

∆y

∫
R3

ps(y − z)gx(z)dz =

∫
B(x,δ)

∆yps(y − z)gx(z)dz +

∫
R3−B(x,δ)

∆yps(y − z)gx(z)dz

=:Iδ + Jδ.

Now

|Iδ| ≤ ‖∆ps‖L∞(R3)

∫
B(x,δ)

|gx(z)|dz ≤ Cδ3| log δ| → 0.

Note that ∆yps(y − z) = ∆zps(y − z). Integration by parts yields

Jδ =

∫
R3−B(x,δ)

∆zps(y − z)gx(z)dz

=

∫
∂B(x,δ)

gx(z)
∂ps
∂ν

(y − z)dz −
∫
R3−B(x,δ)

Dzps(y − z)Dzgx(z)dz

=: Kδ + Lδ,

ν denoting the inward pointing unit normal along ∂B(x, δ). So

|Kδ| ≤ ‖Dps‖L∞(R3)

∫
∂B(x,δ)

|gx(z)|dz ≤ Cδ2| log δ| → 0.

We continue by integrating by parts again in the term Lδ to find

Lδ =

∫
R3−B(x,δ)

ps(y − z)∆zgx(z)dz −
∫
∂B(x,δ)

ps(y − z)
∂gx
∂ν

(z)dz

=: Mδ +Nδ.

Now Dgx(z) = z−x
|z−x|2 (z 6= x) and ν = −(z−x)

|z−x| = −(z−x)
δ on ∂B(x, δ). Hence ∂gx

∂ν (z) =

ν ·Dgx(z) = − 1
δ on ∂B(x, δ). Since 4πδ2 is the surface area of the sphere ∂B(x, δ) in R3,

we have

Nδ = 4πδ · 1

4πδ2

∫
∂B(x,δ)

ps(y − z)dz → 0 · ps(y − x) = 0 as δ → 0.

By (2.14), we have ∆zgx(z) = 1/|x− z|2 when z ∈ R3 −B(x, δ). Therefore

Mδ =

∫
R3−B(x,δ)

ps(y − z)
1

|x− z|2
dz.

Lemma 3.1 implies∫
ps(y − z)

1

|x− z|2
dz ≤ C

1

|y − x|2
<∞ for y 6= x.

By Dominated Convergence Theorem, we have

Mδ =

∫
ps(y − z)

1

|x− z|2
1{|z−x|≥δ}dz →

∫
ps(y − z)

1

|x− z|2
dz

as δ → 0.
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B Proof of estimates in d=3

(i) In this section we prove (7.8): there is a constant C > 0 such that for all y 6= x and
0 < ε < 1, ∫

pε(y − z)|ḡx(z)− ḡx(y)|dz ≤ C|y − x|−1/2ε1/4. (B.1)

Note that∫
pε(y − z)|ḡx(z)− ḡx(y)|dz

=

∫
pε(y − z)

∣∣∣ log |z − x|χ1/2(z − x)− log |y − x|χ1/2(y − x)
∣∣∣dz

=

∫
pε(y − z)

∣∣∣ log+(1/|z − x|)χ1/2(z − x)− log+(1/|y − x|)χ1/2(y − x)
∣∣∣dz

≤
∫
pε(y − z) log+(1/|z − x|)

∣∣∣χ1/2(z − x)− χ1/2(y − x)
∣∣∣dz

+

∫
pε(y − z)

∣∣∣ log+(1/|z − x|)− log+(1/|y − x|)
∣∣∣χ1/2(y − x)dz := I + J. (B.2)

Since χ1/2 is a C
∞ function with compact support, then∫

pε(y − z)
∣∣∣χ1/2(z − x)− χ1/2(y − x)

∣∣∣2dz = E
(∣∣∣χ1/2(Bε − (y − x))− χ1/2(y − x)

∣∣∣2)
≤ ‖∇χ1/2‖2∞E(|Bε|2) ≤ Cε.

By Cauchy-Schwarz, for 0 < ε < 1

I =

∫
pε(y − z) log+(1/|z − x|)

∣∣∣χ1/2(z − x)− χ1/2(y − x)
∣∣∣dz

≤
(∫

pε(y − z)(log+(1/|z − x|))2dz
)1/2(∫

pε(y − z)
∣∣∣χ1/2(z − x)− χ1/2(y − x)

∣∣∣2dz)1/2
≤
(∫

pε(y − z)
1

|z − x|
dz
)1/2

· (Cε)1/2 ≤ C|y − x|−1/2ε1/2 ≤ C|y − x|−1/2ε1/4, (B.3)

the third inequality by Lemma 3.1. For J in (B.2), we have

J =

∫
pε(y − z)

∣∣∣ log+(1/|z − x|)− log+(1/|y − x|)
∣∣∣χ1/2(y − x)dz

≤
∫
|z−x|<1

pε(y − z)
∣∣∣ log(1/|z − x|)− log(1/|y − x|)

∣∣∣χ1/2(y − x)dz

+

∫
|z−x|≥1

pε(y − z) log+(1/|y − x|)χ1/2(y − x)dz := J1 + J2.

By (3.7) we have

J1 ≤
∫
pε(y − z)

∣∣∣ log |z − x| − log |y − x|
∣∣∣dz ≤ C|y − x|−1/2ε1/4.

For J2 we have

J2 ≤ log+
1

|y − x|

∫
|z−x|≥1

pε(y − z)dz = log+
1

|y − x|
P
(
|Bε − (y − x)| > 1

)
≤ log+

1

|y − x|
P
(
|Bε| > 1− |y − x|

)
≤ Cε1/2

(1− |y − x|)
log+

1

|y − x|
.
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Note that for 1/2 < |y − x| < 1,

1

(1− |y − x|)
log+

1

|y − x|
=

1

(1− |y − x|)
log(1 +

1− |y − x|
|y − x|

) ≤ |y − x|−1 ≤ 2|y − x|−1/2,

and for 0 < |y − x| < 1/2,

1

(1− |y − x|)
log+

1

|y − x|
≤ 2 log+

1

|y − x|
≤ 2|y − x|−1/2.

So for 0 < ε < 1, we have J2 ≤ 2Cε1/2|y − x|−1/2 ≤ Cε1/4|y − x|−1/2. Therefore
J ≤ J1 + J2 ≤ Cε1/4|y − x|−1/2. Combine (B.2) and (B.3) to conclude that (B.1) holds.

(ii) For any µ ∈MF (R
3), we prove that the following are equivalent:

(a) x0 is a continuity point of
∫
1/|y − x|µ(dy);

(b) (t0, x0) is a continuity point of µqt(x) for all t0 ≥ 0;

(c) (t0, x0) is a continuity point of µqt(x) for some t0 ≥ 0.

Recall that qt(x) =
∫ t

0
ps(x)ds and 1/|x| =

∫∞
0

2πps(x)ds. Dominated Convergence
Theorem implies as x→ 0, we have

q̄t(x) := qt(x)− 1/(2π|x|) =
∫ ∞

t

ps(x)dy →
∫ ∞

t

ps(0)dy = C(t), ∀t > 0. (B.4)

Therefore q̄t can be extended to be a bounded continuous function on R3 by letting
q̄t(0) = C(t).

(a) ⇒ (b): Let x0 be a continuity point of
∫
1/|y− x|µ(dy). Then for any ε > 0, there is

some δ > 0 such that for all |x− x0| < δ,∣∣∣ ∫ 1

2π|y − x|
µ(dy)−

∫
1

2π|y − x0|
µ(dy)

∣∣∣ < ε,

and in particular ∫ ∫ ∞

0

ps(y − x)dsµ(dy) =

∫
1/(2π|y − x|)µ(dy) <∞. (B.5)

For all t0 ≥ 0 and |x− x0| < δ we have

|µqt(x)− µqt0(x0)| ≤|µqt(x)− µqt0(x)|+ |µqt0(x)− µqt0(x0)|.

The first term converges to 0 if t → t0 by (B.5) and Dominated Convergence Theorem.
The second term vanishes if t0 = 0, so we may assume t0 > 0. Since q̄t0 is bounded
continuous for t0 > 0, we can pick γ > 0 such that |µq̄t0(x) − µq̄t0(x0)| < ε for all
|x− x0| < γ. Then for all |x− x0| < γ ∧ δ,

|µqt0(x)− µqt0(x0)| ≤|µq̄t0(x)− µq̄t0(x0)|+
∣∣∣ ∫ 1

2π|y − x|
µ(dy)−

∫
1

2π|y − x0|
µ(dy)

∣∣∣ < 2ε,

and we prove that (t0, x0) is a continuity point of µqt(x) for all t0 ≥ 0.
(c) ⇒ (a): If (t0, x0) is a joint continuity point of µqt(x) for some t0 > 0, since q̄t0 is

bounded continuous, it follows immediately that x0 is a continuity point of
∫
1/|y−x|µ(dy).

If (0, x0) is a joint continuity point of µqt(x), then for any ε > 0, there exists some δ > 0

such that for all |x − x0| < δ and 0 < t ≤ δ, we have µqt(x) < ε. Since q̄δ is bounded
continuous, there is some γ > 0 such that |µq̄δ(x)− µq̄δ(x0)| < ε for all |x− x0| < γ. Then
for all |x− x0| < γ ∧ δ, we have∣∣∣ ∫ 1

2π|y − x|
µ(dy)−

∫
1

2π|y − x0|
µ(dy)

∣∣∣ ≤ |µq̄δ(x)− µq̄δ(x0)|+ µqδ(x) + µqδ(x0) < 3ε,

and we prove such an x0 is a continuity point of
∫
1/|y − x|µ(dy).
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C Proof of estimates in d=2

(i) Define

fα(x) :=

∫ ∞

0

e−αs 1

2πs
e−

|x|2
2s ds− 1

π
log+

1

|x|
for x ∈ R2\{0}. (C.1)

We will prove that
fα(x) → C(α) as x→ 0.

Then we can define fα(0) = C(α) to make fα a continuous function in R2. It’s clear from
the definition that fα(x) is bounded away from x = 0. Hence fα is a bounded continuous
function on R2. To do this, we have

fα(x) =
[ ∫ 1

0

1

2πs
e−

|x|2
2s ds− 1

π
log+

1

|x|

]
+

∫ 1

0

(e−αs − 1)
1

2πs
e−

|x|2
2s ds

+

∫ ∞

1

e−αs 1

2πs
e−

|x|2
2s ds := I1 + I2 + I3.

Note that as x→ 0,

I3 =

∫ ∞

1

e−αs 1

2πs
e−

|x|2
2s ds→

∫ ∞

1

e−αs 1

2πs
ds = C1(α)

by Dominated Convergence Theorem. We know that∣∣∣(e−αs − 1)
1

2πs

∣∣∣ ≤ α

2π
, for all 0 < s < 1.

Therefore by Dominated Convergence Theorem again,

I2 =

∫ 1

0

(e−αs − 1)
1

2πs
e−

|x|2
2s ds→

∫ 1

0

(e−αs − 1)
1

2πs
ds = C2(α).

Now we deal with I1. Note that∫ 1

0

1

2πs
e−

|x|2
2s ds

t=|x|2/2s
=

∫ ∞

|x|2/2
e−t 1

2πt
dt.

Then for 0 < |x| < 1,

I1 =
[ ∫ 1

|x|2/2

1

2πt
dt− 1

π
log

1

|x|

]
+

∫ 1

|x|2/2
(e−t − 1)

1

2πt
dt+

∫ ∞

1

e−t 1

2πt
dt

:= J1 + J2 + J3.

Note that J3 is integrable. For J2, by similar arguments used to I2, we have

J2 =

∫ 1

|x|2/2
(e−t − 1)

1

2πt
dt→

∫ 1

0

(e−t − 1)
1

2πt
dt = C as x→ 0.

Finally

J1 =

∫ 1

|x|2/2

1

2πt
dt− 1

π
log

1

|x|
=

1

2π
log 2.

To make a conclusion,
fα(x) → C(α) as x→ 0.

(ii) Recall that qt(x) =
∫ t

0
ps(x)ds and we prove in (i) that

I1 = q1(x)− (1/π) log+(1/|x|) → C as x→ 0
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for some constant C. Dominated Convergence Theorem implies that for any t > 0,
qt(x)− q1(x) → qt(0)− q1(0) = C(t) as x→ 0. Therefore when x→ 0,

q̃t(x) := qt(x)− (1/π) log+(1/|x|) → C(t), ∀t > 0, (C.2)

and q̃t can be extended to be a bounded continuous function on R2 by letting q̃t(0) = C(t).
Then by the similar arguments in Appendix B(ii), for any µ ∈MF (R

2), the following are
equivalent:

(a) x0 is a continuity point of
∫
log+(1/|y − x|)µ(dy);

(b) (t0, x0) is a continuity point of µqt(x) for all t0 ≥ 0;

(c) (t0, x0) is a continuity point of µqt(x) for some t0 ≥ 0.
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