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Abstract

A large deviation principle is established for a two-scale stochastic system in which
the slow component is a continuous process given by a small noise finite dimensional
It6 stochastic differential equation, and the fast component is a finite state pure jump
process. Previous works have considered settings where the coupling between the
components is weak in a certain sense. In the current work we study a fully coupled
system in which the drift and diffusion coefficient of the slow component and the jump
intensity function and jump distribution of the fast process depend on the states of
both components. In addition, the diffusion can be degenerate. Our proofs use certain
stochastic control representations for expectations of exponential functionals of finite
dimensional Brownian motions and Poisson random measures together with weak
convergence arguments. A key challenge is in the proof of the large deviation lower
bound where, due to the interplay between the degeneracy of the diffusion and the
full dependence of the coefficients on the two components, the associated local rate
function has poor regularity properties.
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1 Introduction

We study a stochastic system with two time scales where the slow scale evolution
is described through a continuous stochastic process, given by a small noise finite
dimensional It6 stochastic differential equation, and the fast component is given as
a rapidly oscillating pure jump process. The two processes are fully coupled in that
the drift and diffusion coefficient of the slow process and the jump intensity function
and jump distribution of the fast process depend on the states of both components.
Multiscale systems of the form considered in this work arise in many problems from
systems biology, financial engineering, queuing systems, etc. For example, most cellu-
lar processes are inherently multiscale in nature with reactions occurring at varying
speeds. This is especially true in many genetic networks, where protein concentration,
usually modeled by a small-noise diffusion process, is controlled by different genes
rapidly switching between their respective active and inactive states [9]. The key
characterizing feature of such slow-fast systems is that the fast component reaches
its equilibrium state at much shorter time scales at which the slow system effectively
remains unchanged. This local equilibration phenomenon allows the approximation
of the properties of the slow system by averaging out the coefficients over the local
stationary distributions of the fast component. Such approximations yield a significant
model simplification and are mathematically justified by establishing an appropriate
averaging principle.

The averaging principle, which has its roots in the works of Laplace and Lagrange,
has a long history of applications in celestial mechanics, oscillation theory, radiophysics,
etc. For deterministic systems, the first rigorous results were obtained by Bogoliubov
and Mitropolsky [3], and further developments and generalizations were subsequently
carried out by Volosov, Anosov, Neishtadt, Arnold and others (for example, see [1, 24]).
The stochastic version of the theory originated with the seminal paper of Khasminskii [14]
and later advanced in the works of Freidlin, Lipster, Skorohod, Veretennikov, Wentzel
and others (for example, see [13, 26, 27]). Stochastic averaging principles for various
models arising from systems biology have been studied in [2, 18, 19]. As noted above,
an averaging principle provides a model simplification in an appropriate scaling regime.
In order to capture the approximation errors due to the use of such simplified models
one needs a more precise asymptotic analysis. The goal of the current work is to study
one such asymptotic result that gives a large deviation principle (LDP) for the slow
process as the parameter governing the magnitude of the small noise in the diffusion
component and the speed of the fast component approaches its limit. Such a result, in
addition to providing estimates on the rate of convergence of the trajectories of the slow
component to that of the averaged system, is a starting point for developing accelerated
Monte-Carlo schemes for the estimation of probabilities of rare events (cf. [11]).

For a two-scale system where both components are continuous processes given
through finite dimensional It0 stochastic differential equations, the problem has been
studied in [23, 13, 28, 29]. In all these works the coupling between the two components
is weak in a certain sense. By this we mean that either the slow component has no
diffusion term [13, 28], or the dynamics of the fast component does not depend on
the slow one [23], or at least the diffusion coefficient of the fast component does not
depend on the slow term [29]. A recent paper by Puhalskii [25] studies a large deviation
principle for a fully coupled two-scale diffusion system. Under various conditions on
the coefficients of the two diffusions, including in particular certain non-degeneracy
conditions on the diffusion coefficients, the paper uses the exponential tightness and
limit characterization approach of [12] to establish a LDP for the slow component. Large
deviation results for certain multiscale dynamical systems given through a system of
ordinary differential equations have been studied in Kifer [20, 21].

EJP 23 (2018), paper 112. http://www.imstat.org/ejp/
Page 2/33


http://dx.doi.org/10.1214/18-EJP228
http://www.imstat.org/ejp/

Large deviations for small noise diffusions in a fast markovian environment

For settings where the fast component is a jump process, there are only a few results.
In [15, 17] the authors study a large deviation principle for a two-scale system in which
the trajectories of the slow diffusion component is modulated by a fast moving Markov
chain (whose evolution does not depend on the slow component). An earlier paper, [16],
considered a simpler case with no diffusion term in the equation for the slow component.
This simpler case, under a somewhat more restrictive condition, was also studied by
Freidlin and Wentzell in [13]. However, in all of these works the dynamics of the Markov
chain do not depend on that of the slow diffusion component. Large deviation problems
for general two-scale jump diffusions have recently been considered in [22]. The authors
prove a large deviation principle for each fixed time ¢ > 0 using the nonlinear semigroup
and viscosity solution based approach developed in [12]; however, a process level large
deviation result is not considered. One of the critical assumptions in this work is the
validity of a comparison principle for a certain nonlinear Cauchy problem (see Theorem 3
therein). Verification of the comparison principle is in general a challenging task which
needs to be done on a case by case basis for different systems. Specifically, the Hamilton-
Jacobi equations obtained in the current setting through the Perron-Frobenius theory
for the associated eigenvalue problems will in general have poor regularity for classical
comparison results to be applicable. We also note that [22] makes the assumption that
the jump coefficients are Lipschitz continuous in an appropriate sense. Such a property
fails to hold for systems considered in the current paper; specifically, the integrand in
the second equation in (2.3) is not Lipschitz continuous (in fact not even continuous).

As noted previously, the current paper studies a setting where the two components
are fully coupled. Specifically, for fixed € > 0, we consider a two component Markov
process (X¢,Y*¢), where X¢ is a d-dimensional continuous stochastic process given as
the solution of a stochastic equation of the form

dX°(t) = b(X=(t), Y*(t))dt + Vea(X(t), Y= (t)dW (),

where W is an m-dimensional Brownian motion, and Y* is a process with a finite
state space described in terms of a jump intensity function ¢(-,-) and a probability
transition kernel r(-,-,dy), both of which depend on the states of X¢ and Y*. We
make standard Lipschitz assumptions on the coefficients of the diffusion, however
we do not impose any non-degeneracy restrictions on the diffusion. In the setting
we consider methods based on approximations, exponential tightness estimates and
Girsanov change of measure appear to be quite hard to implement. One of the main
challenges in the analysis is due to the interplay between the possible degeneracy of the
diffusion coefficient and the dependence of the various coefficients (b, a, c and r) on both
components. In our approach we bypass discretizations and approximations by using
certain variational representations of expectations of positive functionals of Brownian
motions and Poisson random measures together with weak convergence techniques. The
variational representations for these noise processes that we use were developed in
[4, 6] and have been previously used in proving large deviation principles for a variety
of complex systems (see [5, 7, 8] and references therein). Using these representations,
the proof of the upper bound reduces to proving the tightness and characterizations of
weak limit points of certain controlled versions of the state process X°. We note that in
the description of these controlled systems there are two types of controls — one that
controls the drift of the Brownian noise and the other that controls the intensity of the
underlying Poisson random measure through a random ‘thinning’ function. The presence
of these two controls coupled with the strong dependence of the coefficients on both the
components make the required asymptotic analysis challenging.

The main challenge in this work arises in the proof of the lower bound. When using
the variational representations, the proof of the lower bound requires the construction of
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controls which lead to a prescribed limit trajectory with a prescribed cost. In particular,
when multiple times scales are present, one generally needs to establish the convergence
of the empirical measure for the fast variables to an a priori identified measure (which
could depend on the state of the slow variables). A natural technique is to first show that
the velocities of the trajectory can be made piecewise smooth (e.g., piecewise constant),
so that transition probabilities associated with the fast variables can be treated as
essentially constant over each interval where the velocity is continuous. Unfortunately,
this smoothing in time of the state requires establishing regularity properties of the
local rate function, which is the function L(z, ) when the rate function is written in the
somewhat standard form

1(6) = / L(E(t), £(8))dt.

It is the need for these regularity properties which leads to undesirable assumptions
that may not in fact be necessary (e.g., nondegeneracy of a diffusion coefficient).

We will use a different method to establish convergence that does not rely on any
smoothing in the time variable, and which in particular will allow for degenerate diffusion
coefficients. This alternative approach, which is one of the novel contributions of this
work, instead slightly perturbs the controls used on the noise space (both the control
of the Brownian term that directly impacts the slow variables and the control of the
Poisson term determining evolution of the fast variables), in such a way that the resulting
mapping from controls into the state trajectory is unique. This uniqueness result is the
key to the construction of near optimal controls for the prelimit process for which the
appropriate convergence properties can be proved and from which the lower bound
follows readily. The perturbation argument and resulting uniqueness, which is given in
Proposition 4.1, is described in detail at the beginning of Section 5. The strategy for the
proof of Proposition 4.1 is explained in Remark 4.2.

The rest of the paper is organized as follows. In Section 2 we give a precise math-
ematical formulation of the model and the statement of our main result. The large
deviation upper bound is proved in Section 3. Section 4 constructs suitable near optimal
controls and controlled trajectories with appropriate uniqueness properties. The large
deviation lower bound is proved in Section 5.

Notation: The following mathematical notation and conventions will be used in the
paper. For a Polish space S, we denote by P(S) (resp. Mr(S)) the space of probability
measures (resp. finite measures) on S equipped with the topology of weak convergence.
We denote by C(S) the space of real continuous and bounded functions on S. The
space of continuous functions from [0,7] to S, equipped with the uniform topology,
will be denoted as C([0,7] : S). For a bounded R? valued function f on S, we define
| flloo = sup,eg || f(x)|]. For a finite set I, we denote by M(L) the space of real functions
on IL. Cardinality of such a set will be denoted as |IL|. Given a probability function
r:IL—[0,1] G.e. Y oy r(x) = 1), we denote, abusing notation, ) ., 7(z) by r(A) for all
AcLand ) . f(z)r(z) by [ f(x)r(dz) for all f € M(L). Space of Borel measurable
maps from [0, 7] to a metric space S will be denoted as M([0,7] : S). Infimum over an
empty set, by convention, is taken to be co. In the Appendix we give a list of other
notation used frequently in this work.

2 Mathematical preliminaries and main result

For fixed ¢ > 0, we consider a two component Markov process {(X¢(¢),Y=(t)) }o<i<r
with values in R¢ x IL, where IL. = {1,...,|LL|} is equipped with the usual operation of
addition modulo |IL|. A precise stochastic evolution equation for the pair (X¢,Y <) will be
given below in terms of an m-dimensional Brownian motion and suitable Poisson random
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measure. However, roughly speaking, the pair (X¢,Y*¢) describes a jump-diffusion,
where the diffusion component (namely X¢) has “small noise” while the jump component
(Y?) has jumps at rate 0(5_1). The drift and diffusion coefficients of the continuous
component are given by suitable functions b : RY x . —+ R¢ and a : R? x I — R4X™,
The evolution of the pure-jump fast component is described through a jump intensity
function ¢ : R? x I — [0, 00) and a transition probability function 7 : R? x I x I — [0, 1].
Our main assumptions on these functions are as follows.

Assumption 2.1.

1. There exists d,, € (0,00) such that for all y,y’ € L. and x,z’' € RY,

le(z,y) — c(@’, y) + llalz,y) — al, )| + [b(z, y) = b(2", Y| + (2, y,9') = r(z’,9,9/)]
< dy[|lz — 2]

2. cis a bounded function.

3. For all (fE,y) € ]Rd X ]L; Zy/GJL T(x7y7yl) =1, T(x7y,y) =0.

We will occasionally write c(z,y), a(z, y), b(z,y), 7(x, y,y") as ¢, (z), ay(x), by (), ryy (z),
respectively.
Remark 2.2. Assumption 2.1(1) implies that, for some x; € (0, c0),

Ib(z, y)ll + llalz, y)ll < K11+ [, for all (z,y) € RY x L.

Let

<= sup  ¢y(z), (=S+1,
(z,y)€ERIXIL

and let A = \; be the Lebesgue measure on ([0, ¢], B([0,¢])). For (z,y,y') € R¢ x L x L,

y#y, let
Eyy (z) = [0, ¢y (2)ryy (7)]. (2.1)

From Assumption 2.1, for some k2 € (0,00),

sup AEyy (2)AEyy (2)] < kallz — 2| (2.2)
(y,y")ELXL,y#y’

for all z, 2’ € R?, where A denotes the symmetric difference. For each fixed = € RY, the
operator II, acting on M(LL) and defined by

Lo(y) = cy() Y (6() — ¢()ryy (2)

y' €L
= cy(z) Z Y )ryy (2) — D(y)
y' €l
describes the generator of an IL-valued Markov process. Let
(@) = Y rya(@)ig (@), no> 1 Ry () =y (@)
y' el
be the n-step transition probability kernel of the corresponding embedded chain. Define
||
« = inf min 7o (x), < =inf miIrL1 c(z,y)

z y,z€L = vz T yeE
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Let
T = {(y,y) € L x L : 7y () > 0 for some = € R%}

and let
kg = inf min 7,/ ().
zeR? (y,y’)ET
Recall that, from Assumption 2.1(2) ¢ = sup, ¢, < oco. We will make the following
additional assumption.

Assumption 2.3. a > 0, ¢ > 0 and k3 > 0.

Assumptions 2.1 and 2.3 will be taken to hold throughout this work and will not
always be mentioned in the statement of various results. Assumption 2.3 in particular
says that the |IL| x |IL| adjacency matrix whose (4, j) entry is 1 if (¢, j) € T and 0 otherwise
is irreducible.

The evolution of Y¢ can be described through a stochastic differential equation driven
by a finite collection of Poisson random measures which is constructed as follows. For
(i,7) € T let N;; be a Poisson random measure (PRM) on [0, (] x [0, 7] x R with intensity
measure A\¢ ® A\r ® Ao, Where Ap (resp. A\,) denotes the Lebesgue measure on [0, T
(resp. R4 ), on some complete filtered probability space (Q2, F,P,{F;}o<t<r) such that
fort e [0,T],

Nij(A % [0,t] x B) — tA¢(A) Ao (B)

is a {F;}-martingale for all A € B[0,¢] and B € B(R4) with A (B) < co. Then
Ni; ' (dr x dt) = Nyj(dr x dt x [0,e1])

is a PRM on [0,¢] x [0, T] with intensity measure e~ '\ ® Ar, and can be regarded as
a random variable with values in Mz([0,¢] x [0,T]), the space of finite measures on
[0,¢] x [0,T] equipped with the weak topology. The processes (N;;)( et are taken to
be mutually independent. We also suppose that on this filtered probability space there
is an m-dimensional F;-Brownian motion W = {W(t)}o<;<7. We will assume that for
0<s<t<T,

{W(t)—W(s), Ni;(A x (s,t] x B) A € B[0,(],B € BRy), (i,j) € T}

is independent of F;.

In terms of W and N¢ ', the Markov process (X¢,Y¢) = {(X*(t), Y<(t)) }o<i<r with
initial condition (zg, o) € R? x L is defined as the unique pathwise solution of the
following system of equations:

AXE(£) = B(XE(£), Y5 (0)dt + V(X (). V¥ (1)aW (1) X4(0) = a9
/e[o a (= i)l{Ye(t—):i}lEij(xs(t))(T)ij_l(dr X dt), Y4(0) = yo.

(2.3)
The unique solvability of (2.3) can be established by constructing the processes (X¢,Y*)
from one jump to the next. For example, starting with (X*(0),Y*=(0)) = (zo,yo) we solve
first the SDE

dY*(t)

(4,4)€T

dX (t) = b(X(t),y0)dt + Vea(X (L), yo)dW (t). 2.9

Using the solution X (¢) we determine the first jump time and jump location, (71, 1), of
the fast process by the relation

t
.. E_l
T =inf<¢t>0: E /0 / 0cl 1g,,;(x(s) (1) Nyy; (dr x ds) # 0
re|0,

(y0,5)€T
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and Y1 :] for which f()Tl frE[O,C] 1Ey0j(X(s))(T)N50_j (d?" X ds) 7& 0.

We now solve the SDE (2.4) replacing (xq, yo) with (z1,y;), where 2y = X (7). Using
the new solution path X (¢) of the SDE the next jump-time and jump-location (72, y2) of
the fast process is determined. This gives a recursive construction of a solution which is
unique due to the Lipschitz properties of the coefficients a, b.

From unique pathwise solvability it follows that for every ¢ > 0, there exists a
measurable map G° : C([0,7] : R™) x (Mp([0,¢] x [0,71))" — C([0,T] : R¢) such that
X* = G(VEW, {eNg ' }1y)-

The following is an immediate consequence of our assumptions.

Theorem 2.4. For each x € RY, there is a unique invariant probability measure, v(z) for
the IL-valued Markov process with generator I1,.

The proofs of the following two elementary lemmas are given in the Appendix.
Lemma 2.5. The mapping * € R¢ — v(z) € P(L) is Lipschitz continuous with the
Lipschitz constant L, (with respect to the total variation metric) depending only on
@,s,<, ke and k3. Furthermore, inf s mingcr, vy(z) = v > 0.

Lemma 2.6. Let f : R? x . — R satisfy

[f(z.y) = f@' )l < LJle —a'l|, =" €R%yel
for some LI, € (0,00). Define f(z) = >yer f(@,y)vy(x). Then f is a locally Lipschitz
function on R® with linear growth.

Let b(x) = >_yer b(@, y)vy(z), and note that by Lemma 2.6 b is a locally Lipschitz
function with linear growth. The proof of the following theorem follows along the lines
of [26, Chapter 2, Theorem 8]. We omit the details since a similar result in a controlled
setting will be shown in Proposition 3.4.

Theorem 2.7. Fix (z¢,y0) € R? x L. Let (X¢,Y*) be the solution of (2.3). Then ase — 0,
X¢ converges uniformly on compacts in probability to the unique solution of

d&(t “

B0 _iew). e« = @5)

The unique solvability of (2.5) is a consequence of the properties of b stated before
the theorem.

The solution X* of the system (2.3) can be regarded as a C([0, 7] : R¢)-valued random
variable. The main result of this work establishes a large deviation principle (LDP) for
X¢in C([0,T] : R?) as € — 0. In rest of this section we formulate the rate function for
{X¢} and present our main result.

2.1 Rate function
For ¢ = (¢;) er, with ¢, : [0,(] — R a measurable map for every j, let

L (2.6)
o Zy:yij Fj}y(x) t=17J

Note that any ¢ as above, such that 7); is integrable for each j, can be identified with
n = (n;);er such that for each j, n; € Mp([0,(]) on setting n;(dz) = ;(z)dz. More
generally, for z € R¢, and any = (1;) jer. such that each n; € Mg([0,¢]), we define I'(z)

as
n; (Eij(z)), i # ]
Ii(z) = (2.7)
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We will make use of such I'”7 in the next section. Although the introduction of a second
notation for the controlled intensities is regrettable, the measure formulation is more
natural when discussing topologies.

Define ¢ : [0,00) — [0,00) by ¢(z) = zlogz — = + 1 and let

R = {v = (¢ij),j)er : ©ij : [0,T] x [0,{] — Ry is a measurable map, (i, j) € T}.
Recall that M([0,7] : P(L)), M([0,T] : R?) denote the space of measurable maps from

[0, 7] to P(L) and from [0, T] to R? respectively.
For ¢ € O([0,T] : RY), define

I(€) = ; A(s)d ; Ac(dz)ds S
GRS SR [ I Pts s+(”§)jg/ o (D))
(2.8)
where V(§) is the collection of all
(u= (u), 0 = (pij), 7 = (m)) € M([0, 7] : ™)™ x R > M([0,T] : P(L))

such that fOT lui(s)||*mi(s)ds < oo for each i € L,

—xo+2/b Nmi(s ds+Z/ a;(€ m;(s)ds, t € 0,T],  (2.9)

JEL j€EL

and
S m(s)LE 7 (g(s)) = 0, fora.e. s € [0,7) and j € L, (2.10)
i€l

where ¢;. = (¢ ;)jer (with the convention ¢; ; = 1 if (i,j) ¢ T). Equation (2.10)
characterizes the invariant distributions that would be associated with controlled PRMs
with controls ¢;;, which influence the rate of transition from i to j through (2.6). This
form of the rate function is very much analogous to the control formulation of a small
noise diffusion as in [4]. In (2.10) we follow the convention that 0-oco = 0 and co — o0 = .
The following is the main result of this work. Recall that Assumptions 2.1 and 2.3 are
taken to hold throughout the paper. A function I : C([0,7] : R?) — [0, 00] is called a rate
function on C([0,7] : RY) if it has compact sub-level sets, namely for every a € (0, 00),
the set {¢£ € C([0,T] : RY) : I(¢) < a} is a compact subset of C([0,7] : R?).
Theorem 2.8. The map I in (2.8) is a rate function on C([0,T] : RY) and {X°}__,
satisfies the Laplace principle on C([0,7T] : R?), as ¢ — 0, with rate function I: for all
F € Gy(C([0,T] : RY)),

. . -1 c _ .
il_lg elogE [exp (—e ' F(X9))] 560(633]:Rd){F(£)+I(§)}' (2.11)

The proof of the Laplace upper bound

. 1 c . .
hrgnjtt)lpslogE[exp( e F(X9))] < 560([15}5]:1@){‘[7‘(5)—'_[(5)}’ (2.12)

which corresponds to a variational lower bound, is given in Section 3. The corresponding
lower bound

.. -1 c B .
luan_)%lfslogIE [exp (—e7'F(X7))] > 560(6&5};Rd){F(€)+I(§)}’ (2.13)

which is a variational upper bound, is proven in Section 5. The fact that [ is a rate
function is shown in Section 2.3 (Proposition 2.14).
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Remark 2.9.

(a) Note that the rate function I depends on the initial value of (X¢,Y*), namely (o, yo)-
To emphasize this dependence denote I by I, ,,. Using a straightforward argument
by contradiction, one can show that the Laplace limit (2.11), with I replaced by I, 4,
on the right side, holds uniformly for 1, € L and for z, in any compact subset of R?.

(b) For ¢ > 0, define the C([0,T] : Mp(LL)) valued random variable 3° by
t
B (1, A) i/ L4(Y2(s))ds, t € [0,T], AC L.
0

Then Theorem 2.8 can be generalized as follows: The pair (X°¢,(°) satisfies a
large deviation principle on C([0,7] : R? x Mz(LL)) with rate function I, where
for (£,9) € C([0,T] : RY x Mp(L)), I(£,9) is defined by the right side of (2.8)
by replacing V(¢) with V(¢,49) which is the collection of all (u, p, 7) that satisfy in
addition to (2.9) and (2.10) the equality

I(t, A) = Z/Otﬂ'j(s)ds, te€0,7], AcCL.

JEA

2.2 An equivalent representation for the rate function

In this section we present a different representation for the rate function that will
be more convenient to work with in some instances. Recall that A\; denotes Lebesgue
measure on [0, ¢].

Let / : Mp[0,¢] — [0, ] be defined by

R 02 () Ae(dz),  ifn < e,
i) = f[OK] (d)\c (Z)) ¢(dz) n . ¢
0, otherwise.

For n = (n;)ic1, where each n; € M0, (], with an abuse of notation we define

by =D 00m)-

i€l
For 0 <a <b < T let Hy,, denote the space
Hiop = [a,0] x L x (Mp[0,¢) < R™. (2.14)

For convenience, when [a, b] = [0, t], we use the notation IH; instead of H, ;. Let P, (IHr)
denote the space of finite measures Q on Hy such that

QM) =b—a, forall0 <a<b<T.

In other words, denoting the marginal on the i'" coordinate of Hr by [Q];, Q € Mp(Hr)
is in P, (Hr) if and only if [Q]; = Ar, where Ar is Lebesgue measure on [0,7]. For
notational simplicity, we will denote a typical (s, y,n,2) € Hr as v. @ encodes time (s),
the state of the controlled fast process (y), the measures controlling the jump rates (1),
and the control (z) applied to perturb the mean of the Brownian motion. Recall that
b(x,y),a(z,y) are the same as b, (), a,(x). For £ € C([0,T] : RY), let P5(€) be the family
of all @ € P, (Hr) such that

e < . (2.15)
Hr

) =a+ | e Q) + [ al€l).0):Q(av) (2.16)
EJP 23 (2018), paper 112. http://www.imstat.org/ejp/
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and
/lHt IV (€(s))Q(dv) =0 forall j € L and a.e. t € [0,T]. (2.17)

Equation (2.16) gives the controlled dynamics, and (2.17) guarantees that the conditional
distribution of @), in the y-variable (i.e., the second coordinate) given the time instant
s € [0, 7], the state £(s) of the dynamics, and that the rate control measure 7 are used, is
the stationary distribution associated with the generator I'7(£(s)). Define the function
I:0(0,7]: RY) — [0, 00] by

i) = inf {/]H BZ'Q +@(n)} Q(dv)}- 2.18)

QEP: (&)

In the expression for I, all statistical relations between the controls (z,m) and the
empirical measure for the fast variables are determined by the joint distribution. It is a
natural object for purposes of weak convergence analysis, and these relations can be
determined by the use of suitable test functions. The following result shows that Iand I
are the same.

Proposition 2.10. For every ¢ € C([0,T] : RY), 1(¢) = I(€).

Proof. Fix ¢ € C([0,T] : R%). We first show that I(¢) < I(¢). Without loss of generality
we assume that I(£) < oo. Fix € > 0 and let (u, p, 7) € V(&) be such that

Z / || (s)||2m;(s)ds + Z / Upij(s,2))mi(s)Ac(dz)ds < I(§) +e. (2.19)

i€l (i,7)€T

Define 7};;(s,dz) € Mp[0,¢] fori,j € L and s € [0,T] by

~ . pii(s, 2)Ac(d2), if (4,j) € T and z — @;;(s, z) is integrable,
i (s, dz) =

Ac(dz), otherwise.

Let ﬁz<8> = (ﬁij(& '))jelL- Define Q S Pleb<HT) by

b
Qab)x (i) x A x B) = [ m()63,9 (A)60, 0 (B) ds,

for A € B(MFp[0,¢))%), B € B(R™),0<a<b<T,andic L. Then it is easy to verify

that @ € P,(¢) and
L3l + ] tav)
Hr

equals the left side of (2.19). This proves that f(é“) < I(£) + €. Since € > 0 is arbitrary,
we have I(¢) < I(£). We now consider the reverse inequality, namely 7(£) < I(£). We
assume without loss of generality that 1(£) < co. Let Q € P,(€) be such that

/HT B”Z”Q +E<n>} Q(dv) < 1(¢) +e.

Let [Q]s412(dn x dz|y,s) denote the conditional distribution on the third and fourth
coordinates given the first and second. Disintegrate the measure () as

Q(ds x {y} x dn x dz) = dsmy(s) [Qlzap2(dn x dzly, s).

Define
uy(s):/ Z[Q]34\12(d77><d2|y75)7 yE]L786 [07T]
(MFp[0,])IEI xR™

EJP 23 (2018), paper 112. http://www.imstat.org/ejp/
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Also, for (y,s) € L x [0,T7, let

ms) = [ Qlsaa(dn x dzly.s) 220
(MEp[0,CDIF XR™
and write 7, = (7yy )y cr. By convexity

iy (5)) < / i) Qlsanadn x dzly, s),

(MF[0,¢]) I xR™

and therefore

> /[O . my(8)0(77,(s))ds < | E(n)Q(dv).

yell Hr
Define (8]
Myy’\S> if ., D) <€ M (-
Gy (5,2) =4 X0 (2), My (‘f’) <C)s (2.21)
1, otherwise.

Then note that

/ Uiz (5, 2))mils) A (d2)ds < / in)Qdv).
(i,j)eT [0,¢]x[0,T7] Hr

A similar convexity argument shows that
S5 [ P < 3 [ 1rew)
i€l Hr

To complete the proof it suffices to show that

(u = (ui), o = (piz), ™ = (m:)) € V(E)-

First, it is easily checked that ¢ satisfies (2.9). Thus it remains to verify (2.10). Since
Q € Ps(§), from (2.17) we have that for all j € L and a.e. s € [0, 7]

ZW s) / Ty (€(5))[Qlza12(dn x dzly, s) = 0.

vel (Mr[0,¢])H xR™

This equality can be rewritten as
Z 7ry(S)/Fy,J(E( NIQlzaj12(dn x dzly, s) = (s Z / Ql34)12(dn x dzlj, s).
Y:y#J i)
Using the definition of I'7 in (2.7), the last display becomes
S 7o) [ ni(Bus 66D Qaaliln x dely. o
Yy#£j

—m(s) Y / 01 (B (65)) [ @laapia(dy x d2lj, s),
i)

which owing to the definition of 7, in (2.20) is the same as
Z y(8)7y; (s, Ey;(£(5))) = m;(s Z Mji(s, Eji(§(s)))-
Y:yFJ iiA]
From the definition of (apij) in (2.21) it is now immediate that this is same as (2.10). O

EJP 23 (2018), paper 112. http://www.imstat.org/ejp/
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2.3 Compact level sets

We first prove the following lemmas, which will be used in the proof of the main
result of this section.

Lemma 2.11. Forn € (Mp[0,¢])" and = € RY, let T () be as defined in (2.7). Then
there is a c; € (0,00) such that for any M € [1,00), z,2" € R%, n € (Mg[0,¢])™,

sup | (z) — Tj(a)| < en (eMllar — /|| + W) .

i\j €L, i M

Proof. Let n = (771)‘1 ‘1 Note that the result is automatic if 7; €« A; for some i € L.
Assume now that 7; < A\¢ for each i. The following inequality will be used in the proof:
for u,v € (0,00) and o € [1,00),

1 1
uv < e’ 4+ —(vlogv —v+1) =e™ + —4(v). (2.22)
o o
Fix 7,2’ € R? and i # j in IL. Denoting the set E;;(z)AE;;(z') by E;;, for M € [1,00)

P2 (2) — D3| = I (Biy (@) — m (B (@) <y (By)
_ dn; d77]
Lo < [ e g [ (5200) aan
< Ml — o/ + 5-1ny),

where the inequality on the second line follows from (2.22) and the last inequality follows
from (2.2). The result follows. O

Remark 2.12. Using the inequality in (2.22) one can similarly show that there exists a
C) € (0,00) such that for any M € [1,00) and 5 € (Mp[0,¢])™,

zeRd HIEL, i£]

sup max T(z) <Cy (e”f—i—g(]\Z)).

The following lemma will be used at several places in weak convergence arguments.
Lemma 2.13. Let (%, Z",Y") be a sequence of (M[0,¢])™ x R? x I valued random
variables given on a probability space ({2, F,IP), which converges in_probabﬂity to
(n,Z,Y). Further suppose that, for some C € (0,00), sup, o E¢(n™) < C. Then for all
jeL, FYn (Z™) converges in L' to F" (Z), asmn — oo.

Proof. Fix j € L. Using Lemma 2.11 we see that
Y. (Z") ~T%. ;(Z)] =0, in probability. (2.23)

From Fatou’s lemma and the lower semicontinuity of 7 it follows that ]Eé(ﬁ) < C. Next, as-
sume without loss of generality by using a subsequential argument that the convergence
of (n®, Z",Y™) holds a.s. Let Qy € F be such that P(£)y) = 1 and Vw € €y,

(0" (W), 2" (w), Y (w)) = (7(w), Z(w), Y (w)),

and #(7j(w)) < oo. Fix w € Qy. We will suppress w from the notation at some places below.
Since I is a finite set, there exists an N = N(w) such that forn > N, Y"(w) = Y (w), and
consequently, I”{,T; 1(2) = F%Z(Z ). Since n™ — 7 and 7; is absolutely continuous with
respect to ¢ for every j, we conclude that

0} (Eij(x)) = 0;(Eij(x), Vi,j€L,i#j xeR%

EJP 23 (2018), paper 112. http://www.imstat.org/ejp/
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Using this in (2.7) we now have that
Y. (Z) = FﬁY’j(Z), a.s.
Combining this with (2.23) we have that
I‘@n (Z™) — Fg’j(Z) in probability.

Finally to show the L'-convergence, it suffices to argue that n; [0,¢], or equivalently
ni ;10,¢] = n7[0,¢]/A¢[0, ¢], is uniformly integrable. For this note that

1 dnj’ L5 n g
([0, ) = Q<QA@MJ”W”0>SJW%”SC’

where the first inequality follows from the convexity of £. The desired uniform integrabil-
ity is now an immediate consequence of the superlinearity of /. O

We now show that the function I, which is same as the function I defined in (2.18), is
a rate function on C([0,7] : R%).
Proposition 2.14. For every M € (0,0c), the set {¢ € C([0,T] : RY|I(&) < M} is
compact, and consequently I is a rate function on C([0, 7] : RY).

Proof. Let {&,}nen be a sequence in {¢€ € C([0,T] : RY)|I(¢) < M}. Since I(&,) < M, we
have from Proposition 2.10 that for each n € IN, there exists some Q,, € P4(&,), such that

3l 4 i) @uiav) < a2 2.24)

Recall that P, (Hr) is the space of finite measures on Hy = ]H[o,T] defined in (2.14) whose
first marginal is the Lebesgue measure. It suffices to show that {¢,} is pre-compact, and
every limit point belongs to {¢ € C([0,7] : R%)|I(¢) < M}. For this, we prove that:

(1) {Qn,&ntnen is pre-compact in P, (Hz) x C([0, 7] : RY).
(ii) Any limit point {Q, £} satisfies the properties
@ Ju, [31217 + )] Qlav) <

(b) (2.16) holds,
(c) (2.17) holds.
We now prove (i). Since L is a finite (and hence compact) set and [Q,]1 = Ar for all n,

in order to prove the pre-compactness of {Q,}, it suffices to show that for every 6 > 0,
there exists a Cy € (0, 00) such that

sup Qn § (5,9:m:2) € Hr: ) _n 0.6 + [z > €1 p <. (2.25)
ne jeL
From (2.24)
1212Qn(dv) < 2(M +1), [ {()Qn(dv) <M +1 (2.26)
]HT ]HT

and using (2.22) with 0 = 1,u = 1 and v = 7;{0, ¢],

Z/ 7310, ¢]Qn(dv) < |]L|Te+/ () Qn(dv) < |L|Te+ M +1.
Hr H

jelL T
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The inequality in (2.25) is now immediate from the last two displays. Thus {@,} is
pre-compact in P, (IHr). Next we argue the pre-compactness of {{,,}. We first show that

sup sup [|&,(8)]]* = Ca < . (2.27)

nelN 0<t<T
Since @,, € Ps(£,), we have
6u(t) =20+ [ HE)1)Qudv) + [ aln(s).)2Qulav).
H, H,
Using the linear growth property of a,b (Remark 2.2), we have

1€ ()17 < 3llzoll* + 3T/ K1 ([1€n ()] +1)°Qn(dv)

H;

1 312 /}H (&)l +17Qui) /H Q).

Thus from (2.26)
1€ ()17 < Bllzoll® 4 657 (T +2(M + 1)) /[0 ](\Ifn(8)||2 + 1)ds.
t

The inequality in (2.27) now follows by Gronwall’s inequality. Next, consider fluctuations
of £,. For0 <ty <t; <T,

ln(tr) — En(to)]] < /

Hizg,tq]

< /}H 1 ([1€a(5)]] + 1) Qu(dv)

[to,t1]

+ ( /
Hizg,tq)

< Calty — to|*?,

Hb(fn(S)vy)llQn(dV)Jr/ la(€n(s), Y21 Qn(dv)

Hizg, 4]

1/2
(m(llﬁn(S)H+1))2Qn(dV)/ |Z||2Qn(dV)>

Hr

where the last inequality uses (2.27) and (2.26) and C5 depends only on Co, M, k, and T'.
This estimate together with (2.27) shows that {¢,} is pre-compact in C([0, 7] : R?). We
now prove (ii). Let (Q,&) be a limit point of the sequence {(Qn,&,)}nen. Part (a) is
immediate from (2.24) using Fatou’s lemma and the lower semicontinuity of /. Consider
now part (b). We assume without loss of generality that the full sequence converges to
(Q, ). From the Lipschitz property of a (Assumption 2.1), we have

/ l[a(€n(s),y) — a(§(s), y)[[[|2|Qn(dv) < dnp/ 1€n(s) = E(s) ]| 2[| @n (dv)
Hr Hr

< dy sup |€n(s) — £ / 1211Qn (dv)
s<T Hr

< dyy sup 6,(5) — €09 [VT V20T + 1)

—0

as n — 0o. A similar calculation shows that as n — oo

| I (s).0) = Hes) 9@u(av) — 0.
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Since (s,y,n,2) +— (b(&(s),y),a(&(s),y)) is a continuous and bounded map, and
f]HT |12]12Qn (dv) < 2(M + 1), it follows from convergence of @,, to @ that

/]H[b(E(SLy)+a(€(8)7y)Z]Qn(dV)—> BE(s), )+ alE(s) )AQY).  (2.28)

Hr

Combining the last three convergence statements we have (b). Next we consider part (c).
By Lemma 2.11 we have that for M, € [1,0), j € L,

[P enteh) ~ Ty et @ntav
v (2.29)

<o < sup [6.(5) ~ €0)] + " /H T 5(77)Qn(dV)> .

Sending n — oo and then My — oo we see from (2.26) that the left side of (2.29)
converges to 0 as n — oo. Finally, by the Skorohod representation theorem, (2.26) and
Lemma 2.13,

| Tieeu) = [ e, (2.30)

Hr
Combining this with (2.29) and recalling that Q,, € Ps(&,), we have (c). This completes
the proof. O

3 Large deviation upper bound

The main result of this section is Theorem 3.5, which shows that for all ' €
Cy(C([0,T] : RY))

limsupelogE [exp (—e ' F(X))] < {F(&)+1(¢)}. (3.1)

< - inf
e—0 £eC([0,T):R%)

To do this we show a lower bound on the corresponding variational representations.
Let PF denote the predictable o-field on [0,7] x 2 associated with the filtration
{F: :0<¢t<T}. Let

PFIT] = {¢ = (¢ij) i er : wij is (PF @ B[0,¢]\B[0, c0)) measurable for all (i, j) € T}.

For h : [0,T] — R™, let Ly(h) = %fOT |h(s)||* ds. Also, for g = (gi;),jer such that
95+ [0,¢] X [0,T] — [0, 00), let

L) = 30 [ tla(s)Acldz)ds,
(i,j)eT [0,¢]x[0,T]
Consider the following spaces. Let
SM = {n:0,T] = R™: Ly(h) < M}, SM ={geR: Lr(g) < M},
Sy = Uf\.?lzlséwa Sy = Uﬁ:lséwa

and

PFY = {¢ : 1 is PF\B(R™) measurable and ¢ € S3* P-a.s. }, PFy= uSS_ PFY

PF) ={p e PF[T]: ¢o(-,w) € S}, P-as. }, PF,=U5_,PF .

SetU = PFy x PFy. For f = (h,g) € Sa x Sy, let

Ly (f) = Lv(h) + L (g). (3.2)
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With this notation the variational representation of [6] says that

—€lOgE [exp (—6_1F(Xs))] (33)
= inf E |:LT(U) +Fog® (\/EW+/ ¥(s)ds, d\falsaﬂ .
u=(v,p)eU 0
In fact, a closer inspection of the proof of Theorem 2.8 of [6] (see [7, Theorem 2.4])
shows that (3.3) can be strengthened as follows. For n € IN, define

’P}'Z = {¢ = (pij) € PF¢: for some n € N, p;;(r,s,w) € [n_l

for all (r,s,w) €[0,¢] x [0,T] x Q, (i,5) € T}.

7”]7

Also let Uy, = PFy X 73]-'2. Then in the equality in (3.3), U on the right side can be
replaced by U,,.

Since S! is a closed ball in L?([0,T7), it is compact under the weak topology. A g € SM
can be identified with 65 = (67 )(; jer such that each 67 is a measure on [0, ¢] x [0,77,
defined by

9%”(0) — /Cgij(r,s))\g(dr)ds, C € B([0,¢] x [0,TY).

With the usual weak convergence topology on the space of finite measures on [0, ] x
[0, 7], this identification induces a topology on Slf‘/[ under which it is a compact space.
Throughout, we use these topologies on S/ and SM.

Controlled versions of processes will be denoted by an overbar, with the particular
controls used clear from context. Thus for (¢, ¢) € U, we consider the coupled equations

dXE(t) = b(XE(t), VE(1))dt + vea(X=(t), V= (£)dW (¢)
+a(XE(1), Vo () )b(t)dt

ave(t)= Y / (G = )5 (=i Ly (= (o) (M)NG; 7 (dr < dt)
(ij)er /el

(3.4)

with (X¢(0),Y*(0)) = (z0,v0). Recall the map G° introduced below (2.3). From unique
pathwise solvability of (3.4) and a standard argument based on Girsanov’s theorem
(see for example [7, Section 3.2]) it follows that G¢ (\/EW + fo Ye(s)ds, (5N;§Z/E)> is the
unique solution of (3.4) with ¢ and ¢ replaced by ¢ and ¢°. Thus the representation in
(3.3) yields

—elogE [exp (—e ' F(X*))] = u:(zinj)eub E [Lr(u) + F (X°)]. (3.5)

The following lemma will be used in proving a tightness property. In many places below
we will consider controls u subject to an a.s. constraint of the form Ly (u) < M. To
simplify the notation, the almost sure qualification is omitted.

Lemma 3.1. For every M € (0, 00)

sup sup IE)( sup ||X€(t)||2> < 00.
e€(0,1) u=(v,¢p)EUp: L (u) <M 0<t<T

Proof. Fix M € (0,00) and u = (1, ¢) € Uy with Ly(u) < M. Now write X¢ as
Xe(t) = mo + Be(t) + A°(t) + E°(t), (3.6)

where
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A) = [ alX(s). V(s o(s)as:
E(t) = Ve ; a(X(s),Ye(s))dW (s).
By Remark 2.2,

B [sup ||A6<r>|1 <p [ la(Xe(s), P (5)) |ds / (s P

r<t

t
< 4mM / (1+B|IX(s)]?)ds
0
t —
<4 T 4 a0t [ B (sup |X€(s>2) dv.
0 s<v

Also, by Doob’s maximal inequality we have with C; = 8«2,
t
B (sup 167117 ) < 428 | [ Ja(xe(s), 77 (o) s
r<t 0
t —
<side [ (14 B [1X5()P]) ds 3.7)
0

t
< CieT + C’le/ E (sup ||X€(s)||2> dv.
0 s<v
Similar calculation shows that
t
E {sup ||B€(1")||2] <2k1T + 2/£1T/ E <sup |X€(s)2) .
r<t 0 s<v
Hence from (3.6) it follows that with Cy = C1(T' + 1) + 2k1(T + 1)(1 + 2M)
t
i) [sup ||X5(r)|2} <Co+ Cg/ E (sup ||X€(s)||2> dv.
0

r<t s<v

The lemma now follows from Gronwall’s inequality. O

Proposition 3.2. Fix M € (0,00). Fore € (0,1) let u® = (¢°,¢°) € Uy be such that
Lr(uf) < M. Let (X%,Y*?) solve (3.4) with v and ¢ replaced by ¢ and ¢°. Then
{X®}.c(0,1) Is tight in C([0,T] : RY).

Proof, Write X¢ as in (3.6). From (3.7) and Lemma 3.1

E sup |[EE@)|2<CieT (1+ sup E sup | X)) ] =0, (3.8)
t€[0,T] e’e(0,1) t€[0,T]

as ¢ — 0. It thus suffices to prove the tightness of {A¢} and {B¢}. For this, note that for
0<h<Tande€(0,1)

E sup |4 () — A%(t1)])?
0<t1<t2<T,t2<t1+h
2
=E sup
0<t1<t2<T,t2<t1+h

/ (X5 (5), 75 (3))4%(s)ds

ty

ti+h T
<24Bsup (/ (14 X)) ds | ||wf<s>|2ds>

0<t1<T—h \ Jt; 0

< 4kiMh <1+ sup £ sup Xa(t)ll2),
e€(0,1) 0<Zt<T
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where the last inequality used the fact that Ly (uf) < M. Lemma 3.1 now gives that {A°}
is tight in C([0, 7] : R¢). Similar calculations show that { B¢} is tight as well. The result
follows. O

Remark 3.3. The estimate in Proposition 3.2 in particular shows that for every M €
(0, 00) there exists some c3(M) € (0, 00), such that

sup  sup sup E sup || X(s+1t) — X(s)||* < ca(M)d
£€(0,1) 0<s<T—8 ue€ly:Lr(us)<M  0<t<6é
for any d € [0, T7.

Given ¢ > 0, let u® = (¥°,¢°) € U, and (X¢,Y*?) be as in Proposition 3.2. Note that by
(3.4) only the controlled rates @ys( ) affect the evolution of (X¢,Y*¢). In proving the
Laplace upper bound, we can (and will) assume without loss of generality that

¢5;(t,z) = 1forall (i,5) € T such that i € .\ {Y*(¢—)} and (¢, 2) € [0,T] x [0,¢]. (3.9)

Also, by convention we will take 5, (t,7) = 1if (i,5) ¢ T.

The proof of the Laplace upper bound relies on the asymptotic analysis of the following
occupation measure. Fort € [0,T], n°(t) € (Mg[0,¢])" is defined to be °(t) = (75 (1)) jeL,
where

(F) = Z 1{Y5(t7):i} /F prj(tv T‘))\C(d’f‘), Fe B[O?d (310)
icl

Then define Q¢ € P.,(Hr) by

QS (A x B x C x D) = / 14(8)15(Y=(8)1e (5 (s)) 1 (47 (s))ds. (3.11)

(0,77

The main step in the proof will be to characterize the limit points of ). Note that, with
= (%, %) € Uy and X© as in Proposition 3.2, it follows from (3.8) that

lim £ sup =0. (3.12)

e=0  o<t<T

X (1) — o — /]H B(X*(5), ) Q" (dv) — /]H a(X¥(s), 9) Q% (dv)

Fore € (0,1), let u® = (¥%, ¢°) € U, and define Q° as in (3.11). Then note that

T
/ 4° (s)|%ds = / 121P Qe (dv) (3.13)
0 Hr

and from (3.9) and (3.10)

Z /OT £(p5(r, 8))Ac(dr)ds = ZZ/ Liye(s)=iy (55 (r, s)) Ac (dr)ds

(4,5)€T jelL el 7 [0,71x[0,(]
= / I(n°(s))ds
0,7]
:/ U(n)Q° (dv). (3.14)
Hr
Thus
1 )
LT(uE):/ [2||z||2+€(7))] Q(dv). (3.15)
Hr

We now prove the tightness of {(X¢,Q°)} and characterize the limit points.
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Proposition 3.4. Fix M € (0,00). Define Q¢ as in (3.11). Suppose for ¢ € (0,1),
u® = (Y°,0°) € U, is such that Lr(u®) < M. Then {(X¢,Q°)} is a tight family of
C(0,T] : RY) x Mp(Hr)-valued random variables. Furthermore, if (¢,Q) is a weak limit
point of {(X¢,Q¢)}, then

1M 2 fy, [4212 + )] Quav;
2. Equations (2.16) and (2.17) hold a.s.

Proof. Tightness of {X¢} was shown in Proposition 3.2. Next we argue the tightness of
{Q*}. From (3.15) we have

I8 3112+ | @aw) < . (3.16)

To prove the tightness of {Q¢}, it suffices to show that for any ¢ € (0, c0), there exists
C4 € (0,00) such that:

sup Q4 (5,7, 2) € Hr o 3 ny(0,¢] + 2] > €1 § < 6.
€ jEL

However, this is proved exactly as (2.25) using (3.16) instead of (2.24). The inequality in
part 1 follows immediately from (3.16) using Fatou’s Lemma and lower semicontinuity
of np+— g(n). We now prove 2. For this we assume without loss of generality (using the
Skorokhod representation) that (X¢, Q¢) converges a.s. to (£, Q). Following similar steps
as in the proof of Proposition 2.14 (see the proof of (2.28)), we conclude that

/]H [B(X=(5),y) + a(X*(s), »)2]Q°(dv) = [ [b(€(s).y) + a(£(s), y)2]Q(dv).

Hr

It now follows from (3.12) that (2.16) holds. We now prove that (2.17) holds. Note that

t
/ 7 (X2(5))Q° (dv) :/0 Tyl (Xe(w)du, j € Lt €[0,T). (3.17)

5]
t

Recall the sets Eij(a:) defined in (2.1). Then from (3.9) and (3.10), for any ¢ mapping IL
to R

S(Y=(t)) = é(v0)

(4,7)€T [0,¢] x[0,¢]
=1 Z (6(j) — ¢(@))/ 1{}75((9):1'}1E,¢j()'(e(s))(7")<p§j(7",s))\c(dr)ds + M;(t)
(i,5)€T (0,¢]x[0,t]
t
=gt Z (6(j) — ¢(i))/0 Live (5)=iy 715 (Bij (X (s)))ds + M(t), (3.18)
(i,J)€T

where M 5 is the martingale given by

— ~ el
0= 3 00) - 60) [ Aol eV P drx ds
(i,j)€T (0,¢]x[0,1]
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—1 e -1 e

and NZEJ Y (dr x ds) = ij P (dr x ds) — e~ ¢5;(r, s)dr ds. By Doob’s inequality

E sup eMEE)E<de S (60) - 6() / 5, (r, ) (dr)ds
0<s<T (i.9)€T [0,¢]x[0.T]

St 3 [ mencands
(i,5)eT ¥ [0,1%[0,T]
< 16|61 ((Te + M)

where the last inequality uses (2.22). It follows that supy . |}, 5(s)| converges to 0 in
probability as € — 0. Next, from (3.18) we see that

t

(@Y ()=o) = Y (6()— (7)) /O Liye(oy=iy 115 (Bij (X°(s)))ds +eMg(t), t € 0, T).
(i,9)€T

Since ¢ is bounded, we conclude that as € — 0,

sup | 57 (60) = 000) | Ly (5 (X7 (9))ds| 0.

<t< o
0<I<T (i jyer

For fixed j € I, taking ¢ = 1{j}, we now see from (2.7) that

= sup
0<t<T

¢
n°(s) (ye
/0 FYE(S),J' (X¢(s))ds

0<t<T |}

t
sup (37 [ U peoymay (B (K51
[

converges to 0 as ¢ — 0. Hence from (3.17), let FZJ(XE(S))QE(CZV) — 0, uniformly
in t€[0,7]. Now as in the proof of Proposition 2.14 (see (2.29) and (2.30)),
Ju, Ta j(X9(5)Q°(dv) — [y, Ty ;(£(s))Q(dv). Thus (2.17) is satisfied and the result
follows. O

We now prove the upper bound in (3.1). Recall that for e > 0, (X¢,Y?) is given as the
unique pathwise solution of (2.3).

Theorem 3.5. For any F € C,(C([0,T] : RY)), the inequality in (3.1) holds.

Proof. Using (3.5) for every € > 0, we can find (¢¢, ©°) € U, such that
—clog & [exp (—5_1F(XE))] >E [LT(l/)E, %)+ F(XE)] — e,
where X¢ solves (3.4) (with (v, ¢) replaced with (3¢, ¢¢)). Since F is bounded

sup ELp (%, ¢%) <2||F| +1 < oo,
e€(0,1)

By a localization argument (see, e.g., [6, Section A.3]) we can assume without loss of
generality that for some M € (0, c0)

sup Ly, %) < M as..
€€(0,1)

Now Proposition 3.4 implies that (X¢,Q¢) is tight and any limit point (¢, Q) satisfies
(2.15)-(2.17) a.s. and consequently Q € P,(&) a.s., where P4(¢) was introduced above
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(2.15). Assume without loss of generality that the convergence to (£, @) holds along the
full sequence. Then

lim inf —e log B, [exp (—e ™' F(X7))] > B K/}H [;HZHQ + é(n)} Q(dv)) + F(f)}

T

Bl ([ T [5llP + i) Q@) ) + £
E

[1(§) + F(&)]
inf (1) + F()],

£eC([0,T):R4)

%

%

where the first inequality uses Fatou’s lemma and part (i) of Proposition 3.4, the second
uses the property that Q € P,(¢£) a.s. and the third uses the definition of the rate function
in (2.18) and Proposition 2.10. O

4 Near optimal paths with a unique characterization

In order to prove the large deviation lower bound (2.13), a natural approach is to
consider a £ that is a near infimum for the right side in (2.13) and construct a sequence
of controls (1), ¢°) such that X = ¢ where X° is as in (3.4) with (¢, ¢) replaced by
(1%, ¢°) respectively. Along with an appropriate convergence of costs, the variational
representation in (3.5) can then be used to argue that (2.13) holds. For a near optimal &,
let (u, p,m) € V(£) be a near infimum for the expression on the right side of (2.8). The
control pair (u, ¢) suggests a natural sequence of controls (¢, %) (see (5.4)) for the con-
struction of controlled processes X¢ and an occupation measure Q° of the form in (3.11).
Our strategy in the proof of the lower bound given in Section 5 will be to show that any
limit point ¢ of X¢ and a suitable marginal 7 of the limit point Q of Q¢ solves the system
in (2.9)-(2.10) for the given (u, ). The key result then needed in order to complete the
proof is to argue that the system admits a unique solution for the given choice of (u, ),
thereby proving (£, 7) = (£, 7) a.s. Although proving such a result for an arbitrary ¢ and
an arbitrary (u, p, 7) € V(&) appears to be challenging, in this section we show that one
can perturb £ slightly to £*, without affecting the cost too much, and find a near optimal
(u*, p*,7*) € V(£*) such that the desired uniqueness property discussed above does in
fact hold for (u*, ¢*). See in particular parts 4 and 5 of the following proposition.

Proposition 4.1. Let ¢ € C([0,7] : R?) be such that I(¢) < cc. Fixy € (0,1). Then there
exists £* € C([0,T] : RY) such that

1€ =& lr = sup [|€(s) =& ()| <, (4.1)
0<s<T

and there is (u*, p* = (¢;;), 7" = (7)) € V(£*) with the following properties.
1. For some constants ms, m3 € (0,00) and all (s,z) € [0,T] x [0,¢] and (i,7) € T,
ms > p;;(s,2) > ma.
2. There is a measurable map o : [0, T] x R — P(L) such that for all (s,z) € [0,T] x R¢
ZQ’ 8,) 1""01 )(33) =0,

i€l

and for some ¢, € (0, 00)

sup max |o;(s,x) — 0i(s,%)| < c1||x — &, forall z,% € RY,
sefo,1] €k

> el .
ey R (5. ) 2 € .2
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3. Iffor any (s,z) € [0,7] x R¢, # € P(LL) satisfies

Zﬂ_7r‘19 (s, ) 0’

iell
then ™ = o(s, z). In particular, o(s,£*(s)) = 7*(s).

4. If for the given u* and ¢*, (2.9) and ~(2.10) are satisfied for any other (é, T) €
C([0,T] : RY) x M([0,T] : P(L)), then (¢,7) = (£*,7*).

5. The cost associated with (u*, ¢*) satisfies:

e )
5 i ;(s)d ‘ Ae(dz)ds < T .
22/ Ju; ()22 (5) ”(i%/[oqu (05,5 22 (WA (d2)ds < 1(6) 4

4.3)

Remark 4.2. We now give an outline of the proof strategy. Let ¢ € C([0,7] : R?) be such
that I(£) < oo and fix vy € (0,1). Let (u, ¢, m) € V(§) be such that

Z / l|wi (s)|*m:(s)ds + Z / Ui (s, 2))mi(s)Ac(dz)ds < I({)—&—%. (4.4)

(e’ [0CIx(0T]

Note that there are four time dependent objects appearing in the limit deterministic
controlled dynamics: the trajectory ¢, the empirical measure on the fast variables ,
the controls u that correspond to shifting the mean of the Brownian noises, and the
thinning function ¢ that controls the rates for the fast variables. In addition, there is
complete coupling of the fast and slow variables, and in particular the dynamics of the
fast variables at time s will depend on both the controlled rates and ¢ at s. The key issue
regarding uniqueness is to make sure that these thinning functions ¢ can be bounded
away from zero, which will imply ergodicity of the associated Markov processes giving
the uniqueness of the corresponding . If for a given collection (u, ¢, 7, £) the rates are
not bounded away from zero, then we must show they can be perturbed so this is true,
while at the same time making only a small change in £ and the cost.

The steps are as follows. (a) We first perturb 7 to 9 (see (4.6)), so that every state
has strictly positive mass under 7°. This positivity is used crucially in the remaining
steps. (b) Replacing 7 with 7° in (2.9) leads to a perturbation of the target trajectory £.
To ensure that the trajectory perturbation is not too large, we modify the control u
to «d in a way that compensates for the change in 7 (see (4.7)). (c) The perturbed
measure 7% need not be stationary (i.e., satisfy (2.10)) for the original thinning control
¢ and the new trajectory £°. In order to remedy this we next perturb ¢ to ¢’ (see
(4.9)). (d) With the perturbed ¢° (2.10) is satisfied so the 7% would be stationary, but
with ¢ rather than ¢°. In particular the constructed (u’,¢?, 7%) is not in general in
V(£%). This leads to our last modification where we change ¢° to ¢°. It is at this point
that the formulation of the original dynamics as the solution to an SDE driven by a
collection of PRMs, and corresponding formulation of the control problem in terms of
thinning functions, is very convenient (see (4.13)). With this change we now have a
(u®, 3%, 7%) € V(£%). Furthermore with § = §* sufficiently small these perturbed quantities
(u’, 955 707 €97) = (u*, *, 7", €*) will satisfy all the desired properties.

Proof of Proposition 4.1. Let ¢ and (u, ¢, 7) € V() be as in Remark 4.2. In particular,

>3 s [ P+ 3 Ui (s, 2)mi()o(de)ds < 1(6) +

(et ! 10:]x[0.T]

]2
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We claim that without loss of generality it can be assumed that for some mg € (0, 00),

Sup max [pi; (s, 2)mi(s)] < mo. 4.5)
(s,2)€[0,T]x[0,¢] (8:3)ET

We first prove the proposition assuming the claim. The proof of the claim is given at the
end.

For x € R? let v(x) as in Theorem 2.4 be the stationary distribution for the fast system
when the slow variable equals z. Fix 6 > 0 and define

m(s) = (1 — 8)m;(s) + ov;(£(s)). (4.6)
Note that
- < 26.
2, 0 -
Define (5)
S\ = o (o TG\S .
uj(s)—uj(s)ﬂg(s), s€10,7],5 € L. 4.7)

Then uf(s)7)(s) = u;(s)m;(s) for all s and j. Define

_m0+2/ ds+Z/ a; (€°(s))ul(s)md(s)ds. (4.8)

From the Lipschitz properties of b;, a;, (4.8) has a unique solution for the given u® and
70, Note that with M = I(¢) +1

/ Zw $)| +1) | ds < (T + (2T M)Y?) = ©(M).
0

Then by Gronwall’s lemma
1€ =€l < K86,

where K = 2MoO(M)e® ™M) and My = supo< <7 jer([1b;(E(5))] + llaj(€(s))]). Now
define, for (i,5) € T and (s, 2) € [0,7T] x [0,¢],

vi(£(s))

i (8)

s -
@i (s,2) = (1 =9) 5(s) ©ij(s,z) +0 2 (s) (4.9)
and
I (s) = / (s, 2)Ac(d2), s € 0,4 # j, (4.10)
Ei;(£(s))
and I';(s) = —>,..,; I');(s). Then since the = will cancel and (u, ¢, 7) € V(§),
7 (s)I(s) = 0. (4.11)

Thus 7°(s) is stationary for I'’(s). However, from (2.6) I'),(s) = F‘Z-?(S")(g(s)), and hence
(u®, %, %) is not in general in V(¢%). We now construct a further modification, ¢?, of ¢?
such that (u’, 3°,7°) € V(£°), and such that the uniqueness of (2.9)~(2.10) (with (u, ¢)
replaced by (u’, $°)) holds.

Let

Lij(z) = ci(@)rij(w) = A (Eij(2)), (4.12)
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where we recall that ¢;(z) is the overall rate of transitions out of ¢ for the fast process
when the slow process is in state z, and r;;(x) gives the probability of transition to state j.
For (i,7) € T define
8
5 by 7€ Bul@(9),
%‘j(S,Z) = (4.13)
1 otherwise .

Then for such (3, j)
o= [ o= [ Esandda).
Ei;(£(s)) E;;(€5(s))

Then, from (4.8) and (4.11), (u®, &%, 7°) € V(£°) and I'); (s) = r“"l ")(€9(s)), where Y (z)
was defined in (2.6), and ¢ 5 denotes the collection of controls (9013’ j € ). Next note that
by construction, for (3, j) e T,

vi(£(s))

()

apfj(s,z) >4 > dv, forall (s,z) € [0,T] x [0,(]
and, from (4.5), forall § > 0
9013(8 Z)W()<m0+1_m1

Let r = ¢k3, where ¢ and k3 are defined above Assumption 2.3. Then for (i,5) € T the
definition (4.10) implies

Also, from (4.12), for each s

[ @ = ¢ (s
[0,¢] S Fij(f

and using convexity

[t ot = o (258 ryeco
o Li;(€(s))

It is easy to check that for ¢ > 0 and b,¢ > 0,

() C)el= (e o) el

The Lipschitz properties of the underlying transition rates I';;(-) (see (2.2)) yield the
following inequalities, each of which is explained after the display:

7T(»55€~§»S,Z Ae(dz)ds — ﬂfsé ?jS,Z N (d2)ds
O NI (CLCHOEINTE D D I (CL OIS

(i,7)€T (2,7)€T

5
< ha||§ - €5||T/ ) (s) <F i(5) +1> ds
(w)ET

<RI -+ 2e -l [ Y wlo)el (s A (da)ds
L [0.¢]x[0.7]

(i,5)€T

K

< moTILI[|€ = |7 + 21 — €7 / L[+ Y mi(s)eii(s,2) | Ac(dz)ds
L [0,¢]x[0,77] (i,4)€T

< 0K;.
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The first inequality uses the previous three displays, the second uses the definition of Ffj
in (4.10), the third uses (4.9), and the final one uses the definition

1
Ky = Kko <T|IL| +o (JLICT(1 +€) + eM)) ,
€ — €°||7 < 6, and the fact that x < e(1 + £(x)) for all z > 0. Hence we obtain

/ S 7 ()6(3, (5, 2) e (d2)ds
[0,¢]x[0,T7] (i,j)€T

< / ST w2 (5l (5, 2))Ac (d2)ds + Kb
[0,¢]x[0,T7] (i,5)€T

S/ Z i (8)0(i; (s, 2)) Ac(dz)ds + K46,
[0,¢]x[0,T7] (i,5)€T

where the last line is a consequence of the fact that

(VUGB (5. 2)) = 70 (s _ m;i(s) (5.2 vi(§(s))
o 2) = w0 (1= 9 5 ou.2) + 445
< 7¥(s)(1 - 6) ”?(S) Ui (5,2)) < i) pis (5, 2)). (4.14)

Next note that if 7;(s) < 7 (s) then

P ) = )P T (5) < )P

However if 7;(s) > 7 (s) then 7;(s) > v;(£(s)) follows, and thus 7?(s) > v. Therefore

26
m; (s)

<

_1‘3

s |8

Thus in this case

1 ()77 (5) < JJua(s)|Pmi(s) + 2jfHui(S)IIQWi(S)-

Combining the two cases we have from (4.4)

v

e 51126 e ) 26
3, St < g M P P @)

Taking 6* = min{vy/K,~v/4K1,vv/8M} we now see that with
(5*’ 'U,*, SD*’ ’/T*) = (55*3 ué* I @5*?71—6*)7
(u*, o*, %) € V(&*). Also, for all (s,z) € [0,7] x [0,¢] and i € L,

mi( . O'vr
Frry V12 9(0,7) > 7

ms Al = mo, (4.16)

namely item 1 in the proposition holds. From (4.16) and the definition (2.6), for (i, 5) € T,
s€[0,7] and z € R?

Ffj:(s")(x) € [mar, ms(]. (4.17)
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Also, from (2.2), for all z,z’ € R¢,
057 (@) = 05 @) < marllz — o). (4.18)

Using (4.17) and (4.18) it follows as in the proof of Lemma 2.5 that items 2 and 3 in
the proposition hold. Next if (2.9) (with u replaced by «*) and (2.10) (with ¢ replaced
by ¢*) are satisfied for any other (¢,7) € C([0,T] : R%) x M([0,T] : P(L)), then we must
have from item 3 in the proposition that 7(s) = o(s,£(s)) for all s € [0, T]. The Lipschitz
property of b,a and p then gives that £*(t) = é(t), and thus also 7*(t) = 7(¢), for all
t € [0,T). This completes the proof of item 4. Finally consider item 5. Note that from
(4.14), (4.15) and the choice of §*,

*Z/ ) s+ 3 / 07 (5, 2))77 (3)Ac (d2)ds

(et [0:C1%[0.T]

<Z / i (s)||%m:(s)ds + Z/ ij (8, 2))mi(s)Ae(dz)ds + /2

(i,j)€T [0,¢]x[0, T]

<I(§) +,

where the last line is from (4.4). This proves 5. We now prove the claim made in (4.5).
Note that we do not change the dynamics at all if we redefine ¢;; in the following way.
With ¢ on the right equal to the old version and ¢ on the left the new, for (i,j) € T set

AN GO)
Wa z € Ei;(&(s)),
pij(s,2) =
1, z €[0,¢]\ Ei(&(s)).

This amounts to assuming that outside E;;(£(s)) the controlled jump rates are the same
as for the original system, and that within E;;(£(s)) they are constant in z, in such a way
the overall jump rates do not change. Owing to convexity of ¢ and ¢(1) = 0, this can only
lower the cost while preserving the dynamics, and could have been assumed for any
candidate control for the jumps from the outset. Let

§) =14 Y m(o)Tf (E(s)), T (E(s)) =T (E(s)) /v(s) (4.19)
(4,5)€T
and for« > 0 and (i,j) € T

£2 (¢(s))
AT &) z € E;j(&(s)),

©ii(s,2) =
5, z € [0,¢)\ Ei;(&(s)).

Thus for « > 0 the controlled jump rates are uniformly scaled by a/v(s), and therefore
D el mi(s)[%7 () (¢(s)) = 0. Since with a = v(s), p* = ¢,

inf 3 mi(s) /[O’C]mo?j(s,anadz)g > i) [ tenls ).

a>0(z‘,j)€’1{‘ (,5)€T [0.¢]

We now compute the infimum on the left side. For notational simplicity, write F% (f s))
as I';;, and T;;(£(s)) as I';;. Also let 0;; = ¢ — A\¢(E;i;(£(s))). Note that 1 < 0;; < C.
Differentiating with respect to a and setting the derivative to 0, we get

log(c) Z 7i(s) <ij vg(i;)>

(1,5)€T
T 0,
== 2 oo (s (22) <5+ ()
2 e (Totes (50) 555 s (0
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Thus

— f‘i. 0;;
_Z(i,j)e']l’ mi(s) (Fij log (ﬁ) + 5y log (v(ls)))
> (i.jyer Ti(s) (Fij + 1)(3))

It is easily checked that there is mg € (0, c0) such that for all s € [0, 7] the minimizing o

satisfies a < mg. Thus from the definition of ¢® and since from (4.19) m;(s)I';;(£(s)) < 1,
we see that with this «, for all (4,j) € T, (s, 2) € [0,T] x [0,(]

log () =

mi(8)¢f; (s, 2) < max{me/r, me}.

This proves the claim in (4.5) and completes the proof of the proposition. O

5 Large deviation lower bound
The goal of this section is to prove the following theorem.
Theorem 5.1. For any F € C,(C([0,T] : R?)), the inequality in (2.13) holds, namely

.. 1 € . .
hgrl}glfalogE [exp (—e7'F(X7))] > Eec({lg}g]:]Rdl){F(f)—|—I(£)}, (5.1)

where X¢ solves (2.3), and I is as defined in (2.18).

To do this we will show an upper bound on the corresponding variational representa-
tions. The situation is in some sense simpler than the corresponding lower bound, since a
fixed control is being used. Thus the analysis is essentially just the law of large numbers
for a two time scale system, with the main effort being to justify the replacement of the
empirical measure of the fast component by the corresponding stationary measure in
the limit. We begin by stating an elementary but useful lemma, whose proof we defer to
the Appendix.

Lemma 5.2. Let m,,, m be finite measures on [0,T] x IL such that the first marginal of
m,, and m is Lebesgue measure:

M ([a,b] x L) =m(ja,b] x L) =b—a forall0 <a<b<T.

Suppose that m,, converges weakly to m. Letv : [0,7] — R be an integrable map, i.e.,
fOT |v(s)|ds < oo. Then

/ v(s)11 (y)mn(dy x ds) — v(s)153 (y)m(dy x ds). (5.2)
Lx[0,T] Lx[0,T]

Proof of Theorem 5.1. Without loss of generality we can assume that F' is Lipschitz
continuous [10, Corollary 1.2.5], i.e., for some Cr € (0, c0),

[F(¢) = F(§)] < Cpll¢ = &[|r for all €, € C([0,T] : RY).
Fix v € (0,1). Let £ € C([0,7] : RY) be such that

1)+ F(¢) < inf I1(¢)+ F(¢)] + - 5.3

O+FO< it Q)+ O] +9 (5.9

Since 1(£) < oo, we can find ¢* € C([0,7] : RY), (u*,*,7*) € V(£*) and a measurable

0:[0,T] x R — P(IL) with properties stated in Proposition 4.1. Let (X¢,Y*¢) be defined
through (3.4), where the controls (¢%, ¢°) € U are defined in feedback form as

L]

Pe(s) = Z Lipe(sm)=3u5 (8), ©5;(8) = 955(8) 1 ve(smy=iy Hl{ve(syip» 8 € 0,71, (4,5) € T.
j=1

(5.4)
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From (3.5) we get that
—clogE [exp (—e 'F(X9))] < E {.Z/T(’(/JE) + Lr(¢°) + F(XE)} )

where Ly and Ly were defined at the beginning of Section 3. Define Q° € P,,(Hr) by
(3.11) where 7° is as introduced in (3.10). From (4.3) and (4.2) (note that (4.2) gives a
lower bound on 7} (s)) it follows that for all e > 0

Lr(¥) + Lr(p°) < er(I(€) +1) = M < oc. (5.5)

It then follows from Proposition 3.4 that (X¢,Q¢) is a tight family of C([0,7] : RY) x
Mp(Hr)-valued random variables, and if (£, Q) is a weak limit point of {(X¢, Q¢)} then
equations (2.16) and (2.17) hold with (¢, Q) replaced with (£, Q). Disintegrate Q as

Q(ds x {y} x dn x dz) = ds7y(s)[Q]34)12(dn x dz). (5.6)
We will now show that, a.s.,
(£(s),7(s)) = (£*(s),7*(s)) for a.e. s € [0, T]. (5.7)

We can assume without loss of generality that convergence of (X<, Q%) to (£, Q) holds
a.s. along the full sequence. We begin by showing that for every y € L, ¢t € [0,7], and
any continuous map h : [0,7] — R™, with h(s)’ denoting the transpose,

Hh@%ﬂ@@@ﬂ=[ﬂﬁ@@m@w (5.8)

As in the proof of Proposition 3.4, using (5.5) we have that forall ¢ € [0,7] and j € IL
| me 1)@ @) = [ 16105y 0)av) (5.9)

The left side of (5.9) equals

) Loy (s = [ (o) (o)1 ()| @Traldy )

[0,1] [0,] XL

From Lemma 5.2 and the fact that uj is square integrable, this converges a.s. to
/ h(s)"u} ()1 (1) [Qh2(dy x ds) = h(s)'uj(s)m;(s)ds,
[0,¢]xLL [0,t]

where the equality follows from (5.6). This proves (5.8).

Applying (5.8) to the rows of a;(£(s)) and summing over j, we have that

|IL|

a(&(s),y)zQ(dv) = aj_s u;(s)7;(s)ds.
L@uwm> ;Aﬂw»<>u

Also, recalling the representation of Q in (5.6)
L

Lﬂwmmmgzbﬁwmm&

0,1]

Thus we have shown that (2.9) is satisfied with (¢, 7, u) replaced with (&, 7, u*).
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We next show that (2.10) is satisfied as well, i.e.,

Zm @7 (o) (£(s)) =0fora.e. s€[0,7] and all j € L. (5.10)
i€l
For this recall that (2.17) is satisfied with (¢, Q) replaced with (£, Q), i.e
[ 1, Eena@n —o. (5.11)
H;

Also, from Lemma 2.13 (see, e.g., the proof of (2.30)), for any continuous function
g:[0,7] — R4,

e—0

lim nj(Eyj(g(S)))Qa(dV)Z/ Iy.5(a(s)Q(dv), (5.12)
H, H,

Furthermore, for every ¢ € 0,77,

/}H i (Ey;(9(s)))Q% (dv) Z/ Liye(s)= z}/ )gpfj(s,z))\c(dz)ds. (5.13)

€L i(g(s)

From the equalities in (5.12) and (5.13) it now follows that

> / Liye(s)=iy / 0ri(s,2)Ac(dz)ds — | T (g(s))Q(dv)
[0,4 Eij(9(s)) H,

i€l

as ¢ — 0. However, the expression on the left side in the previous display is the same as

/ </ gozj (s, z))\g(dz)> [Q%]12(dy x ds).
[0,t]xLL Ey;(g9(s))
/ (/ gofjj(s,z)/\g(dz)> ds < 0.
[0,7] 0,
Thus from Lemma 5.2

/[07t]><]L </Eyj(g(s)) Lij(S»Z)AC(dZ)> [Q%12(dy x ds)

- </ 90;3'(3,2))\(@2)) [Q12(dy x ds)
0.0xL \ /By, (9(s))
= [, o s

i€l

From (5.5)

for all ¢ € [0, T]. Thus we have shown that for every continuous g : [0, 7] — R? and every

t€0,T7,
/H T o) /[ S wi(s) T (g(s))ds.

z€]L

Taking ¢ = € and using (5.11) we have (5.10).

We have therefore shown that both (2.9) and (2.10) hold with (&, 7, u, ¢) replaced by
(€, 7,u*, ¢*). Thus from part 4 of Proposition 4.1, we have (5.7).

Finally, we consider the convergence of costs. Note that

Lr(ye) = /W )2ds = © Z/ Lge oy 121 () [2ds

jE]L

9 Z/ [[uj (s ”21{3‘}(2/)[626]12(613; X ds)

jeL
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which from Lemma 5.2 and the finiteness of f[o 7) [[u}(s)||*ds converges to

[ )P s)ds.
(0,17
The second term in the cost can be handled in a similar manner. Note that

L) = Y / 05, (5, 2)) A (d=)ds
(i,4)€T [0,T]x[0,¢]

= Y [ e )z s
(i,5)€T [0,T]x[0,¢]
For j € IL write

3 / Lpe o)z £ (5 2)Ac (d2)ds
[0,T]x[0,¢]

i€l

- / (/ ew;j(s,z)w(dz)) (Q1a(dy x ds).
[0,T]xL [0,¢]

Then using the fact that f 10,7]%[0,] £(p7;(s,2))A¢(dz)ds < oo we see as before using Lemma
5.2 that the first term in the last display converges to

/ Uty (5, =)t ()M (d2)ds.
[0,7]x[0,]

Combining the above observations we have, as ¢ — 0,
L)+ 30 [ s e)m e
(i,5)€T [0,77x[0,¢]

in probability. Using (5.5) the dominated convergence theorem gives

B [Lr(v°) + Lr(v)]

S35 ) e S

(i,j)€T ¢]x1[0,T7]

< I +~.

Using this and the convergence of X¢ to &* (see (5.7)), we have from (5.3) that
lim sup —¢ log IE [exp (—5_1F(X5))] < FE )41+

e—0

FE)+1(&) +7+Cry

inf  [I(¢)+ F 2y +C
CEC(E(;}T]:M[ (©)+ F(Ol + 27+ Cr,

<
<

where the second inequality uses (4.1) in Proposition 4.1. Sending v — 0 gives the
desired lower bound in (5.1). O

Appendix
A Proofs of some auxiliary results
Proof of Lemma 2.5. Since a > 0, the LL-valued Markov chain with transition probabili-

ties
|L|

Doy = Wzryy Ly €L,

EJP 23 (2018), paper 112. http://www.imstat.org/ejp/
Page 30/33


http://dx.doi.org/10.1214/18-EJP228
http://www.imstat.org/ejp/

Large deviations for small noise diffusions in a fast markovian environment

is ergodic for each 2 € R?. Since from Assumption 2.1 z ryy () is Lipschitz continuous,
it follows that py,, is Lipschitz continuous in z and infy g, cr, inf,cgra py,, > 0. Denote
the unique invariant measure of this chain by n(z). From Lemma 3.1 in [13], 7(z) is
given as a ratio of polynomials in {py, }, .er. Thus z — 7, (z) is Lipschitz continuous for
every y € IL (with Lipschitz constant depending on ks, k3). The lemma now follows on
observing that v, (z) o :(yx (;)) , and hence the assertion follows from the Lipschitz property
of z — c¢(z,y) and the properties ¢ > 0 and ¢ < oc. O

Proof of Lemma 2.6. The linear growth property is clear from the Lipschitz property
of f. The local Lipschitz property follows by noting that for any compact K ¢ R? and
z, 7' € K

@) = f@) < [Vy(l”)lf(%y) —fE@ )+ sup [f (@, 9)llvy () — vy (2)]

yeL
< (Ll.{cp—i-max sup |f(x,y)|Ll’fp> IL| ||z — 2’| O
vel ek

Proof of Lemma 5.2. Clearly (5.2) holds if v is continuous. Now suppose that v is
bounded and let Mo = sup,c(ory|v(s)|- Fix v > 0. Then by Lusin’s theorem, there
is a continuous function v : [0, 7] — R such that sup,c 71 [0(s)| < Mo and Ar(s € [0,7] :
v(s) # 9(s)) < ~. Since (5.2) holds with v replaced with o, we have

lim sup / v(8) 153 (y)mn(dy x ds) — / v(8) 15y (y)m(dy x ds)
n—oo |JLx[0,T] 1Lx[0,T]
< lim sup / v(s)1¢3(y)mn(dy x ds) — / v(s) 153 (y)m(dy x ds)| + 2Myy
n—oo |[JLx[0,T] Lx[0,T]

Sending v — 0 we see that (5.2) holds for all bounded v. Finally, consider a general
integrable v. Then (5.2) holds with v replaced with vy; = vl <asy- Also, as M — oo

sup / 0(8) 11 1oy o1y L3 (4)mn(dy X ds) < / [o(s)]ds — 0.
n€N JLx[0,T] {lv|>M}

This shows that (5.2) holds for a general integrable v and completes the proof of the
lemma. m

B Frequently used notation

L state space of the fast process (Section 2)
a(z,y) = ay(x),b(z,y) = by(x) model coefficients
c(z,y) = cy(x),r(x,y,y) = ryy (x) (Section 2, Assumption 2.1)
Eyy (x) = [0, cy(x)ry, ()] (Section 2, Equation (2.1))
K1,$,5,C, a, K3 constants associated with the model
(Section 2)
11, generator for the discrete process Y frozen at x
(Section 2)
T collection of (i, j) with r;;(z) > 0 (Section 2)
ij_l Poisson random measures (Section 2)
Xevye State Processes (Section 2, Equation (2.3))
v(z) invariant measure associated II,,
(Section 2, Theorem 2.4)
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b(z) =3, b(z,y)vy(z) averaged drift (Section 2)
(I‘;@- (2)), (T () controlled generators
(Section 2.1, Equations (2.6) and (2.7))
R controlled rates (Section 2.1, Equation (2.7))
1(¢),1(¢) rate function and its alternate form
(Section 2.1, Equations (2.8) and (2.18))
V() set of controls (u, ¢, 7) in definition of I(¢)
(Section 2.1)
Ps(£) set of probability measures @ in definition of I ()
(Section 2.2)
£(n) cost for rate control (Section 2.2)
Higpp, Hr space for occupation measures
(Section 2.2, Equation (2.14))
P (Hr) space of probability measures on Hr
with Lebesgue marginal (Section 2.2)
U, U, classes of controls (Section 3)
Ly, Ly, Ly integrated cost functions (Section 3, Equation (3.2))
n°(t) rate control measure (Section 3, Equation (3.10))
Q* controlled occupation measure
(Section 3, Equation (3.11))
0i(s, ) invariant measure for fixed (s, z)
(Section 4, Proposition 4.1)
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