
E l e c t r o
n i

c

J
o
u
r n

a l
o
f

P
r
o b a b i l i t y

Electron. J. Probab. 23 (2018), no. 80, 1–37.
ISSN: 1083-6489 https://doi.org/10.1214/18-EJP199

A random walk approach to linear statistics in random
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Abstract

We investigate the linear statistics of random matrices with purely imaginary Bernoulli
entries of the form Hpq = Hqp = ±i, that are either independently distributed or
exhibit global correlations imposed by the condition

∑
q Hpq = 0. These are related

to ensembles of so-called random tournaments and random regular tournaments
respectively. Specifically, we construct a random walk within the space of matrices
and show that the induced motion of the first k traces in a Chebyshev basis converges
to a suitable Ornstein-Uhlenbeck process. Coupling this with Stein’s method allows
us to compute the rate of convergence to a Gaussian distribution in the limit of large
matrix dimension.

Keywords: random matrix theory; random walks; graph theory.
AMS MSC 2010: 05C20; 05C80; 05C81; 15B52.
Submitted to EJP on February 6, 2018, final version accepted on July 15, 2018.

1 Introduction

The idea of using a stochastic dynamical evolution to unearth the spectral properties
of random matrices was first proposed by Dyson [15]. His insight was that, by initiating
a suitable Brownian motion within the space of certain invariant matrix ensembles, one
could induce a corresponding motion in the eigenvalues, which is independent of the
eigenvectors. Thus, solving the associated Fokker-Planck equation for the stationary
solution would recover the joint probability density function for the eigenvalues. Dyson
Brownian motion (DBM), as it is now known, has since become a powerful tool in random
matrix theory (RMT) (see for instance [1, 18, 16]). In [26] the present authors advocated
an approach in which the idea of using stochastic dynamics to obtain spectral statistics
was extended to Bernoulli matrix ensembles. In particular, we argued heuristically,
that by initiating a suitable discrete random walk in the space of matrices, the induced
motion of the eigenvalues would tend, in some fashion, to DBM in the limit of large
matrix size. Then, as a consequence, the spectral properties of Bernoulli matrices would
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Random walk approach to linear statistics in tournament ensembles

converge to those of the Gaussian orthogonal ensemble (GOE). In the present article we
apply this approach to the linear-statistics of matrices associated to random tournaments
and random regular tournaments. Tournament graphs are widely studied objects in
combinatorics, with results and open questions regarding, their enumeration, score
sequences, cycle properties and Perron-Frobenius eigenvalues for instance [47, 35, 36,
19, 20, 31, 30]. However, beyond [45], there appears to be little analysis from an RMT
perspective.

For a random (self-adjoint) matrix M of size N × N , the linear-statistic, for some
function h, refers to the following random variable,

Φh(M) := Tr (h(M)) =

N∑
µ=1

h (λµ(M)) , (1.1)

where λµ(M) are the eigenvalues of M . For random matrices M with appropriately
scaled and suitably chosen iid elements, Wigner showed that as N → ∞ the expectation
for polynomial functions h converges to the semicircle distribution [50, 51], i.e.

1

N
E[Tr (h(M))] → 2

π

∫ 1

−1

h(λ)
√

1− λ2dλ N → ∞. (1.2)

In addition, Wigner showed the variance satisfies 1
N2Var[h(M)] = O(N−2). This result

is therefore, in some respects, analogous to the law of large numbers in standard
probability theory.

One is therefore led to the question regarding fluctuations about this mean, i.e. what
is the distribution of Φh(M)−E[Φh(M)] for some particular random matrix ensemble?
This was first addressed by Jonsson [25] in the case of Wishart matrices, showing
this random variable is Gaussian in the large N limit. Later, this was also shown to
be the case for Wigner matrices [29, 43] and also for β-ensembles with appropriate
potentials [23] for various forms of the test function h. Notice there is no obvious analogy
with the classic CLT, since the eigenvalues in (1.1) are highly correlated, meaning the
usual 1/

√
N normalisation is not required. Proving this behaviour has become a key

part of the universality hypothesis within RMT, since it addresses the global spectral
behaviour, and has thus garnered much attention since the first results were established.
For instance, many authors have attempted to classify for which test functions h the
Gaussian behaviour is retained [3, 11, 33, 42, 46]. Others have investigated large
deviation aspects [22], rates of convergence [9] or different kinds of random matrix
ensembles such as band matrices [2] or those with non-trivial correlations [9, 41].

To show the convergence of (1.1) for all polynomial test functions of degree k one may,
instead, show the joint convergence for a polynomial basis. A particularly convenient
choice are the Chebyshev polynomials of the first kind

Tn(x) := cos(n arccos(x)) =

bn
2 c∑

r=0

d(n)r xn−2r, d(n)r = (−1)r
n

2

(n− r − 1)!

r!(n− 2r)!
2n−2r. (1.3)

If one takes the traces

Tr(Tn(M)) :=

bn
2 c∑

r=0

d(n)r Tr(Mn−2r), (1.4)

then it was first observed by Johansson [23] that if M is chosen from one of the stan-
dard Gaussian ensembles, then in the limit of large matrix size the random variables
(Tr(T1(M)), . . . ,Tr(Tk(M))) converge to independent Gaussian random variables.

A Brownian motion approach has already been used to show convergence to inde-
pendent Gaussian random variables of Tr(Tn(M)) in the Gaussian unitary ensemble [8]
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and more general β-ensembles [32], as well as traces of unitary matrices Tr(Un) in the
classical compact groups [13] and the circular β-ensembles [49]. In particular, the works
[32, 13, 49] utilised a multivariate form of Stein’s method, developed by Chatterjee &
Meckes and Reinert & Röllin [10, 39, 37], to obtain rates of convergence: Something
which, beyond [9], is often neglected in the analysis of linear statistics. However the
scenarios [8, 13, 49] have involved invariant matrix ensembles, which have permitted
the use of exact expressions for the eigenvalue motion, which are not available in this
context. We therefore turn to an alternative combinatorial approach, similar to that
applied in [14, 24] for random regular graphs and [27] for the unimodular ensemble. In
particular, we express the variables Tr(Tn(M)) in terms of sums over non-backtracking
cycles and analyse how these behave under the random walk. The difficulties arise in
providing accurate bounds for the remainder terms, which involve the expectations of
certain products of matrix elements with respect to the appropriate ensembles.

The article is outlined as follows: In Section 2.1 we discuss the ensembles of random
tournaments and random regular tournaments, which lead to Definition 2.1 and Definition
2.2 for the matrix ensembles we call the imaginary tournament ensemble (ITE) and
regular imaginary tournament ensemble (RITE) respectively. We then present our main
results, given in Theorem 2.3 and Theorem 2.4, which provide rates of convergence to
independent Gaussian random variables of the first k traces of Chebyshev polynomials for
matrices in the ITE and RITE respectively. In Section 2.2 we attempt to give an intuitive
explanation of the random walk approach, including Theorem 2.6 (due to [10, 39, 37])
regarding the multidimensional exchangeable pairs approach to Stein’s method, and
briefly outline the the methods used to evaluate the appropriate remainder terms.

In Section 3 we introduce some graph theoretical tools required for subsequent
analysis. Sections 4 and 5 are dedicated to showing how to construct suitable random
walks for the ITE and RITE respectively. Specifically, we prove Propositions 4.1 and 5.2
(respectively) which show the remainders contained in Theorem 2.6 are small enough to
allow for the results of Theorem 2.3 and Theorem 2.4. In particular, although interesting
in its own right, the ITE will serve as an illustrative example that the approach works in
simple settings and will help introduce ideas needed for the more complicated RITE.

Finally, in Section 6 we offer some concluding thoughts and remarks about possible
extensions and in the appendix we collect some necessary theorems, proofs and identities.
In particular, Appendix B contains a proof for the growth rate of expectation of products
of matrix elements in the RITE. This is adapted from the work of McKay [35] on the
number of regular tournaments and is critical in estimating the remainders in Proposition
5.2.

2 Main results

2.1 Definitions and results

A tournament graph on N vertices is a complete graph in which every edge has
a specific orientation (see e.g. Figure 1). Player p is said to win against player q

(equivalently player q loses against player p) if there is a directed edge from p to q. This
is represented by an a adjacency matrix A admitting the property that Apq = 1−Aqp = 1

(resp. 0) if player p wins (resp. loses). Since a player can’t play themselves the diagonal
App = 0. We denote the set of tournaments on N vertices as TN , with cardinality
|TN | = 2N(N−1)/2 - the number of possible choices of direction for each edge.

If all players win the same number of games, or equivalently the number of incoming
edges into a vertex is equal to the number of outgoing edges for every vertex, then the
tournament graph is said to be regular (see e.g. Figure 2). This is characterised by
the condition

∑
q Apq = (N − 1)/2 for all p = 1, . . . , N , which enforces N to be odd. We
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denote the set of regular tournaments on N vertices by RN . An exact formula for |RN | is
not available however McKay showed [35] (improving on an earlier estimate of Spencer
[47]) that for large N

|RN | = 2(N
2−1)/2e−1/2

π(N−1)/2NN/2−1

(
1 +O(N−1/2+ε)

)
. (2.1)

In particular, one observes that |RN |/|TN | → 0 as N → ∞ and therefore one cannot
immediately infer properties of regular tournaments from tournaments by ergodicity
arguments. Hence, the restriction of the row-sums must be dealt with another manner.

Due to the non-symmetric nature of the adjacency matrices the eigenvalues are, in
general, complex. However applying the simple transformation H = i(2A− (EN − IN ))

(where i =
√
−1 and EN is the N × N matrix in which every element is 1) brings the

matrices into a self-adjoint form. Thus Apq = 0 (resp. 1) corresponds to Hpq = +i (resp.
−i) for all off-diagonal elements p 6= q and Hpp = 0 for all p = 1, . . . , N . Importantly this
means taking complex conjugation yields H = −H, which in turn implies that if λ is an
eigenvalue of H then so is −λ, with the eigenvectors being complex conjugates of each
other. This spectral symmetry implies

Tr(Hn) ≡ 0 ∀ n odd . (2.2)

In order to make a distinction we say that H is an imaginary tournament matrix (resp.
regular imaginary tournament matrix) if A = 1

2 (EN − IN − iH) is a tournament (resp.
regular tournament). Therefore, with a slight abuse of notation, we will write either
H ∈ TN or H ∈ RN .

Definition 2.1 (Imaginary tournament ensemble). Let TN be the set of imaginary tour-
nament matrices of size N . Then the imaginary Bernoulli ensemble (ITE) is given by the
set of H ∈ TN with the uniform probability measure P (H) = |TN |−1.

Definition 2.2 (Regular imaginary tournament ensemble). Let RN be the set of regular
imaginary tournament matrices of sizeN (withN being odd). Then the random imaginary
tournament ensemble (RITE) is given by the set of H ∈ RN with the uniform probability
measure P (H) = |RN |−1.

Note that Definition 2.1 is equivalent to choosing the entires Hpq equal to ±i inde-
pendently and with equal probability, whereas Definition 2.2 is equivalent to choosing
Hpq equal to ±i with equal probability subject to the constraint that

∑
q Hpq = 0 for all

p = 1, . . . , N .
Due to the independence of the elements in the ITE, many of the techniques developed

to treat Wigner matrices are directly applicable, for example the universality of local
statistics has been established in this case [45]. Moreover, since H is related to A by
a (complex) rank one perturbation, the spectral properties of the ITE can be related
to the complex eigenvalues of random tournaments [45]. However, to the best of our
knowledge, there are no such results for the RITE, although linear statistics [14, 24],
local semicircle estimates [7, 6] and local universality results [5] have been obtained for
random regular graphs using switching methods.

Theorem 2.3 (Convergence for ITE). Let Z = (Z2, Z3, . . . , Zk) be a collection of indepen-
dent random Gaussian variables with mean 0 and variance σ2

n = E[Z2
n] = n. Let H be

chosen according to the ITE and define the random variables

Yn(H) := Tr

(
T2n

(
H√
4N

))
− E

[
Tr

(
T2n

(
H√
4N

))]
. (2.3)

Then, for Y (H) = (Y2(H), Y3(H) . . . , Yk(H)), φ ∈ C2(Rk−1) with k fixed and N sufficiently
large

|E[φ(Y (H))]− E[φ(Z)]| ≤ O(N−1)‖φ‖+O(N−1)‖∇φ‖+O(N−1)‖∇2φ‖.
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where

‖∇jφ‖ := sup
Q∈Rj

max
n1,...,nj

∣∣∣∣ ∂jφ(Q)

∂Qn1
. . . ∂Qnj

∣∣∣∣ . (2.4)

Theorem 2.4 (Convergence for RITE). Let Z and Yn(H) be as in Theorem 2.3 and letH be
chosen according to the RITE. Then, for Y (H) = (Y2(H), Y3(H) . . . , Yk(H)), φ ∈ C2(Rk−1)

with k fixed and N sufficiently large. Then

|E[φ(Y (H))]− E[φ(Z)]| ≤ O(N−1/2)‖φ‖+O(N−1)‖∇φ‖+O(N−1)‖∇2φ‖. (2.5)

Proof. The proof of Theorem 2.3 requires incorporating the results of Proposition 4.1
into Theorem 2.6. For Theorem 2.4 we incorporate the results of Proposition 5.2 into
Theorem 2.6.

Note that we exclude all the odd Chebyshev polynomials since they are comprised
entirely of odd traces (see Equation (1.3)) and so by (2.2) they are identically zero. In ad-
dition we have Tr(H2) =

∑
p,q HpqHqp = N(N−1) for allH, which means Tr(T2(H/

√
4N))

is constant.1

2.2 Outline of ideas and methods

In order to prove Theorems 2.3 and 2.4 we introduce random walks within TN andRN

with two properties. Firstly, the stationary distributions correspond to P (H) = |TN |−1

and P (H) = |RN |−1, as per Definitions 2.1 and 2.2 respectively. Secondly, the induced
motion of the random variable Y (H) will be closely described by a process, whose
stationary distribution is given by Z = (Z2, Z3, . . . , Zk), as in Theorems 2.3 and 2.4.

More precisely, suppose that at some discrete-time t ∈ N our random walker is
situated at the matrix H, then we have a transition probability ρ(H → H ′) for the walker
to be at the matrix H ′ at time t+1 later. From this one may track how the corresponding
variable Yn(H) changes to Yn(H

′), i.e.

E[δYn|H] :=
∑
H′

ρ(H → H ′)[Yn(H
′)− Yn(H)]. (2.6)

Similarly, fluctuations are obtained by calculating the second moment

E[δYnδYm|H] :=
∑
H′

ρ(H → H ′)[Yn(H
′)− Yn(H)][Ym(H ′)− Ym(H)]. (2.7)

Now suppose that, if we design our random walk correctly, we observe that the moments
take the form

E[δYn|H] = αN [−nYn(H) +Rn(H)] (2.8)

E[δYnδYm|H] = αN [2n2δnm +Rnm(H)], (2.9)

where αN is a certain constant depending only on N and Rn(H), Rnm(H) are small
remainders (the nature of small will be clarified later). Then, for arbitrary test functions
f ∈ C3(Rk−1), expanding δf := f(Y (H) + δY (H,H ′))− f(Y (H)) in a Taylor series gives

E[δf |H]

αN
=

k∑
n=2

E[δYn|H]

αN

∂f

∂Yn
+

1

2

k∑
n,m=2

E[δYnδYm|H]

αN

∂2f

∂Yn∂Ym
+
E[Sf (H,H ′)|H]

αN

= Af(Y (H)) +

k∑
n=2

Rn(H)
∂f

∂Yn
+

1

2

k∑
n,m=2

Rnm(H)
∂2f

∂Yn∂Ym
+
E[Sf (H,H ′)|H]

αN
,

(2.10)

1One may consider this at odds with the Gaussian case but it was shown in [34] the first two moments in the
Gaussian β-ensembles can be scaled in such a way that they may be considered independently of all other
moments.
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with some remainder Sf (H,H ′) and the operator A is given by

A :=

k∑
n=2

n

[
n

∂2

∂X2
n

−Xn
∂

∂Xn

]
. (2.11)

If the Markov process is started from a stationary state, then the distributions of
the random variables H and H ′ will be the same, in which case they are referred
to as an exchangeable pair. The expected change in f will therefore satisfy E[δf ] =
E[f(Y (H ′))] − E[f(Y (H))] = 0, which, in turn, means 0 = α−1

N E[δf ] = E[Af(Y (H))] +

E[R(H)], where R(H) denotes the total remainder in (2.10). The connection with the
Gaussian distribution Z now emerges, since if it were the case the remainder E[R(H)]

is equal to 0 for all test functions f then we would have the following result, known as
Stein’s Lemma.

Lemma 2.5 (Stein’s Lemma). Let A be the operator given in (2.11). Then E[Af(Z)] = 0

for all f ∈ C2(Rk) if and only if Z = (Z2, Z3, . . . , Zk), where Zn ∼ N(0, n).

Proof. One should consult e.g. Lemma 1 in [37] for details. Although briefly - integration
by parts yields E[Af(Z)] :=

∫
dZ P (Z)Af(Z) =

∫
dZ f(Z)A∗P (Z) = 0 for any f ∈ C2(Rk)

and thus establishes the first implication. For the converse one requires the exact form
of the solution to equation (2.12) presented in Proposition A.1 in Appendix A.

Of course the remainder will not, in general, be zero but one might expect that if
it is close (in some appropriate manner) then the corresponding variable Y (H) will be
close to Z. Stein’s realisation was that A and f could be connected via an auxiliary test
function φ in what is now known as Stein’s equation

Af(x) = φ(x)− E[φ(Z)], (2.12)

with Z as in Lemma 2.5. Taking the expectation with respect to Y (H) gives |E[φ(Y )]−
E[φ(Z)]| = |E[Af(Y )]|. The aim is therefore to find a bound for |E[Af(Y )]| in terms of φ,
as this will allow for an estimate on the distributional distance between Y and Z. This
idea was initially developed by Charles Stein as an alternative method for proving the
classical CLT [48]. Stein’s method now refers to the overall technique of recovering the
distributional distance from bounding the quantity E[Af(Z)]. For readers unfamiliar with
the basics of Stein’s method, the review by Ross [40] provides an excellent introduction
and overview of the different ways this may be achieved.

The work of Götze [21] and Barbour [4] in the early 90s allowed for an extension
of Stein’s method to multivariate Gaussian distributions and established an explicit
connection between Stein’s method and Markov processes. Using these ideas a number
of authors adapted the use of the exchangeable pairs mechanism to multivariate Gaussian
distributions [10, 39, 37] (the thesis of Döbler offers an excellent overview of this [12]),
from which the following theorem is obtained.

Theorem 2.6. Let (M,M ′) be an exchangeable pair of N × N random self-adjoint
matrices with αN a constant depending only on N and Z the multi-dimensional Gaussian
random variable in Theorem 2.3. If the random variable Y (M) = (Y2(M), . . . , Yn(M))

satisfies

1

αN
E[δYn|M ] = −nYn(M) +Rn(M) (2.13)

1

αN
E[δYnδYm|M ] = 2n2δnm +Rnm(M) (2.14)

1

αN
E[|δYnδYmδYl||M ] = Rnml(M). (2.15)
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Then for all φ ∈ C2(Rk) we have

|E[φ(Y (M))]− E[φ(Z)]| ≤ c1R(1)‖φ‖+ c2R(2)‖∇φ‖+ c3R(3)‖∇2φ‖, (2.16)

where ‖∇jφ‖ is given in (2.4), cj are fixed positive constants and

R(j) :=
∑

n1,...,nj

E|Rn1...nj (M)|.

Proof. Theorem 2.6 is a specific form of Theorem 3 in [37], except that we have decided
to use the alternative quantities ‖∇kφ‖. We have therefore decided to include the proof
of Theorem 2.6 in Appendix A for completeness and to aid the understanding of the
interested reader, even though, beyond minimal adjustments, there is nothing new.

Remark 2.7. As was first noted by Götze [21] and Barbour [4], the operator A is the
generator for a specific multi-dimensional Ornstein-Uhlenbeck (OU) process. Thus, in
essence, Theorem 2.6 is stating that if the random walk is close (i.e. the remainders
Rn, Rnm etc and the constant αN go to 0 in the limit of large N ) to that of the associated
OU-process then the corresponding stationary distributions will also be close - in the
distributional sense of (2.16).

Remark 2.8. In principle one could remove the factor of n present in (2.11) and achieve
the same stationary distribution but it will transpire the evolution of our observables
Yn(B), given in (2.3), can only be analysed if it is included. This is because this factor
corresponds to rescaling the time t → nt, which is independent of the random variable
in question. Thus, in general, the linear statistic Φh(H) will not evolve according to
a single one-dimensional OU process, but rather a linear combination of independent
one-dimensional OU processes evolving at different rates.

The novel aspect of our work concerns the evaluation of the remainders Rn(H),
Rnm(H) and Rnml(H). For comparison, the CLT results in [12, 49, 32], whilst slight
stronger, heavily utilise Dyson Brownian motion, which affords a closed form expression
for the evolution of spectrum. In other words, the remainders are functions of the
eigenvalues, i.e. Rn(H) = Rn(λ1(H), . . . , λN (H)) etc. However, since our ensembles are
not invariant under, say unitary or orthogonal transformations, we do not have this luxury.
We therefore use alternative combinatorial methods to obtain estimates in terms of the
matrix dimension N . These are similar to those previously utilised for random regular
graphs [14, 24], however, in the current setting, we must compute matrix averages in
addition to counting cycles.

The starting point of these methods comes from a generalised form of the Bartholdi
identity, developed in [38] to obtain a trace formula for the eigenvalues of (magnetic)
regular graphs. This allows us to relate the centred Chebyshev Polynomials Yn(H) to
sums of products of matrix elements, like Hp1p2Hp2p3 . . ., associated to non-backtracking
cycles (see Section 3). The change of such products under the appropriate random
walks leads to remainder terms comprised of, again, certain classes of matrix products.
Estimating the remainders consists of bounding the expectations of this quantities with
respect to either the ITE and RITE.

For the ITE the estimates are relatively straightforward because the matrix elements
are independent. It means the contributions from many types of cycles are precisely zero.
Those cycles that remain only give contributions tending to 0 in the large N limit. For the
RITE, however, a more complicated random walk leads, inevitably, to more complicated
expressions for the remainder terms. Moreover, the lack of independence means the
expectations of matrix products that were identically zero for the ITE are no longer so
for the RITE. A key part of our analysis is therefore showing the correlations are small
enough so the expectations go to zero sufficiently fast in N , as proved in Lemma 5.3.

EJP 23 (2018), paper 80.
Page 7/37

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP199
http://www.imstat.org/ejp/


Random walk approach to linear statistics in tournament ensembles

3 Graph theoretical tools

Before proceeding to our random walks we first introduce some necessary terminol-
ogy and simple results. A graph G consists of a set of vertices V (G) and edges E(G)

connecting these vertices. G is said to be simple if every pair of vertices is connected by
at most one edge and there are no vertices connected to themselves. G is also said to be
complete if every pair of vertices has precisely one edge connecting them.

A walk ω of length n on a graph G is an ordered sequence of vertices ω = (p0, p1, . . . ,

pn−1, pn) such that pi+1 6= pi and all pairs (pi, pi+1) ∈ E(G), i = 0, . . . , n− 1 are edges on
the graph. If pi+2 = pi for some i = 0, . . . , n− 2 then the walk is said to be backtracking.
Otherwise ω is non-backtracking. A walk is also a cycle (of length n) if the first and
last vertices are the same, i.e. p0 = pn. Note that, in the present article, cycles will be
distinguished by the starting vertex, so for example, ω = (1, 2, 3, 4, 1) 6= (2, 3, 4, 1, 2) = ω′.
Again, the cycle is backtracking if there exists some i such that pi = pi+2(n) and non-
backtracking otherwise.

We use the notations Vω and Eω to denote the set of distinct vertices and (undirected)
edges2 in a walk ω and νω(e) for the number of times the edge e = (p, q) = (q, p) appears
in ω. Therefore, in terms of the tournament matrix H, a walk ω corresponds to the
product over all matrix elements associated to (directed) edges in ω, i.e.

Hω := Hp0p1Hp1p2 . . .Hpn−1pn . (3.1)

In addition, for a collection of walks ω1, ω2, . . . , ωn on G we define

Vω1,...,ωn
:= Vω1

∪ Vω2
∪ . . . ∪ Vωn

, Eω1,...,ωn
:= Eω1

∪ Eω2
∪ . . . ∪ Eωn

(3.2)

and νω1,...,ωn
(e) for the number of times the edge e is traversed by the walks ω1, . . . , ωn.

Similarly

Hω1,...,ωn
:= Hω1

Hω2
. . .Hωn

. (3.3)

If an edge (p, q) appears an even number of times in ω1, . . . , ωn then the corresponding
matrix element will disappear from (3.3) since we have identically H2

pq = −HpqHqp = 1

for every H ∈ TN . It is therefore convenient to define the set of ‘free’ edges as

Fω1,...,ωn
:= {e ∈ Eω1,...,ωn

: νω1,...,ωn
(e) ≡ 1 mod (2)},

i.e. the set of edges that are traversed an odd number of times by ω1, . . . , ωn. This will
be especially useful when evaluating remainders for the RITE in Section 5.

We say that two walks ω and ω′ are equivalent if ω′ can be obtained from ω by simply
relabelling the vertices and we will use the notation ω ∼ ω′ to denote that is the case. For
example ω = (1, 2, 3, 1, 4) ∼ (2, 3, 9, 2, 6) = ω′. We will write [ω] := {ω′ : ω ∼ ω′} to denote
the associated equivalence class and if Ω is a set of walks then [Ω] := {[ω] : ω ∈ Ω} is
the set of equivalence classes. Moreover, we shall use the notation ω ∼= ω′ if ω ∼ ω′ and
Fω = Fω′ . For example ω = (1, 2, 3, 4, 5, 6, 7, 5, 4, 3, 1) ∼= (1, 3, 2, 8, 6, 5, 7, 6, 8, 2, 1) = ω′. The
above notions immediately generalise to collections of walks (ω1, . . . , ωn).

Lemma 3.1. Let G be a simple, connected graph with vertex set V (G) and edge set
E(G). Let G′ ⊆ G be a subgraph with V (G′) ⊆ V (G) and E(G′) ⊆ E(G). Then

|E(G′)| − |V (G′)| ≤ |E(G)| − |V (G)|, (3.4)

provided |V (G′)| ≥ 1.

2I.e. (p, q) and (q, p) will be associated with the same edge.
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Proof. Let C denote the number of connected components of G′. We can create a new
graph G̃ ⊆ G by adding a minimal number of edges to G′ such that G̃ is connected, then

|E(G′)| − |V (G′)| = |E(G̃)| − |V (G̃)| − C + 1 = β(G̃)− C.

Here β(G̃) = |E(G̃)| − |V (G̃)|+1 is the first Betti number of G̃, which counts the number
of fundamental cycles. However, since G̃ is a subgraph of G it cannot have more
fundamental cycles than G and so

|E(G′)| − |V (G′)| ≤ |E(G)| − |V (G)|+ (1− C).

The condition |V (G′)| ≥ 1 ensures that C ≥ 1, which completes the result.

Corollary 3.2. Let ω̄ = (ω1, . . . , ωn) be a collection of walks and define the subgraph

G = (Vω̄, Fω̄). If G is disconnected with C components then we write Gi = (V
(i)
ω̄ , F

(i)
ω̄ ), i =

1, . . . , C to denote the subgraphs of these components and βi = |F (i)
ω̄ | − |V (i)

ω̄ | + 1 the
associated first Betti numbers. Suppose ω̄ ∼ ω̄′ then

|Vω̄,ω̄′ | − |Fω̄,ω̄′ |
2

≤ |Vω̄|+
C∑
i=1

δβi,0.

Proof. By construction we have

|Vω̄,ω̄′ | = |Vω̄|+ |Vω̄′ | − |Vω̄ ∩ Vω̄′ | = 2|Vω̄| − |Vω̄ ∩ Vω̄′ | (3.5)

|Fω̄,ω̄′ | = |Fω̄|+ |Fω̄′ | − 2|Fω̄ ∩ Fω̄′ | = 2|Fω̄| − 2|Fω̄ ∩ Fω̄′ | (3.6)

and therefore

|Vω̄,ω̄′ | − |Fω̄,ω̄′ |
2

= 2|Vω̄| − |Fω̄|+ |Fω̄ ∩ Fω̄′ | − |Vω̄ ∩ Vω̄′ |. (3.7)

Now, let us define G′
i = (V

(i)
ω̄ ∩ Vω̄′ , F

(i)
ω̄ ∩ Fω̄′) ⊆ Gi. If |V (i)

ω̄ ∩ Vω̄′ | ≥ 1 then by Lemma
3.1 we have

|F (i)
ω̄ ∩ Fω̄′ | − |V (i)

ω̄ ∩ Vω̄′ | ≤ |F (i)
ω̄ | − |V (i)

ω̄ | = βi − 1, (3.8)

whereas, if |V (i)
ω̄ ∩ Vω̄′ | = 0 then |F (i)

ω̄ ∩ Fω̄′ | = 0 also. Therefore, since all the Gi are
disconnected we have |Vω̄| − |Fω̄| =

∑
i(1− βi), and so (3.7) becomes

|Vω̄,ω̄′ | − |Fω̄,ω̄′ |
2

= |Vω|+
C∑
i=1

{
1− βi + |F (i)

ω̄ ∩ Fω̄′ | − |V (i)
ω̄ ∩ Vω̄′ |

}
≤ |Vω|+

C∑
i=1

δβi,0.

For our imaginary tournament matrices there is an intimate connection between the
traces of Chebyshev polynomials (1.4) and the sets of non-backtracking cycles. This is
given by the following lemma.

Lemma 3.3. Let M be an N ×N self-adjoint matrix with elements of the form

Mpq = eiφpq = Mqp, φpq ∈ [0, 2π),∀q 6= p (3.9)

and Mpp = 0 for all p. Then

Tr

(
Tn

(
M

2
√
N − 2

))
=

1

2

1

(N − 2)
n
2

[ ∑
ω∈Ωn

Mω − 1

2
N(N − 3)(1 + (−1)n)

]
, (3.10)

where Ωn denotes the set of non-backtracking cycles of length 2n and Mω is given in
(3.1).
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Proof. We are aware of two related methods for proving the validity of this statement that
we shall not recount here. The first approach is to make a generalisation of the so-called
Bartholdi identity (see e.g. [38, 27]) that relates the spectrum of M to another matrix
associated to non-backtracking walks in the edge space. This connection is applicable
since M can be considered as a magnetic adjacency matrix of a complete graph on N

vertices. The second approach is based upon showing that polynomials associated to
non-backtracking walks obey the same recursion relations as the Chebyshev polynomials
(see e.g. [44] and references therein).

4 Imaginary tournament ensemble

We now construct the random walk process in TN . Many of the intricate details
of this walk are discussed in [26] and so we attempt to keep to the essential points.
Suppose that at time t ∈ N we select a matrix H ∈ TN , then at time t+ 1 we randomly
choose another matrix H ′ ∈ TN by selecting with equal probability one of the upper
triangular elements of H (say Hpq with p < q) and, together with its symmetric partner
Hqp, we change its sign Hpq → −Hpq. We will write

δHpq := H ′ −H = −2Hpq[epe
T
q − eqe

T
p ], (4.1)

to denote the N × N rank 2 difference matrix obtained as a result of performing this
change of sign. Here ep is the column vector with a 1 in entry p and 0 everywhere
else. This switch corresponds to changing the direction of an edge (see Figure 1) in the
associated tournament graph, as described in Section 2.1.

(a)
p

q

(b)
p

q

Figure 1: The Markov process consists of choosing an edge (p, q) uniformly at random in
the tournament graph (a) and then switching the orientation to obtain the tournament
graph in (b). In this example the (p, q)-th element of the associated adjacency matrix
Apq = 1−Aqp = 1 in (a) is updated to Apq = 0 in (b). Hence Hpq = i(2A− (EN − IN ))pq =

−Hqp = i 7→ Hpq = −i when making the switch from (a) to (b).

Interpreting this in terms of a random walk we say that if the walker is at H at time
t then in each unit time step we let the walker move to any matrix H ′ ∈ TN which is
exactly a Hamming distance3 one away with equal probability - giving us the transition
probability

ρ(H → H ′) =

{
1
dN

|H −H ′| = 1

0 |H −H ′| 6= 1,
(4.2)

where dN = N(N −1)/2 is the number of independent elements of H. Therefore, if Pt(H)

is the probability for the random walker to be at matrix H at time t then the probability

3The Hamming distance between two matrices H,H′ ∈ TN is given by |H −H′| = 1
2

∑
p<q |H′

pq −Hpq |,
which counts the number of differences in signs of the free matrix elements.
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to be at some other matrix H ′ ∈ TN is given by

Pt+1(H
′) =

∑
H∈TN

ρ(H → H ′)Pt(H) =
∑

H:|H′−H|=1

Pt(H)

dN
=

1

dN

∑
p<q

Pt(H
′ − δH(pq)).

One may easily verify that Pt(H
′) = |TN |−1 (the measure of the ITE in Definition 2.1) is

the stationary distribution of this process. In this instance the random matrices H and
H ′ have the same distribution and are thus an exchangeable pair.

The expected change of some observable f(H) with respect to this random walk is
hence given by

E[δf |H] :=
∑

H′∈TN

ρ(H → H ′)[f(H ′)− f(H)] =
1

dN

∑
p<q

[f(H + δHpq)− f(H)]. (4.3)

Similarly, higher moments are obtained by taking the expectation of products of changes,
i.e. for f1(H), f2(H), . . . , fk(H)

E[δf1 . . . δfk|H] :=
1

dN

∑
p<q

[f1(H + δHpq)− f1(H)] . . . [fk(H + δHpq)− fk(H)]. (4.4)

We are now in position to state how the observables Yn(H), given in (2.3), behave under
this random walk.

Proposition 4.1 (ITE Random walk). Let (H ′,H) be an exchangeable pair from the ITE
and connected via (4.2). Let Yn(H) be as defined in (2.3). Then

(a) dN

4 E[δYn|H] = −nYn(H) +Rn(H) (Drift term)

(b) dN

4 E[δYnδYm|H] = 2n2δnm +Rnm(H) (Diffusion term)

(c) dN

4 E[|δYnδYmδYl||H] = Rnml(H) (Remainder term)

with E|Rn(H)| = O(N−1), E|Rnm(H)| = O(N−1) and E|Rnml(H)| = O(N−1) for all
n,m, l = 2, . . . , k.

Proof. The proofs for Parts (a), (b) and (c) will be presented in Sections 4.1, 4.2 and 4.3
respectively.

To show Proposition 4.1 we utilise Lemma 3.3, which expresses the trace of Chebyshev
polynomials of H in terms of non-backtracking cycles to write Yn(H) (see Equation (2.3))
in the following form

Yn(H) =
1

2

1

(N − 2)n

∑
ω∈Ω2n

Hω − E[Hω] =
1

2

1

(N − 2)n

∑
ω∈Λ2n

Hω. (4.5)

Here Λ2n := {ω ∈ Ω2n : ∃e ∈ Eω s.t. νω(e) = 1 mod (2)} is the set of non-backtracking
cycles ω ∈ Ω2n for which there is at least one edge that is traversed an odd number of
times. Hence, since the matrix elements are independent, E[Hω] = 0 for all ω ∈ Λ2n,
which is why the expectation term disappears in (4.5).

From (4.1), since only the (p, q)-th element of H changes sign, a general e = (p′, q′)

element of H ′ = H + δHpq is given by

H ′
e = He(1− 2χe,pq) = He(−1)χe,pq , (4.6)

where χe,pq = (δpp′δqq′ + δqp′δpq′) is equal to 1 if e = (p, q) or (q, p) and 0 otherwise.
Therefore, if ω = (p0, . . . , p2n−1, p0) then

δHpq
ω := H ′

ω −Hω =

2n−1∏
i=0

H ′
pipi+1(2n)

−Hω = Hω

2n−1∏
i=0

(−1)
χpipi+1(2n),pq −Hω = −2Hωφω,pq
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where

φω,pq =
1

2
((−1)χω,pq − 1), χω,pq =

2n−1∑
i=0

χpipi+1(2n),pq.

Hence φω,pq = 1 if νω((p, q)) = 1 mod (2) and 0 otherwise. In other words φω,pq is only
non-zero when the cycle ω traverses the undirected edge (p, q) an odd number of times.

Therefore δY pq
n := Yn(H + δHpq)− Yn(H) is given by

δY pq
n =

1

2

1

(N − 2)n

∑
ω∈Λ2n

δHpq
ω = − 1

(N − 2)n

∑
ω∈Λ2n

Hωφω,pq. (4.7)

4.1 Proof of Proposition 4.1 Part (a) - Drift term

Inserting the form (4.7) for δY pq
n into the expression (4.3) for the expected change of

an observable undergoing this random walk leads to

E[δYn|H] =
1

dN

∑
p<q

δY pq
n = − 1

dN

1

(N − 2)n

∑
p<q

∑
ω∈Λ2n

Hωφω,pq =
4

dN
[−nYn(H) +Rn(H)].

(4.8)
Using the expression (4.5) for Yn(H) therefore gives the remainder

Rn(H) =
n

2

1

(N − 2)n

∑
ω∈Λ2n

Hω

(
1− 1

2n

∑
p<q

φω,pq

)
. (4.9)

Our aim is to show that |E[Rn(H)]| = O(N−1). We now write Λ?
2n = {ω ∈ Λ2n : |Fω| = 2n},

i.e. the set of non-backtracking cycles in Λ2n in which all edges are traversed exactly
once. (Note this does not exclude the possibility of ω visiting a particular vertex more
than once). We also write Λ◦

2n = Λ2n \ Λ?
2n for the set of non-backtracking cycles in

which at least one edge is traversed more than once. For convenience, let us write
Φω :=

∑
p<q φω,pq, which counts the number of edges in ω that are traversed an odd

number of times. Importantly, for all ω ∈ Λ?
2n we have

Φω :=
∑
p<q

φω,pq = 2n, (4.10)

and in general Φω ≤ 2n. Therefore the sum over ω in Λ2n in (4.9) can be reduced to the
lesser sum over Λ◦

2n. As outlined in Section 3, let us write [ω] for the equivalence class
of ω, which simply corresponds to relabelling the vertices, and [Λ◦

2n] for the set of such
equivalence classes in Λ◦

2n. Since all we are doing is relabelling, the quantity Φω is the
same for all ω ∈ [ω], meaning we can write Φ[ω] instead. Hence

E|Rn(H)| ≤ O(N−n)E

∣∣∣∣ ∑
[ω]∈[Λ◦

2n]

(
1−

Φ[ω]

2n

) ∑
ω∈[ω]

Hω

∣∣∣∣
≤ O(N−n)

∑
[ω]∈[Λ◦

2n]

∣∣∣∣1− Φ[ω]

2n

∣∣∣∣E∣∣∣∣ ∑
ω∈[ω]

Hω

∣∣∣∣. (4.11)

Thus, using that 0 ≤ (1− Φ[ω]/2n) ≤ 1 and the inequality E|A| ≤
√
E[A2], leads to

E|Rn(H)| ≤ O(N−n)
∑

[ω]∈[Λ◦
2n]

√ ∑
ω,ω′∈[ω]

E[Hω,ω′ ], (4.12)

where Hω,ω′ := HωHω′ , as in (3.3). The quantity E[Hω,ω′ ] 6= 0 only when ω ∼= ω′. Let us
suppose that every edge in Eω,ω′ is traversed exactly twice, then |Eω,ω′ | = 2n and because
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ω ∈ Λ◦
2n the subgraph G = (Vω,ω′ , Eω,ω′) is connected with at least three fundamental

cycles, i.e. β(G) ≥ 3. Thus |Vω,ω′ | = |Eω,ω′ | − β(G) + 1 ≤ 2n − 2. Alternatively, if there
exists a least one edge that is traversed four times or more then |Eω,ω′ | ≤ 2n − 1 and
β(G) ≥ 2, meaning |Vω,ω′ | = |Eω,ω′ | − β(G) + 1 ≤ 2n− 2 also.

The contribution from the term inside the square-root in (4.12) is obtained by labelling
the independent vertices in Vω,ω′ . Up to a constant, we have N(N − 1) . . . (N − |Vω,ω′ | −
1) = O(N |Vω,ω′ |) pairs ω ∼= ω′ ∈ [ω], so taking the square root we have E|Rn(H)| ≤
O(N−n)|[Λ◦

2n]|
√
O(N2n−2) = |[Λ◦

2n]|O(N−1). We are thus left to evaluate |[Λ◦
2n]|, the

number of unlabelled non-backtracking cycles ω ∈ Λ◦
2n. However, since the labelling has

been removed this quantity is now independent of N , and so |[Λ◦
2n]| = O(1), meaning

E|Rn(H)| = O(N−1), as desired.

4.2 Proof of Proposition 4.1 Part (b) - Diffusion term

Inserting the form (4.7) for δY pq
n into the expression (4.4) leads to the following

diffusion term

E[δYnδYm|H] =
1

dN

∑
p<q

δY pq
n δY pq

m =
1

dN

1

(N − 2)n+m

∑
p<q

∑
ω1∈Λ2n

∑
ω2∈Λ2m

Hω1,ω2
φω1,pqφω2,pq.

Therefore writing E[δYnδYm|H] = 4
dN

[2n2δnm +Rnm(H)] and rearranging gives

Rnm(H) =
1

4

1

(N − 2)n+m

∑
p<q

∑
ω1∈Λ2n

∑
ω2∈Λ2m

Hω1,ω2
φω1,pqφω2,pq − 2n2δnm. (4.13)

We estimate the cases n = m and n 6= m separately. For the former case let us take Λ?
2n

as in Section 4.1 and define Γ?
2n = {(ω1, ω2) ∈ Λ?

2n ×Λ?
2n : ω1

∼= ω2}, with the complement
Γ◦
2n = (Λ2n × Λ2n) \ Γ?

2n. For walks ω1
∼= ω2 we have φω1,pq = φω2,pq and Hω1

= Hω2
(so

Hω1,ω2
= 1). Moreover, if ω1 ∈ Λ?

2n then from (4.10)
∑

p<q φ
2
ω1,pq =

∑
p<q φω1,pq = 2n. In

addition, if |Vω1
| = |Vω2

| = 2n (ω is a single loop) then for a fixed ω1 there are 4n possible
ω2 such that ω1

∼= ω2 - obtained by choosing the 2n possible starting vertices of the cycle
and the 2 possible orientations. Labelling the independent vertices of ω1 leads to an
overall contribution to |Γ?

2n| of 4nN(N − 1) . . . (N − (2n − 1)) = 4nN2n + O(N2n−1). If,
in contrast, |Vω1

| = |Vω2
| < 2n then the contribution to |Γ?

2n| will be of order O(N2n−1).
Therefore

Rnn(H) =
1

4

1

(N − 2)2n

∑
(ω1,ω2)∈Γ◦

2n

Hω1,ω2Φω1,ω2 +
n

2(N − 2)2n
|Γ?

2n| − 2n2

=
1

4

1

(N − 2)2n

∑
(ω1,ω2)∈Γ◦

2n

Hω1,ω2Φω1,ω2 +O(N−1), (4.14)

where Φω1,ω2
:=
∑

p<q φω1,pqφω2,pq. Similarly Φ[ω1,ω2] takes the value Φω1,ω2
for any

(ω1, ω2) ∈ [ω1, ω2]. Therefore, splitting the sum into equivalence classes gives

E|Rnn(H)| ≤ O(N−2n)
∑

[ω1,ω2]∈[Γ◦
2n]

Φ[ω1,ω2]E

∣∣∣∣ ∑
(ω1,ω2)∈[ω1,ω2]

Hω1,ω2

∣∣∣∣+O(N−1)

≤ O(N−2n)
∑

[ω1,ω2]∈[Γ◦
2n]

Φ[ω1,ω2]

√√√√ ∑
(ω1,ω2),(ω′

1,ω′
2)

∈[ω1,ω2]

E[Hω1,ω2,ω′
1,ω

′
2
] +O(N−1). (4.15)

Since we want to maximise the number of independent vertices we can assume that the
edges in Eω1,ω2

are traversed at most twice by (ω1, ω2), which implies that 2|Eω1,ω2
| −
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|Fω1,ω2
| = 4n. In addition, ω1 and ω2 must share at least one edge (otherwise Φω1,ω2

= 0)
and we cannot have Vω1

= Vω2
, otherwise ω1

∼= ω2 meaning (ω1, ω2) /∈ Γ◦
2n. This means

the subgraph Ĝ = (Vω1,ω2
, Eω1,ω2

) is connected and has β(Ĝ) ≥ 2.
Now, since (ω1, ω2) ∼= (ω′

1, ω
′
2) in (4.15) (otherwise we would have E[Hω1,ω2,ω′

1,ω
′
2
] = 0)

we get |Fω1,ω2,ω′
1,ω

′
2
| = 0 and so Corollary 3.2 gives |Vω1,ω2,ω′

1,ω
′
2
| ≤ |Vω1,ω2

|+ |VI |, where
VI are the isolated vertices of the graph G = (Vω1,ω2

, Fω1,ω2
). But by construction

|VI | ≤ (|Eω1,ω2
| − |Fω1,ω2

|)− 1, since (|Eω1,ω2
| − |Fω1,ω2

|) is the number of edges traversed
precisely twice. Therefore

|Vω1,ω2,ω′
1,ω

′
2
| ≤ |Vω1,ω2

|+ |VI |
≤ |Vω1,ω2

|+ |Eω1,ω2
| − |Fω1,ω2

| − 1

= 2|Eω1,ω2 | − |Fω1,ω2 | − β(Ĝ) ≤ 4n− 2.

Again, we have |[Γ◦
2n]| = O(1), since it is independent of N and also Φ[ω1,ω2] =

O(1), since it is equal to, at most, the number of shared edges of ω1 and ω2. Hence,
E|Rnn(H)| ≤ O(N−2n)

√
O(N4n−2) +O(N−1) = O(N−1).

It thus remains to evaluate E|Rnm(H)| for n 6= m. In this instance we have, from
(4.13)

E|Rnm(H)| ≤ O(N−(n+m))E

∣∣∣∣ ∑
(ω1,ω2)

∈Λ2n×Λ2m

Hω1,ω2
Φω1,ω2

∣∣∣∣
≤ O(N−(n+m))

∑
[ω1,ω2]

∈[Λ2n×Λ2m]

Φ[ω1,ω2]

√√√√ ∑
(ω1,ω2),(ω′

1,ω′
2)

∈[ω1,ω2]

E[Hω1,ω2,ω′
1,ω

′
2
]. (4.16)

Again, the main contribution will come from cycles ω1 and ω2 in which all vertices are
distinct, i.e. |Vω1

| = 2n and |Vω2
| = 2m. However, since n 6= m, ω1 and ω2 cannot share

all the same edges. The condition αω1,ω2
> 0 only if ω1 and ω2 share at least one edge,

and therefore, for the same reasons as above, those contributing collections of cycles
(ω1, ω2, ω

′
1, ω

′
2) for which E[Hω1,ω2,ω′

1,ω
′
2
] is non-zero satisfy |Vω1,ω2,ω′

1,ω
′
2
| ≤ 2n + 2m − 2.

Hence, E|Rnm(H)| ≤ O(N−(n+m))|[Λ2n × Λ2m]|
√
O(N2n+2m−2) = O(N−1).

4.3 Proof of Proposition 4.1 Part (c) - Remainder term

For the remainder term we again insert the expression (4.7) into (4.4), which gives us

E[|δYnδYmδYl||H] =
1

dN

∑
p<q

|δY pq
n δY pq

m δY pq
l |

≤ 1

dN

1

(N − 2)n+m+l

∑
p<q

∣∣∣∣ ∑
ω1,ω2,ω3

∈Λ2n×Λ2m×Λ2l

Hω1,ω2,ω3
φω1,pqφω2,pqφω3,pq

∣∣∣∣. (4.17)

Let us define Γpq
2n,2m,2l := {(ω1, ω2, ω3) ∈ Λ2n × Λ2m × Λ2l : φω1,pqφω2,pqφω3,pq = 1} as

the set of non-backtracking cycles that all traverse the edge (p, q) an odd number of
times. Since E|Rnml(H)| = dN

4 E[E[|δYnδYmδYl||H]], taking the expectation over the ITE
subsequently leads to

E|Rnml(H)| = O(N−(n+m+l))
∑
p<q

E

∣∣∣∣ ∑
(ω1,ω2,ω3)∈Γpq

2n,2m,2l

Hω1,ω2,ω3

∣∣∣∣
≤ O(N−(n+m+l))

∑
p<q

∑
[ω1,ω2,ω3]∈[Γpq

2n,2m,2l]

√√√√ ∑
(ω1,ω2,ω3),(ω′

1,ω′
2,ω′

3)

∈[ω1,ω2,ω3]

E[Hω1,ω2,ω3,ω′
1,ω

′
2,ω

′
3
]. (4.18)
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The main contribution to the above will again come from non-backtracking cycles in
which all vertices are distinct (|Vω1

| = |Vω′
1
| = 2n etc.), as this maximises the number

of vertices. In this case all the cycles ωi, ω
′
i, i = 1, 2, 3 must traverse the edge p, q pre-

cisely once. The expectation E[Hω1,ω2,ω3,ω′
1,ω

′
2,ω

′
3
] is only non-zero when every edge in

Eω1,ω2,ω3,ω′
1,ω

′
2,ω

′
3
is traversed an even number of times by (ω1, ω2, ω3, ω

′
1, ω

′
2, ω

′
3). Therefore

the number of vertices will be maximised when every edge (other than (p, q)) is traversed
precisely twice, in which case |Vω1,ω2,ω3,ω′

1,ω
′
2,ω

′
3
| = 2n+2m+2l− 4. However the two ver-

tices p and q are fixed, so when obtaining the contribution inside the square root above by
labelling the vertices we get E|Rnml(H)| =

∑
p<q O(N−(n+m+l))

√
O(N2n+2m+2l−4−2) =∑

p<q O(N−3) = O(N−1).

5 Regular imaginary tournament ensemble

In a similar manner to the previous section we shall introduce a random walk within
RN , which in turn induces a random walk in the variables Yn(H). Obviously this must
be different to that of ITE in the previous section, for if we simply change the sign
of one element of H then we no longer have

∑
q Hpq = 0 for all p and therefore the

new matrix H ′ /∈ RN . To remedy this situation we use a random walk that has already
been investigated previously in the literature [28]. In order to describe this Markov
process we first note that every regular tournament on N vertices contains directed
cycles q = (q0, q1, q2) of length 3, i.e. Hq0q1 = Hq1q2 = Hq2q0 (see e.g. Figure 2 (a)). We
shall refer to such directed cycles as triangles, for which there are precisely

dN =
N(N − 1)(N + 1)

4
(5.1)

in every regular tournament. Note that we distinguish labelled triangles, so (1, 2, 3, 1) 6=
(2, 3, 1, 2) for example.

Proof of (5.1). Let us introduce the following indicator function

Θq(H) =
1

8
(1−Hq0q1Hq1q2)(1−Hq1q2Hq2q0)(1−Hq2q0Hq0q1)(1− δq0q1δq1q2δq2q0), (5.2)

which satisfies

Θq(H) =

{
1 Hq0q1 = Hq1q2 = Hq2q0 and q0 6= q1 6= q2 6= q0

0 otherwise .
(5.3)

Summing over q and using that HpqHpq = −1 and
∑

r:r 6=p,q Hqr = −Hqp gives∑
q

Θq(H) =
1

8

∑
q0 6=q1 6=q2 6=q0

(1−Hq0q1Hq1q2)(1−Hq1q2Hq2q0)(1−Hq2q0Hq0q1) (5.4)

=
1

8

∑
q0 6=q1 6=q2 6=q0

(2− 2Hq0q1Hq1q2 − 2Hq1q2Hq2q0 − 2Hq2q0Hq0q1)

=
1

4

[ ∑
q0 6=q1 6=q2 6=q0

1 + 3
∑
p 6=q

HqpHpq

]
=

1

4

[
N(N − 1)(N − 2) + 3N(N − 1)

]
,

which is equal to dN .

For functions invariant under cyclic permutations of these indices the following
simplification occurs
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Lemma 5.1. Let Θq(H) be as in (5.2) and h(H, q) a function such that h(H, q0, q1, q2) =

h(H, q1, q2, q0) = h(H, q2, q0, q1). Then∑
q

Θq(H)h(H, q) =

′∑
q

(1− 3Hq0q1Hq1q2)

4
h(H, q) , (5.5)

where the prime in the sum denotes that q0 6= q1 6= q2 6= q0.

Proof. Starting with the expression (5.2) for Θq(H) we can remove the factor (1 −
δq0q1δq1q2δq2q0) provided we assume that q0 6= q1 6= q2 6= q0. Therefore, expanding in the
same way as (5.4)

∑
q

Θq(H)h(H, q) =
1

8

′∑
q

(1−Hq0q1Hq1q2)(1−Hq1q2Hq2q0)(1−Hq2q0Hq0q1)h(H, q)

=
1

4

′∑
q

(1−Hq0q1Hq1q2 −Hq1q2Hq2q0 −Hq2q0Hq0q1)h(H, q)

=
1

4

′∑
q

(1− 3Hq0q1Hq1q2)h(H, q), (5.6)

where in the last line we have cyclicly permuted the indices in q0, q1 and q2.

(a) q1 q2

q0

(b) q1 q2

q0

Figure 2: The Markov process consists of choosing uniformly at random one of the
dN triangles in the regular tournament graph (a) and then reversing the orientation in
order to obtain (b). This preserves the number of incoming and outgoing edges to all
vertices, or, in terms of the corresponding adjacency matrix, this preserves the condition∑

q Apq = (N − 1)/2 for all p.

The random walk is performed by choosing one of these dN triangles q uniformly at
random and then reversing the orientation, i.e. Hq0q1 ,Hq1q2 ,Hq2q0 → −Hq0q1 ,−Hq1q2 ,

−Hq2q0 (see Figure 2). This guarantees the new matrix H ′ = H + δHq is contained in
RN as it satisfies

∑
q H

′
pq = 0 for all p. The difference matrix is given explicitly by

δHq := H ′ −H =

2∑
i=0

(−2Hqiqi+1(3)
)(eqie

T
qi+1(3)

− eqi+1(3)
eTqi). (5.7)

We may summarise this random walk in the following transition probability for H,H ′ ∈
RN

ρ(H → H ′) =

{
1
dN

|H −H ′|RN
= 1

0 |H −H ′|RN
6= 1,

(5.8)

where |H − H ′|RN
= 1

6

∑
p,q |Hpq − H ′

pq| is equal to 1 if and only if H,H ′ ∈ RN differ
by the reversal of exactly one triangle. Starting at any tournament H ∈ RN , one may
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reach any other tournament H ′ ∈ RN by performing successive reversals. Moreover,
this Markov process is known to be mixing [28].

If Pt(H) is the probability of the random walker to be at H at time t then

Pt+1(H
′) =

∑
H∈RN

ρ(H → H ′)Pt(H) =
∑

H∈RN :|H−H′|RN
=1

1

dN
Pt(H).

Thus Pt(H) = |RN |−1 implies that Pt+1(H
′) = |RN |−1 also, i.e. H and H ′ are an

exchangeable pair.
Using the indicator function (5.3) and Lemma 5.1 the expected change of some

observable f(H) under this random walk is therefore

E[δf |H] :=
∑

H′∈RN

ρ(H → H ′)[f(H ′)− f(H)]

=
∑
q

Θq(H)

dN
δfq =

′∑
q

(1− 3Hq0q1Hq1q2)

4dN
δfq, (5.9)

where δfq := f(H + δHq)− f(H). Similarly, higher moments are obtained by taking the
expectation of products of changes, i.e. for f1(H), f2(H), . . . , fk(H)

E[δf1 . . . δfk|H] :=
∑
q

(1− 3Hq0q1Hq1q2)

4dN
δfq

1 . . . δfq
k . (5.10)

Here we are again interested in the particular observables Yn(H) given in (2.3). Using
Lemma 3.3 this can be expressed in terms of non-bactracking cycles as

Yn(H) =
1

2

1

(N − 2)n

∑
ω∈Ω2n

Hω − E[Hω] =
1

2

1

(N − 2)n

∑
ω∈Λ2n

Hω − E[Hω] ,

with Ω2n and Λ2n the same as in Section 4. Note, however, that in contrast to the
analogous expression (4.5) for the ITE the expectation term is not identically zero. This
is precisely due to the global correlations enforced by demanding the row sums of H are
zero and will require the use of Lemma 5.3 below to evaluate.

The following proposition describes how the Yn(H) behave under the aforementioned
random walk.

Proposition 5.2. Let (H ′,H) be an exchangeable pair from the RITE connected via
(5.8). Let Yn(H) be as defined in (2.3) with N sufficiently large. Then

(a) dN

6NE[δYn|H] = −nYn(H) +Rn(H) (Drift term)

(b) dN

6NE[δYnδYm|H] = 2n2δnm +Rnm(H) (Diffusion term)

(c) dN

6NE[|δYnδYmδYl||H] = Rnml(H) (Remainder term)

with E|Rn(H)| = O(N− 1
2 ), E|Rnm(H)| = O(N−1) and E|Rnml(H)| = O(N−1) for all

n,m, l = 2, . . . , k.

Proof. Parts (a), (b) and (c) of Proposition 5.2 will be proved in Sections 5.1, 5.2 and 5.3
respectively.

Before progressing we first outline some necessary requirements.

Lemma 5.3. Let p = (p0, . . . , pv−1) be v distinct vertices and E = {(pi, pj)} be a collec-
tion of k edges on these vertices. Let us write HE :=

∏
(p,q)∈E Hpq for the product of

matrix elements over these edges and E the expectation over the RITE. Then

E[HE ] = O(N− k
2 ). (5.11)
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Proof. See Appendix B.

We stress the above lemma provides a key part in our subsequent analysis of the
remainder terms in Proposition 5.2. Lemma 5.3 shows that whilst we do not have
E[HE ] =

∏
(p,q)∈E E[Hpq] = 0, as in the Wigner case, the correlations for a fixed number

of elements are sufficiently weak as to allow for convergence to universal behaviour in
the large N limit.

From (5.7), the e = (p′, q′)-th element of the matrix H ′ = H + δHq is given by

H ′
e = He(−1)χe,q ,

where χe,q =
∑2

i=0(δp′qiδq′qi+1
+ δp′qiδq′qi+1

) is an indicator function equal to 1 if the edge
e = (p′, q′) corresponds to one of the (undirected) edges {(q0, q1), (q1, q0), (q1, q2)} and 0
otherwise. The change in Hω for the non-backtracking cycle ω = (p0, p1, . . . p2n−1, p0) is
therefore

δHq
ω := H ′

ω −Hω = Hω

[
2n−1∏
i=0

(−1)
χpipi+1(2n),q − 1

]
= −2Hωφω,q, (5.12)

where we can also write

φω,q =
1

2
(1− (−1)χω,q ), χω,q =

2n−1∑
i=0

χpipi+1(2n),q.

Thus φω,q is an indicator function equal to 1 if the edges in the triangle q are traversed
an odd number of times by ω and 0 otherwise. The corresponding change in Yn(H) is

δY q
n := Yn(H+δHq)−Yn(H) =

1

2

1

(N − 2)n

∑
ω∈Λ2n

δHq
ω = − 1

(N − 2)n

∑
ω∈Λ2n

Hωφω,q. (5.13)

5.1 Proof of Proposition 5.2 Part (a) - Drift term

Inserting the expression (5.13) for δY q
n into (5.9) gives

E[δYn|H] = −1

2

1

(N − 2)n
1

2dN

∑
ω∈Λ2n

′∑
q

(1− 3Hq0q1Hq1q2)Hωφω,q. (5.14)

Therefore we may write

E[δYn|H] =
6N

dN
[−nYn(H) +Rn(H)],

with the remainder given by

Rn(H) =
1

2

n

(N − 2)n

∑
ω∈Λ2n

[
Hω

(
1− 1

12nN

′∑
q

φω,q

)

+

(
1

4nN

′∑
q

φω,qHq0q1Hq1q2Hω − E[Hω]

)]
. (5.15)

Now, crucially, by splitting the sum over Λ2n into Λ?
2n = {ω ∈ Λ2n : |Fω| = 2n} (recalling

that Fω are the ‘free’ edges defined in Section 3) and Λ◦
2n = Λ2n \ Λ?

2n (see Section 4)
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the constant expectation term in the above can be expressed in the following alternative
manner, which each step subsequently explained,∑

ω∈Λ2n

E[Hω] =
∑

ω∈Λ?
2n

E[Hω] +
∑

ω∈Λ◦
2n

E[Hω] (5.16)

=
1

12nN

∑
ω∈Λ?

2n

′∑
q

φω,qE[Hω] +O(Nn−1) (5.17)

=
1

12nN

∑
ω∈Λ2n

′∑
q

φω,qE[Hω] +O(Nn−1) (5.18)

=
1

4nN

∑
ω∈Λ2n

′∑
q

φω,qE[Hq0q1Hq1q2Hω] +O(Nn−1). (5.19)

• (5.16) to (5.17) - First note that Lemma 5.3 implies that
∑

ω∈Λ◦
2n
E[Hω] = O(NΨ),

where Ψ := maxω∈Λ◦
2n
{|Vω|−|Fω|/2}, with the contribution of O(N |Vω|) coming from

the number of possibilities of labelling the vertices in ω. Let us consider those ω in
which every edge is traversed at most twice (all other cycles will give a negligible
contribution in comparison) and form the graph Ĝ = (Vω, Eω). Since ω is a cycle
the graph Ĝ is connected and satisfies 2|Eω|− |Fω| = 2n, with the first Betti number
β(Ĝ) = |Eω| − |Vω|+1. Thus |Vω| − |Fω|/2 = n+1− β(Ĝ). Now β(Ĝ) > 0, otherwise
the ω would be backtracking. In addition, suppose β(Ĝ) = 1, then Ĝ must be a loop
(there can be no dangling edges since ω is non-backtracking), however this is only
possible for walks ω in which |Fω| = 2n or |Fω| = 0, which means ω /∈ Λ◦

2n. Hence
β(Ĝ) ≥ 2 and therefore |Vω| − |Fω|/2 ≤ n− 1, meaning the second term in (5.16) is
of order O(Nn−1).

Now, in addition, for all ω ∈ Λ?
2n we have

′∑
q

φω,q = 12nN +O(1) , (5.20)

which comes from counting all triangles q that share a single edge with ω: If we fix,
for instance, (q0, q1) = (p0, p1) (the first edge in ω) then there are N +O(1) possible
values for q2 for which φω,q = 1. Noting there are 6 possible orientations of q for
each edge of ω and 2n edges gives (5.20).

Then, for all ω ∈ Λ?
2n we have |Fω| = 2n and |Vω| ≤ 2n, so |Vω| − |Fω|/2 ≤ n and

thus
∑

ω∈Λ?
2n
E[Hω] = O(Nn). Combining this with (5.20) leads to (5.17).

• (5.17) to (5.18) - By following the same reasoning as in (5.20), we have that
1

12nN

∑′
q φω,q = O(1) for all ω ∈ Λ◦

2n. Therefore, since
∑

ω∈Λ◦
2n
E[Hω] = O(Nn−1)

we can extend the sum from Λ?
2n to Λ2n.

• (5.18) to (5.19) - Since E[δYn] = E[E[δYn|H]] = 0, taking the expectation in (5.14)
gives (5.19)

Therefore, inserting (5.19) into the expression (5.15) leads to

Rn(H) =
1

2

n

(N − 2)n
[S(1)

n (H) + S(2)
n (H)] +O(N−1), (5.21)

where

S(1)
n (H) =

∑
ω∈Λ2n

Hω

(
1− 1

12nN

′∑
q

φω,q

)
(5.22)
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and

S(2)
n (H) =

1

4nN

∑
ω∈Λ2n

′∑
q

φω,q

(
Hq0q1Hq1q2Hω − E[Hq0q1Hq1q2Hω]

)
. (5.23)

Part (a) of Proposition 5.2 thus follows immediately from the triangle equality and the
following lemma

Lemma 5.4. Let S(1)
n (H) and S

(2)
n (H) be as defined in (5.22) and (5.23) respectively and

E denote the expectation over the RITE. Then

(a) E|S(1)(H)| = O(Nn−1)

(b) E|S(2)(H)| = O(Nn−1/2).

Proof of Lemma 5.4 Part (a). Firstly, for notational convenience, let us write κω := (1−
1

12nN

∑′
q φω,q) ≥ 0 and κ[ω] to denote the value of all ω ∈ [ω]. Splitting the sum over Λ2n

in (5.22) into Λ?
2n and Λ◦

2n leads to

E|S(1)
n (H)| ≤

∑
[ω]∈[Λ?

2n]

κ[ω]E

∣∣∣∣ ∑
ω∈[ω]

Hω

∣∣∣∣+ ∑
[ω]∈[Λ◦

2n]

κ[ω]E

∣∣∣∣ ∑
ω∈[ω]

Hω

∣∣∣∣
≤

∑
[ω]∈[Λ?

2n]

κ[ω]

√ ∑
ω,ω′∈[ω]

E[Hω,ω′ ] +
∑

[ω]∈[Λ◦
2n]

κ[ω]

√ ∑
ω,ω′∈[ω]

E[Hω,ω′ ], (5.24)

For a particular equivalence class [ω], if Ψ[ω] = maxω,ω′∈[ω]{|Vω,ω′ |−|Fω,ω′ |/2} then, using
Lemma 5.3, the quantity

∑
ω,ω′∈[ω]E[Hω,ω′ ] is of order O(NΨ[ω]).

For ω ∈ Λ?
2n we have |Fω| = 2n, meaning the graph G = (Vω, Fω) will have one

connected component and β(G) ≥ 1. Therefore, by Corollary 3.2, we find that for ω ∼
ω′ ∈ [Λ?

2n], |Vω,ω′ | − |Fω,ω′ |/2 ≤ |Vω| ≤ 2n. In addition (5.20) implies that κ[ω] = O(N−1).

Hence the first term in (5.24) is of order O(N−1)
√

O(N2n) = O(Nn−1).

For ω ∈ Λ◦
2n we have 0 < |Fω| < 2n, which implies the graph G = (Vω, Fω) will have

multiple connected components, which we can label i = 1, . . . , C. However, since ω is
a cycle, those components satisfying βi = 0 must be isolated vertices. Let us suppose
that all edges in ω are traversed a maximum of twice (more than twice will give lower
order contributions), then the graph Ĝ = (Vω, Eω) ⊇ G must be connected and satisfy
2|Eω| − |Fω| = 2n. Now, if |VI | =

∑
i δβi,0 counts the number of isolated vertices then

we must have |VI | ≤ |Eω| − |Fω| − 1, since for ω ∈ Λ◦
2n the number of edges traversed

twice (given by |Eω| − |Fω|) must be at least one more than the number of isolated
vertices. Hence, |VI | ≤ 2n − |Eω| − 1 = 2n − |Vω| − β(Ĝ). Thus using Corollary 3.2,
we have |Vω,ω′ | − |Fω,ω′ |/2 ≤ |Vω| + |VI | ≤ 2n − β(Ĝ) ≤ 2n − 2 because β(Ĝ) ≥ 2 for all
ω ∈ Λ◦

2n. In addition κω = O(1) for ω ∈ Λ◦
2n so the second term in (5.24) is of order

O(1)
√
O(N2n−2) = O(Nn−1).

Proof of Lemma 5.4 Part (b). Let us define the following sets of walks

Ar = {(p0, . . . , pr−1, p0, q, pr−1) : pi distinct, q 6= p0, p1, pr−2, pr−1} (5.25)

Br = {(p0, . . . , pr−1, p1) : pi distinct} (5.26)

Cr = {(p0, . . . , pr−1) : pi distinct} (5.27)

Dr = {(p0, . . . , pr−1, q) : pi distinct, q = p0, . . . , pr−3}. (5.28)

These lead to the following proposition, which shall be proved later.
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p0

p1

p2 pr−3

pr−2

pr−1

q

p0

p1

p2 pr−3

pr−2

pr−1 p0

p1

p2 pr−3

pr−2

pr−1 p0

p1

p2 pr−3

pr−2

pr−1

(a) (b) (c) (d)

Figure 3: Examples of walks in (a) Ar, where q may also be equal to p2, p3, . . . , pr−3, (b)
Br, (c) Cr and (d) Dr, where the last vertex in the walk may be any of p0, . . . , pr−3.

Proposition 5.5. Define Λ†
2n := {ω ∈ Λ2n : |Vω| = 2n} and Λ×

2n = Λ2n \ Λ†
2n. Then,

splitting the sum over Λ2n in (5.23) leads to

S(2)
n (H) =

1

4nN

[
2n

∑
ω∈A2n

Hω − 4n
∑

ω∈Λ†
2n

Hω − 4n
∑

ω∈B2n

Hω + 4n

n−2∑
j=1

O(N j)
∑

ω∈D2n−2j

Hω

+
∑

ω∈Λ×
2n

′∑
q

φω,qHq0q1Hq1q2Hω

]
+O(Nn−1). (5.29)

Given Proposition 5.5 we have by the triangle inequality

E|S(2)
n (H)| ≤ O(N−1)

[
E

∣∣∣∣ ∑
ω∈A2n

Hω

∣∣∣∣+ E∣∣∣∣ ∑
ω∈Λ†

2n

Hω

∣∣∣∣+ E∣∣∣∣ ∑
ω∈B2n

Hω

∣∣∣∣
+

n−2∑
j=1

O(N j)E

∣∣∣∣ ∑
ω∈D2n−2j

Hω

∣∣∣∣+ E∣∣∣∣ ∑
ω∈Λ×

2n

′∑
q

φω,qHq0q1Hq1q2Hω

∣∣∣∣]+O(Nn−1). (5.30)

The result of Lemma 5.4 Part (a) is then obtained by showing all the terms within the
square brackets are at most O(Nn+ 1

2 ).
We start with walks ω ∈ A2n. As before, we note that

E

∣∣∣∣ ∑
ω∈A2n

Hω

∣∣∣∣ ≤ ∑
[ω]∈[A2n]

√ ∑
ω,ω′∈[ω]

E[Hω,ω′ ]. (5.31)

From Corollary 3.2 we have, for all ω ∼ ω′ ∈ A2n, that |Vω,ω′ | − |Fω,ω′ |/2 ≤ |Vω| ≤ 2n+ 1,
giving a contribution of order

√
O(N2n+1) = O(Nn+1/2). Similarly, taking the same

inequality for walks ω ∈ D2n−2j and noting that |Vω,ω′ | − |Fω,ω′ |/2 ≤ |Vω| = 2n − 2j for
all ω ∼ ω′ ∈ D2n−2j leads to a contribution E|

∑
ω∈D2n−2j

Hω| = O(Nn−j). Finally the

inclusions B2n,Λ
†
2n ⊂ D2n, immediately imply the respective terms in (5.30) are O(Nn).

It thus remains to estimate the term involving walks in Λ×
2n. Let us define Λ̃×

2n :=

{(q, ω) : q0 6= q1 6= q2 6= q0, ω ∈ Λ×
2n, φω,q = 1} as those combinations of ω and q with an

odd number of intersecting edges and Hq,ω := Hq0q1Hq1q2Hω. Examples of (q, ω) in Λ̃×
2n

are given in Figure 4. Using this notation the final term in (5.30) satisfies

E

∣∣∣∣ ∑
ω∈Λ×

2n

′∑
q

φω,qHq0q1Hq1q2Hω

∣∣∣∣ ≤ ∑
[q,ω]∈[Λ̃×

2n]

√√√√ ∑
(q,ω),(q′,ω′)

∈[q,ω]

E[Hq,ωHq′,ω′ ]. (5.32)
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If we write Vq = {q0, q1, q2} and Eq = {(q0, q1), (q1, q2)} then Vq,ω, Eq,ω and Fq,ω are
defined in the usual manner. Let us define the graph Ĝ = (Vq,ω, Eq,ω) and assume that
edges inEq,ω are traversed a maximum of twice by (q, ω), meaning 2|Eq,ω|−|Fq,ω| = 2n+2.
Note that Ĝ must be connected. Let VI be the set of isolated vertices in G = (Vq,ω, Fq,ω).
For example, in Figure 4 (a) VI = {p2n−1} since edges (p2n−1, p0), (p1, p2n−1) /∈ Fq,ω,
whereas there are no isolated vertices in Figure 4 (b) and (c).

p0 = q0

p1 = q2

p2 p2n−3

p2n−1 = q1 p0 = q0

p1

p2 p2n−3

p2n−1 = q2

q1

p0 = q0

p1

p2 p2n−3

p2n−1 = q1

q2

(a) (b) (c)

Figure 4: Examples of pairs of walks and triangles (q, ω) ∈ Λ̃×
2n. Here q is given by the

triangle q0 → q1 → q2 → q0 (the edges Eq are highlighted by dotted lines) and ω is given
by solid lines. In (a) there are 3 edges of q overlapping ω, whereas in (b) and (c) only 1
edge of q overlaps with ω.

The condition φω,q = 1 implies that ω and q must share an odd number of edges,
i.e. |Eω ∩ {(q0, q1), (q1, q2), (q2, q0)}| = 1 mod (2). This leads to two scenarios: Either
Eω ∩ Eq 6= ∅ (see e.g. Figure 4 (a) and (c)) or Eω ∩ Eq = ∅ (see e.g. Figure 4 (b)).

In the first scenario, since at least one edge in Eq,ω must be traversed twice, the
number of isolated vertices satisfies |VI | ≤ |Eq,ω| − |Fq,ω| − 1. Therefore, |VI | ≤ 2n +

2− |Eq,ω| − 1 = 2n+ 2− |Vq,ω| − β(Ĝ). By Corollary 3.2 we therefore have |Vq,ω,q′,ω′ | −
|Fq,ω,q′,ω′ |/2 ≤ |Vq,ω|+ |VI | ≤ 2n+ 2− β(Ĝ) ≤ 2n, since ω ∈ Λ×

2n implies β(Ĝ) ≥ 2.

In the second scenario one may construct instances (Figure 4 (b) for example) in
which all edges are free, i.e. Fq,ω = Eq,ω, which would in turn imply that there are
no isolated vertices. Hence, in all situations we find the number of isolated vertices
satisfies |VI | ≤ |Eq,ω| − |Fq,ω| = 2n + 2 − |Vq,ω| − β(Ĝ), which, via Corollary 3.2, leads
to the inequality |Vq,ω,q′,ω′ | − |Fq,ω,q′,ω′ |/2 ≤ 2n+ 3− β(Ĝ). However, in contrast to the
first scenario, taking the union Eq ∩ Eω leads to an additional fundamental cycle, i.e.
β(Ĝ) ≥ 3, implying that |Vq,ω,q′,ω′ | − |Fq,ω,q′,ω′ |/2 ≤ 2n once again. Thus (5.32) and, in
turn, the final term within the square brackets in (5.30) is of order O(Nn).

Proof of Proposition 5.5. The idea will be to split the sum over Λ2n into those sets Λ†
2n

and Λ×
2n, then show the sum over Λ†

2n can be re-expressed in the form of the first four
terms in (5.29), up to a correction of O(N−1). Let us start with the first term in (5.23),
since |Vω| = 2n for all ω ∈ Λ†

2n, the condition φω,q = 1 means that q and ω must share
a single edge (i.e. they cannot share three). Therefore writing out explicitly all those
terms in which the edge (pi, pi+1(2n)) = (qj , qj+1(3)) or (qj+1(3), qj) for i = 0, . . . , 2n − 1,
j = 0, 1, 2 gives

∑
ω∈Λ†

2n

′∑
q

φω,qHq0q1Hq1q2Hω =

′∑
p0,...,p2n−1

Hω

2n−1∑
i=0

∑
q/∈Pi

(HpiqHqpi+1(2n)
+Hpi+1(2n)qHqpi)
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+

′∑
p0,...,p2n−1

Hω

2n−1∑
i=0

∑
q/∈Pi

(Hpipi+1(2n)
Hpi+1(2n)q +Hpi+1(2n)piHpiq

+Hqpi
Hpipi+1(2n)

+Hqpi+1(2n)
Hpi+1(2n)pi

)

= 4n
∑

ω∈A2n

Hω + 8n

′∑
p0,...,p2n−1

∑
q/∈P2n−1

Hp0p1
. . .Hp2n−2p2n−1

Hp2n−1q, (5.33)

where Pi = {pi−1(2n), pi, pi+1(2n), pi+2(2n)}, A2n is defined in (5.25) and the primed sum-
mation denotes that all pi are distinct. The second term in (5.33) may be further modified
by using the regularity of H.

′∑
p0,...,p2n−1

∑
q/∈P2n−1

Hp0p1
. . .Hp2n−2p2n−1

Hp2n−1q

= −
′∑

p0,...,p2n−1

Hp0p1
. . .Hp2n−2p2n−1

(Hp2n−1p0
+Hp2n−1p1

+Hp2n−1p2n−2
)

= −
∑

ω∈Λ†
2n

Hω −
∑

ω∈B2n

Hω − (N − (2n− 1))
∑

ω∈C2n−1

Hω, (5.34)

with B2n and C2n−1 given in (5.25) and (5.26) respectively. The summation of walks
in C2n−1 is obtained by noting that we have Hp2n−2p2n−1

Hp2n−1p2n−2
= 1 and summing

over the free variable p2n−1 6= p0, . . . , p2n−2. If n = 2 the summation in the final term is
precisely

∑
ω∈C3

Hω =

′∑
p0,p1

∑
p2 6=p0,p1

Hp0p1Hp1p2 = −
′∑

p0,p1

Hp0p1Hp1p0 = −N(N − 1). (5.35)

If n > 2 then we apply the regularity condition to the index p2n−2 in order to obtain

∑
ω∈C2n−1

Hω :=

′∑
p0,...,p2n−3

∑
p2n−2 6=p0,...,p2n−3

Hp0p1
. . .Hp2n−4p2n−3

Hp2n−3p2n−2

= −
′∑

p0,...,p2n−3

∑
q=p0,...,p2n−5

Hp0p1
. . . Hp2n−3q −

′∑
p0,...,p2n−3

Hp0p1
. . .Hp2n−4p2n−3

Hp2n−3p2n−4

= −
∑

ω∈D2n−2

Hω − (N − (2n− 3))
∑

ω∈C2n−3

Hω, (5.36)

with D2n−2 given in (5.28). Therefore, by recursion we establish that for all n ≥ 2

(N − (2n− 1))
∑

ω∈C2n−1

Hω =

n−2∑
j=1

(−1)j

(
j−1∏
r=0

(N − (2n− 1) + 2r)

) ∑
ω∈D2n−2j

Hω +Kn,N

(5.37)
with the first term equal to 0 if n = 2 and

Kn,N = (−1)n

(
n−2∏
r=0

(N − (2n− 1) + 2r)

) ∑
ω∈C3

Hω

= (−1)n+1N(N − 1)

(
n−2∏
r=0

(N − (2n− 1) + 2r)

)
(5.38)

EJP 23 (2018), paper 80.
Page 23/37

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP199
http://www.imstat.org/ejp/


Random walk approach to linear statistics in tournament ensembles

is a constant independent of H. Therefore, inserting (5.37) into (5.34) and then (5.34)
into (5.33) leads to the following expression∑

ω∈Λ†
2n

′∑
q

φω,qHq0q1Hq1q2Hω

= 4n
∑

ω∈A2n

Hω − 8n
∑

ω∈Λ†
2n

Hω − 8n
∑

ω∈B2n

Hω +

n−2∑
j=1

O(N j)
∑

ω∈D2n−2j

Hω − K̃n,N . (5.39)

The constant K̃n,N = 8nKn,N is of order O(Nn+1), which would lead to a larger result in
Lemma 5.4 Part (b), however by subtracting the expectation of the same quantity, as in
(5.23), this leading order is removed. Hence, splitting the sum in (5.23) into walks over
Λ†
2n and Λ×

2n and inserting (5.39) gives

S2(H) =
1

N

[ ∑
ω∈A2n

Hω − 2
∑

ω∈Λ†
2n

Hω − 2
∑

ω∈B2n

Hω +

n−2∑
j=1

O(N j)
∑

ω∈D2n−2j

Hω

−
∑

ω∈A2n

E[Hω] + 2
∑

ω∈Λ†
2n

E[Hω] + 2
∑

ω∈B2n

E[Hω]−
n−2∑
j=1

O(N j)
∑

ω∈D2n−2j

E[Hω]

+
∑

ω∈Λ×
2n

′∑
q

φω,qHq0q1Hq1q2Hω −
∑

ω∈Λ×
2n

′∑
q

φω,qE[Hq0q1Hq1q2Hω]

]
. (5.40)

The result is therefore obtained once we show all terms involving expectations are at
most O(Nn). We start with D2n−2j . In this case each walk ω has |Vω| = |Fω| = 2n− 2j

and therefore |Vω| − |Fω|/2 = n− j. Hence∑
ω∈D2n−2j

E[Hω] = O(Nn−j).

The same holds for B2n and Λ†
2n since they are both contained in D2n. For walks in A2n

we have |Vω| ≤ 2n+ 1 and |Fω| = 2n+ 2, giving |Vω| − |Fω|/2 ≤ n and so the same result
follows.

In the final term the walk ω must share at least one edge with q otherwise φω,q = 0.
As in the proof of Lemma 5.4 Part (b) let us take those (q, ω) ∈ Λ̃×

2n such that every edge is
traversed at most twice (so 2|Eq,ω|−|Fq,ω| = 2n+2) and define the graph Ĝ = (Vq,ω, Eq,ω),
which must be connected. Then |Vq,ω|−|Fq,ω|/2 = |Vq,ω|−|Eq,ω|+n+1 = n+2−β(Ĝ) ≤ n,
since β(Ĝ) ≥ 2 for all (q, ω) ∈ Λ̃×

2n. Therefore∑
ω∈Λ×

2n

′∑
q

φω,qE[Hq0q1Hq1q2Hω] =
∑

(q,ω)∈Λ̃×
2n

E[Hq,ω] = O(Nn),

which completes the result.

5.2 Proof of Proposition 5.2 Part (b) - Diffusion term

Inserting the expression (5.13) for δY q
n into (5.10) gives

E[δYnδYm|H] =
1

dN

∑
q

Θq(H)δY q
n δY q

m

=
1

(N − 2)n+m

1

4dN

∑
ω1∈Λ2n

∑
ω2∈Λ2m

Hω1,ω2

′∑
q

(1− 3Hq0q1Hq1q2)φω1,qφω2,q

=
6N

dN
[2n2δnm +Rnm(H)]. (5.41)
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Let us treat the cases n = m and n 6= m separately. Starting with the former, we define
Γ?
2n := {(ω1, ω2) ∈ Λ?

2n × Λ?
2n : ω1

∼= ω2} and Γ◦
2n = (Λ2n × Λ2n) \ Γ?

2n, exactly as in
Section 4.2 for the ITE. For (ω1, ω2) ∈ Γ?

2n we have Hω1,ω2
= 1 and φω1,q = φω2,q for all q.

Therefore,

Rnn(H) =
1

(N − 2)2n
1

24N

∑
(ω1,ω2)∈Γ?

2n

′∑
q

(1− 3Hq0q1Hq1q2)φ
2
ω1,q

+
1

(N − 2)2n
1

24N

∑
(ω1,ω2)∈Γ◦

2n

Hω1,ω2

′∑
q

(1− 3Hq0q1Hq1q2)φω1,qφω2,q − 2n2. (5.42)

The first term can be simplified by noting that φ2
ω,q = φω,q and

∑′
q φω,q = 12nN +O(1) if

ω ∈ Λ?
2n (see Equation (5.20)). Moreover, if ω1 ∈ Λ?

2n is fixed then there are 4n possible
walks ω2 such that ω1

∼= ω2, which comes from the 2n possible starting points and the
2 possible orientations. Therefore, since |Vω1

| ≤ 2n, counting the number of ways of
labelling the vertices in ω1 leads to |Γ?

2n| = 4n(N2n + O(N2n−1)). These observations
mean

1

(N − 2)2n
1

24N

∑
(ω1,ω2)∈Γ?

2n

′∑
q

φ2
ω1,q =

n

2(N − 2)2n
|Γ?

2n|(1 +O(N−1)) = 2n2 +O(N−1).

In addition, if the triangle q is fixed and ω ∈ Λ?
2n traverses one of its edges (i.e. φω,q =

1) then we have |Vω| − 2 remaining vertices of ω that are free to be relabelled, so∑
ω∈Λ?

2n
φω,q = O(N2n−2). Hence, using again that for a fixed ω1 there are 4n possible

ω2 such that (ω1, ω2) ∈ Γ?
2n gives

1

24N

∑
(ω1,ω2)∈Γ?

2n

′∑
q

3Hq0q1Hq1q2φω1,q =
12n

24N

∑
ω∈Λ?

2n

′∑
q

Hq0q1Hq1q2φω,q

= O(N2n−3)

′∑
q0,q1

∑
q2 6=q0,q1

Hq0q1Hq1q2 = O(N2n−3)

′∑
q0,q1

Hq0q1Hq1q0 = O(N2n−1), (5.43)

where the last equality requires the regularity of H. The remainder (5.42) therefore
reduces to

Rnn(H) =
1

(N − 2)2n
1

24N

′∑
q

(1− 3Hq0q1Hq1q2)
∑

(ω1,ω2)∈Γ◦
2n

Hω1,ω2φω1,qφω2,q +O(N−1).

(5.44)
Let us define Γ̃◦

2n := {(q, ω1, ω2) : q0 6= q1 6= q2 6= q0, (ω1, ω2) ∈ Γ◦
2n, φω1,qφω2,q = 1} and

Hq,ω1,ω2 = Hq0q1Hq1q2Hω1Hω2 as usual. Similarly let [q, ω1, ω2] be the equivalence class
of labellings of the vertices of (q, ω1, ω2) and [Γ̃◦

2n] the set of such equivalence classes.
Then showing that E|Rnn(H)| = O(N−1) reduces to showing the following is of order
O(N2n).

E

∣∣∣∣ ∑
(ω1,ω2)∈Γ◦

2n

Hω1,ω2

′∑
q

(1− 3Hq0q1Hq1q2)φω1,qφω2,q

∣∣∣∣
≤

∑
[ω1,ω2]∈[Γ◦

2n]

Φ[ω1,ω2]

√√√√ ∑
(ω1,ω2),(ω′

1,ω′
2)

∈[ω1,ω2]

E[Hω1,ω2,ω′
1,ω

′
2
]

+
∑

[q,ω1,ω2]∈[Γ̃◦
2n]

3

√√√√ ∑
(q,ω1,ω2),(q′,ω′

1,ω′
2)

∈[q,ω1,ω2]

E[Hq,ω1,ω2,q′,ω′
1,ω

′
2
], (5.45)
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where we have written Φω1,ω2
:=
∑′

q φω1,qφω2,q ≥ 0 and Φ[ω1,ω2] for any (ω1, ω2) ∈ [ω1, ω2]

for convenience.
We start by evaluating the first term in (5.45). For a fixed (ω1, ω2) the quantity

Φ[ω1,ω2] > 0 only if ω1 and ω2 are connected, i.e. |Vω1
∩ Vω2

| > 0, giving rise to three
scenarios we must consider

(a) |Eω1
∩ Eω2

| = 0 (ω1 and ω2 do not share any edges).

(b) |Eω1
∩Eω2

| > 0 and ω1 6∼= ω2 (ω1 and ω2 share at least one edge but not all their free
edges).

(c) |Eω1
∩ Eω2

| > 0 and ω1
∼= ω2 (ω1 and ω2 share all of their free edges).

As before, let us define G = (Vω1,ω2 , Fω1,ω2) and Ĝ = (Vω1,ω2 , Eω1,ω2). The condition
Φω1,ω2 > 0 implies that Ĝ is connected and we can assume that edges are traversed a
maximum of twice in (ω1, ω2) ∈ Γ◦

2n, meaning that 2|Eω1,ω2
| − |Fω1,ω2

| = 4n. Also, since ω1

and ω2 are non-backtracking cycles, if any of the various connected components of the
subgraph G = (Vω1,ω2

, Fω1,ω2
) have βi = 0 they must be isolated vertices, as in Section

5.1.
Scenario (a) is only possible if ω1 and ω2 contain different edges of the triangle q,

which means all vertices Vq are contained in Vω1,ω2
. Therefore, for a fixed (ω1, ω2) we

have Φω1,ω2
= O(1). Moreover, we have |Fω1,ω2

| ≤ 4n free edges and so the number
of isolated vertices satisfies |VI | ≤ |Eω1,ω2

| − |Fω1,ω2
|. Hence |VI | ≤ 4n − |Eω1,ω2

| =

4n− |Vω1,ω2
| − β(Ĝ) + 1 and so, by Corollary 3.2 we have |Vω1,ω2,ω′

1,ω
′
2
| − |Fω1,ω2,ω′

1,ω
′
2
|/2 ≤

|Vω1,ω2
| + |VI | ≤ 4n − 1, as β(Ĝ) ≥ 2 for all (ω1, ω2) ∈ Γ◦

2n. The contribution to (5.45) is
therefore O(1)

√
O(N4n−1) = O(N2n−1/2).

In Scenario (b) ω1 and ω2 can share the same edge of q, say (q0, q1), leaving a
free vertex, say q2, which can be summed over to obtain Φω1,ω2

= O(N). At least
one edge must be traversed twice in (ω1, ω2) so the number of free edges satisfies
|Fω1,ω2

| ≤ 4n − 2. Thus, the number of isolated vertices |VI | ≤ |Eω1,ω2
| − |Fω1,ω2

| − 1 ≤
4n − |Vω1,ω2

| − β(Ĝ). Moreover we cannot have β(Ĝ) = 1, as this is only possible if ω1

and ω2 are single loops and satisfy ω1
∼= ω2 (but this would mean (ω1, ω2) /∈ Γ◦

2n). Thus
|Vω1,ω2,ω′

1,ω
′
2
| − |Fω1,ω2,ω′

1,ω
′
2
|/2 ≤ |Vω1,ω2 | + |VI | ≤ 4n − 2. The contribution to (5.45) is

therefore O(N)
√
O(N4n−2) = O(N2n).

In Scenario (c) we again have Φω1,ω2
= O(N) for the same reason. However this time

the condition ω1
∼= ω2 implies that Fω1,ω2

= ∅ and thus all vertices in G are isolated, i.e.
VI = Vω1

= Vω2
. However ω1

∼= ω2 implies that ω1 /∈ Λ?
2n by the definition of Γ?

2n and
therefore |Vω1

| ≤ 2n− 2, so |Vω1,ω2,ω′
1,ω

′
2
|− |Fω1,ω2,ω′

1,ω
′
2
|/2 = |Vω1,ω2,ω′

1,ω
′
2
| ≤ 2|VI | ≤ 4n− 4,

which gives a contribution of O(N)
√
O(N4n−4) = O(N2n−1) to (5.45).

We now turn our attention to the second term in (5.45). For those [q, ω1, ω2] ∈ [Γ̃◦
2n] we

define the graph Ĝ = (Vq,ω1,ω2
, Eq,ω1,ω2

), with Eq = {(q0, q1), (q1, q2)}. If each of the edges
are traversed at most twice then we have 2|Eq,ω1,ω2

|−|Fq,ω1,ω2
| = 4n+2. Moreover, since

there must be a least one edge that is traversed twice we find the number of isolated
vertices satisfies |VI | ≤ |Eq,ω1,ω2

| − |Fq,ω1,ω2
| − 1 = 4n+ 2− |Vq,ω1,ω2

| − β(Ĝ). Thus, using
that β(Ĝ) ≥ 2 and Corollary 3.2 we find |Vq,ω1,ω2,q′,ω′

1,ω
′
2
| − |Fq,ω1,ω2,q′,ω′

1,ω
′
2
|/2 ≤ 4n for all

(q, ω1, ω2) ∼ (q′, ω′
1, ω

′
2) ∈ Γ̃◦

2n. The contribution of the second term is therefore O(N2n),
as desired.

It thus remains to evaluate E|Rnm(H)| for n 6= m. If we define Γ̃2n,2m = {(q, ω1, ω2) :

ω1 ∈ Λ2n, ω2 ∈ Λ2m, φω1,qφω2,q = 1} then from (5.41) we have

E|Rnm(H)| ≤ 1

(N − 2)n+m

1

24N

{ ∑
[ω1,ω2]∈[Λ2n×Λ2m]

Φ[ω1,ω2]

√√√√ ∑
(ω1,ω2),(ω′

1,ω′
2)

∈[ω1,ω2]

E[Hω1,ω2,ω′
1,ω

′
2
]

EJP 23 (2018), paper 80.
Page 26/37

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP199
http://www.imstat.org/ejp/


Random walk approach to linear statistics in tournament ensembles

+
∑

[q,ω1,ω2]∈[Γ̃2n,2m]

√√√√ ∑
(q,ω1,ω2),(q′,ω′

1,ω′
2)

∈[q,ω1,ω2]

E[Hq,ω1,ω2,q′,ω′
1,ω

′
2
]

}
. (5.46)

For the first term we can use the same arguments as for n = m. In particular, if
Φω1,ω2

> 0 then ω1 and ω2 are connected. If they do not share an edge (i.e. |Eω1
∩

Eω2
| = 0) then it is possible the number of non-free edges |Eω1,ω2

| − |Fω1,ω2
| = 0.

Hence |VI | ≤ |Eω1,ω2
| − |Fω1,ω2

|. If we assume the edges are traversed no more than
twice by (ω1, ω2)) then 2|Eω1,ω2 | − |Fω1,ω2 | = 2n+ 2m and therefore Corollary 3.2 gives
|Vω1,ω2,ω′

1,ω
′
2
| − |Fω1,ω2,ω′

1,ω
′
2
|/2 ≤ |Vω1,ω2 | + |VI | ≤ 2n + 2m + 1 − β(Ĝ) ≤ 2n + 2m − 1, as

β(Ĝ) ≥ 2. Moreover, Φω1,ω2 = O(1) if |Eω1 ∩ Eω2 | = 0 so the contribution is of order
O(1)

√
O(N2n+2m−1) = O(Nn+m−1/2). Alternatively, if ω1 and ω2 share at least one edge

(i.e. |Eω1 ∩ Eω2 | > 0) then we must have |VI | ≤ |Eω1,ω2 | − |Fω1,ω2 | − 1, which in turn
implies that |Vω1,ω2,ω′

1,ω
′
2
|−|Fω1,ω2,ω′

1,ω
′
2
|/2 ≤ |Vω1,ω2 |+ |VI | ≤ 2n+2m−β(Ĝ) ≤ 2n+2m−2,

as β(Ĝ) ≥ 2. Therefore, since Φω1,ω2 = O(N) in this case, we attain a contribution of
O(N)

√
O(N2n+2m−2) = O(Nn+m).

Similarly for the second term we write Ĝ = (Vq,ω1,ω2 , Eq,ω1,ω2). If we assume the
edges are traversed at most twice then 2|Eq,ω1,ω2

| − |Fq,ω1,ω2
| = 2n + 2m + 2. Then,

since |VI | ≤ |Eq,ω1,ω2
| − |Fq,ω1,ω2

| − 1 we get |Vq,ω1,ω2
|+ |VI | ≤ 2n+ 2m+ 2− β(Ĝ). Thus

Corollary 3.2 implies that |Vq,ω1,ω2,q′,ω′
1,ω

′
2
| − |Fq,ω1,ω2,q′,ω′

1,ω
′
2
|/2 ≤ 2n+ 2m, as β(Ĝ) ≥ 2.

Therefore the contribution of the second term is of order O(Nn+m) also.
Finally noting that there is a factor of order O(N−n−m−1) means that E|Rnm(H)| =

O(N−1).

5.3 Proof of Proposition 5.2 Part (c) - Remainder term

Using the expression (5.13) for δY q
n and working backwards in the proof of Lemma

5.1 we obtain

E[|δYnδYmδYl||H] =
1

4dN

′∑
q

(1− 3Hq0q1Hq1q2)

4dN
|δY q

n δY q
mδY q

l |

=

′∑
q

(
1−

∑2
i=0 Hqiqi+1(2)

Hqi+1(2)qi+2(2)

)
4dN (N − 2)n+m+l

∣∣∣∣ ∑
(ω1,ω2,ω3)

∈Λ2n×Λ2m×Λ2l

Hω1,ω2,ω3φω1,qφω2,qφω3,q

∣∣∣∣.
Therefore, since 0 ≤ (1 − Hq0q1Hq1q2 − Hq1q2Hq2q0 − Hq2q0Hq0q1) ≤ 2 we find, using
E|Rnml(H)| = dN

6NE[E[|δYnδYmδYl||H]]

E|Rnml(H)| ≤ 1

(N − 2)n+m+l

1

12N

′∑
q

E

∣∣∣∣∣∣∣∣
∑

(ω1,ω2,ω3)

∈Γ
q
2n,2m,2l

Hω1,ω2,ω3

∣∣∣∣∣∣∣∣ , (5.47)

where Γq
2n,2m,2l = {(ω1, ω2, ω3) ∈ Λ2n × Λ2m × Λ2l : φω1,qφω2,qφω3,q = 1}. Using the

standard inequality for the expectation means we must compute the quantity

E

∣∣∣∣ ∑
(ω1,ω2,ω3)

∈Γ
q
2n,2m,2l

Hω1,ω2,ω3

∣∣∣∣ ≤ ∑
[ω1,ω2,ω3]

∈
[
Γ
q
2n,2m,2l

]

√√√√ ∑
(ω1,ω2,ω3),(ω′

1,ω′
2,ω′

3)

∈[ω1,ω2,ω3]

E[Hω1,ω2,ω3,ω′
1,ω

′
2,ω

′
3
]. (5.48)

The condition φω1,qφω2,qφω3,q = 1 imposes the restriction that ω1, ω2 and ω3 must share
an odd number of edges with q. Let us restrict ourselves to those (ω1, ω2, ω3) ∈ Λ†

2n ×
Λ†
2m × Λ†

2l (i.e. |Vω1
| = |Vω2

| = |Vω3
| = 2n) as this maximises the number of vertices and
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therefore gives the main contribution to (5.48). Note that for all ω ∈ Λ†
2n, φq,ω = 1 if and

only if |Eω ∩ {(q0, q1), (q1, q2), (q2, q0)}| = 1. There are (up to the relabelling of vertices)
three scenarios

(a) |Eω1
∩ {(q0, q1)}| = |Eω2

∩ {(q1, q2)}| = |Eω3
∩ {(q2, q0)}| = 1

(b) |Eω1 ∩ {(q0, q1)}| = |Eω2 ∩ {(q0, q1)}| = |Eω3 ∩ {(q1, q2)}| = 1

(c) |Eω1
∩ {(q0, q1)}| = |Eω2

∩ {(q0, q1)}| = |Eω3
∩ {(q0, q1)}| = 1.

In Scenario (a) we assume that each edge is traversed at most twice by (ω1, ω2, ω3),
so 2|Eω1,ω2,ω3

| − |Fω1,ω2,ω3
| = 2n + 2m + 2l. Then, following the same arguments as in

Sections 5.1 and 5.2, the number of isolated vertices |VI | ≤ |Eω1,ω2,ω3
| − |Fω1,ω2,ω3

| ≤
2n+2m+2l− |Vω1,ω2,ω3 |+1− β(Ĝ), where Ĝ = (Vω1,ω2,ω3 , Eω1,ω2,ω3). By construction we
must have β(Ĝ) ≥ 4 and thus |Vω1,ω2,ω3 |+ |VI | ≤ 2m+ 2n+ 2l − 3.

In Scenario (b) we also assume that each edge is traversed at most twice by
(ω1, ω2, ω3). However at least one edge (given by (q0, q1)) must be traversed twice,
which means the number of isolated vertices satisfies |VI | ≤ |Eω1,ω2,ω3 | − |Fω1,ω2,ω3 | − 1

(it is always at least one less than the number of non-free edges). Therefore we find
|Vω1,ω2,ω3 |+ |VI | ≤ 2n+ 2m+ 2l− β(Ĝ) = 2n+ 2m+ 2l− 3, since we must have β(Ĝ) ≥ 3.

Using Corollary 3.2 we thus determine that in Scenarios (a) and (b)

|Vω1,ω2,ω3,ω′
1,ω

′
2,ω

′
3
| −

|Fω1,ω2,ω3,ω′
1,ω

′
2,ω

′
3
|

2
≤ 2n+ 2m+ 2l − 3.

However all three vertices q0, q1 and q2 are fixed for a particular Γq
2n,2m,2l so the contri-

bution to (5.48) is of order
√
O(N2n+2m+2l−3−3) = O(Nn+m+l−3).

In Scenario (c) the edge (q0, q1) is traversed 3 times. We assume that all others are
traversed at most twice, which implies that 2|Eω1,ω2,ω3

| − |Fω1,ω2,ω3
| = 2n+ 2m+ 2l − 2.

Now, either ωi
∼= ωj for some i 6= j = 1, 2, 3 or not. Let us suppose the former case

arises (we can say ω1
∼= ω2 for instance) then the number of isolated vertices satisfies

|VI | ≤ |Eω1,ω2,ω3
|−|Fω1,ω2,ω3

|−1, which means |Vω1,ω2,ω3
|+|VI | = 2n+2m+2l−β(Ĝ)−2 ≤

2n+ 2m+ 2l − 4, since β(Ĝ) ≥ 2 in this case.
Alternatively, if ωi 6∼= ωj for all i 6= j then |VI | ≤ |Eω1,ω2,ω3

| − |Fω1,ω2,ω3
|, but we

must have β(Ĝ) ≥ 3, which means again, |Vω1,ω2,ω3
|+ |VI | ≤ 2n+ 2m+ 2l − β(Ĝ)− 1 ≤

2n+ 2m+ 2l − 4. Corollary 3.2 therefore implies that for Scenario (c) we have

|Vω1,ω2,ω3,ω′
1,ω

′
2,ω

′
3
| −

|Fω1,ω2,ω3,ω′
1,ω

′
2,ω

′
3
|

2
≤ 2n+ 2m+ 2l − 4.

However this time there are only two vertices of q contained in Vω1,ω2,ω3
, which means

the contribution to (5.48) is of order
√

O(N2n+2m+2l−4−2) = O(Nn+m+l−3) once again.
Returning to (5.47) and noting that the sum over q gives a contribution of O(N3)

means that E|Rnml(H)| = O(N−1), as desired.

6 Conclusions

We have used a combination of appropriate random walks and Stein’s method to
provide rates of convergence for the traces of random Bernoulli ensembles derived from
both tournaments and regular tournaments. Specifically we have shown that under this
random walk the traces, in a basis of Chebyshev polynomials, behave like independent
Ornstein-Uhlenbeck processes in the limit of large matrix size. Subsequently, this allows
to use the results of Chatterjee & Meckes [10], Reinert & Röllin [39] and Meckes [37],
regarding the multivariate version of the exchangeable pairs mechanism for Stein’s
method, in order to obtain rates of convergence to an appropriate Gaussian distribution.
In particular, we are able to obtain these results using combinatorial methods, closely
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related to previous calculations for showing distributional convergence, but without
explicit rates (see e.g. [41, 44]). Moreover, this approach only requires estimates
involving third order moments to show distributional convergence.

We would like to finish with a couple of comments. Firstly, we note that in the bound
for the distributional distance (2.5) of the RITE in Theorem 2.4, the first term is of order
O(N−1/2). This comes from a single set of walks, arising due to the regularity of the
matrix H (see the proof of Lemma 5.4 Part (b)). It is not clear whether this can be
improved to O(N−1) in order to match the corresponding result in Theorem 2.3 for the
ITE. Secondly, we believe the results could be easily applied to other types of matrix
ensembles such as Wigner matrices, or tournaments with different score sequences.
For Wigner matrices the random walk would be very similar - one may choose a matrix
element at random and then resample from the appropriate distribution. However
Lemma 3.3 is not immediately applicable and would therefore have to be amended.
Although results in this direction have already been achieved [17]. For tournaments
with different score sequences similar random walks to the RITE have already been
analysed [28] and the number of such tournaments have been asymptotically estimated
[36], expanding on the technques developed by McKay for regular tournaments [35],
which suggests a result akin to Lemma 5.3 would also be possible.
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Appendix

A Stein solution

Since we detail a slightly different (and more specific) version of Theorem 2.6 to
that of Theorem 2.1 in [39] and Theorem 3 in [37] we have decided to include a short
proof for the aid of the reader. In particular, [39, 37] allow for a multivariate Gaussian
distribution with general covariance matrix Σ, which we have decided to specify to our
situation for clarity. Moreover, the bounds in [39] are also in terms of the derivatives
‖∇jφ‖ but of an order one more than presented here. This realisation that the order
can be reduced by one through integration by parts (see Lemma A.2) is presented in
[37] but this is done with a more complicated type of function bound and so we keep
with derivatives of the form ‖∇jφ‖ for simplicity. The rate of converge in terms of N is
unaffected by this.

Proposition A.1 (Stein solution). Let A be the operator given in (2.11) and define Stein’s
equation (see (2.12)) as

Af(x) = φ(x)− E[φ(Z)], (A.1)

with Z = (Z2, . . . , Zk), Zn ∼ N(0, n). Then, for all φ : Rk−1 → R which are (finitely) twice
differentiable on R, the function

f(x) := −
∫ ∞

0

dt

[∫
dµ(Z)[φ(Z ′)− φ(Z)]

]
, (A.2)

is in C2(Rk−1) and solves Equation (A.1). Here Z ′ = (Z ′
2, Z

′
3, . . . , Z

′
k) is the random

variable given by

Z ′
n = xe−nt +

√
1− e−2tZn,

and µ is the measure of Z.
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Proof. For a proof utilising that A is the generator of a suitable OU process one may
consult the works of [4, 21]. Alternatively Meckes delivers a direct proof using integration
by parts in [37]. An excellent exposition on the latter is provided in Section 3 of [12].

Lemma A.2. Let f be connected to φ ∈ C3(Rk−2) as in Proposition A.1. Then∥∥∇jf
∥∥ ≤ 1√

π

2j−3Γ(k2 )
2

(k − 1)!

∥∥∇j−1φ
∥∥ , (A.3)

with ‖∇jf‖ and ‖∇jφ‖ defined in (2.4).

Proof. We have, writing dµ(Z) = dZP (Z) and changing variables of the derivatives

∂jf(X)

∂Xn1 . . . ∂Xnj

=

∫ ∞

0

dt

∫
dZP (Z)

∂jφ(Z ′)

∂Xn1 . . . ∂Xnj

= −
∫ ∞

0

dt
e−(n1+...+nj)t

√
1− e−2njt

∫
dZP (Z)

∂jφ(Z ′)

∂Z ′
n1

. . . ∂Z ′
nj−1

∂Znj

, (A.4)

where ni = 2, . . . , k. Integration by parts may therefore be performed on the Znj variable

∂jf(X)

∂Xn1
. . . ∂Xnj

=

∫ ∞

0

dt
e−(n1+...+nj)t

√
1− e−2njt

{∫
dZ

∂P (Z)

∂Znj

∂j−1φ(Z ′)

∂Z ′
n1

. . . ∂Z ′
nj

−

[
P (Z)

∂j−1φ(Z ′)

∂Z ′
n1

. . . ∂Z ′
nj−1

]∞
−∞

}

= −
∫ ∞

0

dt
e−(n1+...+nj)t

√
1− e−2njt

∫
dZP (Z)

Znj

nj

∂j−1φ(Z ′)

∂Z ′
n1

. . . ∂Z ′
nj−1

. (A.5)

Thus, using E[|Znj
|] =

√
2nj

π for Znj
∼ N(0, nj), gives∣∣∣∣ ∂jf(X)

∂Xn1
. . . ∂Xnj

∣∣∣∣ ≤ sup
Z′

∣∣∣∣∣ ∂j−1φ(Z ′)

∂Z ′
n1

. . . ∂Z ′
nj−1

∣∣∣∣∣
√

2

πnj

∫ ∞

0

dt
e−(n1+...+nj)t

√
1− e−2njt

.

Finally, since ni ≥ 2 we have e−(n1+...+nj)t ≤ e−2jt, (1− e−2njt)−
1
2 ≤ (1− e−4t)−

1
2 and∫ ∞

0

dt
e−2jt

√
1− e−4t

=
1

2

2j−2Γ(j/2)2

(j − 1)!
,

which leads directly to (A.3).

Proof of Theorem 2.6. Let f be connected to φ via the Stein equation (2.12). Since
(M,M ′) are an exchangeable pair so are the random variables Y ′ := Y (M ′) and Y :=

Y (M), hence E[δf ] = E[f(Y ′)] − E[f(Y )] = 0. Therefore, expanding f(Y ′) in a Taylor
series about Y and substituting for the expressions (2.13) and (2.14) we get

0 =
1

αN
(E[f(Y ′)]− E[f(Y )])

=
1

αN
E

[
k∑

n=2

E[δYn|M ]
∂f

∂Yn
+

1

2

k∑
n,m=2

E[δYnδYm|M ]
∂2f

∂Yn∂Ym
+ E[Sf (M,M ′)|M ]

]

= E[Af(Y (M))] + E

[
k∑

n=2

Rn(M)
∂f

∂Yn
+

1

2

k∑
n,m=2

Rnm(M)
∂2f

∂Yn∂Ym

+
1

αN
E[Sf (M,M ′)|M ]

]
,
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where Sf (M,M ′) is the integral form of the remainder obtained in Taylor’s theorem

Sf (M,M ′) =
1

3!

k∑
n,m,l=2

δYnδYmδYl

∫ 1

0

dv(1− v)2
∂3f((1− v)Y + vY ′)

∂Yn∂Ym∂Yl
.

Using
∫ 1

0
dv(1 − v)2 = 1

3 means |Sf (M,M ′)| ≤ 1
3!

1
3‖∇

3f‖
∑k

n,m,l=2 |δYnδYmδYl| and so a
direct substitution of Stein’s equation (2.12) yields

|E[φ(Y )]− E[φ(Z)]|

≤ ‖∇f‖
k∑

n=2

E|Rn(M)|+ 1

2
‖∇2f‖

k∑
n,m=2

E|Rnm(M)|+ 1

18
‖∇3f‖

k∑
n,m,l=2

E|Rnml(M)|

= R(1)‖∇f‖+ 1

2
R(1)‖∇2f‖+ 1

18
R(1)‖∇3f‖.

Finally, using Lemma A.2 we have ‖∇jf‖ ≤ rj‖∇j−1φ‖ with explicit values for the rj .

B Expectations in the RITE

Proof of Lemma 5.3. In order to prove the lemma we use the ideas of McKay [35], who
was originally interested in establishing the asymptotic number of regular tournaments.
This was achieved via what he describes as a saddle-point argument, which we adapt
here for our current purposes. The main idea is to rewrite the expectation E[HE ] in
terms of a trigonometric integral (see Equation (B.4)), with N angles θp corresponding
to each of the N rows in the matrix H. Crucially the integrand depends only on the
differences θp− θq of these angles and is maximised when all angles are equal. Therefore
we show the main contribution comes from the region where θp ≈ θq for all p, q and the
remaining regions are negligible in the limit of large N .

To construct the appropriate integral expression we begin with the following charac-
teristic function

χRN
(H) =

{
0 H /∈ RN

1 H ∈ RN .

An analytical expression for χRN
(H) may be achieved via the Kronecker delta function.

If we let Sp = −
∑

q iHpq be the row sums then our matrix H belongs to RN only if Sp = 0

for all p. Therefore

χRN
(H) =

∏
p

δSp,0 =
∏
p

1

2π

∫ 2π

0

dθp exp (iSpθp) =
1

(2π)N

∫ 2π

0

dNθ
∏
p<q

exp (Hpq(θp − θq)) ,

(B.1)

where we have used that Hpq = −Hqp. We notice in the expressions above that, since Sp

is always even, the integrand is invariant under the shift θp 7→ θp + π for any p, and so

χRN
(H) =

1

πN

∫ π
2

−π
2

dNθ
∏
p<q

exp (Hpq(θp − θq)) . (B.2)

Summing over all possible matricesH ∈ TN and weighting by this characteristic function
leads to the following integral expression for the number of regular tournaments and
evaluated by McKay [35]

|RN | =
∑

H∈TN

χRN
(H) =

2N(N−1)/2

πN

∫ π
2

−π
2

dNθ
∏
p<q

cos(θp − θq)

=
2N(N−1)/2

πN−1

(
N

e

) 1
2
(
2π

N

)N−1
2

(1 +O(N− 1
2+ε)). (B.3)

EJP 23 (2018), paper 80.
Page 31/37

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP199
http://www.imstat.org/ejp/


Random walk approach to linear statistics in tournament ensembles

Using the same approach we can evaluate the expectation in Lemma 5.3. Using the
characteristic function (B.1) the expectation (5.11) is therefore

ERN
[HE ] =

1

|RN |
∑

H∈TN

HEχRN
(H) =

ik 2N(N−1)/2

πN |RN |
I, (B.4)

where

I =

∫ π
2

−π
2

dNθ
∏

(p,q)∈E

sin(θp − θq)
∏

(p,q)∈Ec

cos(θp − θq)

and Ec = {(p, q) : 1 ≤ p < q ≤ N} \ E. Note that k will be taken to be even so (B.4) is
real.

To evaluate the integral I we split the integration range into those parts which are
dominant and subdominant. To this end let us define the following quantities

• As = [(s− 4)π/8, (s− 3)π/8], so in particular [−π
2 ,

π
2 ] =

⋃7
s=0 As.

• We therefore write s = (s1, . . . , sN ), for sp = 0, 1, . . . , 7 to signify that the N -tuple
of angles is in the specific region (θ1, θ2, . . . , θN ) ∈ V (s) = As1 ×As2 × . . .×AsN .

• nj = nj(s) = #{p : sp = j}. This counts the number of angles θp in the segment Aj .

• D(1) = {s : nj +nj+1(8)+nj+2(8)+nj+3(8) = N for some j = 0, . . . , 7} (where i+1(8)

refers to i+1 modulo 8 etc.). Thus if s ∈ D(1) this means all angles θp are contained
in the region Aj ∪Aj+1(8) ∪Aj+2(8) ∪Aj+3(8), for some j.

• D(2) = {s ∈ {0, . . . , 7}N} \D(1) denotes all other possible placements of the angles
(θ1, θ2, . . . , θN ).

Thus, I = J (1) + J (2), where

J (t) =
∑

s∈D(t)

∫
V (s)

dNθ
∏

(p,q)∈E

sin(θp − θq)
∏

(p,q)∈Ec

cos(θp − θq). (B.5)

We will show subsequently that

|J (1)| ≤
√
N

(
2π

N

)N−1
2

O
(
N− k

2

)
, (B.6)

where k = |E| is the number of edges in E, and |J (2)| is negligible in comparison in
the large N limit. Hence, inserting the expressions (B.6) and (B.3) into (B.4) gives
ERN

[HE ] = O(N−k/2), as desired.
We begin by showing the result (B.6) for J (1) which provides the leading contribution.

From the form of D(1) we see that, after suitable translations that do not change
the value of the integral4, all angles are contained in the range [−π

4 ,
π
4 ]. The sets

D
(1)
i := {s : ni + ni+1(8) + ni+2(8) + ni+3(8) = N} are not necessarily disjoint for i 6= j so

D(1) ⊂
⋃7

i=0 D
(1)
i . But the sum in (B.5) is the same when restricted to any of the D

(1)
i .

Thus

|J (1)| ≤
7∑

i=0

∑
s∈D(1)

i

∫
V (s)

dNθ
∏

(p,q)∈E

| sin(θp − θq)|
∏

(p,q)∈Ec

| cos(θp − θq)|

= 8

∫ π
4

−π
4

dNθ
∏

(p,q)∈E

| sin(θp − θq)|
∏

(p,q)∈Ec

| cos(θp − θq)|. (B.7)

4For example, if we have D
(1)
6 = A6 ∪ A7 ∪ A0 ∪ A1 then we can first make a translation of θp 7→ θp − π

to all angles in A6 ∪A7 which does not change the value of the integral, so D
(1)
6 7→ [−3π/4,−π/4] and then

make a simultaneous shift of π/2 for all angles.
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We are now in a position to use the following bounds

| sin(x)| ≤ |x| exp
(
−1

2
x2

)
and | cos(x)| ≤ exp

(
−1

2
x2

)
, (B.8)

which are valid for |x| ≤ π
2 . Inserting these, employing the transition θp 7→ θp + θN for all

p = 1, . . . , N − 1, integrating over the redundant θN and extending the integration range
to the whole real line leads to

|J (1)| ≤ 8

∫ π
4

−π
4

dNθ
∏

(p,q)∈E

|θp − θq| exp

−1

2

∑
1≤p<q≤N

(θp − θq)
2


≤ 8

∫ π
4

−π
4

dθN

∫ π
4 +θN

−π
4 +θN

dN−1θ
∏

(p,q)∈E

|θp − θq| exp

(
−

N−1∑
p<q

(θp − θq)
2

2
−

N−1∑
p=1

θ2p
2

)

≤ 8π

2

∫ ∞

−∞
dN−1θ

∏
(p,q)∈E

|θp − θq|e−
1
2 θ

TΣ−1θ, (B.9)

where θ = (θ1, . . . , θN−1)
T and the covariance matrix is Σ−1 = NIN−1−EN−1 (Ir denotes

the r× r identity matrix and Er the r× r matrix in which every element is 1). The inverse
can be easily verified to be

Σ =
1

N
(IN−1 +EN−1) (B.10)

and thus, via Sylvester’s determinant identity (with 1N−1 the column vector of ones of
length N − 1)

det(Σ) =
1

NN−1
det(IN−1 + 1N−11

T
N−1) =

1

NN−1
(1 + 1T

N−11N−1) = N1−(N−1).

Hence, using Hölder’s inequality,

|J (1)| ≤
√
N4π

(
2π

N

)N−1
2

Eθ

[ ∏
(p,q)∈Ep

|θp − θq|
]

≤
√
N4π

(
2π

N

)N−1
2 ∏

(p,q)∈Ep

√
Eθ[(θp − θq)2], (B.11)

where

Eθ[f(θ)] :=
1√

(2π)N−1 det(Σ)

∫ ∞

−∞
dN−1θf(θ)e−

1
2 θ

TΣ−1θ.

Using the form of the covariance matrix (B.10) the Gaussian expectation of two random
variables is Eθ[θpθq] = Σpq = 1

N (δpq + 1). Therefore Eθ[(θp − θq)
2] = Eθ[θ

2
p] − 2E[θpθq] +

E[θ2q ] = 2/N and so

|J (1)| ≤
√
N4π

(
2π

N

)N−1
2
(

2

N

)k/2

.

We now turn to the evaluation of J (2). Due to the condition
∑

j nj = N , we have
that at least one of n7 + n0, n1 + n2, n3 + n4 and n5 + n6 is greater than or equal to
N/4. Suppose this is the case for n3 + n4. Let us denote A = A3 ∪ A4 = [−π

8 ,
π
8 ],

B = A2 ∪ A5 = [−π
4 ,−

π
8 ] ∪ [π8 ,

π
4 ] and C = A0 ∪ A1 ∪ A6 ∪ A7 = [−π

2 ,−
π
4 ] ∪ [π4 ,

π
2 ], with

nA = n3 + n4, nB = n2 + n5 and nC = n0 + n1 + n6 + n7 accordingly. If we write
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F := {s ∈ D(2) : nA ≥ N/4} and account for the four possibilities of having at least N/4

angles in the particular segment then

|J (2)| ≤ 4
∑
s∈F

∫
V (s)

dNθ
∏

(p,q)∈E

| sin(θp − θq)|
∏

(p,q)∈Ec

| cos(θp − θq)|. (B.12)

In addition, we split F = F>∪F≤, where for some ε > 0 we have F> = {s ∈ F : nC > N ε}
and F≤ = {s ∈ F : nC ≤ N ε} and evaluate each part separately.

We start with F>. If θp ∈ A and θq ∈ C (or vice versa) then π/8 ≤ |θp − θq| ≤ 5π/8

and so | cos(θp − θq)| ≤ cos(π/8) = e−c for c = − log(cos(π/8)) > 0. In addition, for
θp, θq ∈ A ∪ B and θp, θq ∈ C we can employ the bounds (B.8), and for all others write
| sin(θp − θq)| ≤ 1 and | cos(θp − θq)| ≤ 1, so

∑
s∈F>

∫
V (s)

dNθ
∏

(p,q)∈E

| sin(θp − θq)|
∏

(p,q)∈Ec

| cos(θp − θq)| ≤

e−c(nAnC−kAC)
∑
s∈F>

∫ π/4

−π/4

dnA+nBθ
∏

(p,q)∈EA∪B

|θp − θq| exp

(
−1

2

∑
p<q

(θp − θq)
2

)
×

∫ π/4

−π/4

dnCθ
∏

(p,q)∈EC

|θp − θq| exp

(
−1

2

∑
p<q

(θp − θq)
2

) . (B.13)

Here EA∪B = {(p, q) ∈ E : θp, θq ∈ A ∪ B}, EC = {(p, q) ∈ E : θp, θq ∈ C} and kAC =

#{(p, q) ∈ E : θp ∈ A, θq ∈ C}. Therefore, using the previous arguments above for
Gaussian integrals, the above expression is less than or equal to

π2

4

∑
s∈F>

e−c(nAnC−kAC)
√
(nA + nB)nC

(
2π

nA + nB

)nA+nB−1

2

≤

×
(

2

nA + nB

) kA∪B
2
(
2π

nC

)nC−1

2
(

2

nC

) kC
2

, (B.14)

where kA∪B = |EA∪B | and kC = |EC |. Now, given that kAC ≤ k, we have eckAC ≤ eck.
Also, since kA∪B + kC ≤ k and nA + nB and nC cannot be equal to zero for s ∈ F
(otherwise s ∈ D(1)) (

2

nA + nB

) kA∪B
2
(

2

nC

) kC
2

≤ 2k/2.

In addition, nAnC ≥ 1
4N

1+ε for s ∈ F>, so the expression in (B.14) is less than or equal
to

π2

4
Fke

− c
4N

1+ε ∑
s∈F>

√
(nA + nB)nC

(
2π

nA + nB

)nA+nB−1

2
(
2π

nC

)nC−1

2

≤ π2

42
Fke

− c
4N

1+ε
N∑

r=Nε

(
N

r

)√
(N − r)r

(
2π

N − r

)N−r−1
2

(
2π

r

) r−1
2

, (B.15)

where Fk = 2k/2eck and we have used r = nC and N − r = nA + nB. The factor

(
N

r

)
accounts for the number ways of placing r angles in C and N − r angles in A ∪B. The
summand is maximised when r = N/2 and so, using the bound

√
2πnnne−n ≤ n! ≤
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2
√
2πnnne−n when n ≥ 1 for the factorial, we get the contribution from F> is less than

or equal to

(N −N ε)
π2

4
Fke

− c
4N

1+ε 2
√
2πNNN

(Nπ)(N/2)N
N

2

(
2π

N

)N−1
2
(
2π

N

)− 1
2

2N/2−1

= O(N3/2)
√
N

(
2π

N

)N−1
2

exp

(
− c

4
N1+ε +

3 ln(2)

2
N

)
, (B.16)

which is negligible in comparison to the contribution from J (1) given in (B.6).
This leaves the evaluation of F≤. If we restrict the expression (B.12) to F≤ and

follow exactly the same steps as for the contribution from F> above we get that, since
nA ≥ N/4 and nC ≥ 1,

∑
s∈F≤

∫
V (s)

dNθ
∏

(p,q)∈E

| sin(θp − θq)|
∏

(p,q)∈Ec

| cos(θp − θq)|

≤ π2

4
Fke

− c
4N

Nε∑
r=1

(
N

r

)√
(N − r)r

(
2π

N − r

)N−r−1
2

(
2π

r

) r−1
2

, (B.17)

which matches (B.15), except for the exponential factor and the summation range. Now,
using the bound for the factorial and removing a factor of

√
N(2π/N)(N−1)/2 gives that

(B.17) is less than or equal to

≤ π2

4
Fke

− c
4N

√
N

2π

(
2π

N

)N−1
2

Nε∑
r=1

((1− r/N)−N )3/2
(
N − r

r

) 3r
2 √

r

(
N − r

N

)1/2

.

Finally, since r ≤ N ε we have (1 − r/N)−N ≤ (1 −N ε−1)−N = exp(−N ln(1 −N ε−1)) =

exp(N ε +O(N2ε−1)) and ((N − r)/r)3r/2 ≤ exp(3N ε ln(N)/2). Therefore the contribution
from (B.17) is of the form

O(N3ε/2)
√
N

(
2π

N

)N−1
2

exp

(
− c

4
N +

3

2
N ε +

3

2
N ε ln(N) +O(N2ε−1)

)
,

which, again, is negligible in comparison to (B.6).
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