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Abstract

We introduce an efficient numerical scheme for continuous time Dynkin games under
model uncertainty. We use the Skorokhod embedding in order to construct recombin-
ing tree approximations. This technique allows us to determine convergence rates
and to construct numerically optimal stopping strategies. We apply our method to
several examples of game options.
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1 Introduction

In this paper, we propose an efficient numerical scheme for the computations of
values of Dynkin games under volatility uncertainty. We consider a finite maturity,
continuous–time robust Dynkin game with respect to a non dominated set of mutually
singular probabilities on the canonical space of continuous paths. In this game, Player
1 who negatively/conservatively thinks that the nature is also against him, will pay the
following payment to Player 2 if the two players choose stopping strategies γ and τ

respectively,

H(γ, τ) := Iγ<τXγ + Iτ≤γYτ +

∫ γ∧τ

0

Zudu. (1.1)

We model uncertainty by assuming that the stochastic processes X,Y, Z are path–
independent functions of an underlying asset S which is an exponential martingale with
volatility in a given interval. Thus, our setup can be viewed as a Dynkin game variant of
Peng’s G–expectation (see [26]).

For finite maturity optimal stopping problems/games, there are no explicit solutions
even in the relatively simple framework where the probabilistic setup is given and
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Numerical scheme for model uncertainty

the payoffs are path–independent functions of the standard Brownian motion. Hence,
numerical schemes come naturally into the picture.

In [1], the authors presented a recombining trinomial tree based approximations for
what is now known as a G–expectation in the sense of Peng ([26]). However, they did not
provide a rigorous proof for the convergence of their scheme and did not obtain error
estimates. Moreover, a priori, it is not clear whether the tree approximations from [1]
can be applied for optimal stopping problems/games.

In this paper, we modify slightly the trinomial trees from [1]. For the modified
(recombining) trees we construct a discrete time version of the Dynkin game given by
(1.1). The main idea is to apply the Skorokhod embedding technique in order to prove the
existence of an exact scheme along stopping times with the required properties. More
precisely, for any exponential martingale with volatility in a given interval we prove that
there exists a sequence of stopping times such that the ratio of the martingale between

two sequel times belongs to some fixed set of the form
{
exp

(
−σ̄
√

T
n

)
, 1, exp

(
σ̄
√

T
n

)}
and the expectation of the difference between two sequel times is approximately equal
to T

n . Here σ̄ > 0 is the right endpoint of the volatility uncertainty interval, n is the
number of time steps and T is the maturity date. This machinery also allows to go in
the reverse direction, namely for a given distribution on the trinomial tree we can find a
“close” distribution on the canonical space which lies in our set of model uncertainty.

We prove the convergence of the discrete time approximations to the original control
problem. Moreover, we provide error estimates of order O(n−1/4). The recombining
structure of the trinomial trees allows to compute the corresponding value with com-
plexity O(n2) where n is the number of time steps.

The idea of using the Skorokhod embedding technique in order to obtain an exact
sequence along stopping times was also employed in a recent work [5] where the
authors approximated a one dimensional time–homogeneous diffusion by recombining
trinomial trees (and obtained the same error of order O(n−1/4)). In [5], the authors were
able to construct explicitly the stopping times. The construction relies heavily on the
well established theory for exit times of one dimensional time–homogeneous diffusion
processes. This theory cannot be applied in the present work, since the martingales in
the volatility uncertainty setup are not necessarily diffusions, or even Markov processes.
Thus, the case of model uncertainty requires additional machinery which we develop in
Section 3. Moreover, since the martingales may not be Markovian we cannot provide an
explicit construction of the stopping times (as done in [5]), but only prove their existence.

Let us remark that the multidimensional version of the above described result is
an open question which requires a completely different approach. In particular, it
is not clear how to derive recombining tree models which will approximate volatility
uncertainty in the multidimensional setup. We leave this challenging question for future
research.

Since its introduction in [10], Dynkin games have been analyzed in discrete and
continuous time models for decades (see, for instance, [6, 2, 21, 23, 25]). In Mathematical
Finance, the theory of Dynkin games can be applied to pricing and hedging game options
and their derivatives, see [9, 15, 17, 16, 22] and the references in the survey paper
[19]. In particular, the nondominated version of the optional decomposition theorem
developed in [24] provides a direct link (as we will see rigorously) between Dynkin games
and pricing game options in the model uncertainty framework. In general, the theme of
Dynkin games is a central topic in stochastic control.

In [8], the authors connected Dynkin games to backward stochastic differential
equations (BSDEs) with two reflecting barriers. This link inspired a very active research
in the field of Dynkin games in a Brownian framework, see e.g. [7, 3, 12, 13, 14, 27].
Motivated by Knightian uncertainty, recently there is also a growing interest in Dynkin
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games under model uncertainty, see [4, 9, 14, 29]). In [4] the authors analyzed a robust
version of the Dynkin game over a set of mutually singular probabilities. They proved
that the game admits a value. Moreover, they established submartingale properties of
the value process. These results will be essential in the present work.

The rest of the paper is organized as follows. In the next section we formulate our
main result (Theorem 2.2). In Section 3, we introduce our main tool which is Skorokhod
embedding under model uncertainty. In Section 4, we complete the proof of the main
result. Section 5 is devoted to some auxiliary estimates which are used in the proof of
Theorem 2.2. In Section 6, we provide numerical analysis for several examples of game
options. Moreover, we argue rigorously the link between Dynkin games and pricing of
game options in the current setup of model uncertainty.

2 Preliminaries and main result

Let Ω := C(R+,R) be the space of continuous paths equipped with the topology of
locally uniform convergence and the Borel σ–field F := B(Ω). We denote by B = Bt, t ≥ 0

the canonical process Bt(ω) := ωt and by F = Ft, t ≥ 0 the natural filtration generated
by B. For any t, Tt denotes the set of all stopping times with values in [0, t]. We denote
by T the set of all stopping times (we allow the stopping times to take the value ∞).

For a closed interval I = [σ, σ] ⊂ R+ and s > 0 let P(I)
s be the set of all probability

measures P on Ω under which the canonical process B is a strictly positive martingale
such that B0 = s P –a.s., the quadratic variation 〈B〉 is absolutely continuous dt ⊗ P

a.s. and B−1
t

√
d〈B〉t
dt ∈ I dt ⊗ P a.s. Observe that if we define the local martingale

Mt :=
∫ t

0
dBu

Bu
, then from Itô Isometry we get

√
d〈M〉t

dt = B−1
t

√
d〈B〉t
dt ∈ I. Thus M is a true

martingale and Bt = exp(Mt − 〈M〉t/2), t ≥ 0 is the Doléans–Dade exponential of M . In

other words, the set P(I)
s is the set of all probability measures (on the canonical space)

such that the canonical process (which starts in s) is a Doléans–Dade exponential of a
true martingale with volatility in the interval I.

From mathematical finance point of view, the set P(I)
s describes the set of all possible

distributions of the (discounted) stock price process. We assume that I is a finite interval,
i.e. σ < ∞. This implies that the set P(I)

s is weakly compact and so we can apply the
results form [4] related to the existence of the optimal strategy of the Dynkin game.
Moreover, the assumption σ < ∞ is essential for constructing an appropriate sequence
of trinomial models . In addition, we assume that σ > 0, in other words the model
uncertainty setup is “noisy enough”. This assumption is technical and will be needed for
obtaining uniform bounds on the expectation of the hitting times related to the canonical
process.

We consider a Dynkin game with maturity date T < ∞ and a payoff given by (1.1)
with Xt = g(t, Bt), Yt = f(t, Bt), Zt = h(t, Bt) where g, f, h : [0, T ]×R+ → R satisfy g ≥ f

and the following Lipschitz condition

|f(t1, x1)− f(t2, x2)|+ |g(t1, x1)− g(t2, x2)|+ |h(t1, x1)− h(t2, x2)| ≤ (2.1)

L ((1 + |x1|)|t2 − t1|+ |x2 − x1|) , t1, t2 ∈ [0, T ], x1, x2 ∈ R+

for some constant L.

For any (t, x) ∈ [0, T ]× R+ define the lower value and the upper value of the game at
time t given that the canonical process satisfies Bt = x

V (I)(t, x) := sup
P∈P(I)

x
supτ∈TT−t

infγ∈TT−t
EP [g(γ + t, Bγ)Iγ<τ +

f(τ + t, Bτ )Iτ≤γ +
∫ γ∧τ

0
h(u+ t, Bu)du]
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and

V
(I)

(t, x) := infγ∈TT−t
sup

P∈P(I)
x

supτ∈TT−t
EP [g(γ + t, Bγ)Iγ<τ +

+f(τ + t, Bτ )Iτ≤γ +
∫ γ∧τ

0
h(u+ t, Bu)du].

From Theorem 4.1 in [4] it follows that the lower value and the upper value coincide and
thus the game has a value

V (I)(t, x) := V
(I)

(t, x) = V (I)(t, x), ∀(t, x) ∈ [0, T ]× R+. (2.2)

Our goal is to calculate numerically the value V (I)(0, s). Moreover, from Theorem 4.1 in
[4] it follows that the stopping time γ∗ := T ∧ inf{t : g(t, Bt) = V (I)(t, Bt)} is an optimal
exercise time for Player 1. In Section 6, we use this formula for numerical calculations
of Player 1’s optimal strategy.

Remark 2.1. Our setup is slightly different from the one considered in [4]. If we use
our notations, then the control problem studied in [4] is

inf
P∈P(I)

x

inf
γ∈TT

sup
τ∈TT

EP

[
Iγ<τXγ + Iτ≤γYτ +

∫ γ∧τ

0

Zudu

]
. (2.3)

Theorem 4.1 in [4] shows that the above infimum and supremum can be exchanged.
Furthermore, the authors showed that τ∗ := T ∧ inf{t : Yt = V (I)(t, Bt)} is an optimal
stopping time for Player 2 which can be viewed as the holder of the corresponding game
option. The term given in (2.3) is the lowest arbitrage free price of the corresponding
game option.

Clearly, if we replace X,Y, Z by −Y,−X,−Z and replace γ ↔ τ , then the above
control problem is equivalent to

sup
P∈P(I)

x

sup
τ∈TT

inf
γ∈TT

EP

[
Iγ≤τXγ + Iτ<γYτ +

∫ γ∧τ

0

Zudu

]
. (2.4)

This is almost the same control problem as we consider, up to the following change. In
our setup, on the event {γ = τ} Player 1 pays the low payoff Yτ +

∫ τ

0
Zudu while in (2.4)

Player 1 pays the high payoff Xγ +
∫ γ

0
Zudu. Still, Theorem 4.1 in [4] can be extended to

this setup as well by following the same proof. Furthermore, analogously, the optimal
exercise time for Player 1 is given by γ∗ := T ∧ inf{t : Xt = V (I)(t, Bt)}. Namely, Theorem
4.1 in [4] provides an optimal exercise time for the player which plays against nature. In
our setup, this is Player 1 who can be seen as the seller of the game option. The term
given by (2.2) is the highest arbitrage free price of the game option.

Next, we describe the trinomial models and the main result. Fix n ∈ N. Let ξ(n)1 , ..., ξ
(n)
n

be random variables with values in the set {−1, 0, 1} and let F (n) = {F (n)
k }nk=0 be the

filtration generated by ξ
(n)
k , k = 0, 1, ..., n. Denote by Tn the set of all stopping times

(with respect to the filtration F (n)) with values in the set {0, 1, ..., n}.
For a given t ∈ [0, T ] and s ≥ 0 consider the geometric random walk

St,s,n
k := s exp

(
σ

√
T − t

n

k∑
i=1

ξ
(n)
i

)
k = 0, 1, ..., n.

Clearly, the process {St,s,n
k }nk=0 lies on the grid s exp

(
σ
√

T−t
n i
)
, i = −n, 1−n, ..., 0, 1, ..., n.
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Denote by PI,t,n the set of all probability measures on F (n)
n such that for any k = 1, ..., n

P (ξ
(n)
k = 1|F (n)

k−1) ∈
1

1+exp(σ
√

T−t
n )

[
exp

(
−4σ

√
T−t
n

)
σ2/σ2, 1

]
(2.5)

P (ξ
(n)
k = −1|F (n)

k−1) = exp(σ
√

T−t
n )P (ξ

(n)
k = 1|F (n)

k−1) (2.6)

P (ξ
(n)
k = 0|F (n)

k−1) = 1− P (ξ
(n)
k = 1|F (n)

k−1)− P (ξ
(n)
k = −1|F (n)

k−1). (2.7)

Let us explain the intuition behind the definition of the set PI,t,n. First, we observe that
for any P ∈ PI,t,n and k ≥ 1, P (ξ

(n)
k = 0|F (n)

k−1) ≥ 0, i.e. P is indeed a probability measure.
Moreover, from (2.6)–(2.7) it follows that for any k ≥ 1

EP

(
St,s,n
k

St,s,n
k−1

∣∣F (n)
k−1

)
= exp

(
σ
√

T−t
n

)
P (ξ

(n)
k = 1|F (n)

k−1) +

exp
(
−σ
√

T−t
n

)
P (ξ

(n)
k = −1|F (n)

k−1) + P (ξ
(n)
k = 0|F (n)

k−1) = 1.

Hence, {St,s,n
k }nk=0 is a martingale with respect to any probability measure P ∈ PI,t,n.

Finally, from (2.5)–(2.6) we have that for any P ∈ PI,t,n and k ≥ 1 the conditional
expectation of the ratio of the square of the return and the time step satisfy

n
T−tEP

((
lnSt,s,n

k − lnSt,s,n
k−1

)2 ∣∣F (n)
k−1

)
=

σ2
(
P (ξ

(n)
k = 1|F (n)

k−1) + P (ξ
(n)
k = −1|F (n)

k−1)
)
=

σ2
(
1 + exp

(
σ
√

T−t
n

))
P (ξ

(n)
k = 1|F (n)

k−1) ∈ σ2
[
exp

(
−4σ

√
T−t
n

)
σ2/σ2, 1

]
=
[
σ2, σ2

]⋃
σ2
[
exp

(
−4σ

√
T−t
n

)
, 1
]
.

In the above union of intervals, the first interval is exactly the square of the model
uncertainty interval I, and the second interval vanishing as n → ∞. This is the reason
that we expect that the set PI,t,n will be a good approximation of the set P(I)

s restricted

to the interval [0, T − t]. We emphasis that although the interval
[
exp

(
−4σ

√
T−t
n

)
, 1
]
is

vanishing, it will be essential for the Skorokhod embedding procedure.
Next, we define the corresponding Dynkin game under model uncertainty. Introduce

the lower value and the upper value of the game

V I,n(t, s) :=

supP∈PI,t,n maxη∈Tn
minζ∈Tn

EP [g(t+ ζ(T − t)/n, St,s,n
ζ )Iζ<η

+f(t+ η(T − t)/n, St,s,n
η )Iη≤ζ +

T−t
n

∑ζ∧η−1
k=0 h(t+ k(T − t)/n, St,s,n

k )]

and

V
I,n

(t, s) := minζ∈Tn supP∈PI,t,n maxη∈Tn EP [g(t+ ζ(T − t)/n, St,s,n
ζ )Iζ<η

+f(t+ η(T − t)/n, St,s,n
η )Iη≤ζ +

T−t
n

∑ζ∧η−1
k=0 h(t+ k(T − t)/n, St,s,n

k )].

We argue that the above two values coincide. In [16], the authors proved a similar
statement for the setup where the set of probability measures is the set of equivalent
martingale measures. However, the only property that was used in their proof is that
there exists a a reference measure. Namely, that there exists a measure Q such that all
the probability measures in the model uncertainty set are absolutely continuous with
respect to Q. In our case the probability measures in PI,t,n are defined on a finite sample
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space which supports the random variables ξ(n)1 , ..., ξ
(n)
n . Thus, there exists a reference

measure Q for the set PI,t,n. For instance, take Q to be the probability measure for
which ξ

(n)
1 , ..., ξ

(n)
n are i.i.d. and taking the values −1, 0, 1 with the same probability 1/3.

Following the proof of Theorem 2.2 in [16] we conclude that the lower value and the
upper value coincide and so the game has a value

V I,n(t, s) := V
I,n

(t, s) = V I,n(t, s) ∀t, s.

Moreover, by using standard dynamical programming for Dynkin games (see [25])
we can calculate V I,n(t, s) by the following backward recursion. Define the functions
JI,t,s,n
k : {−k, 1− k, ..., 0, 1, ..., k} → R, k = 0, 1, ..., n.

JI,t,s,n
n (z) := f

(
T, s exp

(
σ

√
T − t

n
z

))
. (2.8)

For k = 0, 1, ..., n− 1

JI,t,s,n
k (z) := max

(
f
(
t+ k(T − t)/n, s exp

(
σ
√

T−t
n z

))
, (2.9)

min

(
g
(
t+ k(T − t)/n, s exp

(
σ
√

T−t
n z

))
, T−t

n h
(
t+ k(T − t)/n, St,s,n

k

)
+

sup
p∈

[
exp

(
−4σ

√
T−t
n

)
σ2/σ2,1

]((1− p)JI,t,s,n
k+1 (z) + p

1+exp

(
σ
√

T−t
n

)JI,t,s,n
k+1 (z + 1)

+
p exp

(
σ
√

T−t
n

)
1+exp

(
σ
√

T−t
n

)JI,t,s,n
k+1 (z − 1)

)))

= max

(
f
(
t+ k(T − t)/n, s exp

(
σ
√

T−t
n z

))
,

min

(
g
(
t+ k(T − t)/n, s exp

(
σ
√

T−t
n z

))
, T−t

n h
(
t+ k(T − t)/n, St,s,n

k

)
+

max
p∈

{
exp

(
−4σ

√
T−t
n

)
σ2/σ2,1

}((1− p)JI,t,s,n
k+1 (z) + p

1+exp

(
σ
√

T−t
n

)JI,t,s,n
k+1 (z + 1)

+
p exp

(
σ
√

T−t
n

)
1+exp

(
σ
√

T−t
n

)JI,t,s,n
k+1 (z − 1)

)))
,

where the last equality follows from the fact that the supremum (maximum) on an
interval of a linear function (with respect to p) is achieved at the end points. We get that

V I,n(t, s) = JI,t,s,n
0 (0). (2.10)

Hence, we see that the computation of V I,n is very simple and its complexity is O(n2).
Next, we formulate our main result.

Theorem 2.2. There exists a constant C > 0 such that for all (t, s) ∈ [0, T ]× R+,

|V I,n(t, s)− V (I)(t, s)| ≤ C(1 + s)n−1/4.

From (2.8)–(2.9) and the backward induction it follows that for a fixed n the function
JI,·,··,n
0 : [0, T ]× R+ → R is continuous. This together with (2.10) and Theorem 2.2 gives

immediately the following Corollary.

Corollary 2.3. The function V (I)(t, s) : [0, T ]× R+ → R is continuous.
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3 Skorokhod embedding under model uncertainty

In this section we fix an arbitrary n ∈ N . For any A ∈ (0, σ
√
T/n] and stopping

time θ ∈ T (recall that T is the set of all stopping times with respect to the canonical
filtration) consider the stopping times

ρ
(θ)
A := inf{t ≥ θ : | lnBt − lnBθ| = A} and (3.1)

κ
(θ)
A := ∞I

ρ
(θ)
A =∞ +

∑2
i=1(−1)iIlnB

ρ
(θ)
A

=lnBθ+(−1)iA ×

inf
{
t ≥ ρ

(θ)
A : lnBt = lnBθ or lnBt = lnBθ + (−1)iσ

√
T/n

}
,

where the infimum over an empty set is equal to ∞. Set

z := z(n) = exp(−2σ
√
T/n)σ−2 exp(2σ

√
T/n) + exp(−2σ

√
T/n)− 2

2 + exp(σ
√
T/n) + exp(−σ

√
T/n)

.

Observe that z = T/n + O(n−3/2). As usual, we use the convention O(x) to denote a
random variable (z(n) is deterministic) that is uniformly (in time and space) bounded
after dividing by x.

We start with the following lemma.

Lemma 3.1. Let P ∈ P(I)
s and let θ ∈ T satisfy EP [θ] < ∞. There exists a stopping time

T 3 θ̂ ≥ θ such that P a.s. we have θ̂ < ∞ and
Bθ̂

Bθ
∈
{
exp(−σ

√
T/n), 0, exp(σ

√
T/n)

}
.

Furthermore, EP (θ̂ − θ|Fθ) = z and

P
(

Bθ̂

Bθ
= exp(σ

√
T/n)|Fθ

)
∈ 1

1+exp(σT/n)

[
exp (−4σT/n)σ2/σ2, 1

]
, (3.2)

P
(

Bθ̂

Bθ
= exp(−σ

√
T/n)|Fθ

)
= exp(σ

√
T/n)P

(
Bθ̂

Bθ
= exp(σ

√
T/n)|Fθ

)
, (3.3)

P
(
Bθ̂ = Bθ|Fθ

)
= 1− P

(
Bθ̂

Bθ
= exp(σ

√
T/n)|Fθ

)
(3.4)

−P
(

Bθ̂

Bθ
= − exp(σ

√
T/n)|Fθ

)
.

Notice the resemblance to the formulas (2.5)–(2.7). In particular, (3.2) gives the technical
reason for the definition given by (2.5).

Proof. Denote ρ := ρ
(θ)

σ
√

T/n
. From the fact that B is a P –martingale with volatility bonded

away from zero, it follows that EP [ρ] < ∞. Thus, Bρ

Bθ
= exp(±σ

√
T/n), P –a.s., and from

the martingale property we have

P
(
Bρ = Bθ exp(±σ

√
T/n)|Fθ

)
=

1

1 + exp(±σ
√
T/n)

.

Hence,

EP

(
(Bρ −Bθ)

2|Fθ

)
=

exp(2σ
√

T/n) + exp(−2σ
√
T/n)− 2

2 + exp(σ
√
T/n) + exp(−σ

√
T/n)

B2
θ . (3.5)

From the Itô isometry and the fact that under P , the process B is an exponential
martingale with volatility less or equal then σ we obtain

EP

(
(Bρ −Bθ)

2|Fθ

)
≤ EP

[∫ ρ

θ

B2
t σ

2dt|Fθ

]
≤ σ2 exp(2σ

√
T/n)B2

θEP (ρ− θ|Fθ),

where the last inequality follows from the fact that Bt ≤ exp(σ
√

T/n)Bθ for t ∈ [θ, ρ].
This together with (3.5) yields

EP (κ
(θ)

σ
√

T/n
− θ|Fθ) = EP (ρ− θ|Fθ) ≥ z. (3.6)
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Numerical scheme for model uncertainty

Next, we notice that for A2 > A1 we have κ
(θ)
A2

> κ
(θ)
A1
, P a.s. Moreover, if An ↑ A then

κ
(θ)
An

↑ κ
(θ)
A P a.s. Hence, from the Monotone Convergence Theorem

An ↑ A ⇒ EP (κ
(θ)
A |Fθ) = lim

n→∞
EP (κ

(θ)
An

|Fθ). (3.7)

Let Q be the set of rational numbers. Define the random variable

Z := sup{q ∈ Q ∩ (0, σ
√
T/n] : EP (κ

(θ)
q |Fθ) ≤ z}.

Clearly, Z is Fθ–measurable. Moreover, from the monotonicity property of κ(θ)
A and

(3.6)–(3.7), we obtain for the stopping time θ̂ := κ
(θ)
Z that EP (θ̂ − θ|Fθ) = z.

Finally, from the fact that
Bθ̂

Bθ
∈
{
exp(−σ

√
T/n), 0, exp(σ

√
T/n)

}
and EP

(
Bθ̂

Bθ
|Fθ

)
= 1

we conclude that (3.3)–(3.4) hold true. Thus,

EP

(
B2

θ̂
/B2

θ − 1|Fθ

)
=
(
exp(2σ

√
T/n) + exp(−σ

√
T/n)

)
× (3.8)

P
(

Bθ̂

Bθ
= exp(σ

√
T/n)|Fθ

)
−
(
1 + exp(σ

√
T/n)

)
P
(

Bθ̂

Bθ
= exp(σ

√
T/n)|Fθ

)
.

By applying the Itô isometry, we obtain

EP

[∫ θ̂

θ

B2
t σ

2dt|Fθ

]
≤ EP

(
B2

θ̂
−B2

θ |Fθ

)
≤ EP

[∫ θ̂

θ

B2
t σ

2dt|Fθ

]
.

This together with the equality EP (θ̂ − θ|Fθ) = z and the inequality exp(−σ
√
T/n)Bθ ≤

Bt ≤ exp(σ
√
T/n)Bθ gives

EP

(
B2

θ̂
/B2

θ − 1|Fθ

)
∈ z[σ2 exp(−2σ

√
T/n), σ2 exp(2σ

√
T/n)].

Hence, from (3.8) and the definition of z we conclude (3.2) and completes the proof.

Next, for a given initial stock price s > 0, we construct an embedding of probability
measures Ψn : PI,0,n → P(I)

s . Choose P ∈ PI,0,n. There exists functions

φi : {−1, 0, 1}i → 1

1 + exp(σ
√
T/n)

[
exp

(
−4σ

√
T/n

)
σ2/σ2, 1

]
, i = 0, 1, ..., n− 1

such that (2.5) holds true with

P (ξ
(n)
k = 1|F (n)

k−1) = φk−1(ξ
(n)
1 , ..., ξ

(n)
k−1), k = 1, ..., n.

Recall the canonical space Ω = C(R+,R). On this sample space we define a sequence
of random variables A0, ..., An, θ0, ..., θn by the following recursion. Let θ0 := 0 and
A0 ∈ (0, σ

√
T/n] be the unique solution of the equation

exp(x)− 1

(1 + exp(x))(exp(σ
√
T/n)− 1)

= φ0.

Recall the definition given by (3.1). For k = 1, ..., n set θk := κ
(θk−1)
Ak−1

, and on the event

{θk < ∞} define Ak ∈ (0, σ
√
T/n] to be the unique solution of the equation

exp(x)−1

(1+exp(x))(exp(σ
√

T/n)−1)
=

φk

(
σ−1(T/n)−1/2(lnBθ1 − lnBθ0), ..., σ

−1(T/n)−1/2(lnBθk − lnBθk−1
)
)
.
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On the event {θk = ∞} we set Ak = 0. Define the random variables σ0, ..., σn−1 by

σk := Iθk<∞ max

(
σ, σ

√
1 + exp(σ

√
T/n)× (3.9)

(
φk

(
σ−1(T/n)−1/2(lnBθ1 − lnBθ0), ..., σ

−1(T/n)−1/2(lnBθk − lnBθk−1
)
))1/2)

.

Observe that on the event {θk < ∞} we have σk ∈ I. Thus, the fact that the volatility
interval I is bounded away from zero implies that there exists a unique probability

measure P̂ := Ψn(Π) ∈ P(I)
s such that EP̂ [θn] < ∞, and that for any k < n, B−1

t

√
d〈B〉t
dt ≡

σk on the random interval [θk, θk+1) P̂ a.s.

Lemma 3.2. The joint distribution of lnBθ1 − lnBθ0 , ..., lnBθn − lnBθn−1
under P̂ is equal

to the joint distribution of σ
√
T/nξ

(n)
1 , ..., σ

√
T/nξ

(n)
n under P . Moreover, for any k < n,

P̂ (Bθk+1
|Fθk) = P̂ (Bθk+1

|Bθ1 , ..., Bθk) and EP̂ (θk+1 − θk|Fθk) = T/n+O(n−3/2).

Proof. For any k we have
Bθk+1

Bθk

∈
{
exp(−σ

√
T/n), 0, exp(σ

√
T/n)

}
and EP̂

(
Bθk+1

Bθk

|Fθk

)
= 1. Fix k < n. We argue that

P̂
(

Bθk+1

Bθk

= exp(σ
√

T/n)|Fθk

)
= (3.10)

φk

(
σ−1(T/n)−1/2(lnBθ1 − lnBθ0), ..., σ

−1(T/n)−1/2(lnBθk − lnBθk−1
)
)
.

Indeed, from (3.1), the definition of Ak and the martingale property of B we get

P̂
(

Bθk+1

Bθk

= exp(σ
√

T/n)|Fθk

)
=

P̂

(
B

ρ
(Ak)

θk

= exp(Ak)Bθk |Fθk

)
×

P̂

(
Bθk+1

= exp(σ
√
T/n)Bθk |Bρ

(Ak)

θk

= exp(Ak)Bθk ,Fθk

)
=

1
1+exp(Ak)

exp(Ak)−1

exp(σ
√

T/n)−1
=

φk

(
σ−1(T/n)−1/2(lnBθ1 − lnBθ0), ..., σ

−1(T/n)−1/2(lnBθk − lnBθk−1
)
)

as required. In particular P̂ (Bθk+1
|Fθk) = P̂ (Bθk+1

|Bθ1 , ..., Bθk). Furthermore, from the
definition of φk, k = 0, 1, ..., n − 1 we conclude that the joint distribution of lnBθ1 −
lnBθ0 , ..., lnBθn − lnBθn−1 is equal to the joint distribution of σ

√
T/nξ

(n)
1 , ..., σ

√
T/nξ

(n)
n .

Finally, we estimate EP̂ (θk+1 − θk|Fθk). From (3.9) and the inequality

φk ≥ 1

1 + exp(σ
√
T/n)

exp
(
−4σ

√
T/n

)
σ2/σ2

we get

φk

(
σ−1(T/n)−1/2(lnBθ1 − lnBθ0), ..., σ

−1(T/n)−1/2(lnBθk − lnBθk−1
)
)
=

σ2
k

(
1

σ2(1+exp(σ
√

T/n))
+O(

√
T/n)

)
.

This together with (3.3)–(3.4) and (3.10) yields

EP̂

(
B2

θk+1
/B2

θk
− 1|Fθk

)
(3.11)

=
(
exp(2σ

√
T/n) + exp(−σ

√
T/n)− 1− exp(σ

√
T/n)

)
×

σ2
k

(
1

σ2(1+exp(σ
√

T/n))
+O(

√
T/n)

)
= σ2

k

(
T
n +O(n−3/2)

)
.
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From the Itô isometry and the fact that (under the probability measure P̂ ) the volatility
of the canonical process B is constant (equal to σk) on the interval [θk, θk+1) we obtain

EP̂

(
B2

θk+1
/B2

θk
− 1|Fθk

)
∈ σ2

kEP̂ (θk+1 − θk|Fθk)[exp(−2σ
√
T/n), exp(2σ

√
T/n)].

Thus, from (3.11) it follows that EP̂ (θk+1 − θk|Fθk) = (1 +O(1/
√
n))Tn , and the proof is

completed.

4 Proof Theorem 2.2

For simplicity, we assume that the starting time is t = 0. For a general t ∈ [0, T ] the
proof is done in the same way. Denote by s > 0 the initial stock price.

4.1 Proof of the inequality V (I)(0, s) ≤ V I,n(0, s) + C(1 + s)n−1/4

Proof. Fix n ∈ N and choose ε > 0. There exists a probability measure P ∗ ∈ P(I)
s and a

stopping time τ∗ ∈ TT such that

V (I)(0, s) ≤ ε+ inf
γ∈TT

EP∗

[
g(γ,Bγ)Iγ<τ∗ + f(τ∗, Bτ∗)Iτ∗≤γ +

∫ γ∧τ∗

0

h(u,Bu)du

]
. (4.1)

From Lemma 3.1 it follows that we can choose a sequence of stopping times 0 = θ0 <

θ1 < θ2 < ... < θn such that P ∗ a.s., for any i = 1, ..., n

Bθi

Bθi−1

∈
{
exp(−σ

√
T/n), 0, exp(σ

√
T/n)

}
,

P ∗
(

Bθi

Bθi−1
= exp(σ

√
T/n)|Fθi−1

)
∈ 1

1+exp(σ
√

T/n)

[
exp

(
−4σ

√
T/n

)
σ2/σ2, 1

]
,

P ∗
(

Bθi

Bθi−1
= exp(−σ

√
T/n)|Fθi−1

)
= exp(σ

√
T/n)P ∗

(
Bθi

Bθi−1
= exp(σ

√
T/n)|Fθi−1

)
,

P ∗ (Bθi = Bθi−1
|Fθi−1

)
= 1− P ∗

(
Bθi

Bθi−1
= exp(σ

√
T/n)|Fθi−1

)
−P ∗

(
Bθi

Bθi−1
= − exp(σ

√
T/n)|Fθi−1

)
,

and EP∗(θi − θi−1|Fθi−1
) = z where z = z(n) is given before Lemma 3.1. In words, we

apply the Skorokhod embedding technique given by Lemma 3.1 in order to construct a
sequence of stopping times such that the ratio of B between two sequel times belongs

to
{
exp

(
−σ̄
√

T
n

)
, 1, exp

(
σ̄
√

T
n

)}
. Moreover, the expectation of the difference between

two sequel times is T
n + O(n−3/2). The last fact will be used via the Auxiliary Lemmas

5.3–5.4.
Now, comes the main idea of the proof. Recall the geometric random walk {S0,s,n

k }nk=0

and the trinomial models given by the set of probability measures PI,0,n. From (2.5)–(2.7)
and the above properties of the probability measure P ∗ it follows that there exists a
probability measure P̃ ∈ PI,0,n such that the distribution of {Bθi}ni=0 under P

∗ equals to
the distribution of {S0,s,n

k }nk=0 under P̃ . Moreover, using similar arguments as in Lemma
3.2 we obtain that for any k < n, P ∗(Bθk+1

|Fθk) = P ∗(Bθk+1
|Bθ1 , ..., Bθk). The above two

properties give

maxη∈Tn
minζ∈Tn

EP̃ [g(ζT/n, S
0,s,n
ζ )Iζ<η

+f(ηT/n, S0,s,n
η )Iη≤ζ +

T
n

∑ζ∧η−1
k=0 h(kT/n, S0,s,n

k )] =

supη∈Sn
infζ∈Sn

EP∗ [g(ζT/n,Bθζ )Iζ<η

+f(ηT/n,Bθη )Iη≤ζ +
T
n

∑ζ∧η−1
k=0 h(kT/n,Bθk)].
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Hence, we conclude

V I,n(0, s) ≥ supη∈Sn
infζ∈Sn

EP∗ [g(ζT/n,Bθζ )Iζ<η (4.2)

+f(ηT/n,Bθη )Iη≤ζ +
T
n

∑ζ∧η−1
k=0 h(kT/n,Bθk)].

The final step is technical. We are using (4.1)–(4.2) in order to bound from above the
difference V (I)(0, s)− V I,n(0, s).

Introduce the stopping time η∗ := n ∧min{k : θk ≥ τ∗} ∈ Sn. In view of (4.2) there
exists a stopping time ζ∗ ∈ Sn such that

V I,n(0, s) ≥ (4.3)

EP∗

[
g(ζ∗T/n,Bθζ∗ )Iζ∗<η∗ + f(η∗T/n,Bθη∗ )Iη∗≤ζ∗ + T

n

∑ζ∗∧η∗−1
k=0 h(kT/n,Bθk)

]
− ε.

Define the stopping time γ∗ := (T ∧ θ
(n)
ζ∗ )Iζ∗<n + T Iζ∗=n ∈ TT . From (4.1) and (4.3) we

obtain that

V (I)(0, s) ≤ V (I,n)(0, s) + 2ε+ (4.4)

EP∗ [g(γ∗, Bγ∗)Iγ∗<τ∗ − g(ζ∗T/n,Bθζ∗ )Iζ∗<η∗ ]

+EP∗ [f(τ∗, Bτ∗)Iτ∗≤γ∗ − f(η∗T/n,Bθη∗ )Iη∗≤ζ∗ ]

+EP∗ [
∫ γ∗∧τ∗

0
h(u,Bu)du− T

n

∑ζ∗∧η∗−1
k=0 h(kT/n,Bθk)].

From technical reasons we extend the function h to the domain R2 by h(t, x) := h(t∧T, x).
Clearly, the extended h is satisfying the Lipschitz condition given by (2.1) on the domain
R2. We observe that if γ∗ < τ∗, then ζ∗ < η∗. This together with (2.1), which in particular
implies that h(t, x) = O(1)(1 + |x|)(1 + t), and (4.4) gives

V (I)(0, s) ≤ V (I,n)(0, s) + 2ε+O(1)EP∗ |Bγ∗∧τ∗ −Bθζ∗∧η∗ |+ (4.5)

O(1)EP∗
[
(1 + sup0≤t≤θn∨T Bt)(1 + θn ∨ T )(|γ∗ ∧ τ∗ − ζ∗ ∧ η∗ T

n |+ |γ∗ ∧ τ∗ − θζ∗∧η∗ |)
]

+EP∗

(
max1≤k≤n

∣∣∣∫ θk
0

h(t, Bt)dt−
∑k−1

i=0 h(iT/n,Bθi)
∣∣∣) .

From the definition of the stopping times η∗ and γ∗ it follows that |γ∗ ∧ τ∗ − ζ∗ ∧ η∗ T
n | ≤

max1≤k≤n |θk − kT/n|+ T/n and

|γ∗ ∧ τ∗ − θζ∗∧η∗ | ≤ |T − θn|+ max
1≤k≤n

θk − θk−1 ≤ 3 max
1≤k≤n

|θk − kT/n|+ T/n.

Hence, from the Cauchy–Schwarz inequality, the Jensen inequality, Lemma 5.1 and
Lemma 5.3 it follows that

EP∗
[
(1 + sup0≤t≤θn∨T Bt)(1 + θn ∨ T )(|γ∗ ∧ τ∗ − ζ∗ ∧ η∗ T

n |+ |γ∗ ∧ τ∗ − θζ∗∧η∗ |)
]

(4.6)

≤
(
EP∗((1 + sup0≤t≤θn∨T Bt)

4)
)1/4 (

EP∗((1 + θn ∨ T )4)
)1/4 ×(

EP∗((4max1≤k≤n |θk − kT/n|+ 2T/n)2)
)1/2

= O((1 + s)n−1/2).

Similarly, from the Itô isometry we obtain

EP∗((Bγ∗∧τ∗ −Bθζ∗∧η∗ )
2) ≤ EP∗ [σ2 max

0≤t≤θn∨T
B2

t |γ∗ ∧ τ∗ − θζ∗∧η∗ |] = O(s2n−1/2).

This together with the Jensen inequality, (4.5)–(4.6) and Lemma 5.4 gives that

V (I)(0, s) ≤ V I,n(0, s) + 2ε+O((1 + s)n−1/4)

and by letting ε ↓ 0 we complete the proof.

EJP 23 (2018), paper 74.
Page 11/20

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP198
http://www.imstat.org/ejp/


Numerical scheme for model uncertainty

4.2 Proof of the inequality V I,n(0, s) ≤ V (I)(0, s) + C(1 + s)n−1/4

Proof. The proof is very similar to the proof of the first inequality. Fix n ∈ N and choose
ε > 0. We abuse notations and denote by P ∗ a probability measure in PI,0,n which satisfy

V I,n(0, s) ≤ ε+maxη∈Tn
minζ∈Tn

EP∗ [g(ζT/n, St,s,n
ζ )Iζ<η (4.7)

+f(ηT/n, St,s,n
η )Iη≤ζ +

T
n

∑ζ∧η−1
k=0 h(kT/n, St,s,n

k )].

Recall the definition of P̂ ∗ := Ψn(P
∗) and the stopping times 0 = θ0 < θ1 < ... < θn

given before Lemma 3.2. Denote by Sn the set of all stopping times with respect to the
filtration {Fθi}ni=0 with values in the set {0, 1, ..., n}. By applying Lemma 3.2 and the
same arguments as before (4.2) it follows that

maxη∈Tn
minζ∈Tn

EP∗ [g(ζT/n, St,s,n
ζ )Iζ<η (4.8)

+f(ηT/n, St,s,n
η )Iη≤ζ +

T
n

∑ζ∧η−1
k=0 h(kT/n, St,s,n

k )] =

supη∈Sn
infζ∈Sn EP̂∗ [g(ζT/n,Bθζ )Iζ<η

+f(ηT/n,Bθη )Iη≤ζ +
T
n

∑ζ∧η−1
k=0 h(kT/n,Bθk)].

The equality (4.8) is the cornerstone of the proof. The remaining part is technical, and
we use (4.7)–(4.8) to estimate from above the difference V I,n(0, s)− V (I)(0, s). Indeed,
from (4.7)–(4.8) it follows that there exists η∗ ∈ Sn (again we abuse notations) such that

V I,n(0, s) ≤ 2ε+ infζ∈Sn EP̂∗ [g(ζT/n,Bθζ )Iζ<η∗

+f(η∗T/n,Bθη∗ )Iη∗≤ζ +
T
n

∑ζ∧η∗−1
k=0 h(kT/n,Bθk)].

Define the stopping time τ∗ := θη∗ ∧T ∈ TT . Clearly, there exists a stopping time γ∗ ∈ TT
such that

V (I)(0, s) ≥ EP̂∗

[
g(γ∗, Bγ∗)Iγ∗<τ∗ + f(τ∗, Bτ∗)Iτ∗≤γ∗ +

∫ γ∗∧τ∗

0

h(u,Bu)du

]
− ε.

Next, introduce the stopping time ζ∗ := n ∧min{k : θk ≥ γ∗}Iγ∗<T + nIγ∗=T ∈ Sn. We
observe that if ζ∗ < η∗ then γ∗ < τ∗. Thus, similarly to (4.5) we get

V I,n(0, s) ≤ V (I)(0, s) + 3ε+O(1)EP̂∗ |Bγ∗∧τ∗ −Bθζ∗∧η∗ |+
O(1)EP̂∗

[
(1 + sup0≤t≤θn∨T Bt)(1 + θn ∨ T )(|γ∗ ∧ τ∗ − ζ∗ ∧ η∗ T

n |+ |γ∗ ∧ τ∗ − θζ∗∧η∗ |)
]

+EP̂∗

(
max1≤k≤n

∣∣∣∫ θk
0

h(t, Bt)dt−
∑k−1

i=0 h(iT/n,Bθi)
∣∣∣) .

Finally, by using the same estimates as in Section 4.1, we obtain that

V I,n(0, s) ≤ V (I)(0, s) + 3ε+O((1 + s)n−1/4)

and by letting ε ↓ 0 we complete the proof.

Remark 4.1. Let us notice that in the present setup of model uncertainty we get the
same error estimates as in the case with no uncertainty which was studied in [5]. The
main reason is that Lemma 5.3 which is essential for the proof cannot be improved even
for the most simple case where the canonical process is a geometric Brownian motion
with constant volatility. Namely, the Skorokhod embedding technique cannot provide
error estimates of order better than O(n−1/4) even for the approximations of American
or game options in the Black–Scholes model. For details, see [18]. Fortunately, same
estimates can be obtained for the volatility uncertainty setup.
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5 Auxiliary lemmas

In this section we derive the estimates that we used in Section 4. We fix n ∈ N
and a probability measure P ∈ P(I)

s . Furthermore, we fix a sequence of stopping

times 0 = θ0 < θ1 < ... < θn for which we assume that for any i < n,
Bθi

Bθi−1
∈{

exp(−σ
√
T/n), 0, exp(σ

√
T/n)

}
P –a.s.,

P
(

Bθi

Bθi−1
= exp(σ

√
T/n)|Fθi−1

)
∈ 1

1+exp(σ
√

T/n)

[
exp

(
−4σ

√
T/n

)
σ2/σ2, 1

]
,

P
(

Bθi

Bθi−1
= exp(−σ

√
T/n)|Fθi−1

)
= exp(σ

√
T/n)P

(
Bθi

Bθi−1
= exp(σ

√
T/n)|Fθi−1

)
,

P
(
Bθi = Bθi−1 |Fθi−1

)
= 1− P

(
Bθi

Bθi−1
= exp(σ

√
T/n)|Fθi−1

)
−P

(
Bθi

Bθi−1
= − exp(σ

√
T/n)|Fθi−1

)
,

and EP (θi+1 − θi|Fθi) = T/n+O(n−3/2). Observe that the stopping times 0 = θ0 < θ1 <

... < θn from both Section 4.1 and Section 4.2 satisfy the above conditions.
We start with proving the following bound.

Lemma 5.1.

EP

(
sup

0≤t≤T∨θn

B4
t

)
= O(1)s4.

Proof. Clearly, for any i < n,

EP (B
4
θi+1

−B4
θi
|Fθi) = B4

θi
P
(

Bθi+1

Bθi
= exp(σ

√
T/n)|Fθi

)
×(

exp(4σ
√
T/n)− 1 + exp(σ

√
T/n)(exp(−4σ

√
T/n)− 1)

)
≤ B4

θi
O(1/n).

Hence, EP (B
4
θn
) ≤ s4(1 + O(1/n))n = O(1)s4. This together with the Doob inequality

gives that

EP

(
sup

0≤t≤θn

B4
t

)
= O(1)s4. (5.1)

Next, we notice that the inequality B−1
t

√
d〈B〉t
dt ≤ σ together with the Itô formula implies

that exp(−6σ2t)B4
t , t ≥ 0 is a super–martingale. In particular, EPB

4
T ≤ exp(6σ2T )s4.

Thus, from the Doob inequality and (5.1) we obtain

EP

(
sup

0≤t≤T∨θn

B4
t

)
≤ EP

(
sup

0≤t≤T
B4

t

)
+ EP

(
sup

0≤t≤θn

B4
t

)
= O(1)s4

and the proof is completed.

Next, we prove the following.

Lemma 5.2. For any i = 0, 1, ..., n− 1, EP ((θi+1 − θi)
4|Fθi) = O(n−4).

Proof. Choose i < n. From the Burkholder–Davis–Gundy inequality, the inequality
d〈B〉t
dt ≥ σ2B2

t and the fact that Bt

Bθi
∈ [exp(−σ

√
T/n), exp(σ

√
T/n)] for t ∈ [θi, θi+1] it

follows that

σ8 exp(−8σ
√

T/n)B8
θi
EP ((θi+1 − θi)

4|Fθi) ≤
EP

(
(〈B〉θi+1

− 〈B〉θi)4|Fθi

)
= O(1)EP ((Bθi+1

−Bθi)
8|Fθi) = O(n−4)B8

θi

and the result follows.
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We arrive to our next estimate.

Lemma 5.3. EP

(
max0≤k≤n |θk − kT/n|4

)
= O(n−2).

Proof. Set Zi := θi − θi−1 − EP (θi − θi−1|Fθi−1), i = 1, ..., n. We use the fact that the
expectation of the difference between two sequel times equals approximately to the time
step. Formally, for any i, we have EP (θi − θi−1 − T/n|Fθi−1) = O(n−3/2). Hence,

max
0≤k≤n

|θk − kT/n| = O(n−1/2) + max
1≤k≤n

|
k∑

i=1

Zi|.

In view of the inequality (a + b)4 ≤ 8(a4 + b4), a, b ≥ 0 it remains to prove that

EP

((
max1≤k≤n |

∑k
i=1 Zi|

)4)
= O(n−2). From the Jensen inequality and Lemma 5.2

it follows that EP

(
(EP (θi − θi−1|Fθi−1

))4
)
= O(n−4) for all i. This together with the

inequality (a− b)4 ≤ a4 + b4, a, b ≥ 0 implies that EP [Z
4
i ] = O(n−4) for all i. Thus, from

the Burkholder–Davis–Gundy inequality applied to the martingale
∑k

i=1 Zi, k = 1, ..., n,

and the inequality (
∑n

i=1 ai)
2 ≤ n

(∑n
i=1 a

2
i

)
, a1, ..., an ≥ 0, we obtain

EP

( max
1≤k≤n

|
k∑

i=1

Zi|

)4
 = O(1)EP

( n∑
i=1

Z2
i

)2
 = O(n)

n∑
i=1

EPZ
4
i = O(n−2)

as required.

We end this section with proving the next estimate.

Lemma 5.4.

EP

(
max

0≤k≤n

∣∣∣∣∣
∫ θk

0

h(t, Bt)dt−
T

n

k−1∑
i=0

h(iT/n,Bθi)

∣∣∣∣∣
)

= O((1 + s)n−1/2).

Proof. Clearly,

max
0≤k≤n

∣∣∣∣∣
∫ θk

0

h(t, Bt)dt−
T

n

k−1∑
i=0

h(iT/n,Bθi)

∣∣∣∣∣ ≤ J1 + J2 + θnJ3

where

J1 := max1≤k≤n

∣∣∣∑k−1
i=0 h(iT/n,Bθi) (EP (θi+1 − θi|Fθi)− T/n)

∣∣∣ ,
J2 := max1≤k≤n

∣∣∣∑k−1
i=0 h(iT/n,Bθi) (θi+1 − θi − EP (θi+1 − θi|Fθi))

∣∣∣ ,
and J3 :=

(
max0≤k≤n−1 supθk≤t≤θk+1

|h(t, Bt)− h(kT/n,Bθk |
)
.

We have EP (θi+1 − θi|Fθi) = T/n+O(n−3/2). Hence, from the bound h(t, x) = O(1)(1 +

|x|)(1 + t), Lemma 5.1 and the Jensen inequality it follows that

EP [J1] = O(n−1/2)EP (1 + max
0≤k≤n−1

Bθk) = O((1 + s)n−1/2).

Next, we estimate J2. We observe that the stochastic process

k−1∑
i=0

h(iT/n,Bθi) (θi+1 − θi − EP (θi+1 − θi|Fθi)) , k = 1, ..., n
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is a martingale. Thus, from the Doob inequality, the Cauchy–Schwarz inequality, Lemmas
5.1–5.2 and the above bound on h we obtain

EP [J
2
2 ] = O(1)

∑n−1
i=0 EP

(
h2(iT/n,B2

θi
) (θi+1 − θi − EP (θi+1 − θi|Fθi))

2
)

= O(1)
∑n−1

i=0

(
EP

(
h4(iT/n,B2

θi
)
))1/2 (

EP

(
(θi+1 − θi − EP (θi+1 − θi|Fθi))

4
))1/2

= O((1 + s)2n−1).

From the Jensen inequality we conclude that EP [J2] = O((1 + s)n−1/2).
Finally, we estimate EP [θnJ3]. From (2.1) and the fact that Bt

Bθk

= 1 + O(1/
√
n) for

t ∈ [θk, θk+1] it follows that

J3 ≤ O(n−1/2) max
0≤k≤n−1

Bθk +O(1) max
0≤k≤n−1

[(1 +Bθk) sup
θk≤t≤θk+1

|t− kT/n|].

Observe that max0≤k≤n−1 supθk≤t≤θk+1
|t − kT/n| ≤ T/n + max1≤k≤n |θk − kT/n|. This

together with the Cauchy–Schwarz inequality, Lemma 5.1 and Lemma 5.3 gives

EP [θnJ3] = O(n−1/2)
(
EP

[
θ2n
])1/2 (

EP

(
max0≤k≤n−1 B

2
θk

))1/2
+

O(1)Tn
(
EP

[
θ2n
])1/2 (

EP

(
max0≤k≤n−1(1 +Bθk)

2
))1/2

+

O(1)
(
EP

[
θ2n
])1/2 (

EP

(
max0≤k≤n−1(1 +Bθk)

4
))1/4 (

EP

(
max1≤k≤n |θk − kT/n|4

))1/4
= O

(
(1 + s)n−1/2

)
and the proof is completed.

6 Game options and numerical results

In this section we apply Theorem 2.2 and provide numerical analysis for path–
independent game options with the payoffs Yt = f(t, Bt) and Xt = f(t, Bt), t ∈ [0, T ], and
we set Z ≡ 0. First (for the above payoffs), we establish the connection between the
super–hedging price of game options and Dynkin games, in the model uncertainty setup.

6.1 Game options

A game contingent claim (GCC) or game option, which was introduced in [17], is
defined as a contract between the seller and the buyer of the option such that both have
the right to exercise it at any time up to a maturity date (horizon) T . We consider the
following GCC with Markovian payoffs. If the buyer exercises the contract at time t then
he receives the payment Yt = f(t, Bt), but if the seller exercises (cancels) the contract
before the buyer then the latter receives Xt = g(t, Bt). The difference Xt − Yt is the
penalty which the seller pays to the buyer for the contract cancellation. In short, if the
seller will exercise at a stopping time γ ≤ T and the buyer at a stopping time τ ≤ T then
the former pays to the latter the amount H(γ, τ) given by (1.1).

Next, we introduce the setup of super–hedging for the seller (the buyer setup is
symmetrical). Recall the natural filtration, F = Ft, t ≥ 0. We denote by L(B,P(I)

s ) the

set of all F–predictable processes ∆ = {∆t}Tt=0 such that for any P ∈ P(I)
s , the stochastic

(Itô) integral
∫ t

0
∆udBu, t ∈ [0, T ] is well defined and a super–martingale with respect

to F . We define a hedge for the seller as a triplet (x,∆, γ) ∈ R× L(B,P(I)
s )× TT which

consists of an initial capital x, a trading strategy ∆ = {∆t}Tt=0 and a stopping time γ.
A hedge (x,∆, γ) is perfect if for any stopping time (for the buyer) τ ∈ TT we have the
inequality

x+

∫ γ∧τ

0

∆udBu ≥ H(γ, τ) P − a.s. for all P ∈ P(I)
s .
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The super–hedging price is defined by

V := inf{x ∈ R : ∃(∆, γ) such that (x,∆, γ) is a perfect hedge}.

Lemma 6.1. The super–hedging price is given by V = V (I)(0, s). Moreover, there exists
a perfect hedge with initial capital V (I)(0, s).

Proof. As usual, the inequalityV ≥ V (I)(0, s) is immediate. Indeed if (x,∆, γ) is a perfect
hedge then from the super–martingale property of

∫ t

0
∆udBu, t ∈ [0, T ] we obtain that for

any τ ∈ TT and P ∈ P(I)
s

x ≥ EP

[
x+

∫ γ∧τ

0

∆udBu

]
≥ EP [H(γ, τ)].

Thus x ≥ V (I)(0, s) as required.
It remains to show that there exists a perfect hedge with initial capital V (I)(0, s). We

apply Theorem 4.1 in [4] which not only gives the optimal stopping time for the player
which plays against nature but also a sub–martingale property up to the optimal time.
Once again taking Remark 2.1 into account, for our setup the sub–martingale property
becomes a super–martingale property. More precisely, Theorem 4.1 in [4] implies that
for the stopping time γ∗ := T ∧ inf{t : Xt = V (I)(t, Bt)} we have the following property.

For any P ∈ P(I)
s , the process V (I)(t ∧ γ∗, Bt∧γ∗), t ∈ [0, T ] is a P –super–martingale with

respect to the natural filtration Ft, t ≥ 0.
We apply the nondominated version of the optional decomposition theorem . Since

quadratic variation can be defined in a pathwise form then the condition B−1
√

d〈B〉
dt ∈ I

is invariant under equivalent change of measure. Hence the set P (I)
s is a saturated set

(using [24] terminology) of martingale measures. Namely, if P ∈ P(I)
s and Q ∼ P is a

martingale measure on the canonical space then Q ∈ P(I)
s . Thus, from Theorem 2.4 in

[24] it follows that there exists a process ∆∗ ∈ L(B,P(I)
s ) such that for any probability

measure P ∈ P(I)
s

P

(
V (I)(0, s) +

∫ t

0

∆∗
udBu − V (I)(t ∧ γ∗, Bt∧γ∗) ≥ 0, ∀t ∈ [0, T ]

)
= 1. (6.1)

We claim that (V (I)(0, s),∆∗, γ∗) is a perfect hedge. Indeed, let τ ∈ TT be a stopping

time for the buyer and P ∈ P(I)
s . First consider the event {γ∗ < τ}. On this event we

have (recall the definition of γ∗) V (I)(τ ∧ γ∗, Bτ∧γ∗) = Xγ∗ = H(γ∗, τ) and so from (6.1)

V (I)(0, s) +

∫ τ∧γ∗

0

∆∗
udBu ≥ H(γ∗, τ) P − a.s.

Finally, we consider the event {γ∗ ≥ τ}. Applying (6.1) and the trivial inequality
V (I)(t, x) ≥ f(t, x) for all t, x we obtain

V (I)(0, s) +

∫ τ∧γ∗

0

∆∗
udBu ≥ Yτ = H(γ∗, τ) P − a.s.

and the proof is completed.

Remark 6.2. It seems that by applying Theorem 4.1 in [4] and the optional decompo-
sition Theorem 2.4 in [24], Lemma 6.1 can be extended to path dependent options as
long as the regularity assumptions from [4] are satisfied. Since we are motivated by
numerical applications, then for simplicity we considered path–independent payoffs.
Still, a challenging open question, is whether Lemma 6.1 can be obtained under weaker
(than Lipschitz or uniform type of continuity) regularity conditions.
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Table 1: In this table we take the parameters r = 0.06, T = 0.5, K = 100, δ = 5 and
provide numerical results for game put options under model uncertainty given by the
interval I = [0, 0.4]. We compare our results to previous numerical results (see [20]) for
game put options in the Black–Scholes model with volatility σ = 0.4.

Values obtained with
S0 n = 200 n = 400 n = 700 n = 1200 Black–Scholes with σ = σ

80 20.7003 20.6719 20.6593 20.6532 20.6
90 12.4932 12.4787 12.4938 12.4683 12.4
100 5.00 5.00 5.00 5.00 5.00
110 3.7609 3.7240 3.6862 3.6916 3.64
120 2.6169 2.5897 2.5822 2.5729 2.54

6.2 Numerical results

In view of Lemma 6.1 we use Theorem 2.2 and provide a numerical analysis for the
super–hedging price of path–independent game options. We assume that the interest
rate in the market is a constant r > 0, and so the stock price before discounting is
given by St = ertBt, where, recall that B is the canonical process. The payoffs before
discounting are of the form X̂t = ĝ(St), Ŷt = f̂(St) where ĝ ≥ f̂ . In order to compute the
game option price we need to consider the discounted payoffs and so during this section
we put g(t, x) := e−rtĝ(ertx), f(t, x) := e−rtf̂(ertx) and h ≡ 0.

In [11] (see Section 4), the author proved that for game options (with finite or infinite
maturity) with continuous path–independent payoffs ĝ, f̂ satisfying

ĝ(x)

x
,
f̂(x)

x
are non increasing for x > 0 (6.2)

the price is non decreasing in the volatility. Thus, (if the above assumption is satisfied)
the price under volatility uncertainty which is given by the interval I = [σ, σ] is the same
as the price in the complete Black–Scholes market with a constant volatility σ. The later
value can be approximated by the standard binomial models (see [18]). In particular,
this is the case for game put options given by

ĝ(x) = C(K − x)+ + δ and f̂(x) = (K − x)+, C ≥ 1, K, δ > 0.

In Table 1, we test numerically the above statement from [11] for game put options. This
is done by comparing our numerical results with previous numerics which was obtained
in [20] for game put options in the Black–Scholes model.

Game call options

Next, we deal with game call options given by

ĝ(x) = C(x−K)+ + δ and f̂(x) = (x−K)+, C ≥ 1, K, δ > 0.

We observe that in this case (6.2) is not satisfied and so we expect that the price for the
model uncertainty interval I = [σ, σ] will be strictly bigger than the game call option
price in the Black–Scholes model with volatility σ. We take C = 1, namely we consider
game call options with constant penalty.

First, we compare (Table 2) the option prices under model uncertainty with the prices
in the Black–Scholes model (with the highest volatility). Since we could not find previous
numerical results for finite maturity game call options in the Black–Scholes model, we
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Table 2: We take the same parameters as in Table 1 and provide numerical results for
game call options under model uncertainty given by the interval I = [0, 0.4]. We compare
our results to binomial approximations for the Black–Scholes model with σ = 0.4.

Values obtained under model uncertainty
S0 n = 200 n = 400 n = 700 n = 1200
80 2.0805 2.0893 2.0847 2.0948
85 2.8138 2.7964 2.8055 2.8018
90 3.6553 3.5966 3.6241 3.6064
95 4.5827 4.4682 4.5050 4.4874
105 5.00 5.00 5.00 5.00
110 10.00 10.00 10.00 10.00
115 15.00 15.00 15.00 15.00
120 20.00 20.00 20.00 20.00

Values obtained for Black–Scholes
S0 n = 200 n = 400 n = 700 n = 1200
80 2.0625 2.0359 2.0244 2.0210
85 2.7706 2.7301 2.7274 2.7143
90 3.5066 3.4889 3.4968 3.4798
95 4.3497 4.3124 4.3056 4.2481
105 5.00 5.00 5.00 5.00
110 10.00 10.00 10.00 10.00
115 14.9355 14.9304 14.9275 14.9260
120 19.7812 19.7735 19.7691 19.7669

compute it by applying the binomial trees from [18]. These trees are “almost” the same
as our trees for the case where the volatility uncertainty interval I contains only one
point. We observe that for call options the prices in general should not coincide.

Finally, we calculate numerically the stopping regions. We observe that the discounted
payoff f(t, Bt) = (Bt −Ke−rt)+, t ≥ 0 is a sub–martingale with respect to any probability

measure in the set P(I)
s . Thus, the buyer’s optimal stopping time is just τ ≡ T .

For the seller, the optimal stopping time is (see Theorem 4.1 in [4])

γ∗ = T ∧ inf{t : g(t, Bt) = V (I)(t, Bt)}.

Introduce the function

Ṽ (u, x) := sup
P∈P(I)

x

sup
τ∈Tu

inf
γ∈Tu

EP

[
e−r(τ∧γ)

(
(Sτ∧γ −K)+ + δIγ<τ

)]
where as before St = ertBt, t ≥ 0 is the stock price. The term Ṽ (u, x) is the price of a
game call option with maturity date u and initial stock price S0 = x. We observe that
γ∗ = T ∧ inf{t : St ∈ D}, where D = D(T ) is the stopping region (of course it depends
on the maturity date T ) given by

D = {(t, x) : Ṽ (T − t, x) = (x−K)+ + δ}.

In [28], the authors studied the structure of the stopping region D for game call
options in the complete Black–Scholes market. They proved (see Theorem 4.2) that the
stopping region D is of the form

D = {(t, x) : t ∈ [0, T1], K ≤ x ≤ b(t)}
⋃

{[T1, T2]× {K}}

where T1 < T2 < T and b : [0, T1] → [K,∞) can be computed numerically.
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Figure 1: We consider a game call option with maturity date T = 2, a constant penalty
δ = 12 and a strike price K = 100. As before the interest rate is r = 0.06. We take
n = 1200 and compute numerically the stopping regions for the seller. For the model
uncertainty given by the interval I = [0, 0.4] we get that for t ∈ [0, 1.3] the seller should
exercise at the first moment when the stock price is between the strike price and the
value given by the blue curve. For t ∈ [1.3, 1.5] the seller stops at the first moment the
stock price equals to the strike price. After the time t = 1.5 the investor should not
exercise (before the maturity date). For the Black–Scholes model with volatility σ = 0.4

we get that for t ∈ [0, 0.9] the seller should exercise at the first moment when the stock
price is between the strike price and the value given by the green curve. For t ∈ [0.9, 1.5]

the seller stops at the first moment the stock price equals to the strike price. After the
time t = 1.5 the investor should not exercise (before the maturity date).

In Figure 1 we calculate numerically the stopping regions (for the seller) for game call
options both in the model uncertainty setup given by the interval I = [0, 0.4] and in the
complete Black–Scholes model with volatility σ = 0.4. We obtain that the structure from
[28] is valid for the model uncertainty case as well. Furthermore, for both cases T2 is
the same, while T1 and b are different. Up to date, there is no theoretical results related
to the explicit structure of stopping regions for game options under model uncertainty.
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