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Abstract

In this paper, we discuss estimates of transition densities of subordinate Brownian
motions in open subsets of Euclidean space. When D is a C1,1 domain, we establish
sharp two-sided estimates for the transition densities of a large class of subordinate
Brownian motions in D whose scaling order is not necessarily strictly below 2. Our
estimates are explicit and written in terms of the dimension, the Euclidean distance
between two points, the distance to the boundary and the Laplace exponent of the
corresponding subordinator only.
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1 Introduction

Transition densities of Lévy processes killed upon leaving an open set D are Dirichlet
heat kernels of the generators of such processes on D. For example, the classical
Dirichlet heat kernel, which is the fundamental solution of the heat equation in D with
zero boundary values, is the transition density of Brownian motion killed upon leaving
D. Since, except in some special cases, explicit forms of the Dirichlet heat kernels are
impossible to obtain, obtaining sharp estimates of the Dirichlet heat kernels has been a
fundamental problem both in probability theory and in analysis.

After the fundamental work in [12], sharp two-sided estimates for the Dirichlet
heat kernel pD(t, x, y) of non-local operators in open sets have been studied a lot (see
[2, 3, 6, 5, 7, 13, 11, 18, 17, 15, 14, 16, 19, 20, 25, 33, 34, 36]). In particular, very recently
in [5, 19], sharp two-sided estimates of pD(t, x, y) were obtained for a large class of
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rotationally symmetric Lévy processes when the radial parts of their characteristic
exponents satisfy weak scaling conditions whose upper scaling exponent is strictly less
than 2. A still remaining open question in this direction is that, when the upper scaling
exponent is not strictly less than 2, for how general discontinuous Lévy processes one
can prove sharp two-sided estimates for their Dirichlet heat kernels. In this paper we
investigate this question for subordinate Brownian motions, which form a very large
class of Lévy processes.

A subordinate Brownian motion in Rd is a Lévy process which can be obtained by
replacing the time of Brownian motion in Rd by an independent subordinator (i.e., an
increasing Lévy process starting from 0). The subordinator used to define the subordinate
Brownian motion X can be interpreted as “operational” time or “intrinsic” time. For this
reason, subordinate Brownian motions have been used in applied fields a lot.

To obtain the sharp Dirichlet heat kernel estimates, it is necessary to know the
sharp heat kernel estimates in Rd. Recently heat kernel estimates for discontinuous
Markov processes have been a very active research area and, for a large class of purely
discontinuous Markov processes, the sharp heat kernel estimates were obtained in
[4, 8, 10, 21, 22, 23, 32, 47, 48]. But except [43, 48], for the estimates of the heat
kernel, a common assumption on the purely discontinuous Markov processes in Rd

considered so far is that their weak scaling orders were always strictly between 0 and
2. Very recently in [43], the second-named author considered a large class of purely
discontinuous subordinate Brownian motions whose weak scaling order is between 0 and
2 including 2, and succeeded in obtaining sharp heat kernel estimates of such processes.
In this sense, the results in [43] extend earlier works in [4].

Motivated by [43], the main purpose of this paper is to establish sharp two-sided
estimates of pD(t, x, y) for a large class of subordinate Brownian motions in C1,1 open set
whose weak scaling order is not necessarily strictly below 2. Our estimates are explicit
and written in terms of the dimension d, the Euclidian distance |x− y| for x, y ∈ D, the
distance to the boundary ofD for x, y ∈ D and the Laplace exponent of the corresponding
subordinator only. See Section 8 for examples, in particular, (8.2)–(8.3) for estimates of
the Dirichlet heat kernels.

This paper is also motivated by [6, 7], and, several results and ideas in [7, 43] will be
used here. It is shown in [6] that, when weak scaling orders of characteristic exponents
of unimodal Lévy processes in Rd are strictly below 2, sharp estimates on the survival
probabilities for the unimodal Lévy processes can be obtained without the information
on sharp two-sided estimates for the Dirichlet heat kernels. Such estimates in [6] can
not be used in the setting of this paper.

We will use the symbol “:=,” which is read as “is defined to be.” In this paper, for
a, b ∈ R we denote a ∧ b := min{a, b} and a ∨ b := max{a, b}. By B(x, r) = {y ∈ Rd :

|x − y| < r} we denote the open ball around x ∈ Rd with radius r > 0 . We also use
convention 0−1 = +∞. For any open set V , we denote by δV (x) the distance of a point x
to V c. We sometimes write point z = (z1, . . . , zd) ∈ Rd as (z̃, zd) with z̃ ∈ Rd−1.

Let B = (Bt, t ≥ 0) be a Brownian motion in Rd whose infinitesimal generator is
∆ and let S = (St, t ≥ 0) be a subordinator which is independent of B. The process
X = (Xt : t ≥ 0) defined by Xt = BSt

is a rotationally invariant (unimodal) Lévy process
in Rd and is called a subordinate Brownian motion. Let φ be the Laplace exponent of S.
That is,

E[exp{−λSt}] = exp{−tφ(λ)}, λ > 0.

Then the characteristic exponent of X is Ψ(ξ) = φ(|ξ|2) and the infinitesimal generator
X is φ(∆) = −φ(−∆). It is known that the Laplace exponent φ is a Bernstein function
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with φ(0+) = 0, that is (−1)nφ(n) ≤ 0, for all n ≥ 1. Thus it has a representation

φ(λ) = bλ+

∫ ∞

0

(1− e−λt)µ(dt), (1.1)

where b ≥ 0, and µ is a measure satisfying
∫∞
0

(1 ∧ t)µ(dt) <∞ , which is called the Lévy
measure of S (or φ). In this paper, we will always assume that b = 0 and µ(0,∞) = ∞.
Note that φ′(λ) = λ

∫∞
0
e−λtµ(dt) > 0. Due to the independence of B and S, the Lévy

measure Π(dx) of X has a density j(|x|), given by

j(r) =

∫ ∞

0

(4πs)−d/2e−
|x|2
4s µ(ds), r > 0. (1.2)

It is well known that there exists c0 = c0(d) depending only on d such that

j(r) ≤ c0
φ(r−2)

rd
, r > 0 (1.3)

(see [3, (15)]). Moreover, since µ(0,∞) = ∞, X has transition density p(t, x, y) =

p(t, y − x) = p(t, |y − x|) and it is of the form

p(t, x) =

∫
(0,∞)

(4πs)−d/2e−
|x|2
4s P(St ∈ ds) (1.4)

for x ∈ Rd and t > 0 .
We now introduce the following scaling conditions.

Definition 1.1. Suppose f is a function from (0,∞) into (0,∞).

(1) We say that f satisfies the lower scaling condition La(γ, CL) if there exist a ≥ 0,
γ > 0 and CL ∈ (0, 1] such that

f(λt)

f(λ)
≥ CLt

γ for all λ > a and t ≥ 1 . (1.5)

We say that f satisfies the lower scaling condition near infinity if the above constant
a is strictly positive and we say f satisfies the lower scaling condition globally if
a = 0.

(2) We say f satisfies the upper scaling condition Ua(δ, CU ) if there exist a ≥ 0, δ > 0

and CU ∈ [1,∞) such that

f(λt)

f(λ)
≤ CU t

δ for all λ > a and t ≥ 1 . (1.6)

We say f satisfies the upper scaling condition near infinity if the above constant
a is strictly positive and we say f satisfies the upper scaling condition globally if
a = 0.

For any open set D ⊂ Rd, the first exit time of D by the process X is defined by the
formula τD := inf{t > 0 : Xt /∈ D} and we use XD to denote the process obtained by
killing the process X upon exiting D. By the strong Markov property, it can easily be
verified that

pD(t, x, y) := p(t, x, y)− Ex[p(t− τD, XτD , y) : τD < t], t > 0, x, y ∈ D, (1.7)

is the transition density of XD. Note that from (1.4) we see that sup|x|≥β,t>0 p(t, x) <∞
for all β > 0. Using this estimate and the continuity of p, it is routine to show that
pD(t, x, y) is symmetric and continuous (see [27]).

EJP 23 (2018), paper 64.
Page 3/45

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP190
http://www.imstat.org/ejp/


Estimates of Dirichlet heat kernels for SBMs

We say that D ⊂ Rd (when d ≥ 2) is a C1,1 open set with C1,1 characteristics
(R0,Λ) if there exist a localization radius R0 > 0 and a constant Λ > 0 such that for
every z ∈ ∂D there exist a C1,1-function ϕ = ϕz : Rd−1 → R satisfying ϕ(0) = 0,
∇ϕ(0) = (0, . . . , 0), ‖∇ϕ‖∞ ≤ Λ, |∇ϕ(x) − ∇ϕ(w)| ≤ Λ|x − w| and an orthonormal
coordinate system CSz of z = (z1, · · · , zd−1, zd) := (z̃, zd) with origin at z such that
D ∩ B(z,R0) = {y = (ỹ, yd) ∈ B(0, R0) in CSz : yd > ϕ(ỹ)}. The pair (R0,Λ) will be
called the C1,1 characteristics of the open set D. Note that a C1,1 open set D with
characteristics (R0,Λ) can be unbounded and disconnected, and the distance between
two distinct components of D is at least R0. By a C1,1 open set in R with a characteristic
R0 > 0, we mean an open set that can be written as the union of disjoint intervals so
that the infimum of the lengths of all these intervals is at least R0 and the infimum of the
distances between these intervals is at least R0.

It is well-known that C1,1 open set D with the characteristic (R0,Λ) satisfies the
interior and exterior ball conditions with the characteristic R1 > 0, that is, there exists
R1 > 0 such that the following holds: for all x ∈ D with δD(x) ≤ R1 there exist balls
B1 ⊂ D and B2 ⊂ Dc whose radii are R1 such that x ∈ B1 and δB1(x) = δD(x) = δB2

c(x).
Without loss of generality whenever we consider a C1,1 open setD with the characteristic
(R0,Λ), we will take R0 as the characteristic of the interior and exterior ball conditions
of D, that is, R1 = R0.

We say that the path distance in a connected open set U is comparable to the
Euclidean distance with characteristic λ1 if for every x and y in U there is a rectifiable
curve l in U which connects x to y such that the length of l is less than or equal to
λ1|x− y|. Clearly, such a property holds for all bounded C1,1 domains (connected open
sets), C1,1 domains with compact complements, and a domain consisting of all the points
above the graph of a bounded globally C1,1 function.

In this paper, for the Laplace exponent φ of a subordinator, we define the function
H : (0,∞) → [0,∞) by H(λ) := φ(λ)− λφ′(λ). The function H, which appeared earlier in
the work of Jain and Pruitt [31], took a central role in [43] in obtaining the sharp heat
kernel estimates of the transition density of the corresponding subordinate Brownian
motion X in Rd.

Obviously, this function H will also naturally appear in this paper in the estimates
of the transition density of X in open subsets. Under the weak scaling assumptions on
H we will obtain the sharp two-sided estimates of pD(t, x, y). Recall that δD(x) is the
distance between x and the boundary of D.

In the main results of this paper, we will impose the following assumption: there
exists a positive constant c > 0 such that

j(r) ≤ cj(r + 1), r > 1. (1.8)

Remark 1.2. A Bernstein function φ is called a complete Bernstein function if the Lévy
measure µ has a completely monotone density µ(t), i.e., (−1)nDnµ ≥ 0 for every non-
negative integer n. Note that, if φ is a complete Bernstein function then by [38, Lemma
2.1], there exists c1 > 1 such that

µ(r) ≤ c1 µ(r + 1), ∀r > 1. (1.9)

IfH satisfies La(γ, CL) and Ua(δ, CU ) with δ < 2 then by [43, Lemma 2.6] and Remark 2.2,
c−2H(r−1) ≤ µ(r,∞) ≤ c2H(r−1) for r < 2. Using the monotonicity of µ and Ua(δ, CU ) of
H, it is easy to see that c−3r−1H(r−1) ≤ µ(r) ≤ c3r

−1H(r−1) for r < 2 (see the proof [37,
Theorem 13.2.10]). Therefore, by [37, Proposition 13.3.5], we see that if φ is a complete
Bernstein function and H satisfies La(γ, CL) and Ua(δ, CU ) with δ < 2, then (1.8) holds.

We are now ready to state the main result of this paper.
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Theorem 1.3. Let S = (St)t≥0 be a subordinator with zero drift whose Laplace exponent
is φ and let X = (Xt)t≥0 be the corresponding subordinate Brownian motion in Rd.
Assume that (1.8) holds and that H satisfies La(γ, CL) and Ua(δ, CU ) with δ < 2 and
γ > 2−11δ≥1 for some a > 0. Suppose that D is a C1,1 open set in Rd with characteristics
(R0,Λ).
(a) For every T > 0, there exist constants c1, C0 and aU > 0 such that for every (t, x, y) ∈
(0, T ]×D ×D,

pD(t, x, y) ≤ C0

(
1 ∧ 1√

tφ(1/δD(x)2)

)(
1 ∧ 1√

tφ(1/δD(y)2)

)
p(t, x/3, y/3) (1.10)

≤ c1

(
1 ∧ 1√

tφ(1/δD(x)2)

)(
1 ∧ 1√

tφ(1/δD(y)2)

)

×
(
φ−1(t−1)d/2 ∧

(
tH(|x− y|−2)

|x− y|d
+ φ−1(t−1)d/2 exp[−aU |x− y|2φ−1(t−1)]

))
. (1.11)

(b) When D is an unbounded, we further assume that H satisfies L0(γ0, CL) and U0(δ, CU )

with δ < 2 and that the path distance in each connected component of D is comparable to
the Euclidean distance with characteristic λ1. Then for every T > 0 there exist constants
c2, aL > 0 such that for every (t, x, y) ∈ (0, T ]×D ×D,

pD(t, x, y) ≥ c−1
2

(
1 ∧ 1√

tφ(1/δD(x)2)

)(
1 ∧ 1√

tφ(1/δD(y)2)

)

×
(
φ−1(t−1)d/2 ∧

(
tH(|x− y|−2)

|x− y|d
+ φ−1(t−1)d/2 exp[−aL|x− y|2φ−1(t−1)]

))
. (1.12)

(c) If D is a bounded C1,1 open set, then for each T > 0 there exists c3 ≥ 1 such that for
every (t, x, y) ∈ [T,∞)×D ×D,

c−1
3

e−t λ
D√

φ(1/δD(x)2)φ(1/δD(y)2)
≤ pD(t, x, y) ≤ c3

e−t λ
D√

φ(1/δD(x)2)φ(1/δD(y)2)
,

where −λD < 0 is the largest eigenvalue of the generator of XD.

We emphasize that we put the assumption γ > 2−11δ≥1 on lower scaling condition
near infinity, not globally, i.e., we don’t assume that γ0 > 2−11δ≥1 in Theorem 1.3(b).

When D is a half space-like domain, we have the global estimates for all t > 0 on the
Dirichlet heat kernel.

Theorem 1.4. Let S = (St)t≥0 be a subordinator with zero drift whose Laplace exponent
is φ and let X = (Xt)t≥0 be the corresponding subordinate Brownian motion in Rd.
Suppose that D is a domain consisting of all the points above the graph of a bounded
globally C1,1 function andH satisfies L0(γ, CL) and U0(δ, CU ) with δ < 2 and γ > 2−11δ≥1.
Then there exist c ≥ 1 and aL, aU > 0 such that both (1.11) and (1.12) hold for all
(t, x, y) ∈ (0,∞)×D ×D.

The assumption that H satisfies La(γ, CL) and Ua(δ, CU ) with δ < 2 in Theorems
1.3 and 1.4 allows us to cover several interesting cases where the scaling order of the
characteristic exponent Ψ(ξ) = φ(|ξ|2) of X is 2.

The rest of the paper is organized as follows. In Section 2, we revisit [43] and improve
one of the main results of [43] in Theorem 2.9. This result will be used in Sections 5–7
to show the sharp two-sided estimates of the Dirichlet heat kernel when φ satisfies the
lower scaling condition near infinity or H(λ) = φ(λ) − λφ′(λ) satisfies the lower and

EJP 23 (2018), paper 64.
Page 5/45

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP190
http://www.imstat.org/ejp/


Estimates of Dirichlet heat kernels for SBMs

upper scaling conditions near infinity. In Section 3 we first show that the scale-invariant
parabolic Harnack inequality holds with explicit scaling in terms of Laplace exponent.
Then using this we give some preliminary interior lower bound of the Dirichlet heat
kernel. Using such lower bound of the Dirichlet heat kernel, Theorem 2.9, (4.1), and
the estimates on exit probabilities in Section 4 we prove the estimates of the survival
probabilities and the sharp two-sided estimates of the transition density pD(t, x, y) for
the killed process XD. This is done in Sections 5–6. As an application of Theorem
1.3, in Section 7 we establish the estimates on the Green functions in bounded C1,1

domain. Section 8 contains some examples of subordinate Brownian motions and the
sharp two-sided estimates of transition density and Green function of them.

In this paper, we use the following notations. For a Borel set W in Rd, ∂W , W
and |W | denote the boundary, the closure and the Lebesgue measure of W in Rd,
respectively. For s ∈ R, s+ := s ∨ 0 Throughout the rest of this paper, the positive
constants a0, a1, T1,M0,M1, R̃, R∗, R0, R1, C, Ci, i = 0, 1, 2, . . . , can be regarded as fixed,
while the constants ci = ci(a, b, c, . . .), i = 0, 1, 2, . . . , denote generic constants depending
on a, b, c, . . ., whose exact values are unimportant. They start anew in each statement
and each proof. The dependence of the constants on φ, γ, δ, CL, CU and the dimension
d ≥ 1, may not be mentioned explicitly.

2 Preliminary heat kernel estimates in Rd

Throughout this paper we assume that φ is the Laplace exponent of a subordinator S.
Without loss of generality we assume that φ(1) = 1. In this section we revisit [43] and
improve the main result of [43] for the case that φ satisfies the lower scaling condition
near infinity.

The Laplace exponent φ belongs to the class of Bernstein functions

BF = {f ∈ C∞(0,∞) : f ≥ 0, (−1)n−1f (n) ≥ 0, n ∈ N}

with φ(0+) = 0. Thus φ has a unique representation

φ(λ) = bλ+

∫
(0,∞)

(1− e−λy)µ(dy), (2.1)

where b ≥ 0 and µ is a Lévy measure satisfying
∫∞
0

(1 ∧ t)µ(dt) <∞. Let Φ be denote the
increasing function

Φ(r) :=
1

φ(1/r2)
, r > 0. (2.2)

The next Proposition is a particular case of [43, Proposition 2.4]. Note that there is a
typo in [43, Proposition 2.4]: αφ−1(β−1) in the display there should be αφ−1(βt−1).

Proposition 2.1 ([43, Proposition 2.4]). There exist constants ρ ∈ (0, 1) and τ > 0 such
that for every subordinator S,

P

(
1

2φ−1(t−1)
≤ St ≤

1

φ−1(ρt−1)

)
≥ τ for all t > 0 .

We recall the conditions La(γ, CL) and Ua(δ, CU ) from Definition 1.1.

Remark 2.2. Suppose that f is non-decreasing.
(1) If f satisfies Lb(γ, CL) then f satisfies La(γ, (a/b)

γCL) for all a ∈ (0, b];

f(xλ)

f(λ)
≥ CL(a/b)

γxγ , x ≥ 1, λ ≥ a . (2.3)
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In fact, suppose a ≤ λ < b and x ≥ 1. Then, f(xλ) ≥ CLx
γ(λ/b)γf(b) ≥ CLx

γ(a/b)γf(λ) if
xλ > b, and f(xλ) ≥ f(λ) ≥ CLx

γ(a/b)γf(λ) if xλ ≤ b.
(2) If f satisfies Ub(δ, CU ) then f satisfies Ua(δ, CUf(b)/f(a)) for all a ∈ (0, b];

f(xλ)

f(λ)
≤ CU

f(b)

f(a)
xδ , x ≥ 1, λ ≥ a . (2.4)

In fact, suppose a ≤ λ < b and x ≥ 1. Then, f(xλ) ≤ CUx
δ(λ/b)δf(b) ≤ CUx

δf(b) ≤
CUx

δf(b)f(λ)/f(a) if xλ > b, and f(xλ) ≤ f(b) ≤ CUx
δf(b)f(λ)/f(a) if xλ ≤ b.

Recall that H(λ) = φ(λ) − λφ′(λ). Note that, by the concavity of φ, H(λ) = φ(λ) −
λφ′(λ) ≥ 0. Moreover, H is non-decreasing since H ′(λ) = −λφ′′(λ) ≥ 0.

Using Remark 2.2, we have the following. c.f., [43, Lemma 2.1].

Lemma 2.3. (a) For any λ > 0 and x ≥ 1,

φ(λx) ≤ xφ(λ) and H(λx) ≤ x2H(λ) .

(b) Assume that the drift b of φ in the representation (2.1) is zero. If H satisfies
La(γ, CL) (resp. Ua(δ, CU )), then φ satisfies La(γ, CL)(resp. Ua(δ ∧ 1, CU )). Thus if
either H or φ satisfies La(γ, CL) and Ua(δ, CU ) then for every M > 0 there exist
c1, c2 > 0 such that

c1

(R
r

)2γ
≤ Φ(R)

Φ(r)
≤ c2

(R
r

)2(δ∧1)

for every 0 < r < R < a−1M. (2.5)

By Remark 2.2 we also have

Lemma 2.4. If φ satisfies La(γ, CL) for some a > 0, then for every b ∈ (0, a],

φ−1(λx)

φ−1(λ)
≤ (a/b)C

−1/γ
L x1/γ for all λ > φ(b), x ≥ 1 .

Throughout this paper, the process X = (Xt : t ≥ 0) is a subordinate Brownian
motion whose characteristic exponent is φ(|x|2). Recall that x → j(|x|) is the Lévy
density of the subordinate Brownian motion X defined in (1.2), which gives rise to a
Lévy system for X describing the jumps of X; For any x ∈ Rd, stopping time τ (with
respect to the filtration of X), and nonnegative measurable function f on R+ ×Rd ×Rd
with f(s, y, y) = 0 for all y ∈ Rd and s ≥ 0 we have

Ex

∑
s≤τ

f(s,Xs−, Xs)

 = Ex

[∫ τ

0

(∫
Rd

f(s,Xs, y)j(|Xs − y|)dy
)
ds

]
(2.6)

(e.g., see [22, Appendix A]).
The next lemma holds for every symmetric Lévy process and it follows from [44, (3.2)]

and [29, Corollary 1]. Recall that τD is the first exit time of D by the process X.

Lemma 2.5. For any positive constants a, b, there exists c = c(a, b, φ) > 0 such that for
all z ∈ Rd and t > 0,

inf
y∈B(z,aΦ−1(t)/2)

Py
(
τB(z,aΦ−1(t)) > bt

)
≥ c.

Recall that X has a transition density p(t, x, y) = p(t, y − x) = p(t, |y − x|) of the form
(1.4). We first consider the estimates of p(t, x) under the assumption that φ satisfies
La(γ, CL) for some a > 0. Note that La(γ, CL) implies lim

λ→∞
φ(λ) = ∞.

By our Remark 2.2 and [43, Propositions 3.2 and 3.4], we have the following two
upper bounds.
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Proposition 2.6. If φ satisfies La(γ, CL) for some a > 0, then for every T > 0 there
exists c = c(T ) > 0 such that for all t ≤ T and x ∈ Rd,

p(t, x) ≤ c φ−1(t−1)d/2.

Proposition 2.7. If φ satisfies La(γ, CL) for some a > 0, then for every T > 0 there exist
c1, c2 > 0 such that for all t ≤ T and x ∈ Rd satisfying tφ(|x|−2) ≤ 1,

p(t, x) ≤ c1

(
t|x|−dH(|x|−2) + φ−1(t−1)d/2 exp[−c2|x|2φ−1(t−1)]

)
.

Proposition 2.8. If φ satisfies La(γ, CL) for some a > 0, then for every T > 0 there
exists c = c(T ) > 0 such that for all t ≤ T and x ∈ Rd,

p(t, x) ≥ c φ−1(t−1)
d
2 exp[−2−1|x|2φ−1(t−1)].

In particular, if additionally tφ(M |x|−2) ≥ 1 holds for someM > 0, then we have

p(t, x) ≥ c e−M/2φ−1(t−1)
d
2 . (2.7)

Proof. We closely follow the proof of [43, Proposition 3.5]. Let ρ ∈ (0, 1) be the constant
in Proposition 2.1 and, without loss of generality, we assume T ≥ ρφ−1(a). Using (1.4)
we get

p(t, x) ≥ (4π)−d/2
∫
[2−1φ−1(t−1)−1,φ−1(ρt−1)−1]

s−d/2e−
|x|2
4s P(St ∈ ds)

≥ (4π)−d/2φ−1(ρt−1)d/2e−
1
2 |x|

2φ−1(t−1)P
(
2−1φ−1(t−1)−1 ≤ St ≤ φ−1(ρt−1)−1

)
. (2.8)

Let b = φ−1(ρ/T ). Note that, by Lemma 2.4, we have that for 0 < t < T = ρφ(b)−1,

φ−1(ρt−1) = φ−1(t−1)
φ−1(ρt−1)

φ−1(t−1)
≥ (b/a)C

1/γ
L ρ1/γ φ−1(t−1). (2.9)

Using (2.9), Proposition 2.1 and (2.8) we get

p(t, x) ≥ c2e
− 1

2 |x|
2φ−1(t−1)φ−1(t−1)d/2 .

2

We now revisit [43].

Theorem 2.9. Let S = (St)t≥0 be a subordinator with zero drift whose Laplace exponent
is φ and let X = (Xt)t≥0 be the corresponding subordinate Brownian motion in Rd and
p(t, x, y) = p(t, y − x) be the transition density of X.

If φ satisfies La(γ, CL) for some a > 0, then for every T > 0 there exist c1 = c1(T, a) >

1 and c2 = c2(T, a) > 0 such that for all t ≤ T and x ∈ Rd,

p(t, x) ≤ c1

(
φ−1(t−1)d/2 ∧

(
t|x|−dH(|x|−2) + φ−1(t−1)d/2e−c2|x|

2φ−1(t−1)
))
, (2.10)

j(|x|) ≤ c1|x|−dH(|x|−2), (2.11)

and

c−1
1 φ−1(t−1)d/2 ≤ p(t, x) ≤ c1φ

−1(t−1)d/2, if tφ(|x|−2) ≥ 1. (2.12)

Proof. (2.10) and (2.11) follow from Propositions 2.6 and 2.7. The estimates (2.12)
follow from Remark 2.2, [43, Proposition 3.2] and Proposition 2.8. 2
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3 Parabolic Harnack inequality and preliminary lower bounds of
pD(t, x, y)

Throughout this section, we assume that φ has no drift and satisfies La(γ, CL) for
some a ≥ 0. Recall that pD(t, x, y) defined in (1.7) is the transition density for XD, the
subprocess of X killed upon leaving D.

Let Zs := (Vs, Xs) be the time-space process of X, where Vs = V0 − s. The law of the
time-space process s 7→ Zs starting from (t, x) will be denoted as P(t,x).

Definition 3.1. A non-negative Borel measurable function h(t, x) on R ×Rd is said to
be parabolic (or caloric) on (a, b]×B(x0, r) if for every relatively compact open subset
U of (a, b] × B(x0, r), h(t, x) = E(t,x)[h(ZτZ

U
)] for every (t, x) ∈ U ∩ ([0,∞) × Rd), where

τZU := inf{s > 0 : Zs /∈ U}.
Recall that Φ(r) = 1

φ(1/r2) . In this section, we will first prove that X satisfies the
scale-invariant parabolic Harnack inequality with explicit scaling in terms of Φ. That is,

Theorem 3.2. Suppose that φ has no drift and satisfies La(γ, CL) for some a ≥ 0. For
everyM > 0, there exist c > 0 and c1, c2 ∈ (0, 1) depending on d, γ and CL (also depending
on M and a if a > 0) such that for every x0 ∈ Rd, t0 ≥ 0, R ∈ (0, a−1M) and every non-
negative function u on [0,∞)×Rd that is parabolic on (t0, t0 + 4c1Φ(R)]×B(x0, R),

sup
(t1,y1)∈Q−

u(t1, y1) ≤ c inf
(t2,y2)∈Q+

u(t2, y2),

whereQ− = (t0+c1Φ(R), t0+2c1Φ(R)]×B(x0, c2R) andQ+ = [t0+3c1Φ(R), t0+4c1Φ(R)]×
B(x0, c2R).

Theorem 3.2 clearly implies the elliptic Harnack inequality. Thus this extends the
main result of [29].

To prove Theorem 3.2, we first observe that for each c1, b > 0 and every r, t > 0

satisfying rφ−1(t−1)1/2 ≥ c1 we have

φ−1(t−1)d/2e−br
2φ−1(t−1)

/
(tr−dφ(r−2)) = (φ(r−2)t)−1(rφ−1(t−1)1/2)de−br

2φ−1(t−1)

≤ sup
a>0

[(φ(a2r−2)/φ(r−2))ade−ba
2

] ≤ sup
a>0

ad(a ∨ 1)2e−ba
2

=: c2 <∞.

Using this and the fact that φ ≥ H, we see that for each b > 0 there exists c = c(b) > 0

such that for all t > 0, x ∈ Rd,

φ−1(t−1)d/2 ∧
(
t|x|−dH(|x|−2) + φ−1(t−1)d/2e−b|x|

2φ−1(t−1)
)

≤c(φ−1(t−1)d/2 ∧ t|x|−dφ(|x|−2)). (3.1)

Thus by [43] (for a = 0) and Proposition 2.8 and (2.10) (for a > 0) we have the
following bounds: for t ∈ (0, T ] if a > 0 (for t > 0 if a = 0),

p(t, x) ≤ C

(
(Φ−1(t))−d ∧ t

|x|dΦ(|x|)

)
, x ∈ Rd (3.2)

and

p(t, x) ≥ C−1(Φ−1(t))−de−
1
2 |x|

2/(Φ−1(t))2 , (3.3)

where the above constant C > 1 depends on T if a > 0.
Now, using (3.2) and (3.3) we get the following lower bound.

Proposition 3.3. Suppose that φ has no drift and satisfies La(γ, CL) for some a ≥ 0. For
everyM > 0, there exist constants c > 0 and ε ∈ (0, 1/2) such that for every x0 ∈ Rd and
r ∈ (0, a−1M),

pB(x0,r)(t, x, y) ≥ c
1

(Φ−1(t))d
for x, y ∈ B(x0, εΦ

−1(t)) and t ∈ (0,Φ(εr)]. (3.4)
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Proof. Since the proof for the case a = 0 is almost identical to the proof for the case
a > 0, we will prove the proposition for the case a > 0 only. Fix x0 ∈ Rd and let
Br := B(x0, r). The constant ε ∈ (0, 1/2) will be chosen later. For x, y ∈ BεΦ−1(t), we have
|x− y| ≤ 2εΦ−1(t). So,

|x− y|2

2(Φ−1(t))2
≤ 2ε2 ≤ 1/2. (3.5)

Now combining (1.7), (3.2), (3.3) and (3.5) we have that for x, y ∈ BεΦ−1(t) and t ∈
(0,Φ(εr)],

pBr
(t, x, y) ≥C−1 e−2

(Φ−1(t))d

− C Ex

[
1{τBr≤t}

(
1

(Φ−1(t− τBr
))d

∧ t− τBr

|XτBr
− y|dΦ(|XτBr

− y|)

)]
. (3.6)

Observe that

|XτBr
− y| ≥ r − εΦ−1(t) ≥ (ε−1 − ε)Φ−1(t) ≥ Φ−1(t), for all t ∈ (0,Φ(εr)]

and so

t− τBr

|XτBr
− y|dΦ(|XτBr

− y|)
≤ t

((ε−1 − ε)Φ−1(t))dΦ(Φ−1(t))
=

(ε−1 − ε)−d

(Φ−1(t))d
. (3.7)

Consequently, we have from (3.6) and (3.7),

pBr (t, x, y) ≥ e−2C−1

(Φ−1(t))d
− C

(ε−1 − ε)−d

(Φ−1(t))d

≥
(
e−2C−1 − C(ε−1 − 1)−d

) 1

(Φ−1(t))d
.

Choose ε := ((2e2C2)1/d + 1)−1 < 1/2 so that e−2C−1 − C(ε−1 − ε)−d ≥ e−2C−1/2. We
now have pBr

(t, x, y) ≥ 2−1e−2C−1(Φ−1(t))−d for x, y ∈ BεΦ−1(t) and t ∈ (0,Φ(εr)]. 2

Since for all A > 0

Ex[τB(x,r)] =

∫ AΦ(r)

0

pB(x,r)(t, x, y)dy +

∞∑
k=0

∫ A2k+1Φ(r)

A2kΦ(r)

∫
B(x,r)

pB(x,r)(t, x, y)dydt,

using (3.2) and (3.4) and the semigroup property, we can obtain that there exist constants
c1, c2 > 0 such that

c1Φ(r) ≤ Ex[τB(x,r)] ≤ c2Φ(r), x ∈ Rd, r < 1. (3.8)

We say (UJS) holds for J if there exists a positive constant c such that for every
y ∈ Rd,

J(y) ≤ c

rd

∫
B(0,r)

J(y − z)dz whenever r ≤ |y|/2. (UJS)

Proof of Theorem 3.2. Note that (UJS) always holds for our Lévy density x → j(|x|)
since j is non-increasing. (see [9, page 1070]). Thus, using Proposition 3.3, (3.2) (for the
case a = 0) and (UJS), we see that Theorem 3.2 for the case a = 0 is a special case of
[24, Theorem 1.17 or Theorem 4.3 and (4.11)]. Moreover, using Proposition 3.3, (3.2)
(for the case a > 0) and (UJS), the proof of Theorem 3.2 for the case a > 0 is almost
identical to the proof for the case a = 0 in [24, Theorem 4.3]. We skip the details. 2 .

For the remainder of this section, we use the convention that δD(·) ≡ ∞ whenD = Rd.
For the next two results, D is an arbitrary nonempty open set.
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Proposition 3.4. Suppose that φ has no drift and satisfies La(γ, CL) for some a ≥ 0. For
every T > 0 and b > 0, there exists c = c(a, T, b, φ) > 0 such that

pD(t, x, y) ≥ c (Φ−1(t))−d

for every (t, x, y) ∈ (0, a−1T )×D ×D with δD(x) ∧ δD(y) ≥ bΦ−1(t) ≥ 4|x− y|.

Proof. Using Theorem 3.2, the proof for the case that φ satisfies L0(γ, CL) is identical to
that of [7, Proposition 3.4]. Even through the proof is similar, for reader’s convenience
we provide the proof for the case that φ satisfies La(γ, CL) for a > 0.

Without loss of generality we assume a = 1. We fix b, T > 0 and (t, x, y) ∈ (0, T )×D×D
satisfying δD(x) ∧ δD(y) ≥ bΦ−1(t) ≥ 4|x− y|. Since |x− y| ≤ bΦ−1(t)/4, we have

B(x, bΦ−1(t)/4) ⊂ B(y, bΦ−1(t)/2) ⊂ B(y, bΦ−1(t)) ⊂ D. (3.9)

Thus, by the symmetry of pD, Theorem 3.2 and Lemma 2.3(a), there exists c1 = c1(b, T ) >

0 such that

pB(x,bΦ−1(t)/4)(t/2, x, w) ≤ pD(t/2, x, w) ≤ c1pD(t, x, y) for every w ∈ B(x, bΦ−1(t)/4).

This together with Lemma 2.5 yields that there exist c2, c3 > 0 such that

pD(t, x, y) ≥ c−1
1

|B(x, bΦ−1(t)/4)|

∫
B(x,bΦ−1(t)/4)

pB(x,bΦ−1(t)/4)(t/2, x, w)dw

= c2(Φ
−1(t))−dPx

(
τB(x,bΦ−1(t)/4) > t/2

)
≥ c3 (Φ

−1(t))−d.

2

Proposition 3.5. Suppose that φ has no drift and satisfies La(γ, CL) for some a ≥ 0. For
every b, T > 0, there exists a constant c = c(a, b, T ) > 0 such that

pD(t, x, y) ≥ c t j(|x− y|) (3.10)

for every (t, x, y) ∈ (0, a−1T )×D×D with δD(x)∧ δD(y) ≥ bΦ−1(t) and bΦ−1(t) ≤ 4|x−y|.

Proof. Again, using Proposition 3.4, the proof for the case that φ satisfies L0(γ, CL) is
the same as that of [7, Proposition 3.5], and for reader’s convenience we provide the
proof for the case that φ satisfies La(γ, CL) for a > 0.

Without loss of generality we assume a = 1. Throughout the proof we assume that
t ∈ (0, T ). By Lemma 2.5, starting at z ∈ B(y, (12)−1bΦ−1(t)), with probability at least
c1 = c1(b, T ) > 0 the process X does not move more than (18)−1bΦ−1(t) by time t. Thus,
using the strong Markov property and the Lévy system in (2.6), we obtain

Px
(
XD
t ∈ B

(
y, 6−1bΦ−1(t)

))
≥ c1Px(X

D
t∧τB(x,(18)−1bΦ−1(t))

∈ B(y, (12)−1bΦ−1(t))

and t ∧ τB(x,(18)−1bΦ−1(t)) is a jumping time )

= c1Ex

[∫ t∧τB(x,(18)−1bΦ−1(t))

0

∫
B(y, (12)−1bΦ−1(t))

j(|Xs − u|)duds

]
. (3.11)
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Using the (UJS) property of j (see [9, page 1070]), we obtain

Ex

[∫ t∧τB(x,(18)−1bΦ−1(t))

0

∫
B(y, (12)−1bΦ−1(t))

j(|Xs − u|)duds

]

= Ex

[∫ t

0

∫
B(y, (12)−1bΦ−1(t))

j(|XB(x,(18)−1bΦ−1(t))
s − u|)duds

]

≥ c2Φ
−1(t)d

∫ t

0

Ex

[
j(|XB(x,(18)−1bΦ−1(t))

s − y|)
]
ds

≥ c2Φ
−1(t)d

∫ t

t/2

∫
B(x,(72)−1bΦ−1(t/2))

j(|w − y|)pB(x,(18)−1bΦ−1(t))(s, x, w)dwds. (3.12)

Since, for t/2 < s < t and w ∈ B(x, (72)−1bΦ−1(t/2)),

δB(x,(18)−1bΦ−1(t))(w) ≥ (18)−1bΦ−1(t)− (72)−1bΦ−1(t/2) ≥ 2−1(18)−1bΦ−1(s)

and

|x− w| < (72)−1bΦ−1(t/2) ≤ 4−1(18)−1bΦ−1(s),

we have by Proposition 3.4 that for t/2 < s < t and w ∈ B(x, (72)−1bΦ−1(t/2)),

pB(x,(18)−1bΦ−1(t))(s, x, w) ≥ c3 (Φ
−1(s))−d ≥ c3 (Φ

−1(t))−d. (3.13)

Combining (3.11), (3.12) with (3.13) and applying (UJS) again, we get

Px
(
XD
t ∈ B

(
y, 6−1bΦ−1(t)

))
≥c4t

∫
B(x,(72)−1bΦ−1(t/2))

j(|w − y|)dw

≥c5t(Φ−1(t/2))dj(|x− y|) ≥ c6t(Φ
−1(t))dj(|x− y|). (3.14)

In the last inequality we have used Lemma 2.3(a). Since by the semigroup property of
pD and Proposition 3.4,

pD(t, x, y) =

∫
D

pD(t/2, x, z)pD(t/2, z, y)dz

≥
∫
B(y, bΦ−1(t/2)/6)

pD(t/2, x, z)pD(t/2, z, y)dz

≥ c7(Φ
−1(t/2))−dPx

(
XD
t/2 ∈ B(y, 6−1bΦ−1(t/2))

)
,

the proposition now follows from this and (3.14). 2

Recall that B = (Bt : t ≥ 0) is a Brownian motion in Rd and S = (St : t ≥ 0) a
subordinator independent of B. Suppose that U is an open subset of Rd. We denote
by BU the part process of B killed upon leaving U . The process {ZUt : t ≥ 0} defined
by ZUt = BUSt

is called a subordinate killed Brownian motion in U . Let qU (t, x, y) be the
transition density of ZU . Clearly, ZUt = BSt

for every t ∈ [0, ζ) where ζ is the lifetime of
ZU . Therefore we have

pU (t, z, w) ≥ qU (t, z, w) for (t, z, w) ∈ (0,∞)× U × U. (3.15)

For a C1,1 open set D in Rd with characteristics (R0,Λ), consider a z ∈ ∂D and a
C1,1-function ϕ = ϕz : Rd−1 → R satisfying ϕ(0) = 0, ∇ϕ(0) = (0, . . . , 0), ‖∇ϕ‖∞ ≤
Λ, |∇ϕ(x) − ∇ϕ(w)| ≤ Λ|x − w| and an orthonormal coordinate system CSz of z =
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(z1, · · · , zd−1, zd) := (z̃, zd) with origin at z such that D ∩ B(z,R0) = {y = (ỹ, yd) ∈
B(0, R0) in CSz : yd > ϕ(ỹ)}. Define

ρz(x) := xd − ϕ(x̃) and Dz(r1, r2) := {y ∈ D : r1 > ρz(y) > 0, |ỹ| < r2} , r1, r2 > 0,

(3.16)
where (x̃, xd) are the coordinates of x in CSz. We also define

κ = κ(Λ) := (1 + (1 + Λ)2)−1/2. (3.17)

It is easy to see that for every z ∈ ∂D and r ≤ κR0,

Dz(r, r) ⊂ D ∩B(z, r/κ). (3.18)

It is well known (see, for instance [46, Lemma 2.2]) that there exists L0 = L0 (R0,

Λ, d) > 0 such that for every z ∈ ∂D and r ≤ κR0, one can find a C1,1 domain Vz(r)

with characteristics (rR0/L0,ΛL0/r) such that Dz(3r/2, r/2) ⊂ Vz(r) ⊂ Dz(2r, r). In this
paper, given a C1,1 open set D, Vz(r) always refers to the C1,1 domain above.

Proposition 3.6. Suppose that φ has no drift and satisfies La(γ, CL) for some a ≥ 0.

(a) We assume that D is a connected C1,1 open set in Rd with characteristics (R0,Λ)

such that the path distance of D is comparable to the Euclidean distance with char-
acteristic λ1. For any T > 0, there exist positive constants c1 and c2 depending on
R0,Λ, λ1, T, φ, γ, CL, a, b such that for every (t, x, y) ∈ (0, T ]×D ×D,

pD(t, x, y) ≥ c1

(
1 ∧ δD(x)

Φ−1(t)

)(
1 ∧ δD(y)

Φ−1(t)

)
Φ−1(t)−d exp

(
−c2|x− y|2

Φ−1(t)2

)
. (3.19)

Moreover, there exist c3, c4 > 0 such that for all z ∈ ∂D, r ≤ κR and (t, x, y) ∈
(0,Φ(r)]× Vz(r)× Vz(r),

pVz(r)(t, x, y) ≥ c3

(
1 ∧

δVz(r)(x)

Φ−1(t)

)(
1 ∧

δVz(r)(y)

Φ−1(t)

)
Φ−1(t)−d exp

(
−c4|x− y|2

Φ−1(t)2

)
. (3.20)

(b) Furthermore, if φ satisfies L0(γ, CL) and D is a domain consisting of all the points
above the graph of a bounded globally C1,1 function, then (3.19) holds for every (t, x, y) ∈
(0,∞)×D ×D.

Proof. (a) Le ρ ∈ (0, 1) be the constant in Proposition 2.1. Without loss of generality we
assume T ≥ ρφ(a)−1. Suppose that x and y are in D. Let p̃D(t, z, w) be the transition
density of BD. By [26, Theorem 3.3] (see also [49, Theorem 1.2] where the comparability
condition on the path distance in D with the Euclidean distance is used), there exist
positive constants c1 = c1(R0,Λ, λ0, T, φ, ρ) and c2 = c2(R0,Λ, λ0) such that for any
(s, z, w) ∈ (0, φ−1(ρT−1)−1]×D ×D,

p̃D(s, z, w) ≥ c1

(
1 ∧ δD(z)√

s

)(
1 ∧ δD(w)√

s

)
s−d/2e−c2|z−w|2/s. (3.21)

Recall that qD(t, x, y) is of the form

qD(t, x, y) =

∫
(0,∞)

p̃D(s, x, y)P(St ∈ ds).
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Using this and (3.21) we get

pD(t, x, y) ≥ qD(t, x, y)

≥
∫
[2−1φ−1(t−1)−1,φ−1(ρt−1)−1]

p̃D(s, x, y)P(St ∈ ds)

≥ c1

∫
[2−1φ−1(t−1)−1,φ−1(ρt−1)−1]

(
1 ∧ δD(x)√

s

)(
1 ∧ δD(y)√

s

)
s−d/2e−c2

|x−y|2
s P(St ∈ ds)

≥ c1

(
1 ∧ δD(x)√

φ−1(ρt−1)−1

)(
1 ∧ δD(y)√

φ−1(ρt−1)−1

)
φ−1(ρt−1)d/2e−2c2|x−y|2φ−1(t−1)

× P
(
2−1φ−1(t−1)−1 ≤ St ≤ φ−1(ρt−1)−1

)
. (3.22)

Now, using (2.9) and Proposition 2.1, we conclude from (3.22) that

pD(t, x, y)

≥c3

(
1 ∧ δD(x)√

φ−1(t−1)−1

)(
1 ∧ δD(y)√

φ−1(t−1)−1

)
φ−1(t−1)d/2e−2c2|x−y|2φ−1(t−1)

=c3

(
1 ∧ δD(x)

Φ−1(t)

)(
1 ∧ δD(y)

Φ−1(t)

)
Φ−1(t)−d exp

(
−2c2

|x− y|2

Φ−1(t)2

)
.

We have proved (3.19).
Using [40, (4.4)], we have that there exist c4, c5 > 0 such that for any s ∈ (0, r2] and

any z, w ∈ Vz(r),

p̃Vz(r)(s, z, w) ≥ c4

(
1 ∧

δVz(r)(z)√
s

)(
1 ∧

δVz(r)(w)√
s

)
s−d/2e−c5|z−w|2/s. (3.23)

Since t ≤ Φ(r) if and only if φ−1(t−1)−1 ≤ r2, we can repeat the proof of (3.19) and see
that (3.20) holds true.
(b) Suppose that D is a domain consisting of all the points above the graph of a bounded
globally C1,1 function. Then by [46], (3.21) holds for all (s, z, w) ∈ (0,∞)×D ×D. Using
this fact and the assumption L0(γ, CL), one can follow the arguments in (a) line by line
and prove (b). We skip the details. 2

4 Key estimates

In this section we prove key estimates on exit distribution for X in C1,1 open set with
explicit decay rate.

Recall that H(λ) = φ(λ)−λφ′(λ), which is non-negative and non-decreasing on (0,∞).
We remark here that H loses the information on the drift of φ.

Throughout this section we assume that H satisfies La(γ, CL) and Ua(δ, CU ) for some
a > 0 with δ < 2 and the drift of the subordinator is zero.

Proposition 4.1. For every M > 0 there exists c = c(a,M) > 0 such that for all t > 0

and x ∈ B(0,M) satisfying tφ(|x|−2) ≤ 1 we have

p(t, x) ≥ ct|x|−dH(|x|−2) .

Thus, for all x ∈ B(0,M),

j(|x|) ≥ c|x|−dH(|x|−2) . (4.1)
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Proof. The proof is just a combination of Proposition 3.5 and the proof of [43, Proposition
3.6]. We spell out the details for completeness. By [43, Proposition 2.8] there exist
L1, L2 > 1 and c1 > 0 such that for |x| ≤ (aL1)

−1/2 and tφ(|x|−2) ≤ 1 it holds that

P
(
|x|2 ≤ St ≤ L2|x|2

)
≥ c1tH(|x|−2) . (4.2)

Without loss of generality, we assume that M > (aL1)
−1/2 and consider the following

two cases separately.
(1) |x| ≤ (aL1)

−1/2 and tφ(|x|−2) ≤ 1: In this case, by (1.4) and (4.2) we obtain

p(t, x) ≥ (4π)−d/2
∫
[|x|2,L2|x|2]

s−d/2e−
|x|2
4s P(St ∈ ds)

≥ (4π)−d/2L
−d/2
2 |x|−de−1/4P(|x|2 ≤ St ≤ L2|x|2)

≥ c1(4π)
−d/2L

−d/2
2 e−1/4t|x|−dH(|x|−2) .

(2) (aL1)
−1/2 < |x| ≤ M and tφ(|x|−2) ≤ 1: In this case, t ≤ φ(|x|−2)−1 ≤ φ(M−2)−1.

Thus by Proposition 3.5 we obtain

p(t, x) ≥ c2tj(|x|) ≥ c2tj(M) ≥ c3t|x|−dH(|x|−2) .

2

We now revisit [43] and improve the main result of [43] for the cases that H satisfies
the lower and upper scaling conditions near infinity.

Theorem 4.2. For every T,M > 0 there exists c = c(a, T,M) > 0 such that for all t ≤ T

and x ∈ B(0,M),

p(t, x) ≥ c
(
φ−1(t−1)d/2 ∧

(
t|x|−dH(|x|−2) + φ−1(t−1)d/2e−2−1|x|2φ−1(t−1)

))
.

Proof. This theorem follows from Lemma 2.3(b), Propositions 2.8 and 4.1.
2

Let TA := inf{t > 0 : Xt ∈ A}, the first hitting time of X to A. Observe that for every
Borel subset A ⊂ U and r > 0, we have

Px (TA < τU ∧ Φ(r)) ≥ Px
(∫ Φ(r)

0

1A(X
U
s )ds > 0

)
≥ 1

Φ(r)

∫ Φ(r)

0

Px

(∫ Φ(r)

0

1A(X
U
s )ds > u

)
du

=
1

Φ(r)
Ex

∫ Φ(r)

0

1A(X
U
s )ds ≥

1

Φ(r)

∫ Φ(r)

0

∫
A

pU (s, x, y)dyds. (4.3)

Using Levy system, (2.11) and (3.8), we have that for w ∈ Rd and 0 < 4r ≤ R < 1,

Pw
(
XτB(w,r)

∈ B(w,R)c
)
≤ Ew[τB(w,r)] sup

y∈B(w,r)

∫
B(w,R)c

j(|y − z|)dz

≤ c1
φ(r−2)

(∫ 1

R

H(s−2)s−1ds+ c

)
≤ c2

H(R−2)

φ(r−2)
≤ c2

φ(R−2)

φ(r−2)
. (4.4)

Now we prove the following estimate, which is inspired by the proof of [28, Lemma
5.3]. (See also [40, 41].) We recall that ρz, Dz(r1, r2) and κ are defined in (3.16) and
(3.17) respectively.
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Proposition 4.3. Let D ⊂ Rd be a C1,1 open set with characteristics (R0,Λ). Assume
that H satisfies La(γ, CL) and Ua(δ, CU ) with δ < 2 and γ > 2−11δ≥1 for some a ≥ 0. Then
there exists a constant c = c(φ,R0,Λ) > 0 such that for every r ≤ κ−1(R0 ∧ 1)/2, z ∈ D

and x ∈ Dz(2
−3r, 2−4r),

Px
(
XτDz(r,r)

∈ D
)
≤ cPx

(
XτDz(r,r)

∈ Dz(2r, r)
)
.

Proof. Without loss of generality we assume z = 0. Let E2 := {XτD0(r,r)
∈ D} and

E1 := {XτD0(r,r)
∈ D0(2r, r)}. We claim that Px(E2) ≤ c0Px(E1) for all r ≤ κ−1(R0 ∧ 1)/2

and x ∈ D0(2
−3r, 2−4r).

When δ < 1, we use [30, Theorem 1.8] and get the claim immediately. Thus, through-
out the proof we assume that δ ≥ 1.

Recall from the paragraph before Proposition 3.6 that, for z ∈ ∂D and r ≤ κR0, V0(r)
is a C1,1 domain with characteristics (rR0/L0,ΛL0/r) such that D0(3r/2, r/2) ⊂ V0(r) ⊂
D0(2r, r). Note that for w ∈ D0(2

−3r, 2−4r), we have δV0(r)(w) = δD(w). Using this, (3.20)
and (4.3), we have that for w ∈ D0(2

−3r, 2−4r),

Pw(E1) ≥ Pw
(
τV0(r) > TD0(5r/4,r/4)\D0(r,r/4))

)
≥ 1

Φ(r)

∫ Φ(r)

Φ(r)/2

∫
D0(5r/4,r/4)\D0(r,r/4))

pV0(r)(s, w, y)dyds

≥ c1
Φ(r)

∫ Φ(r)

Φ(r)/2

∫
D0(5r/4,r/4)\D0(r,r/4))

(
1 ∧

δV0(r)(w)

Φ−1(s)

)
Φ−1(s)−ddyds

≥ c2
δD(w)r

d

Φ(r)

∫ Φ(r)

Φ(r)/2

ds

Φ−1(s)d+1
≥ c3

δD(w)

r
. (4.5)

We define, for i ≥ 1,

Ji = D0(2
−i−2r, si) \D0(2

−i−3r, si), si =
1

4

1

2
− 1

50

i∑
j=1

1

j2

 r,

and s0 = s1. Note that r/(10) < si < r/8. For i ≥ 1, set

di = di(r) = sup
z∈Ji

Pz(E2)/Pz(E1), J̃i = D0(2
−i−2r, si−1), τi = τJ̃i . (4.6)

Repeating the argument leading to [40, (6.29)], we get that for z ∈ Ji and i ≥ 2,

Pz(E2) ≤
(

sup
1≤k≤i−1

dk

)
Pz(E1) + Pz

(
Xτi ∈ D \ ∪i−1

k=1Jk
)
. (4.7)

For i ≥ 2, define σi,0 = 0, σi,1 = inf{t > 0 : |Xt−X0| ≥ 2−i−2r} and σi,m+1 = σi,1◦θσi,m

for m ≥ 1.
We first claim that for all w ∈ J̃i, Pw(Xσi,1 /∈ J̃i) is bounded below by a strictly positive

constant. We prove the claim for w ∈ J̃i \D0(2
−i−3r, si−1) = {y ∈ D : 2−i−2r > ρ0(y) ≥

2−i−3r, |ỹ| < si−1}. Since J̃i = {y = (ỹ, t) : 0 < t − ϕ̂(ỹ) < 2−i−2r, |ỹ| < si−1} with
t := 2−i−2r − yd and ϕ̂(ỹ) := −ϕ(ỹ), the proof for the case w ∈ D0(2

−i−3r, si−1) is same.
We choose ε ∈ (0, 2−4/Λ) small so that

(2ε2 + 1)

(
3 + εΛ

1− Λε

)2

+ 2ε2 < 16. (4.8)

Fix w ∈ J̃i \D0(2
−i−3r, si−1) and define A := B((w̃, wd + 2−i−1r), ε2−i−4r) and

V := B((w̃, wd − 2−i−4r), 3 · 2−i−2r) ∩ {yd > wd − 2−i−4r, |ỹ − w̃| < ε(yd − wd + 2−i−4r)}.
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For y ∈ A, we have yd − wd ≥ 2−i−1r − |yd − wd − 2−i−1r| > 2−i−1r − ε2−i−4r > 2−i−2r.

Thus, for y ∈ A we have y /∈ B(w, 2−i−2r), |w̃ − ỹ| ≤ ε2−i−4r < ε(yd − wd + 2−i−4r) and

ρ0(y) ≥ yd − wd + ρ0(w)− |ϕ(w̃)− ϕ(ỹ)| > (2−i−2 + (1− εΛ)2−i−4)r > 2−i−2r.

Therefore

A ⊂ V \ (J̃i ∪B(w, 2−i−2r)). (4.9)

If y ∈ V ∩ J̃i and yd < wd, then clearly |yd − wd| = wd − yd ≤ 2−i−4r. If y ∈ V ∩ J̃i and
yd ≥ wd, then yd−wd = ρ0(y)−ρ0(w)+ |ϕ(w̃)−ϕ(ỹ)| < 3 ·2−i−4r+Λε|yd−wd|+Λε2−i−4r

so that |yd −wd| < 2−i−4r(3 +Λε)/(1−Λε). Thus using (4.8), we have that for y ∈ V ∩ J̃i,

|y − w|2 ≤ ε2(|yd − wd|+ 2−i−4r)2 + |yd − wd|2 ≤ (2ε2 + 1)|yd − wd|2 + 2ε2(2−i−4r)2

≤
(
2ε2 + 1)

(3 + εΛ

1− Λε

)2
+ 2ε2

)
(2−i−4r)2 < (2−i−2r)2,

which implies that

V ∩ J̃i ⊂ B(w, 2−i−2r) (4.10)

On the other hand, for y ∈ 1
2A := B((w̃, wd + 2−i−1r), ε2−i−5r), we have δV (w) ∧ δV (y) ≥

c02
−i−1r and |w − y| ≤ 2−ir. Since we assume that γ > 1/2, we can find a large M so

that
Φ−1(2s)

Φ−1(s/M)
≤ c4(2M)1/(2γ) <

Mc0
48

and
Φ(s)

Φ(c0s)
≤M for all s ∈ (0, 1).

Thus, when Φ(2−i−2r)/2 ≤ s ≤ Φ(2−i−2r) and |z1 − z2| ≤ 3 · 2−ir/M with δV (zi) ≥
c02

−i−2r, we see that |z1 − z2| ≤ 12 · 2−i−2r/M ≤ 12Φ−1(2s)/M ≤ c0Φ
−1(s/M)/4 and

δV (zi) ≥ c02
−i−2r ≥ Φ−1(s/M) (because M ≥ Φ(2−i−2r)/Φ(c02

−i−2r) ≥ s/Φ(c02
−i−2r)).

Thus, by Proposition 3.4, for such y, z and s, using this and a chaining argument through
the semigroup property, we have

pV (s, w, y) ≥ c6(2
−ir)−d, for Φ(2−i−2r)/2 ≤ s ≤ Φ(2−i−2r) and y ∈ 1

2
A. (4.11)

By (4.3) and (4.8)–(4.11), we have that for all w ∈ J̃i \D0(2
−i−3r, si−1),

Pw
(
Xσi,1

/∈ J̃i
)
≥ Pw(T 1

2A
< τV ∧ Φ(2−i−2r))

≥ 1

Φ(2−i−2r)

∫ Φ(2−i−2r)

Φ(2−i−2r)/2

∫
1
2A

pV (s, w, y)dyds ≥ c6
| 12A|

Φ(2−i−2r)

∫ Φ(2−i−2r)

Φ(2−i−2r)/2

(2−ir)−dds,

which is a positive constant independent of i. We have proved the claim.
Thus, we have that there exists k1 ∈ (0, 1) such that

Pw
(
Xσi,1

∈ J̃i
)
= 1− Pw

(
Xσi,1

/∈ J̃i
)
< k1, w ∈ J̃i. (4.12)

For the purpose of further estimates, we now choose a positive integer l ≥ 1 such that
kl1 ≤ 4−1. Next we choose i0 ≥ 2 large enough so that 2−i < 1/(200li3) for all i ≥ i0. Now
we assume i ≥ i0. Using (4.12) and the strong Markov property we have that for z ∈ Ji,

Pz(τi > σi,li) ≤ Pz
(
Xσi,k

∈ J̃i, 1 ≤ k ≤ li
)

= Ez

[
PXσi,li−1

(Xσi,1
∈ J̃i) : Xσi,li−1

∈ J̃i, Xσi,k
∈ J̃i, 1 ≤ k ≤ li− 2

]
≤ Pz

(
Xσi,k

∈ J̃i, 1 ≤ k ≤ li− 1
)
k1 ≤ kli1 . (4.13)
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Note that if z ∈ Ji and y ∈ D \ [J̃i ∪ (∪i−1
k=1Jk)], then |y− z| ≥ (si−1− si)∧ (2−3− 2−i−2)r =

r/(200i2). Furthermore, since 2−i−2r < r/(200i2), τi must be one of the σi,k’s, k ≤ li.
Hence, on {Xτi ∈ D \ ∪i−1

k=1Jk, τi ≤ σi,li} with X0 = z ∈ Ji, there exists k, 1 ≤ k ≤ li,
such that |Xσi,k

−X0| = |Xτi −X0| > r/(200i2). Thus for some 1 ≤ k ≤ li,

k∑
j=1

∣∣Xσi,j
−Xσi,j−1

∣∣ > r

200i2
.

which implies for some 1 ≤ k′ ≤ k ≤ li,∣∣Xσi,k′ −Xσi,k′−1

∣∣ ≥ 1

k

r

200i2
≥ 1

li

r

200i2
.

Thus, using the strong Markov property and then using (4.4) (noting that 4 · 2−i−2 <

1/(200li3) for all i ≥ i0) we have

Pz
(
Xτi ∈ D \ ∪i−1

k=1Jk, τi ≤ σi,li
)

≤
li∑
k=1

Pz

(
|Xσi,k

−Xσi,k−1
| ≥ r/(200li3), Xσi,k−1

∈ J̃i

)
≤li sup

z∈J̃i
Pz
(
|Xσi,1 − z| ≥ r/(200li3)

)
≤ c7li

φ((200li3)2/r2)

φ(22(i+2)r−2)
. (4.14)

Since

φ((200li3)2/r2)

φ(22(i+2)r−2)
≥ c8

(200li3)2

(22(i+2))2
≥ c9i

6(4)−i,

by (4.5), (4.13), (4.14) and Lemma 2.3(b), for z ∈ Ji, i ≥ i0, we have

Pz(Xτi ∈ D \ ∪i−1
k=1Jk)

Pz(E1)
≤ 1

Pz(E1)

(
kli1 + c24li

φ((200li3)2/r2)

φ(22(i+2)r−2)

)
≤ c10i

Pz(E1)

φ((200li3)2/r2)

φ(22(i+2)r−2)
≤ c11i2

iφ((200li
3)2/r2)

φ(22(i+2)r−2)
≤ c12i2

ii6γ(2γ)−2i ≤ c13i
132−(2γ−1)i.

By this and (4.7), for z ∈ Ji and i ≥ i0,

Pz(E2)

Pz(E1)
≤ sup

1≤k≤i−1
dk +

Pz(Xτi ∈ D \ ∪i−1
k=1Jk)

Pz(E1)
≤ sup

1≤k≤i−1
dk + c13i

132−(2γ−1)i.

This implies that

sup
r≤κ−1(R0∧1)/2

di(r) ≤ sup
1≤k≤i0−1

r≤κ−1(R0∧1)/2

dk(r) + c14

∞∑
k=i0

k132−(2γ−1)k =: c15 <∞.

Thus the claim above is valid, since D0(2
−3r, 2−4r) ⊂ ∪∞

k=1Jk. The proof is now complete.
2

The next result should be well-known but we could not find any reference. We provide
the full details.

Lemma 4.4. For any non-negative locally integrable function t → k(t) on (0,∞) and
every R > 0, s ∈ (0, R/2) and ε ∈ (0, s/2),(∫ R+s

s+ε

+

∫ s−ε

−R+s

)
((t+)

2 − s2)k(|t− s|)dt

=

∫ R

ε

(1u<s2u
2 + 1u≥s(u

2 + s(2u− s)))k(|u|)du. (4.15)
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Thus,

P.V.

∫ R+s

−R+s

((t+)
2 − s2)k(|t− s|)dt =

∫ R

0

(1u<s2u
2 + 1u≥s(u

2 + s(2u− s)))k(|u|)du.

Proof. Using the change of variables u = t− s in the first integral and u = s− t in the
second integral, we get that for ε ∈ (0, s/2),(∫ R+s

s+ε

+

∫ s−ε

−R+s

)
((t+)

2 − s2)k(|t− s|)dt

=

∫ R

ε

((s+ u)2 − s2)k(|u|)du+

∫ R

ε

([(s− u)+]
2 − s2)k(|u|)du

=

∫ R

ε

((s+ u)2 + [(s− u)+]
2 − 2s2)k(|u|)du

=

∫ s

ε

((s+ u)2 + (s− u)2 − 2s2)k(|u|)du+

∫ R

s

((s+ u)2 − 2s2)k(|u|)du

=

∫ s

ε

2u2k(|u|)du+

∫ R

s

(u2 + s(2u− s))k(|u|)du.

Letting ε→ 0, we also have proved the second claim of the lemma. 2

Lemma 4.5. For every R > 0 and x = (0̃, xd) ∈ Rd with xd > 0,

1

2d

∫
B(0,R)

|z|2j(|z|)dz

≤P.V.
∫
{(w̃,wd)∈Rd:|w̃|<R,|wd−xd|<R}

([(wd)+]
2 − x2d)j(|w − x|)dw (4.16)

≤1

d

∫
B(0,

√
2R)

|z|2j(|z|)dz <∞.

Proof. By Lemma 4.4, for all small ε ∈ (0, xd/2),∫
{(w̃,wd)∈Rd:|w̃|<R,|wd−xd|<R,|w̃|2+|wd−xd|2>ε2}

([(wd)+]
2 − x2d)j(|w − x|)dw

=

∫
{|w̃|<R}

∫
{
√

(ε2−|w̃|2)+<|wd−xd|<R}
([(wd)+]

2 − x2d)j((|wd − xd|2 + |w̃|2)1/2)dwddw̃

=

∫
{|w̃|<R}

∫ R

√
(ε2−|w̃|2)+

(1u<xd
2u2 + 1u≥xd

(|u|2 + xd(2u− xd)))j((|u|2 + |w̃|2)1/2)dudw̃.

Thus by the monotone convergence theorem, (4.16) is equal to

1

2

∫
{|w̃|<R}

∫ R

−R
(1|u|<xd

2u2 + 1|u|≥xd
(u2 + xd(2u− xd)))j((|u|2 + |w̃|2)1/2)dudw̃

≥ 1

2

∫
B(0,R)

|u|2j((|u|2 + |w̃|2)1/2)dudw̃ =
1

2d

∫
B(0,R)

|z|2j(|z|)dz.

Since xd(2u− xd) ≤ u2, wee also have the upper bound as

1

2

∫
{|w̃|<R}

∫ R

−R
(1|u|<xd

2u2 + 1|u|≥xd
(u2 + xd(2u− xd)))j((|u|2 + |w̃|2)1/2)dudw̃

≤
∫
B(0,

√
2R)

|u|2j((|u|2 + |w̃|2)1/2)dudw̃ =
1

d

∫
B(0,

√
2R)

|z|2j(|z|)dz. 2
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Let ψ(r) = 1/H(r−2). We first note that Φ(r) ≤ ψ(r) and

c1

(R
r

)2γ
≤ ψ(R)

ψ(r)
≤ c2

(R
r

)2δ
for every 0 < r < R < 1. (4.17)

Since∫ r

0

s

ψ(s)
ds =

∫ r

0

sH(s−2)ds =
1

2

∫ ∞

r−2

H(t)

t2
dt = −1

2

∫ ∞

r−2

(
φ(t)

t
)′dt =

r2

2
φ(r−2) =

r2

2Φ(r)
,

Φ and ψ are also related as

Φ(r) =
r2

2
∫ r
0

s
ψ(s)ds

. (4.18)

Using (4.1), (4.17) and (4.18), we get that for R < 1,∫
B(0,R)

|z|2j(|z|)dz ≥ c−1
1 c2(d)

∫ R

0

r

ψ(r)
dr =

c2(d)

2c1

R2

Φ(R)
, (4.19)

and∫
B(0,R)c

j(|z|)dz ≤ c2(d)(c1

∫ 1

R

dr

rψ(r)
+

∫ ∞

1

j(r)dr) = c2(d)(
c1

ψ(R)

∫ 1

R

ψ(R)

rψ(r)
dr + c3)

≤ c2(d)c1c4(1−R2δ) + c3
ψ(R)

≤ c2(d)c1c4 + c3
ψ(R)

≤ c2(d)c1c4 + c3
Φ(R)

(4.20)

Choose

M0 := 4[c1d(c2(d)c1c4 + c3)/c2(d)]
1/2 > 4. (4.21)

By (4.19) and (4.20), if r ≤ R/M0 then

r2
∫
B(0,R)c

j(|z|)dz ≤ R2 c2(d)c1c4 + c3
M2

0Φ(R)
≤ c2(d)

8dc1

R2

Φ(R)
≤ 1

4d

∫
B(0,R)

|z|2j(|z|)dz. (4.22)

We use this constantM0 in Lemma 4.6, Proposition 4.7 and Theorem 4.11 below.
For any function f : Rd → R and x ∈ Rd, we define an operator as follows:

Lf(x) := P.V.

∫
Rd

(f(y)− f(x))j(|x− y|)dy,

D(L) :=
{
f ∈ C2(Rd) : P.V.

∫
Rd

(f(y)− f(x))j(|x− y|)dy exists and is finite.

}
.

Recall that C2
0 (R

d) is the collection of C2 functions in Rd vanishing at infinity. It is well
known that C2

0 (R
d) ⊂ D(L) and that, by the rotational symmetry of X,

A|C2
0 (R

d) = L|C2
0 (R

d) (4.23)

where A is the infinitesimal generator of X. We also recall that δD(x) is the distance of
the point x to Dc.

Lemma 4.6. Suppose that D is a C1,1 open set in Rd with characteristics (R0,Λ). For
any z ∈ ∂D and r ≤ (1 ∧R0)/4, we define

f(y) = fr,z(y) := (δD(y))
21D∩B(z,2r)(y).

Then there exist c = c(φ,Λ, d) > 1 and R̃ = R̃(φ,Λ, d) ∈ (0, (1 ∧R0)/4) independent of z
such that for all r ≤ R̃, Lf is well-defined in D ∩B(z, r/M0) and

c
r2

Φ(r)
≥ Lf(x) ≥ c−1 r2

Φ(r)
for all x ∈ D ∩B(z, r/M0). (4.24)
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Proof. Since the case of d = 1 is easier, we give the proof only for d ≥ 2. Without
loss of generality we assume that R < 1 and Λ > 1/R0. For x ∈ D ∩ B(z, r/M0),
choose zx ∈ ∂D be a point satisfying δD(x) = |x − zx|. Let ϕ be a C1,1 function and
CS = CSzx be an orthonormal coordinate system with zx chosen as the origin so that
ϕ(0̃) = 0, ∇ϕ(0̃) = (0, . . . , 0), ‖∇ϕ‖∞ ≤ Λ, |∇ϕ(ỹ) − ∇ϕ(z̃)| ≤ Λ|ỹ − z̃|, and x = (0̃, xd),
D ∩B(zx, R0) = {y = (ỹ, yd) ∈ B(0, R0) in CS : yd > ϕ(ỹ)}. We fix the function ϕ and the
coordinate system CS, and consider the truncated square function [(yd)+]

2 in CS. Let

Bx = Bx(r) := {(w̃, wd) in CS : |w̃| < r, |wd − xd| < r} ⊂ B(z, 2r),

and we define ϕ̂ : B(0̃, r) → R by ϕ̂(ỹ) := 2Λ|ỹ|2. Since ∇ϕ(0̃) = 0, by the mean value
theorem we have −2−1ϕ̂(ỹ) ≤ ϕ(ỹ) ≤ 2−1ϕ̂(ỹ) for any y ∈ D ∩B(x, r/2) and so that

{z = (z̃, zd) ∈ Bx : zd ≥ϕ̂(z̃)} ⊂ D ∩Bx ⊂ {z = (z̃, zd) ∈ Bx : zd ≥ −ϕ̂(z̃)}.

Let A := {y ∈ Bx : −ϕ̂(ỹ) ≤ yd ≤ ϕ̂(ỹ)} and E := {y ∈ Bx : yd > ϕ̂(ỹ)} ⊂ D so that∫
Bx(r)

∣∣[(yd)+]2 − (δD(y))
2
+

∣∣ j(|y − x|)dy

≤
∫
A

(y2d + δD(y)
2)j(|y − x|)dy +

∫
E

|y2d − δD(y)
2|j(|y − x|)dy

≤25Λ2

∫
A

|ỹ|4j(|ỹ|)dy + c0r

∫
E

|yd − δD(y)|j(|y − x|)dy (4.25)

where we have used y2d + δD(y)
2 ≤ 2(2ϕ̂(ỹ))2 = 2(4Λ|ỹ|)2 for y ∈ A. We will show that the

above is less than c1r3/Φ(r).
First, let md−1(dy) be the Lebesgue measure on Rd−1. Since md−1({y : |ỹ| =

s,−ϕ̂(ỹ) ≤ yd ≤ ϕ̂(ỹ)}) ≤ c2s
d for 0 < s < r, using polar coordinates for |ỹ| = s, by

(4.18) and (2.11)∫
A

|ỹ|4j(|ỹ|)dy ≤ r3
∫
A

|ỹ|j(|ỹ|)dy ≤ c3r
3

∫ r

0

s

ψ(s)
ds =

c3r
5

2Φ(r)
. (4.26)

Second, when y ∈ E, we have that |yd − δD(y)| ≤ Λ|ỹ|. Indeed, if 0 < yd ≤ δD(y)

and y ∈ E, δD(y) ≤ yd + |ϕ(ỹ)| ≤ yd + Λ|ỹ|. Since we assume that Λ > 1, we have
|ỹ|2 + (R0 − yd)

2 < |ỹ|2 + (R0 − 2Λ|ỹ|2)2 < R2. Thus, if yd ≥ δD(y) and y ∈ E, using the
interior ball condition, we have

yd − δD(y) ≤ yd −R0 +
√

|ỹ|2 + (R0 − yd)2

=
|ỹ|2√

|ỹ|2 + (R0 − yd)2 + (R0 − yd)
≤ |ỹ|2

2(R0 − yd)
≤ |ỹ|2

R0
≤ Λ|ỹ|2.

Thus, ∫
E

|yd − δD(y)|j(|y − x|)dy ≤ Λ

∫
E

|ỹ|2j((|yd − xd|+ |ỹ|)/2)dyddỹ. (4.27)

Since E ⊂ {(ỹ, yd) : |ỹ| < r, ϕ̂(ỹ) < yd < ϕ̂(ỹ)+2r}, using the polar coordinates for |ỹ| = v

and the change of the variable s := yd − ϕ̂(v), we have by (2.11) and Lemma 2.3,∫
E

|ỹ|2j((|yd − xd|+ |ỹ|)/2)dyddỹ ≤ c4

∫ r

0

∫ 2r

0

dsdv

ψ(v + |s+ ϕ̂(v)− xd|)
. (4.28)

Using [39, Lemma 4.4] with non-increasing functions f(s) ≡ 1 and g(s) := ψ(s)−1 and
x(r) = xd − ϕ̂(r) and get∫ r

0

∫ 2r

0

dsdv

ψ(v + |s+ ϕ̂(v)− xd|)
≤ 2

∫ 3r

0

(

∫ u

0

ds)
du

ψ(u)
≤
∫ 3r

0

u
du

ψ(u)
. (4.29)
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Applying (4.26)–(4.29) to (4.25) and using (4.18), we have that∫
Bx(r)

|[(yd)+]2 − (δD(y))
2
+|j(|y − x|)dy ≤ c5r

∫ 3r

0

u
du

ψ(u)
≤ c6r

r2

Φ(r)
. (4.30)

On the other hand, since xd = δD(x) ≤ r/M0, we see that Lf(x) is well-defined and∫
Bx(r)c

(f(y)− x2d)j(|y − x|)dy ≥ −x2d
∫
Bx(r)c

j(|y − x|)dy ≥ −(r/M0)
2

∫
B(0,r)c

j(|z|)dz.

(4.31)

Thus, using our choice of the positive constant M0, (4.19), (4.22) and Lemma 4.5, we
have

Lf(x) = P.V.

∫
Bx(r)

(f(y)− x2d)j(|y − x|)dy +
∫
Bx(r)c

(f(y)− x2d)j(|y − x|)dy

= P.V.

∫
Bx(r)

([(yd)+]
2 − x2d)j(|y − x|)dy +

∫
Bx(r)c

(f(y)− x2d)j(|y − x|)dy

+

∫
Bx(r)

(f(y)− [(yd)+]
2)j(|y − x|)dy (4.32)

≥ c7
r2

Φ(r)
−
∫
Bx(r)

|[(yd)+]2 − (δD(y))
2
+|j(|y − x|)dy ≥ (c7 − rc6)

r2

Φ(r)
. (4.33)

Let c8 := (1∧R0∧ (c7/c6))/4. Then, from (4.33) and (4.30) we conclude that for all r ≤ c8,

z ∈ ∂D and x ∈ D ∩ B(z, r/M0), Lf(x) > 2−1c7
r2

Φ(r) , and, by Lemma 4.5, (4.20), (4.30)
and (4.32) we also have

Lf(x) ≤ c9
r2

Φ(r)
+ r2

∫
Bx(r)c

j(|y − x|)dy +
∫
Bx(r)

|f(y)− [(yd)+]
2|j(|y − x|)dy ≤ c10

r2

Φ(r)
.

We have proved the lemma. 2

Since (4.23) holds, we have Dynkin’s formula for L: for each g ∈ C2
c (R

d) and any
bounded open subset U of Rd we have

Ex

∫ τU

0

Lg(Zt)dt = Ex[g(ZτU )]− g(x). (4.34)

Note that, since H may not be comparable to φ, the next result can not be obtained
using Lévy system and (4.1).

Proposition 4.7. Suppose that D is a C1,1 open set in Rd with characteristics (R0,Λ).
Let R̃ be the constant in Lemma 4.6. There exists a constant c > 0 such that for any
z ∈ ∂D, r ≤ R̃, open set U ⊂ D ∩B(z, r/M0), and x ∈ U ,

Px(XτU ∈ B(z, 2r)) ≥ c
Ex[τU ]

Φ(r)
.

Proof. Fix z ∈ ∂D, r ≤ R̃ and an open set U ⊂ D ∩ B(z, r/M0). Define f(y) =

(δD(y))
21D∩B(z,2r)(y). Then by Lemma 4.6, there exists c1 = c1(φ,Λ, d) ∈ (0, 1) such that

for all r ≤ R̃ and y ∈ D ∩ B(z, r/M0), c
−1
1

r2

Φ(r) ≥ Lf(y) ≥ c1
r2

Φ(r) . Let v ≥ 0 be a smooth

radial function such that v(y) = 0 for |y| > 1 and
∫
Rd v(y)dy = 1. For k ≥ 1, define
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vk(y) := 2kdv(2ky) and f (k)r := vk ∗ f ∈ C2
c (R

d), and let Bk := {y ∈ U : δU (y) ≥ 2−k}. We
note that ∫

|w−y|>ε
(f (k)r (y)− f (k)r (w))j(|w − y|)dy

=

∫
|u|<2−k

vk(u)

∫
|w−y|>ε

(f(y − u)− f(w − u)) j(|w − y|)dydu.

By letting ε ↓ 0 and using the dominated convergence theorem, it follows that for w ∈ Bk
and all large k,

Lf (k)r (w) =

∫
|u|<2−k

vk(u)Luf(w) du ≥ c1
r2

Φ(r)

∫
|u|<2−k

vk(u) du = c1
r2

Φ(r)
.

Therefore, by the Dynkin’s formula in (4.34) we have that for x ∈ Bk and all large k,

c1r
2Ex[τBk

]

Φ(r)
≤ Ex

∫ τBk

0

Lf (k)r (Xs)ds ≤ Exf (k)r (XτBk
).

By letting k → ∞, for any x ∈ U , we conclude that

Px (XτU ∈ B(z, 2r)) ≥ Exf(XτU )

supz∈supp(f)\U f(z)
≥ c1

Ex[τU ]

4Φ(r)
.

2

LetXd be the last coordinate ofX and let Lt be the local time at 0 for (sups≤tX
d
s )−Xd

t .
Using its right-continuous inverse L−1

s , define the ascending ladder-height process as
Hs = Xd

L−1
s
. We define V , the renewal function of the ascending ladder-height process

H, as

V (x) =

∫ ∞

0

P(Hs ≤ x)ds, x∈ R.

It is well-known that V is subadditive (see [1, p.74]). Note that, since the resolvent
measure of Xd

t is absolutely continuous, by [45, Theorem 2], V is absolutely continuous
and V and V ′ are harmonic for the process Xd

t on (0,∞). Thus, by the strong Markov
property, V ((xd)+) and V ′((xd)+) are harmonic in the upper half space Rd+ := {x =

(x̃, xd) ∈ Rd : xd > 0} with respect to X. Furthermore, the function V (r) is comparable
to Φ(r)1/2 (see [4, Corollary 3]): there exists c > 1 such that

c−1Φ(r)1/2 ≤ V (r) ≤ cΦ(r)1/2 for any r > 0. (4.35)

Using [6, (2.23) and Lemma 3.5], we see that [30, Proposition 3.2] also holds in
our setting. Moreover, if we assume (1.8), then we can use [42, Theorem 1] so that
[30, Proposition 3.1] holds in our setting too. Therefore, by following the proof of [30,
Proposition 3.3] line by line, we have the following.

Theorem 4.8. Let w(x) := V ((xd)+). Suppose that (1.8) holds. Then, for any x ∈ Rd+,
Lw(x) is well-defined and Lw(x) = 0.

We observe that, by a direct calculation using (4.18),(
s

Φ(s)1/2

)′

=

(( s2

Φ(s)

)1/2)′

= 2−1

(
s2

Φ(s)

)−1/2

2
s

ψ(s)
=

Φ(s)1/2

ψ(s)
.

Thus, using this and the fact lims→0 sΦ(s)
−1/2 = 0 which also can be seen from (4.18),

we have ∫ r

0

Φ(s)1/2

ψ(s)
ds =

∫ r

0

(
s

Φ(s)1/2

)′

ds =
r

Φ(r)1/2
. (4.36)
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Lemma 4.9. Assume thatH satisfies La(γ, CL) and Ua(δ, CU ) with δ < 2 and γ > 2−11δ≥1

for some a ≥ 0. Let γ1 := γ1δ<1 + (2γ − 1)1δ≥1 > 0. There exist c1, c2, c3 > 0 such that
for all positive constants R ≤ 1 and λ > 1,∫ R

R/λ

Φ(t)1/2

ψ(t)t
dt ≥ c1(λ

γ1 − 1)
Φ(R)1/2

ψ(R)
≥ c2(λ

γ1 − 1)R−γ1 , (4.37)

and ∫ 1

R

Φ(t)1/2

ψ(t)t
dt ≤ c3

Φ(R)1/2

ψ(R)
. (4.38)

Proof. If δ < 1 then ψ and Φ are comparable near 0, thus, by (2.5) for t ≤ R ≤ 1,

Φ(t)1/2

Φ(R)1/2
ψ(R)

ψ(t)
≥ c1

Φ(R)1/2

Φ(t)1/2
≥ c2(t/R)

−γ .

By (4.17) and Lemma 2.3(a), if δ ≥ 1 then for t ≤ R ≤ 1,

Φ(t)1/2

Φ(R)1/2
ψ(R)

ψ(t)
≥ c3(t/R)(R/t)

2γ = c3(t/R)
1−2γ .

Thus, for t ≤ R ≤ 1,

Φ(t)1/2

Φ(R)1/2
ψ(R)

ψ(t)
≥ c4(t/R)

−γ1 . (4.39)

Using (4.39) we have that for all R ≤ 1 and λ > 1,∫ R

R/λ

Φ(t)1/2

ψ(t)t
dt =

Φ(R)1/2

ψ(R)

∫ R

R/λ

Φ(t)1/2

Φ(R)1/2
ψ(R)

ψ(t)t
dt ≥ c4

Φ(R)1/2

ψ(R)
Rγ1

∫ R

R/λ

t−γ1−1dt

=
c4
γ1

Φ(R)1/2

ψ(R)
Rγ1((R/λ)−γ1 −R−γ1) =

c4
γ1

(λγ1 − 1)
Φ(R)1/2

ψ(R)
,

and ∫ 1

R

Φ(t)1/2

ψ(t)t
dt =

Φ(R)1/2

ψ(R)

∫ 1

R

Φ(t)1/2

Φ(R)1/2
ψ(R)

ψ(t)t
dt ≤ c−1

4 Rγ1
Φ(R)1/2

ψ(R)

∫ 1

R

t−γ1−1dt

=
c−1
4

γ1
Rγ1(R−γ1 − 1)

Φ(R)1/2

ψ(R)
≤ c−1

4

γ1

Φ(R)1/2

ψ(R)
.

The second inequality in (4.37) also follows from (4.39) (with R = 1 and t = R). 2

Proposition 4.10. Let D ⊂ Rd be a C1,1 open set with characteristics (R0,Λ). Assume
that (1.8) holds and that H satisfies La(γ, CL) and Ua(δ, CU ) with a > 0, δ < 2 and
γ > 2−11δ≥1. For any z ∈ ∂D and r ≤ 1 ∧R0, we define

hr(y) = hr,z(y) := V (δD(y))1D∩B(z,r)(y).

Then, there exists C∗ = C∗(φ,Λ, d) > 0 independent of z such that Lhr is well-defined in
D ∩B(z, r/4) and

|Lhr(x)| ≤ C∗
Φ(r)1/2

ψ(r)
for all x ∈ D ∩B(z, r/4). (4.40)
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Proof. Since the case of d = 1 is easier, we give the proof only for d ≥ 2. Without loss of
generality we assume that R0 ≤ 1 and Λ > 1/R0.

For x ∈ D∩B(z, r/4), let zx ∈ ∂D be a point satisfying δD(x) = |x−zx|. Let ϕ be a C1,1

function and CS = CSzx be an orthonormal coordinate system with zx as the origin so
that ϕ(0̃) = 0, ∇ϕ(0̃) = (0, . . . , 0), ‖∇ϕ‖∞ ≤ Λ, |∇ϕ(ỹ)−∇ϕ(z̃)| ≤ Λ|ỹ− z̃|, and x = (0̃, xd),
D ∩ B(zx, R0) = {y = (ỹ, yd) ∈ B(0, R0) in CS : yd > ϕ(ỹ)}. We fix the function ϕ and
the coordinate system CS, and define a function gx(y) = V (δRd

+
(y)) = V (yd), where

Rd+ = {y = (ỹ, yd) in CS : yd > 0} is the half space in CS.
Note that hr(x) = gx(x), and that L(hr − gx) = Lhr by Theorem 4.8. So, it suffices to

show that L(hr − gx) is well defined and that there exists a constant c0 > 0 independent
of x ∈ D ∩B(z, r/4) and z ∈ ∂D such that∫

D∪Rd
+

|hr(y)− gx(y)|j(|x− y|)dy ≤ c0
Φ(r)1/2

ψ(r)
. (4.41)

We define ϕ̂ : B(0̃, r) → R by ϕ̂(ỹ) := 2Λ|ỹ|2. Since ∇ϕ(0̃) = 0, by the mean value
theorem we have −2−1ϕ̂(ỹ) ≤ ϕ(ỹ) ≤ 2−1ϕ̂(ỹ) for any y ∈ D ∩B(x, r/2) and so that

{z = (z̃, zd) ∈ B(x, r/2) : zd ≥ϕ̂(z̃)} ⊂ D ∩B(x, r/2)

⊂ {z = (z̃, zd) ∈ B(x, r/2) : zd ≥ −ϕ̂(z̃)}.

Let A := {y ∈ (D ∪ Rd+) ∩ B(x, r/4) : −ϕ̂(ỹ) ≤ yd ≤ ϕ̂(ỹ)}, E := {y ∈ B(x, r/4) : yd >

ϕ̂(ỹ)} ⊂ D,

I :=

∫
B(x,r/4)c

(hr(y) + gx(y))j(|x− y|)dy =

∫
B(0,r/4)c

(hr(x+ z) + gx(x+ z))j(|z|)dz,

II :=

∫
A

(hr(y) + gx(y))j(|x− y|)dy, and III :=

∫
E

|hr(y)− gx(y)|j(|x− y|)dy.

First, since hr ≤ V (r) and V (xd + zd) ≤ V (xd) + V (|z|), we have

I ≤ V (r)

∫
B(0,r/4)c

j(|z|)dz +
∫
B(0,r/4)c

(V (xd) + V (|z|)) j(|z|)dz

≤ c1V (r)

(∫ 1

r/4

j(s)sd−1ds+ 1

)
+

(∫ 1

r/4

j(s)V (s)sd−1ds+

∫ ∞

1

j(s)V (s)sd−1ds

)

≤ c2

(
Φ(r)1/2

ψ(r)
+

∫ 1

r/4

Φ(s)1/2ds

sψ(s)
+ 1

)
≤ c3

Φ(r)1/2

ψ(r)
(4.42)

In the second to last inequality above, we have used (2.11), (4.17), (4.35) and [6, Lemma
3.5]. In the last inequality above, we have used Lemma 4.9.

Second, let md−1(dy) be the Lebesgue measure on Rd−1. Since md−1({y : |ỹ| =

s,−ϕ̂(ỹ) ≤ yd ≤ ϕ̂(ỹ)}) ≤ c4s
d for 0 < s < r/4, and hr(y) + gx(y) ≤ 2V (2ϕ̂(ỹ)) ≤

8(Λ + 1)V (|ỹ|), we get

II ≤ 8(Λ + 1)

∫ r/4

0

∫
|ỹ|=s

1A(y)V (|ỹ|)ν(|ỹ|)md−1(dy)ds ≤ 8c4(Λ + 1)

∫ r

0

V (s)j(s)sdds.

Thus, by (2.11), (4.35) and (4.36),

II ≤ c5

∫ r

0

Φ(s)1/2

ψ(s)
ds = c5

r

Φ(r)1/2
≤ c5

1

Φ(1)1/2
= c5. (4.43)
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Lastly, when y ∈ E, using |yd − δD(y)| ≤ Λ|ỹ| (See the proof of Lemma 4.6.) we see that

Λ|ỹ| ≤ (yd − Λ|ỹ|) ≤ yd ∧ δD(y) and yd ∨ δD(y)− (yd − Λ|ỹ|) ≤ 2Λ|ỹ|.

Thus we can the scale invariant Harnack inequality for Xd to V ′ (Theorem 3.2) and get

|hr(y)− gx(y)| ≤
(

sup
u∈[yd∧δD(y), yd∨δD(y)]

V ′ (u)
)
|yd − δD(y)|

≤
(

sup
u∈[yd−Λ|ỹ|, yd∨δD(y)]

V ′ (u)
)
|yd − δD(y)|

≤ c6

(
inf

u∈[yd−Λ|ỹ|, yd∨δD(y)]
V ′ (u)

)
|yd − δD(y)| ≤ c6V

′ (yd − Λ|ỹ|) |ỹ|2. (4.44)

Since V ′(s) ≤ c8s
−1V (s) ≤ c9s

−1Φ(s)1/2 by [42, Theorem 1] and (4.35), using (2.11) and
the polar coordinates for |ỹ| = v and the change of variable s := yd − Λ|v|, we obtain

III ≤ c6

∫
{(ỹ,yd):|ỹ|<r/4,Λ|ỹ|<yd<2Λ|ỹ|+r/2}

V ′(yd − Λ|ỹ|)|ỹ|2j(|x− y|)dy

≤ c7

∫ r/4

0

∫ Λr

0

V ′(s)

ψ((v2 + |s+ Λr − xd|2)1/2)
vd

(v2 + |s+ Λr − xd|2)d/2
dyddv

≤c8
∫ r/4

0

∫ Λr

0

s−1Φ(s)1/2

ψ((v2 + |s+ Λr − xd|2)1/2)
dyddv.

Applying [39, Lemma 4.4] with non-increasing functions s−1Φ(s)1/2 and f(s) := ψ(s)−1

and x(r) = xd − Λr, we have that

III ≤ c9

∫ 2Λr

0

∫ u

0

Φ(s)1/2

s
ds

du

ψ(u)
=: c9 IV. (4.45)

We claim that IV ≤ c10 <∞.

If δ < 1 then ψ(t)1/2, Φ(t)1/2 and
∫ u
0

Φ(s)1/2

s ds are comparable near zero. Thus, by
(2.5),

IV ≤ c11

∫ 2Λr

0

Φ−1/2(u)du ≤ c12

∫ 2Λr

0

u−δdu ≤ c12

∫ 2Λ

0

u−δdu ≤ c13.

If δ ≥ 1, using the assumption γ > 2−1, we see from (4.17) that for s < u < 2Λr,∫ 2Λr

s

ψ(s)

ψ(u)
du ≤ c14s

2γ

∫ 2Λr

s

u−2γdu =
c14

2γ − 1
s2γ(s1−2γ − (2Λr)1−2γ) ≤ c14

2γ − 1
s.

Thus, using (4.36) and the fact that r
Φ(r)1/2

is non-decreasing,

IV =

∫ 2Λr

0

(∫ 2Λr

s

ψ(s)

ψ(u)
du

)
Φ(s)1/2

sψ(s)
dsds ≤ c14

2γ − 1

∫ 2Λr

0

Φ(u)1/2

ψ(u)
du

=
c14

2γ − 1

2Λr

Φ(2Λr)1/2
≤ c14

2γ − 1
.

We have proved the claim IV ≤ c10 < ∞. Combining (4.42)–(4.45) with this and using
Lemma 4.9, we conclude that (4.41) holds. 2

We are now ready to prove key estimates on exit probabilities.
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Theorem 4.11. Let D ⊂ Rd be a C1,1 open set with characteristics (R0,Λ). Assume that
(1.8) holds and that H satisfies La(γ, CL) and Ua(δ, CU ) with δ < 2 and γ > 2−11δ≥1 for
some a > 0. Then there exist positive constants R∗ < (R0 ∧ 1)/4 and c1, c2 > 1 such that
the following two estimates hold true.
(a) For every R ≤ R∗, z ∈ ∂D, open set U ⊂ D ∩B(z,R) and x ∈ U ,

Ex [τU ] ≥ c−1
1 Φ(δD(x))

1/2Φ(R)1/2. (4.46)

(b) For every R ≤ R∗, z ∈ ∂D and x ∈ Dz(2
−3R, 2−4R),

Ex
[
τDz(R,R)

]
≤ c2Φ(R)Px

(
XτDz(R,R)

∈ Dz(2R,R)
)
≤ c1c2Φ(δD(x))

1/2
Φ(R)1/2. (4.47)

Proof. Fix R ≤ 1 ∧ R0 and without loss of generality, we assume z = 0. Define
h(y) = V (δD(y))1D∩B(0,R)(y).

Using the same approximation argument in the proof of Proposition 4.7 and the
Dynkin’s formula, we have that, for every λ ≥ 4, open set U ⊂ D ∩B(0, λ−1R) and x ∈ U ,

Ex [hR (XτU )] + C∗
Φ(R)1/2

ψ(R)
Ex [τU ] ≥ V (δD(x)) ≥ Ex [hR (XτU )]− C∗

Φ(R)1/2

ψ(R)
Ex [τU ] ,

where C∗ > 0 is the constant in Proposition 4.10.
Since j(|y − z|) ≥ j(2|y|) ≥ c1|y|−dψ(|y|)−1 for any z ∈ D ∩ B(0, λ−1R) and y ∈

D ∩ (B(0, R) \B(0, λ−1R)), by Lévy system we obtain

Ex [hR (XτU )] ≥ Ex
∫
D∩(B(0,R)\B(0,λ−1R))

∫ τU

0

j(|Xt − y|)dthR(y)dy

≥ c1Ex [τU ]

∫
D∩(B(0,R)\B(0,λ−1R))

|y|−dψ(|y|)−1hR(y)dy.

Let A := {(ỹ, yd) : 2Λ|ỹ| < yd}. Since yd > 2Λ|ỹ| > 2Λ|ỹ|2 > ϕ(ỹ) for any y ∈ A ∩B(0, R),
we have A ∩B(0, R) ⊂ D ∩B(0, R) and for any y ∈ A ∩B(0, R),

δD(y) ≥ (2Λ)−1 (yd − ϕ(ỹ)) ≥ (2Λ)−1(yd − Λ|ỹ|) > (4Λ)−1yd ≥ (4Λ((2Λ)−2 + 1)1/2)−1|y|.

By this and changing to polar coordinates with |y| = t and (4.35), we obtain that∫
D∩(B(0,R)\B(0,λ−1R))

|y|−dψ(|y|)−1hR(y)dy

≥ c2

∫
A∩(B(0,R)\B(0,λ−1R))

|y|−dψ(|y|)−1V (|y|)dy ≥ c3

∫ R

λ−1R

Φ(t)1/2

ψ(t)t
dt.

By Lemma 4.9, the above is great than c4(λγ1 − 1)Φ(R)1/2

ψ(R) . Thus, we can use a λ0 large

(In fact, one can choose λ0 = (1 + c−1
1 c−1

4 2C∗)
−γ1 .) so that for all λ ≥ λ0, R ∈ (0, 1 ∧R0)

and for every open set U ⊂ D ∩B(0, λ−1R),

V (δD(x)) ≥ Ex [hR (XτU )]− C∗
Φ(R)1/2

ψ(R)
Ex [τU ] ≥

1

2
Ex [hR (XτU )] (4.48)

and V (δD(x)) ≤ Ex [hR (XτU )] + C∗
Φ(R)1/2

ψ(R)
Ex [τU ] ≤

3

2
Ex [hR (XτU )] . (4.49)

By [7, Lemma 2.4], (4.49) and (4.35), we get

2

3
V (δD(x)) ≤ Ex [hR (XτU )] ≤ V (R)Px (XτU ∈ D ∩B(0, R))

≤ c5V (R)Φ(R)−1Ex[τU ] ≤ c6Φ(R)
−1/2Ex[τU ]. (4.50)
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Now, (4.46) follows from (4.35) and (4.50).
Let λ1 := λ0 ∨M0 whereM0 is the constant in (4.21) and U1 := U1(R) := D0(κλ

−1
1 R,

κλ−1
1 R) ⊂ D ∩ B(0, λ−1

1 R). Then, by (4.48) and Proposition 4.3 for all x ∈ U2 :=

D0(2
−3κλ−1

1 R, 2−4κλ−1
1 R)

2V (δD(x)) ≥ Ex
[
hR
(
XτU1

)
1D0(2κλ

−1
1 R,κλ−1

1 R)

]
≥ V (κλ−1

1 R)Px
(
XτU1

∈ D0(2κλ
−1
1 R, κλ−1

1 R)
)
≥ c7Φ(R)

1/2Px
(
XτU1

∈ D
)
. (4.51)

Recall that R̃ is the constant in Lemma 4.6 and Proposition 4.7. Applying Proposition 4.7
and (4.35) to (4.51), we conclude that for all R ≤ R̃ and all x ∈ U2,

Ex[τU1
] ≤ c8Φ(R)Px

(
XτU1

∈ D
)
≤ c9Φ(R)Px

(
XτU1

∈ D0(2κλ
−1
1 R, κλ−1

1 R)
)

≤ c10Φ(δD(x))
1/2Φ(R)−1/2.

By taking R∗ = R̃λ−1
1 κ we have proved (4.47). 2

5 Upper bound estimates

In this section we discuss the upper bound of the Dirichlet heat kernels on C1,1 open
sets. Throughout the remainder of this paper, we always assume that (1.8) holds, that φ
has no drift and that H satisfies La(γ, CL) and Ua(δ, CU ) with δ < 2 and γ > 2−11δ≥1 for
some a > 0.

We first establish sharp estimates on the survival probability. Lemma 5.1 is proved in
[6] when weak scaling order of characteristic exponent is strictly below 2. We emphasize
here that results in [6] can not be used here.

Lemma 5.1. Suppose D is a C1,1 open set with the characteristic (R0,Λ). Then for every
T > 0 there exists C1 = C1(T,R0,Λ) > 0 such that for t ∈ (0, T ],

Px(τD > t) ≤ C1

(√
Φ(δD(x))

t
∧ 1

)
, for all x ∈ D, (5.1)

and there exist T1 ∈ (0,Φ(R0)] and C2 > 0 such that for t ∈ (0, T1],

Px(τD > t) ≥ C2

(√
Φ(δD(x))

t
∧ 1

)
, for all x ∈ D. (5.2)

Proof. Recall thet R∗ > 0 is the constant in Theorem 4.11. Let b := Φ(R∗/4)/T and
rt := Φ−1(bt) for t ≤ T so that rt ≤ R∗/4. First note that, if δD(x) ≥ 2−4rt then, by
Lemma 2.5,

Px(τD > t) ≥ Px(τB(x,δD(x)) > t) ≥ P0(τB(0,2−4rt) > t) = c0 > 0. (5.3)

We now assume that δD(x) < 2−4rt. Let zx ∈ ∂D with |x − zx| = δD(x). Then by [7,
Lemma 2.4] and Theorem 4.11(b),

Px (τD > t) = Px
(
τD∩B(zx,rt) = τD > t

)
+ Px

(
τD > τD∩B(zx,rt) > t

)
≤ Px

(
τD∩B(zx,rt) > t

)
+ Px

(
XτD∩B(zx,rt)

∈ D
)

≤ t−1Ex
[
τD∩B(zx,rt)

]
+ Px

(
XτD∩B(zx,rt)

∈ D
)
≤ c1Φ(δD(x))

1/2t−1/2. (5.4)
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Recall that Dz(r, r) is defined in (3.16). Let U(x, t) := Dzx(rt, rt). For the lower bound,
we use the strong Markov property and Theorem 4.11(b) to get that for any b ≥ 1 and
t ≤ T/b,

Px (τD > bt)

≥Px
(
τU(x,t) < bt,XτU(x,t)

∈ Dzx(2rt, rt), |XτU(x,t)
−XτU(x,t)+s| ≤

rt
4
for all 0 < s < bt

)
≥Px

(
τU(x,t) < bt,XτU(x,t)

∈ Dzx(2rt, rt)
)
P0

(
τBrt/4

> bt
)

≥P0

(
τBrt/4

> bt
) (
Px
(
XτU(x,t)

∈ Dzx(2rt, rt)
)
− Px

(
τU(x,t) ≥ bt

))
≥P0

(
τBrt/4

> bt
) (
c2t

−1Ex[τU(x,t)]− b−1t−1Ex
[
τU(x,t)

])
. (5.5)

Take b = 2
c2

∨ 1. Then, by Lemma 2.5 and Theorem 4.11(a) we have from (5.5) that for
t ≤ T0 := T/b

Px (τD > t) ≥ Px (τD > bt) ≥ c3t
−1Ex

[
τU(x,t)

]
≥ Φ(δD(x))

1/2t−1/2. (5.6)

Combining (5.3), (5.4) and (5.6), we have proved the lemma. 2

Using [7, Lemmas 2.5 and 2.8], Lemma 5.1 and Theorem 4.11(b) we obtain the
following upper bound of pD(t, x, y).

Lemma 5.2. Suppose that D is a C1,1 open set with characteristics (R0,Λ). For each
T > 0, there exist constants c = c(a, φ,R0,Λ, T ) > 0 and a0 = a0(φ,R0, T ) > 0 such that
for every (t, x, y) ∈ (0, T ]×D ×D with a0Φ−1(t) ≤ |x− y|,

pD(t, x, y) ≤c
(√Φ(δD(x))

t
∧ 1
)(

sup
(s,z):s≤t, |x−y|

2 ≤|z−y|≤ 3|x−y|
2

pD(s, z, y)

+
(√

tΦ(δD(y)) ∧ t
)
j(|x− y|/3)

)
. (5.7)

Proof. Throughout the proof, we assume t ∈ (0, T ] and let a0 := 6R∗/Φ
−1(T ). Note that

a0Φ
−1(t)/6 ≤ R∗.
We first assume δD(x) ≤ 2−7a0Φ

−1(t)/3 ≤ 2−7|x − y|/3 and let x0 be a point on ∂D
such that δD(x) = |x−x0| and let U1 := B(x0, a0Φ

−1(t)/(12))∩D, U3 := {z ∈ D : |z−x| >
|x− y|/2} and U2 := D \ (U1 ∪ U3). Using Theorem 4.11(b) we have

Ex [τU1
] ≤ Ex

[
τDx0

(a0Φ−1(t)/(12),a0Φ−1(t)/(12))

]
≤ c1

√
tΦ(δD(x)). (5.8)

Since |z − x| > 2−1|x− y| ≥ a02
−1Φ−1(t) for z ∈ U3, we have for u ∈ U1 and z ∈ U3,

|u− z| ≥ |z − x| − |x0 − x| − |x0 − u| ≥ 1

2
|x− y| − 1

6
a0Φ

−1(t) ≥ 1

3
|x− y|.

Thus, by the fact U1 ∩ U3 = ∅ and the monotonicity of j,

sup
u∈U1, z∈U3

j(|u− z|) ≤ sup
(u,z):|u−z|≥ 1

3 |x−y|
j(|u− z|) = j(|x− y|/3). (5.9)

On the other hand, for z ∈ U2,

3

2
|x− y| ≥ |x− y|+ |x− z| ≥ |z − y| ≥ |x− y| − |x− z| ≥ |x− y|

2
≥ a02

−1Φ−1(t),

EJP 23 (2018), paper 64.
Page 29/45

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP190
http://www.imstat.org/ejp/


Estimates of Dirichlet heat kernels for SBMs

so

sup
s≤t, z∈U2

pD(s, z, y) ≤ sup
s≤t, |x−y|

2 ≤|z−y|≤ 3|x−y|
2

pD(s, z, y). (5.10)

Furtherover, by Lemma 5.1,∫ t

0

Px (τU1
> s)Py (τD > t− s) ds ≤

∫ t

0

Px (τD > s)Py (τD > t− s) ds

≤ c3
√
Φ(δD(x))

∫ t

0

s−1/2

(√
Φ(δD(y))

t− s
∧ 1

)
ds

≤ c4
√
Φ(δD(x))

(√
Φ(δD(y)) ∧

√
t
)
. (5.11)

Finally, applying [7, Lemma 2.5] and then (5.8), we have

Px

(
XτU1

∈ U2

)
≤ Px

(
XτU1

∈ B(x0, aΦ
−1(t)/(12))c

)
≤ c5

t
Ex[τU1

] ≤ c6t
−1/2

√
Φ(δD(x)).

Applying this and (5.8)–(5.11) to [7, Lemma 2.8] we conclude that

pD(t, x, y) ≤
(∫ t

0

Px (τU1 > s)Py (τD > t− s) ds

)
sup

u∈U1, z∈U3

j(|u− z|)

+Px

(
XτU1

∈ U2

)
sup

s≤t, z∈U2

pD(s, z, y)

≤ c4
√
Φ(δD(x))

(√
Φ(δD(y)) ∧

√
t
)
j(|x− y|/3)

+c6t
−1/2

√
Φ(δD(x)) sup

s≤t, |x−y|
2 ≤|z−y|≤ 3|x−y|

2

pD(s, z, y).

If δD(x) > 2−7a0Φ
−1(t)/3, by Lemma 2.3(a),√

Φ(δD(x))

t
≥

√
Φ(a0Φ−1(t)/(24))

Φ(Φ−1(t))
≥ c7 > 0.

Thus (5.7) is clear. Therefore we have proved (5.7). 2

We now apply Lemma 5.2 to get the upper bound of the Dirichlet heat kernel.
Proof of Theorem 1.3(a): We will closely follow the argument in [7]. We fix T > 0.

By [7, Lemma 2.7] and Proposition 2.6, for every (t, x, y) ∈ (0, T ]×D ×D,

pD(t, x, y) ≤ c1(Φ
−1(t))−d

(√
Φ(δD(x))

t
∧ 1

)(√
Φ(δD(y))

t
∧ 1

)
.

Recall that a0 is the constant in Lemma 5.2. If a0Φ−1(t) ≥ |x− y|, by Proposition 3.4,
p(t, x− y) ≥ c2(Φ

−1(t))−d. Thus for every (t, x, y) ∈ (0, T ]×D×D with a0Φ−1(t) ≥ |x− y|,

pD(t, x, y) ≤ c3

(√
Φ(δD(x))

t
∧ 1

)(√
Φ(δD(y))

t
∧ 1

)
p(t, x− y). (5.12)

We extend the definition of p(t, w) by setting p(t, w) = 0 for t < 0 and w ∈ Rd. For each
fixed x, y ∈ Rd and t > 0 with |x− y| > 8r, one can easily check that (s, w) 7→ p(s, w − y)

is a parabolic function in (−∞,∞)×B(x, 2r). Suppose Φ−1(t) ≤ |x− y| and let (s, z) with
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s ≤ t and |x−y|
2 ≤ |z − y| ≤ 3|x−y|

2 . Then by Theorem 3.2, there is a constant c4 ≥ 1 so
that for every t ∈ (0, T ],

sup
s≤t

p(s, z − y) ≤ c4p(t, z − y).

Using this and the monotonicity of r → p(t, r) we have

sup
s≤t, |x−y|

2 ≤|z−y|≤ 3|x−y|
2

p(s, z−y) ≤ c4 sup
|x−y|

2 ≤|z−y|≤ 3|x−y|
2

p(t, z−y) = c4p(t, |x−y|/2). (5.13)

Combining (5.13) and Lemma 5.2 and Proposition 3.5 and using the monotonicity of
r → p(t, r), we have for every (t, x, y) ∈ (0, T ]×D ×D with a0Φ−1(t) ≤ |x− y|,

pD(t, x, y)

≤c5
(√Φ(δD(x))

t
∧ 1
)(

p(t, |x− y|/2) +
(√

tΦ(δD(y)) ∧ t
)
j(|x− y|/3)

)
≤c6

(√Φ(δD(x))

t
∧ 1
)
(p(t, |x− y|/2) + p(t, |x− y|/3))

≤2c6

(√Φ(δD(x))

t
∧ 1
)
p(t, |x− y|/3).

In view of (5.12), using the monotonicity of r → p(t, r) again, the last inequality in fact
holds for all (t, x, y) ∈ (0, T ]×D ×D.

Thus by semigroup properties of p and pD and the symmetry of (x, y) → pD(t, x, y),

pD(t, x, y) =

∫
D

pD(t/2, x, z)pD(t/2, y, z)dz

≤c7
(√Φ(δD(x))

t
∧ 1
)(√Φ(δD(y))

t
∧ 1
)∫

D

p(t/2, |x− z|/3)p(t/2, |z − y|/3)dz

≤c8
(√Φ(δD(x))

t
∧ 1
)(√Φ(δD(y))

t
∧ 1
)∫

Rd

p(t/2, x/3, z)p(t/2, z, y/3)dz

=c8

(√Φ(δD(x))

t
∧ 1
)(√Φ(δD(y))

t
∧ 1
)
p(t, |x− y|/3).

We have proved (1.10).
(1.11) follows from (1.10), Lemma 2.3 and Theorem 2.9 (applying to p(t,

|x− y|/3)). 2

6 Lower bound estimates

Recall that we always assume that (1.8) holds, that φ has no drift and that H satisfies
La(γ, CL) and Ua(δ, CU ) with δ < 2 and γ > 2−11δ≥1 for some a > 0.

Using Lemma 5.1 from Section 5, in this section we will prove Theorem 1.3(b). The
main ideas in this section come from [7]. We first observe the following simple lemma.

Lemma 6.1. The function H(λ) := supt∈(0,1]P0

(
|Xt| > λΦ−1(t)

)
vanishes at ∞, that is,

limλ→∞H(λ) = 0.

Proof. By [7, Theorem 2.2] there exists a constant c1 = c1(d) > 0 such that

P0(|Xt| > r) ≤ c1 t/Φ(r) for (t, r) ∈ (0,∞)× (0,∞).

Noting φ−1(t−1)1/2 = Φ−1(t)−1, the above inequality implies that

sup
t∈(0,1]

P0

(
|Xt| > λΦ−1(t)

)
≤ c1 sup

t∈(0,1]

t

Φ(λΦ−1(t))
= c1 sup

t∈(0,1]

tφ(λ−2φ−1(t−1)).
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The condition La(γ, CL) and Remark 2.2 imply that for all λ ≥ 1,

sup
t∈(0,1]

tφ(λ−2φ−1(t−1)) ≤ sup
t∈(0,1]

φ(λ−2φ−1(t−1))

φ(φ−1(t−1))
≤ c2λ

−2γ ,

which goes to zero as λ→ ∞. 2

We now discuss some lower bound estimates of pD(t, x, y). We first note that by
Lemma 5.1, there exist C3 ≥ 1 and T1 ∈ (0, 1 ∧ Φ(R0)] such that for all x ∈ D and
t ∈ (0, T1],

C−1
3

(√
Φ(δD(x))

t
∧ 1

)
≤ Px(τD > t) ≤ C3

(√
Φ(δD(x))

t
∧ 1

)
. (6.1)

For x ∈ D we use zx to denote a point on ∂D such that |zx − x| = δD(x) and
n(zx) := (x− zx)/|zx − x|. By a simple geometric argument, one can easily see that

x+ rn(zx) ∈ D for all x ∈ D and r ∈ [0, R0/2]. (6.2)

Lemma 6.2. There exist a1 > 0 andM1 > 1 ∨ 4a1 such that for all a ∈ (0, a1], x ∈ D and
t ∈ (0, T1], we have that

Px
(
Xt ∈ D ∩B(ξax(t),M1Φ

−1(t)) and Φ(δD(Xt)) > at
)
≥ (2C3)

−1

(√
Φ(δD(x))

t
∧ 1

)

where ξax(t) := x+ aΦ−1(t)n(zx) and C3 and T1 are the constants in (6.1).

Proof. By (1.10) and a change of variable, for every a > 0, t ∈ (0, T1] and x ∈ D,∫
{u∈D:Φ(δD(u))≤at}

pD(t, x, u)du

≤C0

(√
Φ(δD(x))

t
∧ 1

)∫
{u∈D:Φ(δD(u))≤at}

(√
Φ(δD(u))

t
∧ 1

)
p(t, |x− u|/3)du

≤C0

√
a

(√
Φ(δD(x))

t
∧ 1

)∫
{u∈D:Φ(δD(u))≤at}

p(t, |x− u|/3)du

≤C0

√
a

(√
Φ(δD(x))

t
∧ 1

)∫
Rd

p(t, |x− u|/3)du

=C03
d
√
a

(√
Φ(δD(x))

t
∧ 1

)∫
Rd

p(t, w)dw = C03
d
√
a

(√
Φ(δD(x))

t
∧ 1

)
. (6.3)

Choose a1 > 0 small so that C03
d√a1 ≤ (4C3)

−1 where C3 is the constant in (6.1).

For the rest of the proof, we assume that x ∈ D, a ∈ (0, a1] and t ∈ (0, T1]. Since
ξax(t) = x+ aΦ−1(t)n(zx), for every λ ≥ 2a1 and u ∈ D ∩B(ξax(t), λΦ

−1(t))c, we have

|x−u| ≥ |ξax(t)−u|− |x−ξax(t)| ≥ |ξax(t)−u|−a1Φ−1(t) ≥ (1− a1
λ
)|ξax(t)−u| ≥

1

2
|ξax(t)−u|.
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Thus using this, (1.10) and the monotonicity of r → p(t, r), we have that for every λ ≥ 2a1,∫
D∩B(ξax(t),λΦ

−1(t))c
pD(t, x, u)du

≤C0

(√
Φ(δD(x))

t
∧ 1

)∫
D∩B(ξax(t),λΦ

−1(t))c
p(t, |x− u|/3)du

≤C0

(√
Φ(δD(x))

t
∧ 1

)∫
D∩B(ξax(t),λΦ

−1(t))c
p(t, |ξax(t)− u|/6)du

≤C0

(√
Φ(δD(x))

t
∧ 1

)∫
B(0,λΦ−1(t))c

p(t, 6−1y)dy

≤C06
dH(6−1λ)

(√
Φ(δD(x))

t
∧ 1

)
. (6.4)

By Lemma 6.1, we can chooseM1 > 1∨4a1 large so that C06
dH(6−1M1) < (4C3)

−1. Then
by (6.1)–(6.4) and our choice of a1 andM1, we conclude that∫

{u∈D∩B(ξax(t),M1Φ−1(t)):Φ(δD(u))>at}
pD(t, x, u)du

=

∫
D

pD(t, x, u)du−
∫
D∩B(ξax(t),M1Φ−1(t))c

pD(t, x, u)du−
∫
{u∈D:Φ(δD(u))≤at}

pD(t, x, u)du

≥(2C3)
−1

(√
Φ(δD(x))

t
∧ 1

)
. 2

The next result is easy to check (see the proof of [20, Lemma 2.5] for a similar
computation). We skip the proof.

Lemma 6.3. For any given positive constants c1, r1, T and r2 > r1, there is a positive
constant c2 = c2(r1, r2, T, c1, φ) so that

φ−1(t−1)d/2e−c1|x−y|
2φ−1(t−1) ≤ c2tr

−dH(r−2) for every r1 ≤ r < r2(a ∧ 1)−1, t ∈ (0, T ].

Proof of Theorem 1.3(b): It is clear that any bounded C1,1 open set has the property
that the path distance in any connected component of D is comparable to the Euclidean
distance.

By (4.1) and [43, Proposition 3.6], we have

j(|x− y|) ≥ c0|x− y|−dH(|x− y|−2), for all x, y ∈ D (6.5)

Recall that a1 > 0 andM1 > 1∨4a1 are the constants in Lemma 6.2 and C3 and T1 are
the constants in (6.1). We also recall that for x ∈ D, zx ∈ ∂D such that |zx − x| = δD(x)

and n(zx) = (x− zx)/|zx − x|. Without loss of the generality we assume that T > 3T1.
Let a2 := a1∧ (2−1R0/Φ

−1(T )). For x ∈ D and t ∈ (0, T ], let ξx(t) := x+a2Φ
−1(t)n(zx).

Note that ξx(t) ∈ D by (6.2). Define

B(x, t) :=
{
z ∈ D ∩B(ξx(t),M1Φ

−1(t)) : δD(z) > a2Φ
−1(t)

}
. (6.6)

Observe that, we have

δD(u) ∧ δD(v) ≥ a2Φ
−1(t), for every (u, v) ∈ B(x, t)× B(y, t), (6.7)

and

|x− y| − 2a2Φ
−1(t) ≤ |ξx(t)− ξy(t)| ≤ |x− y|+ 2a2Φ

−1(t), (6.8)
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Using (6.8) we also have that for every (u, v) ∈ B(x, t)× B(y, t),

|x− y| − 5

2
M1Φ

−1(t) ≤ |x− y| − 2(M1 + a2)Φ
−1(t) ≤ |u− v|

≤ |x− y|+ |u− ξx(t)|+ |v − ξy(t)|+ 2a2Φ
−1(t)

≤ |x− y|+ 2(M1 + a2)Φ
−1(t) ≤ |x− y|+ 3M1Φ

−1(t). (6.9)

Step1: Suppose t ∈ (0, 3T1] and x and y are in the same connected component. By the
semigroup property of pD,

pD(t, x, y) ≥
∫
B(y,t)

∫
B(x,t)

pD(t/3, x, u)pD(t/3, u, v)pD(t/3, v, y)dudv

≥
(

inf
(u,v)∈B(x,t)×B(y,t)

pD(t/3, u, v)

)∫
B(y,t)

pD(t/3, x, u)du

∫
B(x,t)

pD(t/3, v, y)dv. (6.10)

When |x−y| ≤ 3M1Φ
−1(t), by (6.7) and (6.9) |u−v| ≤ 6M1Φ

−1(t) and δD(u)∧ δD(v) ≥
a2Φ

−1(t) for (u, v) ∈ B(x, t) × B(y, t). Thus using Theorem 3.2 and Lemma 2.3(a) and
Proposition 3.4, we get

pD(t/3, u, v) ≥ c0pD(c1t, u, u) ≥ c2Φ
−1(t)−d for every (u, v) ∈ B(x, t)× B(y, t). (6.11)

When |x− y| > 3M1Φ
−1(t), we have by (6.9) that for (u, v) ∈ B(x, t)× B(y, t),

a2
4
Φ−1(t/3) ≤ 1

2
M1Φ

−1(t) ≤ |u− v| ≤ (2|x− y|) ∧ (|x− y|+ 3M1Φ
−1(T )).

Thus, by Lemma 2.3(a), Propositions 3.5 and 3.6(a) we have that for |x− y| > 3M1Φ
−1(t)

and t ≤ 3T1,

inf
(u,v)∈B(x,t)×B(y,t)

pD(t/3, u, v)

≥ inf
(u,v):2−2a2Φ−1(t/3)≤|u−v|≤(2|x−y|)∧(|x−y|+3M1Φ−1(T ))

δD(u)∧δD(v)>a2Φ−1(t/3)

pD(t/3, u, v)

≥c3 inf
(u,v):

|u−v|≤(2|x−y|)∧(|x−y|+3M1Φ−1(T ))

(
tj(|u− v|) + φ−1((t/3)−1)d/2e−c4|u−v|

2φ−1((t/3)−1)
)

≥c5
(
tj((2|x− y|) ∧ (|x− y|+ 3M1Φ

−1(T ))) + φ−1(t−1)d/2e−c6|x−y|
2φ−1(t−1)

)
. (6.12)

We now apply Lemma 6.2, (6.12) and (6.11) to (6.10) and use (6.5) to obtain (1.12) for
t ≤ 3T1 and x and y in the same connected component.
Step2: Suppose t ∈ (3T1, T ] and x and y are in the same connected component. By
semigroup property of pD and Lemma 6.2,

pD(t, x, y) ≥
∫
B(y,T1)

∫
B(x,T1)

pD(T1, x, u)pD(t− 2T1, u, v)pD(T1, v, y)dudv

≥
(

inf
(u,v)∈B(x,T1)×B(y,T1)

pD(t− 2T1, u, v)

)∫
B(y,T1)

∫
B(x,T1)

pD(T1, x, u)pD(T1, v, y)dudv

≥(2C3)
−2

(
inf

(u,v)∈B(x,T1)×B(y,T1)
pD(t− 2T1, u, v)

)√Φ(δD(x))

T1
∧ 1

√Φ(δD(y))

T1
∧ 1


≥(2C3)

−2

(
inf

(u,v)∈B(x,T1)×B(y,T1)
pD(t− 2T1, u, v)

)(√
Φ(δD(x))

t
∧ 1

)(√
Φ(δD(y))

t
∧ 1

)
(6.13)
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When |x− y| ≤ 3M1Φ
−1(t), by (6.7) and (6.9) |u− v| ≤ c7Φ

−1(T1) and δD(u)∧ δD(v) ≥
a2Φ

−1(T1) for (u, v) ∈ B(x, T1)×B(y, T1). Thus using Theorem 3.2 and Lemma 2.3(a) and
Proposition 3.4, we get that for every (u, v) ∈ B(x, T1)× B(y, T1),

pD(t− 2T1, u, v) ≥ c8pD(c9T1, u, u) ≥ c10Φ
−1(c9T1)

−d ≥ c11Φ
−1(t)−d. (6.14)

When |x− y| > 3M1Φ
−1(t), we have by (6.9) that for (u, v) ∈ B(x, T1)× B(y, T1),

a2
4
Φ−1(t− 2T1) ≤

1

2
M1Φ

−1(t) ≤ |u− v| ≤ (2|x− y|) ∧ (|x− y|+ 3M1Φ
−1(T )).

Thus, by Lemma 2.3(a), Propositions 3.5 and 3.6(1) we have that for |x− y| > 3M1Φ
−1(t)

and 3T1 < t ≤ T ,

inf
(u,v)∈B(x,T1)×B(y,T1)

pD(t− 2T1, u, v)

≥ inf
(u,v):2−2a2Φ−1(t−2T1)≤|u−v|≤(2|x−y|)∧(|x−y|+3M1Φ−1(T1))

δD(u)∧δD(v)>a2Φ−1(T1)

pD(t− 2T1, u, v)

≥ inf
(u,v):2−2a2Φ−1(t−2T1)≤|u−v|≤(2|x−y|)∧(|x−y|+3M1Φ−1(T ))

δD(u)∧δD(v)>a2Φ−1((a2T1/T )(t−2T1))

pD(t− 2T1, u, v)

≥c12 inf
(u,v):

|u−v|≤(2|x−y|)∧(|x−y|+3M1Φ−1(T ))

(
tj(|u− v|) + φ−1((t/3)−1)d/2e−c13|u−v|

2φ−1((t/3)−1)
)

≥c14
(
tj((2|x− y|) ∧ (|x− y|+ 3M1Φ

−1(T ))) + φ−1(t−1)d/2e−c15|x−y|
2φ−1(t−1)

)
. (6.15)

Combining (6.13) and (6.15) and using (6.5) we obtain (1.12) for t ∈ (3T1, T ] and x and y
are in the same connected component.
Step3: Suppose t ∈ (0, T ] and x and y are in different connected components. We use
Proposition 6.4. Then, thanks to (6.5) and Lemma 6.3, we see that (1.12) still holds. 2

Note that, in the proof of Theorem 1.3(b), the assumptions that D is connected and
the path distance in D is comparable to the Euclidean distance, are only used to apply
Proposition 3.6. Thus, following the proof of Theorem 1.3(b) without applying Proposition
3.6, we have the following.

Proposition 6.4. For every C1,1 open set D and T > 0, there exist constants c > 0,M1 >

1 such that for every (t, x, y) ∈ (0, T ]×D ×D,

pD(t, x, y)

≥c

(√
Φ(δD(x))

t
∧ 1

)(√
Φ(δD(y))

t
∧ 1

)t
H(|x− y|−2)

|x− y|d
if |x− y| > 3M1Φ

−1(t),

Φ−1(t)−d if |x− y| ≤ 3M1Φ
−1(t).

Proof of Theorem 1.3(c): Since D is bounded and j is non-increasing, Theorem 1.3(a)
and Proposition 6.4 imply that for every (x, y) ∈ D ×D,

c−1Φ(δD(x))
1/2Φ(δD(y))

1/2 ≤ pD(1, x, y) ≤ cΦ(δD(x))
1/2Φ(δD(y))

1/2.

Using this, the proof of Theorem 1.3(c) is almost identical to that of [19, Theorems
1.3(iii)], so we omit the proofs. 2

Proof of Theorem 1.4. Either by the proof of Theorem 1.3 or by applying the main
result in [43] and our Propositions 3.5 and 3.6(1) to [7, Theorem 4.1 and 4.5], the
theorem holds true when D is an upper half space {x = (x̃, xd) ∈ Rd : xd > 0}. Then
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using the “push inward" method of [25] (see also [5, Theorem 5.8]) and our short time
heat kernel estimates in Theorem 1.3, one can obtain global sharp two-sided Dirichlet
heat kernel estimates when D is a domain consisting of all the points above the graph of
a bounded globally C1,1 function. We skip the proof since it would be almost identical to
the one of [5, Theorem 5.8]. 2

7 Green function estimates

In next two sections we use the notation f(x) � g(x), x ∈ I, which means that there
exist constants c1, c2 > 0 such that c1f(x) ≤ g(x) ≤ c2g(x) for x ∈ I.

Recall that Φ(r) = (φ(1/r2))−1 where φ is the Laplace exponent φ of the subordinator
S. When φ satisfies La(γ, CL) and Ua(δ, CU ) with δ < 2 for some a > 0, Green function
estimates for the corresponding subordinate Brownian motion were already discussed in
[19]. In this section we discuss Green function estimates when φ has no drift and that H
satisfies La(γ, CL) and Ua(δ, CU ) with δ < 2 and γ > 2−11δ≥1 for some a > 0.

By the exactly same proof as the one of [19, Lemma 7.1], we have the following.

Lemma 7.1. For every r ∈ (0, 1] and every open subset U of Rd,

1

2

(
1 ∧ r2Φ(δU (x))

1/2Φ(δU (y))
1/2

Φ(|x− y|)

)
≤
(
1 ∧ rΦ(δU (x))

1/2

Φ(|x− y|)1/2

)(
1 ∧ rΦ(δU (y))

1/2

Φ(|x− y|)1/2

)
≤ 1 ∧ r2Φ(δU (x))

1/2Φ(δU (y))
1/2

Φ(|x− y|)
. (7.1)

Since φ has no drift and satisfies La(γ, CL), by [35, Lemma 1.3] for everyM > 0, we
have

rΦ′(r) � Φ(r) for r ∈ (0,M ]. (7.2)

Note that, by Lemma 2.4, for every T > 0, there exists CT > 1 such that

Φ−1(r)

Φ−1(R)
≥ C−1

T

( r
R

)1/(2γ)
for 0 < r ≤ R ≤ T. (7.3)

Moreover, by Lemma 2.3,

Φ−1(r)

Φ−1(R)
≤
( r
R

)1/2
for 0 < r ≤ R <∞. (7.4)

Recall x+ = x ∨ 0.

Lemma 7.2. For T, b, r > 0 and d = 1, 2, set

hT,d(b, r) = b+Φ(r)

∫ 1

Φ(r)/T

(
1 ∧ ub

Φ(r)

)
1

u2(Φ−1(u−1Φ(r)))d
du+

Φ(r)

rd

(
1 ∧ b

Φ(r)

)
. (7.5)

Then, for 0 < r ≤ Φ−1(T/2) and 0 < b ≤ T/2,

hT,d(b, r) �
b

rd
∧

(
b

Φ−1(b)d
+

(∫ Φ−1(b)

r

Φ(s)

sd+1
ds

)
+

)
.

Proof. (a) The lemma for d = 1 is given in [19, Lemma 7.2] under the assumption that
φ satisfies La(γ, CL) and Ua(δ, CU ) with for some a > 0 δ < 2. Using (7.4) instead of the
assumption Ua(δ, CU ) with δ < 2, the proof of (a) is the same as the that of [19, Lemma
7.2].
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(b) We now assume that d = 2. Using (7.2)–(7.4), the proof is a simple modification of the
one of [19, Lemma 7.2]. We provide the proof in details for the readers’ convenience.

For (b, r) with 0 < b < Φ(r) ≤ T/2,

hT,2(b, r) � b+ b

∫ 1

Φ(r)/T

du

u(Φ−1(u−1Φ(r)))2
+

b

r2

= b+
b

r2

∫ 1

Φ(r)/T

(
Φ−1(Φ(r))

Φ−1(u−1Φ(r))

)2

u−1du+
b

r2
.

Since Φ(r) ≤ T/2, by (7.3)–(7.4) we have

0 < c2 = c−1
1

∫ 1

1/2

u
1
γ −1du ≤

∫ 1

Φ(r)/T

(
Φ−1(Φ(r))

Φ−1(u−1Φ(r))

)2

u−1du ≤ c1

∫ 1

0

du = c1 <∞.

Thus, for 0 < b < Φ(r) ≤ T/2, we have

hT,2(b, r) �
b

r2
. (7.6)

On the other hand, using the change of variable u = Φ(r)/Φ(s) and integration by
parts, we have that for (b, r) with Φ(r) ≤ b ≤ T/2,

hT,2(b, r)

=b+Φ(r)

∫ 1

Φ(r)/b

du

u2(Φ−1(u−1Φ(r)))2
+ b

∫ Φ(r)/b

Φ(r)/T

du

u(Φ−1(u−1Φ(r)))2
+

Φ(r)

r2

=b+

∫ Φ−1(b)

r

Φ′(s)

s2
ds+ b

∫ Φ−1(T )

Φ−1(b)

Φ′(s)

s2Φ(s)
ds+

Φ(r)

r2

=b+

(
b

Φ−1(b)2
− Φ(r)

r2

)
+ 2

∫ Φ−1(b)

r

Φ(s)

s3
ds+ b

∫ Φ−1(T )

Φ−1(b)

Φ′(s)

s2Φ(s)
ds+

Φ(r)

r2

=b+
b

Φ−1(b)2
+ 2

∫ Φ−1(b)

r

Φ(s)

s3
ds+ b

∫ Φ−1(T )

Φ−1(b)

Φ′(s)

s2Φ(s)
ds. (7.7)

Since b ≤ T/2, by (7.4) and the fact that Φ−1 is increasing,

1

Φ−1(b)2
− 1

Φ−1(T )2
� 1

Φ−1(b)2
≥ c4 (7.8)

for some c4 > 0. Using (7.2) and (7.8) in the second integral in (7.7), we get that for (b, r)
with Φ(r) ≤ b ≤ T/2,

hT,2(b, r) � b+
b

Φ−1(b)2
+

∫ Φ−1(b)

r

Φ(s)

s3
ds+ b

∫ Φ−1(T )

Φ−1(b)

1

s3
ds

= b+
b

Φ−1(b)2
+

∫ Φ−1(b)

r

Φ(s)

s3
ds+

b

2

(
1

Φ−1(b)2
− 1

Φ−1(T )2

)
� b

Φ−1(b)2
+ 2

∫ Φ−1(b)

r

Φ(s)

s3
ds. (7.9)

Since Φ(s) is an increasing function, when 0 < Φ(r) ≤ b, we have

b

Φ−1(b)2
+ 2

∫ Φ−1(b)

r

Φ(s)

s3
ds ≤ b

Φ−1(b)2
+ 2b

∫ Φ−1(b)

r

1

s3
ds =

b

r2
,
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while when Φ(r) ≥ b > 0,

b

Φ−1(b)2
+

(∫ Φ−1(b)

r

Φ(s)

s3
ds

)
+

=
b

Φ−1(b)2
≥ b

r2
.

Thus combining this with (7.6) and (7.9) we establishes the lemma. 2

Recall that the Green function GD(x, y) of X on D is defined as

GD(x, y) =

∫ ∞

0

pD(t, x, y)dt.

As an application of Theorems 1.3 and 1.4, we derive the sharp two sided estimates on
the Green functions of X on bounded C1,1 open sets. For notational convenience, let

a(x, y) :=
√
Φ(δD(x))

√
Φ(δD(y)) (7.10)

and

g(x, y) :=


Φ(|x− y|)
|x− y|d

(
1 ∧ Φ(δD(x))

Φ(|x− y|)

)1/2(
1 ∧ Φ(δD(y))

Φ(|x− y|)

)1/2

, when d > 2

a(x, y)

|x− y|d
∧

 a(x, y)

Φ−1(a(x, y))d
+

(∫ Φ−1(a(x,y))

|x−y|

Φ(s)

sd+1
ds

)+
 , when d ≤ 2.

(7.11)

Theorem 7.3. Assume that (1.8) holds, that φ has no drift and that H satisfies La(γ, CL)
and Ua(δ, CU ) with δ < 2 and γ > 2−11δ≥1 for some a > 0. Suppose that D is a bounded
C1,1 open set in Rd, d ≥ 1, with characteristics (R0,Λ).

(i) There exists c1 > 0 depending only on diam(D), R0,Λ, d and φ such that

GD(x, y) ≥ c1
Φ(|x− y|)
|x− y|d

(
1 ∧ Φ(δD(x))

Φ(|x− y|)

)1/2(
1 ∧ Φ(δD(y))

Φ(|x− y|)

)1/2

, x, y ∈ D.

(ii) There exists c2 > 0 depending only on diam(D), R0,Λ, d and φ such that

GD(x, y) ≤ c2
a(x, y)

|x− y|d
, x, y ∈ D.

(iii) If D is connected, then

GD(x, y) � g(x, y), x, y ∈ D.

Proof. Put T = 2Φ(diam(D)).
(i) LetM1 > 0 be the constant in Proposition 6.4 with our T . By Proposition 6.4 for every
(t, x, y) ∈ (0, T ]×D ×D with |x− y| ≤ 3M1Φ

−1(t),

pD(t, x, y) ≥ c1

(
1 ∧ Φ(δD(x))

t

)1/2(
1 ∧ Φ(δD(y))

t

)1/2

(Φ−1(t))−d.

Thus, noting that 2Φ(|x− y|) ≤ T , we have

GD(x, y) ≥ c1

∫ 2Φ(|x−y|)

Φ(|x−y|/(3M1))

(
1 ∧ Φ(δD(x))

t

)1/2(
1 ∧ Φ(δD(y))

t

)1/2

(Φ−1(t))−ddt

≥ c12
−1

Φ−1(2Φ(|x− y|))d

(
1 ∧ Φ(δD(x))

1/2

Φ(|x− y|)1/2

)(
1 ∧ Φ(δD(y))

1/2

Φ(|x− y|)1/2

)∫ 2Φ(|x−y|)

Φ(|x−y|/(3M1))

dt

≥ c2
Φ(|x− y|)
|x− y|d

(
1 ∧ Φ(δD(x))

1/2

Φ(|x− y|)1/2

)(
1 ∧ Φ(δD(y))

1/2

Φ(|x− y|)1/2

)
.
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We have proved part (i) of the theorem.

(ii) It follows from Theorem 1.3(c) that∫ ∞

T

pD(t, x, y)dt � Φ(δD(x))
1/2Φ(δD(y))

1/2, x, y ∈ D. (7.12)

By Theorem 1.3(a) and (3.1), there exists c3 > 0 such that for (t, x, y) ∈ (0, T ]×D×D,

pD(t, x, y)

≤c3
(
1 ∧ Φ(δD(x))

t

)1/2(
1 ∧ Φ(δD(y))

t

)1/2(
(Φ−1(t))−d ∧ t

|x− y|dΦ(|x− y|)

)
. (7.13)

By the change of variable u = Φ(|x−y|)
t and the fact that t→ Φ−1(t) is increasing, we

have ∫ T

0

(
1 ∧ Φ(δD(x))

t

)1/2(
1 ∧ Φ(δD(y))

t

)1/2(
(Φ−1(t))−d ∧ t

|x− y|dΦ(|x− y|)

)
dt

=
Φ(|x− y|)
|x− y|d

(∫ 1

Φ(|x−y|)/T
+

∫ ∞

1

)
u−2

((
Φ−1(ut)

Φ−1(t)

)d
∧ u−1

)

×
(
1 ∧

√
uΦ(δD(x))

1/2

Φ(|x− y|)1/2

)(
1 ∧

√
uΦ(δD(y))

1/2

Φ(|x− y|)1/2

)
du

� Φ(|x− y|)
|x− y|d

∫ 1

Φ(|x−y|)/T
u−2

(
|x− y|

Φ−1(u−1Φ(|x− y|))

)d(
1 ∧ ua(x, y)

Φ(|x− y|)

)
du

+
Φ(|x− y|)
|x− y|d

∫ ∞

1

u−3

(
1 ∧

√
uΦ(δD(x))

1/2

Φ(|x− y|)1/2

)(
1 ∧

√
uΦ(δD(y))

1/2

Φ(|x− y|)1/2

)
du

=: I + II. (7.14)

In the fourth line of the display above, we used Lemma 7.1.
Since Φ(|x− y|)/a(x, y) ≥ Φ(|x− y|)/Φ(diam(D)) ≥ 2Φ(|x− y|)/T , by (7.4),

I ≤ a(x, y)

|x− y|d

∫ 1

Φ(|x−y|)/T

|x− y|d

Φ−1(u−1Φ(|x− y|))d
u−1du

=
a(x, y)

|x− y|d

∫ 1

Φ(|x−y|)/T

(
Φ−1(Φ(|x− y|))

Φ−1(u−1Φ(|x− y|))

)d
u−1du

≤c4
a(x, y)

|x− y|d

∫ 1

0

u
d
2−1du = 2c4d

−1 a(x, y)

|x− y|d
. (7.15)

On the other hand, by Lemma 7.1

II ≤ Φ(|x− y|)
|x− y|d

∫ ∞

1

u−2

(
u−1/2 ∧ Φ(δD(x))

1/2

Φ(|x− y|)1/2

)(
u−1/2 ∧ Φ(δD(y))

1/2

Φ(|x− y|)1/2

)
du

≤ Φ(|x− y|)
|x− y|d

∫ ∞

1

u−2

(
1 ∧ Φ(δD(x))

1/2

Φ(|x− y|)1/2

)(
1 ∧ Φ(δD(y))

1/2

Φ(|x− y|)1/2

)
du

=
Φ(|x− y|)
|x− y|d

(
1 ∧ Φ(δD(x))

1/2

Φ(|x− y|)1/2

)(
1 ∧ Φ(δD(y))

1/2

Φ(|x− y|)1/2

)
≤ a(x, y)

|x− y|d
. (7.16)

Part (ii) of the theorem now follows from (7.12), (7.13), (7.15) and (7.16).

(iii) For the remainder of the proof we assume either that D is connected or that H
satisfies La(γ, CL) and Ua(δ, CU ) with δ < 2 for some a > 0. Then by Theorems 1.3(b)
and 1.3

pD(t, x, y) ≥ c5

(
1 ∧ Φ(δD(x))

t

)1/2(
1 ∧ Φ(δD(y))

t

)1/2

(Φ−1(t))−de
−c0 |x−y|2

Φ−1(t)2 . (7.17)
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Since by (7.3)

|x− y|
Φ−1(Φ(|x− y|)/u)

=
Φ−1(Φ(|x− y|))

Φ−1(Φ(|x− y|)/u)
≤ c6u

1/(2γ) if u > 1,

using this, by the change of variable u = Φ(|x−y|)
t and the fact that t → Φ−1(t) is

increasing, we have∫ T

0

pD(t, x, y)dt

≥ c5

∫ T

0

(
1 ∧ Φ(δD(x))

t

)1/2(
1 ∧ Φ(δD(y))

t

)1/2

(Φ−1(t))−de
−c0 |x−y|2

Φ−1(t)2 dt

= c5
Φ(|x− y|)
|x− y|d

(∫ 1

Φ(|x−y|)/T
+

∫ ∞

1

)
u−2

(
Φ−1(ut)

Φ−1(t)

)d
e
−c0 |x−y|2

Φ−1(Φ(|x−y|)/u)2

×
(
1 ∧

√
uΦ(δD(x))

1/2

Φ(|x− y|)1/2

)(
1 ∧

√
uΦ(δD(y))

1/2

Φ(|x− y|)1/2

)
du

≥ c5e
−c0 Φ(|x− y|)

|x− y|d

∫ 1

Φ(|x−y|)/T
u−2

(
|x− y|

Φ−1(u−1Φ(|x− y|))

)d(
1 ∧ ua(x, y)

Φ(|x− y|)

)
du

+c5
Φ(|x− y|)
|x− y|d

∫ ∞

1

u−2e−c0c
2
6u

1/γ

(
1 ∧

√
uΦ(δD(x))

1/2

Φ(|x− y|)1/2

)(
1 ∧

√
uΦ(δD(y))

1/2

Φ(|x− y|)1/2

)
du

=: c5(I + III). (7.18)

Clearly, we have

III ≥ Φ(|x− y|)
|x− y|d

(
1 ∧ Φ(δD(x))

1/2

Φ(|x− y|)1/2

)(
1 ∧ Φ(δD(y))

1/2

Φ(|x− y|)1/2

)∫ ∞

1

u−2e−c0c
2
6u

1/γ

du. (7.19)

Suppose that d ≤ 2. Let hT,d(a, r) be defined as in (7.5). Since a(x, y) ≤ Φ(diam(D)) =

T/2, we have by (7.12)–(7.14), (7.16), (7.18), (7.19) and Lemma 7.1 that GD(x, y) �
hT (a(x, y), |x− y|). Now, part (iii) of the theorem for d ≤ 2 follows from Lemmas 7.2.

Suppose 2 < d, then we have that

Φ(|x− y|)
|x− y|d

∫ 1

Φ(|x−y|)/T
u−2

(
|x− y|

Φ−1(u−1Φ(|x− y|))

)d(
1 ∧ uΦ(δD(x))

1/2Φ(δD(y))
1/2

Φ(|x− y|)

)
du

=
Φ(|x− y|)
|x− y|d

∫ 1

Φ(|x−y|)/T
u−2

(
|x− y|

Φ−1(u−1Φ(|x− y|))

)d(
1 ∧ uΦ(δD(x))

1/2Φ(δD(y))
1/2

Φ(|x− y|)

)
du

≤c7
Φ(|x− y|)
|x− y|d

(
1 ∧ Φ(δD(x))

1/2Φ(δD(y))
1/2

Φ(|x− y|)

)∫ 1

0

ud/2−2 du

=
2c7
d− 2

Φ(|x− y|)
|x− y|d

(
1 ∧ Φ(δD(x))

1/2Φ(δD(y))
1/2

Φ(|x− y|)

)
. (7.20)

The case d > 2 of (iii) now follows from part (i) of the theorem, Lemma 7.1, (7.12), (7.13),
(7.16) and (7.20). 2

We now consider the Green function estimates for half space-like domains. Here we
will give a sketch of the proofs only.

The proof of the next lemma is very similar (and simpler) to the one of Lemma 7.2 so
we skip the proof.
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Lemma 7.4. Suppose that (1.8) holds, that φ has no drift and that H satisfies L0(γ, CL)

and U0(δ, CU ) with δ < 2 and γ > 2−11δ≥1. For b, r > 0 and d = 1, 2, set

hd(b, r) = Φ(r)

∫ 1

0

(
1 ∧ ub

Φ(r)

)
1

u2(Φ−1(u−1Φ(r)))d
du+

Φ(r)

rd

(
1 ∧ b

Φ(r)

)
.

Then, for r, b > 0,

hd(b, r) �
b

rd
∧

(
b

Φ−1(b)d
+

(∫ Φ−1(b)

r

Φ(s)

sd+1
ds

)
+

)
.

Recall that g(x, y) is defined in (7.11).

Theorem 7.5. Let S = (St)t≥0 be a subordinator with zero drift whose Laplace exponent
is φ and let X = (Xt)t≥0 be the corresponding subordinate Brownian motion in Rd.
Suppose that D is a domain consisting of all the points above the graph of a bounded
globally C1,1 function and H satisfies L0(γ, CL) and U0(δ, CU ) with δ < 2. Then

GD(x, y) � g(x, y), for x, y ∈ D.

Proof. By Theorem 1.4 and (3.1),

GD(x, y)

≤c1
∫ ∞

0

(
1 ∧ Φ(δD(x))

t

)1/2(
1 ∧ Φ(δD(y))

t

)1/2(
(Φ−1(t))−d ∧ t

|x− y|dΦ(|x− y|)

)
dt

and

GD(x, y) ≥ c2

∫ ∞

0

(
1 ∧ Φ(δD(x))

t

)1/2(
1 ∧ Φ(δD(y))

t

)1/2

(Φ−1(t))−de
−c0 |x−y|2

Φ−1(t)2 dt.

Thus by following the argument in Theorem 7.3 one can easily see that for d > 2,

GD(x, y) �
Φ(|x− y|)
|x− y|d

(
1 ∧ Φ(δD(x))

Φ(|x− y|)

)1/2(
1 ∧ Φ(δD(y))

Φ(|x− y|)

)1/2

.

and, for d ≤ 2, GD(x, y) � hd(a(x, y), |x − y|). Thus the theorem follows by this and
Lemmas 2.3(b) and 7.4. 2

8 Examples

Suppose that D is a bounded C1,1 open set with diam(D) < 1/2 and φ is either

(i) φ(λ) =
λ

log(1 + λβ/2)
, where β ∈ (0, 2), or (ii) φ(λ) =

λ

log(1 + λ)
− 1.

Then φ(λ) − λφ′(λ) satisfies La(γ, CL) and Ua(δ, CU ) with 2−1 < γ < δ < 2 where a = 0

for the case (i) and a > 0 for the case (ii). It is easy to check that we have

φ−1(λ) � λ log λ and H(λ) � λ

(log λ)2
, λ ≥ 2.

Moreover,
Φ(r) = 1/φ(1/r2) � r2 log(1/r) for 0 < r ≤ 1/2, (8.1)
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and
1√

φ(1/λ2)
� λ

√
log(λ−1), λ ≤ 1/2 .

Thus by Theorem 1.3, for 0 < t < 1/2,

pD(t, x, y) ≥ c1

(
1 ∧ δD(x)√

t

√
log(1/δD(x))

)(
1 ∧ δD(y)√

t

√
log(1/δD(y))

)
×

[(
t−d/2

(
log

1

t

)d/2)
∧

(
t(log 1

|x−y| )
−2

|x− y|d+2
+ t−d/2

(
log

1

t

)−d/2
e−aL

|x−y|2
t log 1

t

)]
, (8.2)

and

pD(t, x, y) ≤ c2

(
1 ∧ δD(x)√

t

√
log(1/δD(x))

)(
1 ∧ δD(y)√

t

√
log(1/δD(y))

)
×

[(
t−d/2

(
log

1

t

)d/2)
∧

(
t(log 1

|x−y| )
−2

|x− y|d+2
+ t−d/2

(
log

1

t

)−d/2
e−aU

|x−y|2
t log 1

t

)]
. (8.3)

We now assume that d = 2 and D is a bounded C1,1 open set in R2 with sufficiently
small diameter. We will give the sharp estimates of the Green function on D.

There is a constant c0 ∈ (0, 1) so that

c0

(
s

log(1/s)

)1/2

≤ Φ−1(s) ≤ c−1
0

(
s

log(1/s)

)1/2

for s ∈ (0,Φ(1/2)]. (8.4)

Suppose 0 < r ≤ Φ−1(b) ≤ 1/2. Then∫ Φ−1(b)

r

Φ(s)

s3
ds �

∫ Φ−1(b)

r

log(1/s)

s
ds

=
1

2

(
(log(1/r))2 − (log(1/Φ−1(b)))2

)
=

1

2
log+(Φ−1(b)/r) log+(1/(rΦ−1(b))). (8.5)

Let

b(x, y) := δD(x)δD(y)
√
log(1/δD(x)) log(1/δD(y))

� Φ(δD(x))
1/2Φ(δD(y))

1/2 = a(x, y). (8.6)

Note that by (8.4)

Φ−1(a(x, y)) �
(

b(x, y)

log(1/b(x, y))

)1/2

(8.7)

and, so

a(x, y)

Φ−1(a(x, y))2
� log

[
b(x, y)−1

]
. (8.8)

Applying expressions Φ(|x−y|) � |x−y|2 log(1/|x−y|) and (8.5)–(8.8) to Theorem 7.3(iii),
we have the following explicit estimates:

GD(x, y)

� b(x, y)

|x− y|2
∧
(
log+

[
b(x, y)

|x− y|2 log(1/b(x, y))

]
log+

[
log(1/b(x, y))

|x− y|2b(x, y)

]
+ log

[
b(x, y)−1

])
.
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