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Convergence in distribution norms in the CLT for non
identical distributed random variables
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Abstract

We study the convergence in distribution norms in the Central Limit Theorem for non
identical distributed random variables that is

enlf) = E(f(% iz)) —E(f(G)) -0

where Z;, i € IN, are centred independent random variables and G is a Gaussian
random variable. We also consider local developments (Edgeworth expansion). This
kind of results is well understood in the case of smooth test functions f. If one deals
with measurable and bounded test functions (convergence in total variation distance),
a well known theorem due to Prohorov shows that some regularity condition for the
law of the random variables Z;, i € IN, on hand is needed. Essentially, one needs that
the law of Z; is locally lower bounded by the Lebesgue measure (Doeblin’s condition).
This topic is also widely discussed in the literature. Our main contribution is to discuss
convergence in distribution norms, that is to replace the test function f by some
derivative 9, f and to obtain upper bounds for £, (9. f) in terms of the infinite norm of
f. Some applications are also discussed: an invariance principle for the occupation
time for random walks, small balls estimates and expected value of the number of
roots of trigonometric polynomials with random coefficients.
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CLT in distribution norms

1 Introduction

The framework. We consider n independent (but not necessarily identically dis-
tributed) random variables Y3, k = 1,...,n, taking values in R™, which are centered and
with identity covariance matrix. Moreover, we consider n matrices C,, € Mat(d x m)
and we look to

1 n
SAY)zﬁzcn,kYk. (1.1)
k=1

Our aim is to obtain a Central Limit Theorem (CLT) as well as Edgeworth developments
in this framework. The basic hypotheses are the following. We assume the normalization
condition

1 n
=3 CniCyy = 1dg, (1.2)
"=
where * denotes transposition and Idg € Mat(d x d) is the identity matrix. Moreover we
assume that for each p € IN there exists a constant C,(Y") > 1 such that
P) < . .
lrgnlggn E(|Cn ik Yil”) < Cp(Y) (1.3)
The case of smooth test functions. Let || f||, . denote the norm in W, that is
the uniform norm of f and of all its derivatives of order less or equal to k. First, we want
to prove that
Co
E(f(Sn(Y)) = | f(@)ra(x)dz| < — [[fll5 o (1.4)
R4 nz
where 74(z) = (21)"%?exp(—4 |2|?) is the density of the standard normal law. This
corresponds to the Central Limit Theorem (hereafter CLT). Moreover we look for some
polynomials 1, ; : R? — R such that for N € N and for every f € CN(R%), with
N = N(2|N/2] + N +5),

E(f(5,(2)) /

o ofY;
@1+ ,; ilnk(@)va(@)da]| < s I flg o @)

This is Theorem 4.1, giving the Edgeworth development of order N. In the case of
smooth test functions f (as it is the case in (1.5)), this topic has been widely discussed
and well understood. One should mention the seminal paper by Essen [23] the books of
Gnedenko and Kolmogorov [25], Petrov [32], Battacharaya and Rao [15] and Zolotarev
[36]. Such development has been obtained by Sirazhdinov and Mamatov [35] in the
case of identically distributed random variables and then by Gotze and Hipp [26] in the
non identically distributed case. A complete presentation of this topic may be found
in the recent review paper by Bobkov [17]. The coefficients 1), ;. in the development
(1.5) are linear combinations of Hermite polynomials. An explicit expression, in the
one dimensional case, is given in [17]. Ourselves we give the explicit formula of these
coefficients in the multi-dimensional case. This is important because, in the working
paper [10], the development of order three, in the 2-dimensional case, is used in order
to study invariance principles for the variance of trigonometric polynomials.

It is worth to mention that the classical approach is based on Fourier analysis. In
our paper we use a different approach based on the Lindeberg method for Markov
semigroups (this is inspired from works concerning the parametrix method for Markov
semigroups in [13], see also Chatterjee [21]). This alternative approach is convenient
for the proof of our main result concerning “distribution norms”(see below).

The case of general test functions. A second problem is to obtain the estimate
(1.5) for test functions f which are not regular, in particular to replace || f|| 5 . by [/ fll. -
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CLT in distribution norms

This amounts to estimate the error in total variation distance. In the case of identically
distributed random variables, and for N = 0 (so at the level of the standard CLT),
this problem has been widely studied. First of all, one may prove the convergence in
Kolmogorov distance, that is for f = 1, where D is a rectangle. Many refinements of
this type of result have been obtained by Battacharaya and Rao and they are presented
in [15]. But it turns out that one may not prove such a result for a general measurable
set D without assuming more regularity on the law of Y, k£ € IN.

Indeed, consider the standard CLT, so take m = d, C,,, = Idgand Y3, k =1,...,n,
i.i.d. In his seminal paper [33] Prohorov proved that the convergence in total variation
distance is equivalent to the fact that there exists » such that the law of Y; +--- + Y, has
an absolutely continuous component. This is “essentially” equivalent to the Doeblin’s
condition that we present now (see Remark 2.1): we assume that there exists r,e > 0
and there exists y, € R™ such that for every measurable set A C B,.(yx)

P(Y), € A) > eA(A) (1.6)

where )\ is the Lebesgue measure. Under (1.6) we are able to obtain (1.5) in total
variation distance.

Let us finally mention another line of research which has been strongly developed in
the last years: it consists in estimating the convergence in the CLT in entropy distance.
This starts with the papers of Barron [14] and Johnson and Barron [28]. In these papers
the case of identically distributed random variables is considered, but recently, Bobkov,
Chistyakov and Gotze [19] have obtained the estimate in entropy distance for the case
of random variables which are no more identically distributed as well. We recall that
the convergence in entropy distance implies the convergence in total variation distance,
so such results are stronger. However, in order to work in entropy distance one has
to assume that the law of Z,, , = C,, Y}, is absolutely continuous with respect to the
Lebesgue measure and have finite entropy and this is more limiting than (1.6). So
the hypotheses and the results are slightly different. Finally, other types of distances
(W,-transport distances) have been recently studied in [18, 20, 34].

Convergence in distribution norms. Consider first the particular case when
Zn i = Cp 1Yy, are identically distributed and have a density which is one time differen-
tiable with derivative belonging to L'. Then the law of S,,(Y) is absolutely continuous
with C™ density and then, in Proposition 2.12, we prove that for every k € IN and every
multiindex o c

2\k
sup(L + |2°)" [0aps.. () = daa(z)] < NG
which is the standard convergence in distribution norms. Notice also that here we are at
the level of the CLT and we are not able to deal with Edgeworth expansions.

Unfortunately we fail to obtain such a result in the general framework (which is
the interesting case): this is moral because we do not assume that the laws of C), Y,
k = 1,...,n are absolutely continuous, and then the law of S, (Y) may have atoms.
However we obtain a similar result, but we have to keep a “small error”. Let us give a
precise statement of our result. For a function f € C} (R4) (¢ times differentiable with
polynomial growth) we define L,(f) and [,(f) to be two constants such that

Y 10af (@) < Lo(H)(1 A+ )« (1.7)

0<|al<q
Our main result is given in Theorem 2.3 and says the following: for a fixed ¢ € IN, there

exist some constants Cy > 1 > ¢y > 0 (depending on r, ¢ from (1.6) and on Cp(Y) from
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(1.3)) such that for every multiindex y with |y| = ¢ and for every f € Cg(Rd)

’]E( % (Snl / 0y f(x 1+Z k/Qw"k ))’Yd( )dﬂ?’

<Cpn (Lq(f)e—czvxn + %Lo(f))

(1.8)

However we fail to get convergence in distribution norms because L,(f)e VN *" appears
in the upper bound of the error and L,(f) depends on the derivatives of f. But we are
close to such a result: notice first that if f,, = f * ¢;,_ is a regularization by convolution
with §,, = exp(—% x n) then (1.8) gives

(0, fu(S / 0y fulx (1+Z k/g%k( 2))vale dx‘<m(N+1)L(f). (1.9)

We discuss now three applications.

Application 1: an invariance principle related to the local time. Let

Sn(k,Y) IZYZ,

where Y7, ...,Y,, are independent and identically distributed random variables. We set
e, =n~27P) with p € (0,1) and in Theorem 3.1 we prove that, for every p’ < p,

1 & 1 | C
- E(—l )—E(/ 1 d)’<7,.
\nkZ_l 52 HISu(ky)l<en) | oe, tawzen ds)| <

with W, a Brownian motion (we recall that fol %ﬂl{‘ws‘ggn}ds converges to the local
time of W). Here the test function is f,(z) = ilmﬁn and this converges to the Dirac
function. This example shows that (1.8) is an appropriate estimate in order to deal with
some singular problems.

Application 2: small ball probabilities. We consider the case in which the matri-
ces C,, ;, can depend on a parameter u € RY, that is,

Sn(u,Y) = IZCM u)Yg, ueR"

We assume that u — C,, ;(u) € Mat(d x d) is twice differentiable with bounded derivatives
up to order two and that the covariance matrix field of S,,(u,Y") is the identity matrix, that
is, Bp(u) = 230 Crrlu) 1(u) = Idg. Then in Theorem 3.2 we prove the following
estimate: if d > ¢, a > 0 and 0 > d“_ée then, for every € > 0,

. 1 C
IP(Ml‘Iélfna |Sn(u,Y)| < ﬁ) < A=) —al—<" (1.10)

This is done by applying (1.9) to the multiindex v = (1,...,d) and the function f = f,,

with - .
fulz) = nfed/ dxg.../ dzal{|zj<n-oy ().

— 00

Then (1.9) allows one to replace S, (u,Y") with a Gaussian random variable, and in this
case we have a nice estimate of the error. We emphasize that, contrarily to the case of
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supremas of random processes, much less is known regarding infimas. As such, the last
result can be seen as a preliminary step enabling one to switch to the Gaussian case for
which more accurate tools are available.

Application 3: an invariance principle for the expected roots of trigonomet-
ric polynomials. Let N, (Y) be the number of roots in (0, 7) of the polynomial

n

P,(t,Y) = Z (Y, cos(kt) + Y, sin(kt)).
k=1

It is known, see e.g. [22], that if the Y} ’s are replaced by independent and identically
distributed standard normal random variables G;’s then

1 1
hl,{n EE(N,L(G)) = %

Note that the aforementioned asymptotic still holds when the Gaussian coefficients
display some strong form of dependence [1]. In the recent paper [24], the above result
has been proved for general independent and identically distributed random variables
Y, £ € IN, which are centered and with variance one. In Theorem 3.4 we drop the
assumption of being identically distributed: we prove that the same limit holds for N, (Y)
when the Y} ’s are independent and fulfill the Doeblin’s condition. We stress that it is
not completely clear whether the strategy used in [24] can be adapted to the setting of
non-identically distributed coefficients since it is explicitly used at several moments in
the proof that the characteristic function of each coefficients behaves in a same way
near the origin, which is more restrictive that our normalization condition (1.2). Our
main result enters in the following way: thanks to the Kac-Rice formula, we have

b dt
Np(Y) = (}I_T)I(l)/a |00 Pa (8, Y )| L 21,y ) 1 <5 55
so we apply (1.8) to the pair (0, P,(t,Y), P,(t,Y)). Although the article only focuses on
the expectation, we stress that this methods paves the way to an investigation of higher
moments (and hence variance or CLT’s) by using Kac-Rice formulas of higher order. This
is actually the main content of the forthcoming article [10] which follows the series
[27, 3, 2] of articles dedicated to this task in the Gaussian case.

2 Notation and main results

We fix n € IN and we consider n independent random variables {Y}}1<x<n, with
Ve = (Y}!,...,Y{") € R™, which are centered and whose covariance matrix is the identity.
Let {Cy i }1<k<n denote n matrices in Mat(d x m) and set

On,k = Cn,kO:L,k S Mat(d X d),

* denoting transposition, so o, ; is the covariance matrix of the random variable C,, ;Y.
We define

1 n
S,(Y)=— Cr kY. 2.1
n( ) \/7’7, I; n,ktk ( )

Sometimes, but not everywhere, we consider the normalizing condition

1 n

—> onk =1dg, (2.2)

n

k=1
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Id,; denoting the d x d identity matrix. Our aim is to compare the law of S,,(Y") with the
law of S,,(G) where G = (Gk)1<k<n denote n standard independent Gaussian random
variables. This is a CLT result (but we stress that it is not asymptotic) and we will obtain
an Edgeworth development as well.

We assume that Y} has finite moments of any order and more precisely,

IISH]?%(TLE(‘CM]CYHP) < Cp(Y), Vp. (23)

Notice that by (2.2) |Ufijk- < 1 so we may assume without loss of generality that
E(|Cp xGk|") < C,(Y) for the standard normal random variables as well.

2.1 Doeblin’s condition and Nummelin’s splitting

We say that the law of the random variable Y € R" is locally lower bounded by the
Lebesgue measure if there exists yy € R? and ¢, > 0 such that for every non negative
and measurable function f : R — R

E(f(Y)) >e [ fly —yv)1Bo2m (Y — yy)dy. (2.4)

(2.4) is known as the Doeblin’s condition. We denote by D(r, ) the class of the random
variables which verify (2.4). Given r > 0 we consider the functions a,,?, : R — R
defined by

1
art) =1- =g g @ W) = lgusn +leausne” . @5
IfY € ®(r, ) then
E00ﬂ>za/fw—ywwAW—yﬂ%mL

The advantage of ¢, (|y — yy|°) is that it is a smooth function (which replaces the indicator
function of the ball) and (it is easy to check) that for each | € IN,p > 1 there exists a
universal constant C; , > 1 such that

o
Gl (DI < 72 2.6)

where aﬁl) denotes the derivative of order [ of a,. Moreover one can check (see [8]) that

if Y € ©(r,¢) then it admits the following decomposition (the equality is understood as
identity of laws):
Y=xV+(1-x)U (2.7)

where y, V,U are independent random variables with the following laws:

P(x=1)=em, and P(x=0)=1-ecm,,

1
P(V € dy) = — |y — uy)[*)dy 2.8)
1
PU edy) = ——(P(Z € dy) —en(ly - yv|*)dy)
with
me = [0y = o). 2.9)

The decomposition (2.7) is also known as the Nummelin’s splitting. We will see later on,
specifically in next Section 5.1, that the noise coming from the Nummelin’s decomposition
allows one to set-up a Malliavin type calculus, which in turn will be our main tool in
order to get our CLT result in distribution norms.

EJP 23 (2018), paper 45. http://www.imstat.org/ejp/
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Remark 2.1. In his seminal paper [33] Prohorov considers a sequence of i.i.d. random
variables X,, and proves that the convergence in the CLT holds in total variation distance
if and only if the following hypothesis holds: there exists n, such that the law of
Xi+...+X,, has an absolute continuous component, that is X;+...+X,,, ~ u(dz)+p(z)dz.
Of course this is much weaker than Doeblin’s condition, but, as long as we want to
prove the CLT in total variation distance, we may proceed as follows: we denote Y; =
Xkn,+1+ -+ X(gg1)n, and take Zy = Yo, + Yor11. Since the convolution of two functions
from L' is a continuous function, p * p is continuous and consequently locally lower
bonded by the Lebesgue measure. So Z;, verifies Doeblin’s condition. We prove the CLT
in total variation for Z;, and then it easily follows for X,, (see Corollary 2.11 below). So,
as long as one is concerned with the CLT the two conditions are (in the above sense)
equivalent.

Remark 2.2. We stress that in [8] Proposition 2.4 there is fault: it is asserted that, if
X ~ p(dz) + p(x)dz then X satisfies the Doeblin’s condition - and of course this is false
if we do not ask p to be lower semicontinous. However, in Lemma A.1 from the appendix
in the same paper, the lower continuity hypothesis is mentioned.

2.2 Main results

In order to give the expression of the terms which appear in the Edgeworth develop-
ment we need to introduce some notation.

We say that « is a multiindex if a € {1,...,d}* for some k > 1, and we set |a| = k its
length. We allow the case k = 0, giving the void multiindex o = ().

Let a be a multiindex and set k = |a|. For for z € R? and f : R? — R, we denote
T =Tq, + Tay a0d On f(¥) = Oy, -+ Oz, f(w), the case k = 0 giving 2’ =1and dyf = f.
In the following, we denote with C*(IR?) the set of the functions f such that 9, f exists
and is continuous for any « with |a| < k. The set C;f(]Rd), resp. CF(R?), is the subset of
C*(R%) such that 9, f has polynomial growth, resp. is bounded, for any o with |a| < k.
C>(R%), resp. C5°(R?) and C;°(R?), denotes the intersection of C*(R?), resp. of C}(R¢)
and of Cf(R?), for every k. For f € CE(R?) we define Ly(f) and I;(f) to be some
constants such that

> [0af(@)] < Le(f)(A + |z)=). (2.10)

0<|al<k

Notice that if f € Cp°(R?) then lx(f) = 0 and Li(f) = X< o)<k 100 fll -
Moreover, for a non negative definite matrix ¢ € Mat(d x d) we denote by L, the
Laplace operator associated to o, i.e.

d
Ley= Y 0%10.,0.,. (2.11)
i,j=1
Forr>1and! > 0 we set
Ap (@) = B((CprY:)*) = B((CnrGp)®) and DY), =" Ay ()00 (2.12)

|a|=l1
Notice that D). = 0 for I = 0, 1,2 and, by (2.3), for | > 3 and |a| = I then
|Ap ()] <2C(Y), r=1,...,n. (2.13)

We construct now the coefficients of our development. Let N be fixed: this is the order
of the development that we will obtain. Given 1 < m < k < N we define

EJP 23 (2018), paper 45. http://www.imstat.org/ejp/
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A, {01, 1)y ooy Uy 1)) : N +2>1; > 3, LN/QJ >10>0,i=1,..,m},

2.14
{01, 10), oy (I, 12) eAm:Zli+QZl§:k+2m}. (2.14)
=1 =1

Am,k

Then, for 1 < k < N, we define the differential operator

k m m
D YD VD I 1 10 ) £y S S

n
m=1 ((]17l1)7 7(lm ))€A7n k 1<T"1< <rm< <ni=1

By using (2.3) and (2.13), one easily gets the following estimates:
ITosef (2)] < C x Cap(Y) Lap(f)(1 + |z])'== D, f e C3FRY), (2.16)

where Lsi(f) and I5(f) are given in (2.10) and C > 0 is a suitable constant which does
not depend on n.

We introduce now the Hermite polynomials, we refer to Nualart [31] for definitions
and properties. The Hermite polynomial H,, of order m on R is defined as

Hp(z) = (—1)%%“'2@—%-”2. (2.17)
xm
For a multiindex « € {1,...,d} we denote j3;(a) = card{j : a; = i} and we define the

Hermite polynomial on R? corresponding to the multiindex « by
x) = HHﬁi(a)(xi) for == (z1,...,2q). (2.18)

Equivalently, the Hermite polynomial H, on R? associated to the multiindex « is defined
by
E(0af(W)) = E(f(W)Ha(W)) Vf € C;*(RY) (2.19)

where W is a standard normal random variable in R?. Moreover for a differential
operator I' = } -, < a(@)da, with a(a) € R, we denote Hr =}, <, a(a)Hq so that

E(f(W)) = E(f(W)Hr(W)). (2.20)

Finally we define
-1+ Z ) with I, j, defined in (2.15). (2.21)

The polynomial ®,, x gives the Edgeworth expansion of order N in the CLT, as stated in
the following result, which represents the main result of this paper.

Theorem 2.3. Assume that Yy, € ©(r,e),Vk € N for some ¢ > 0,r > 0. Let the normaliz-
ing condition (2.2) and the moment bounds condition (2.3) both hold. Let N,q € IN be
fixed. We assume that n is sufficiently large in order to have

m,’%’n
nz(N+1) o~ 5ts <1 and n>4(N+1)Cy(Y).

There exists C > 1, depending on N and q only, such that for every multiindex v with
|7l = q and every f € C4(R?)

B0, 15, (1)) ~ B0 £(W) b x (W)] < € x .00 (7o 4 (e 57) @2.22)

where C,(Y) is a constant which depends on q,l,(f),N and C,(Y) forp = 2(N + 3) V
2l6(f)..
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Remark 2.4. The precise value of C,(Y) is given by

8 \ 2dp2 ~
C-(¥) = (1 v nTr) AVHEIDHAD &, 1o pyety(ppvito (4o
Cloge " (Y) (Iny2142)( )y v+ 22
16dp N/2|+2)(N+1 ! f v (N+1
X a1 Ca(V43) (¥)(1+Cy ¥))

withpy = ¢+ (N+1)(N+3), p2=q+p1,
/\d) (14 |2])Pdz, épy =1V max /(1 + |z Ond(z) |da

0<|a|<p

(2.24)

in which ¢ denotes a super kernel (see next (5.15) and (5.16)).

Actually the coefficients Hr, , (x) of the polynomial ®,, y(z) are cumbersome. The
following corollary, whose proof is postponed in Section 5.3.2, gives a plain expansion of
order three:

Corollary 2.5. Let the set-up of Theorem 2.3 holds. For a multiindex o and i,j €
{1,...,d}, set

1 n
—=S"A,, d Za(a,i, Apr(a 2.25
nZ r(a) and 2,(a,i,j) Z (2.25)

Then there exists C' > 1, depending on N and g only, such that for every multiindex
with |y| = ¢ and every f € C(R?)

(0, £(5.(7))) ~E (0, (W) (1+§3: #Hn,k(m))\ < cc*(Y)(LO(zf) +Lq(f)e—;‘—§m)
k=1

n
(2.26)
where C,(Y) is given in (2.24) and
1
Hna(2) = & ;3 cn(a)Ha(z), (2.27)
1
Hosle) = o 3 ) Hlw) oy 3 enle)en(8) o), 229
la|=4 \Oé\ 31B|=3
1 L 1
Hn,&(x) = _E Z Z Cn(a,l,])H(aﬁ)(l') + m Z cn(a)Hoz(x)
la|=314,j=1 la|=5
1 1
+1 > > enla)en(B) Hap) + 1206 S>3 cal@)en(Ben(1) Hia s ().
la|=3|8|=4 la|=3|8|=3 |v|=3
(2.29)
Remark 2.6. We stress that the coefficients of the Hermite polynomials appearing in
Hn,1(x)-H, 3(x) depend on n (this is because we work with C), 1Yy, k= 1,...,n, whose

law depends on n) but in a bounded way. In fact, by the formula (2.25) and by (2.13), for
o] =landi,j € {1,...,d},

len(a)] < 2C1(Y) and [¢,(av, 4, j)| < 4C(Y)Co(Y), for every n.

Remark 2.7. In the one dimensional case Bobkov obtained in [17] (see Proposition 14.1
therein) the following development using Hermite polynomials:

1+Z (%3) _(W)kNXH(x)
kil k;N (N +2)! b

where k = 3k; +...+ (N +2)ky and the summation is made over the non negative integers
ki, ..kn such that 0 < ky +2ks + ...+ Nky < N. And v, , is the p-cumulant of S,,(Y"). This
is an alternative way to write the correctors which is ordered according to the powers of
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the Hermite polynomials (and of course, the two expressions are equivalent and one may
pass from one to another).

The proof of Theorem 2.3 is done by using a Malliavin type calculus based on the
random variables V;’s coming from the Nummelin’s splitting associated to the Yj’s.
This differential calculus is developed in next Section 5.1. The proof of Theorem 2.3
represents the main effort in this paper, so we postpone it to Section 5.3.1. As for
Corollary 2.5, the proof consists in heavy but straightforward computations, so we
postpone in Section 5.3.2.

We give now two slight variants of Theorem 2.3 which will be used in the following.
First:

Proposition 2.8. Let (2.2) and (2.3) hold. Assume that for some n, < n one has
Y, € D(r,e) fork <n—n, and + > /1" 0y, > £1d4. Then (2.22) holds true.

The proof of Proposition 2.8 mimics the one of Theorem 2.3 so we postpone it as well,
in next Section 5.3.3. This result will be used in the proof of Corollary 2.11 below.

Let us now show how to get the estimate in Theorem 2.3 without assuming the

normalization condition (2.2). We assume that ¥,, := %Z:zl On,k, is invertible and

we denote C,, = E;l/QCn’k. Then we construct (I)S,"N as in (2.15) by using A, x(a) =

E((Cn 1 Ye)*) — E(CrxGr)*).
Proposition 2.9. Assume that Y, € ©(r,¢),Vk € N for some ¢ > 0,r > 0 and %,, =
% ZZ:1 on,k is invertible and condition (2.3) hold. Let N,q € IN be fixed. Then Theorem

2.3 holds as well and (2.22) reads: for a multiindex o with |a| = ¢,

E(0af(Sa(Y))) = B(0af (S} W)@, (W)
1 2 (2.30)

<CN 7 x C*(Y)( Lo(f) +Lq(f)e*%m)

n3(N+1)

where W is a standard Gaussian random variable,C,(Y) is given in (2.23) and )\,, is the
lower eigenvalue of ¥.,,.

Proof. For an invertible matrix ¢ € Mat(d x d) and for f : R? — R, let f,(z) = f(ox). A
simple computation shows that

Oaf)loz) = Y (67)*P0sf,(x),
[B]=|c]

where, for any two multiindexes « and § with |a| = ¢ = |8

’

q

(o7 = [y

i=1

We denote now S,(Y) = ﬁzzzlén,/ﬁ’k e 25, (Y) verifies the normalization

condition (2.2). So using (2.22) for S,,(Y) we obtain
E(0af(Sn(Y))) = E(0af(5/?Sa(Y) = Y (T, PE@g fr/2(Sn(Y)))
[Bl=q
= D (5P (B(9 L2 (W)BR (W) + RY (n))
|Bl=q
= E@uf(E/PW)2R (W) + D (2, Ry (n).
[8l=q

The estimate of Ry (n) follows from Lq(fy1/2) < A Ly(f) and Z‘m:q(zglm)aﬂ < CA;’]XZQ.
O
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Another immediate consequence of Theorem 2.3 is given by the following estimate
for an “approximative density” of the law of S, (Y):

Proposition 2.10. Assume that Y, € ©(r,¢) for some ¢ > 0,r > 0 and let (2.2) and (2.3)
H\Z,’VL
hold. Suppose that nz (VD=5 < 1 andn > 4(N + 1)Co(Y). Let 8, be such that

1

2
(N+1)/2d — =5 xn
n e~ 32d <9, < 5
= = n%(N-H)

Then
C

T’ (2.31)

1
’E((;dlﬂsnqun}) —a(a)®n,n(a)] <
where v, denotes the density of the standard normal law in R¢.

Proof. Let h(l‘) = fil)o dxy... ff;tl él{u,aggn}d.ﬁd so that él{u,ﬂgén} = 611...893(1]1(1)).
Using Theorem 2.3

1
E(é—dl{\sn(y)_a\gan}) = E(8y,..000h(Sn(Y))) = E(Ds, ...00ah(W)®, x (W) + Ry (n)

1
E(@lﬂwfa\gén}q)n,N(W)) + Ry (n)

with
1 L _mivn c
the last inequality being true by our choice of §,,. Moreover
1 1
E(ﬁl{|W—a\§5n}¢n,N(W)) = o ﬁl{\y—a\g(?n})(I)n,N(y)'yd(y)dy
n n

= ®nn(a)ya(a) + R (n)

with [R(n)| <

C .
S T as a further consequence of the choice of §,,. O

We now prove a stronger version of Prohorov’s theorem. We consider a sequence of
identical distributed, centered random variables X € R? which have finite moments of
any order and we look to

1 n
Sp(X) = — X
Vit
Following Prohorov we assume that there exist n, € IN such that
P(X1+ -+ X, €dx) = p(dx) +¢(z)dz (2.32)

for some measurable non negative function .

Corollary 2.11. We assume that (2.32) holds. We fix q, N € IN. There exist two constants
0 <cy <1<C,, depending on N and g, such that the following holds: if

n%(NJrl)efc*n S 1

then, for every multiindex v with |y| < ¢ and for every f € C4(R?) one has

B0, (Su(X))) = B0, (W) (W))] < C. ( Lo(f) + Ly(£)e™>"). (2.33)

n3(N+1)
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Proof. . We denote
2(k+1)n.

1

Yk = Xi and Zk = 7Yk.
7::2%,:*“ v
Notice that we may take v in (2.32) to be bounded with compact support. Then v x v is
continuous and so we may find some r > 0, > 0 and y € R? such that 1 x ¢ > €lBy. (y)-
It follows that Y; € D(r,e) and we may use Theorem 2.3 in order to obtain (2.33) for
n = 2n, x n’ with n’ € IN. But this is not satisfactory because we claim that (2.33) holds
for every n € IN. This does not follow directly but needs to come back to the proof of
Theorem 2.3 and to adapt it in the following way. Suppose that 2n.n’ <n < 2n.(n’ + 1).
Then

1 n 1 n’ 1 n
X) = (X — X, = — Y: — X.
Sn( ) San ( )+ \/ﬁ Z k \/ﬁ; K+ \/ﬁ Z k

kE=2n.n’+1 k=2n,n’+1

Since X, 2n,n’ + 1 < k < n, have no regularity property, we may not use them in the
regularization arguments employed in the proof of Theorem 2.3. But Yy, 1 < k < n’
contain sufficient noise in order to achieve the proof (see the proof of Proposition 2.8 in
next Section 5.3.3). O

2.3 Convergence in distribution norms

In this section we prove that, under some supplementary regularity assumptions on
the laws of Y}, k € IN, Theorem 2.3 implies that the density of the law of S,,(Y) converges
in distribution norms to the Gaussian density. We consider the case C,, = C}, that is,

1 n
Sn(Y) = 7n > ChYa,
k=1

and we denote o, = C,C};. We assume that

0<o< irlifak <supop <o <oo and sup HYng < 0. (2.34)
k k

In particular each oy, is invertible. We denote v, = o}, '. For a function f € C'(R?) and
for k € IN we denote

mialf) = [ (1+1al)* 95(@) do.

Proposition 2.12. We fix ¢ € IN and we also fix a polynomial P. Suppose thatY}, € D(r,¢),
k € IN, and (2.34) holds. Suppose moreover that

P(Y; € dy) = py, (y)dy with py, € C'(R?) for every fori=1,...,q. (2.35)

A. There exist some constants ¢ € (0,1) (depending on r and on ¢) and D,(P) > 1
(depending on q,c,7 and on P) such that, if n(4+1)/2¢=" <1, then for every f € C(R?)
and every multiindex « with |o| < g,

D,(P) -
z/ﬁ [T m1000h)+10(p) (ov2) < Lo (£).

=1
(2.36)

B. Moreover, if pg, is the density of the law of S,,(Y) then, if n(¢+at1)/2¢=cn < 1 we
have

[E(P(Sn(Y))0af(5n(2)) = E(P(5n(G))af (Sn(G))] <

Dy+a(P) Ty
sup |P(2)(0aps, () = ava(@)] < =£72= [T mus(sysio(e #v:) (2.37)
z€R? i=1

where v, is the density of the standard normal law in R?.
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Proof. A. We proceed by recurrence on the degree i of the polynomial P. First we
assume that ¢ = 0 (so that P is a constant) and we prove (2.36) for every ¢ € IN. We write

1 — 1 &
——— E = E (a)
Sp(Y) Jn 2 CrYs Jn 2 CvYr + S, P(Y).
with
1 n
SNZ)=—= Y CYi
vn v

Then we define

and we have
E(9af(Sn(Y))) = E(@ag(SY(Y))).
Now using (2.30) with N = 0 for S,(Lq) (Y) we get

E(0a9(Si7(Y))) = B(9ag(S{(G))+ Fn = E(aaf(% > CLYitS19(G)) )+ R (2.38)
k=1

with )
Ral < C( 7o Lolo) + e~ Lo(o)). (2.39)

Let us estimate L,(g). We set v, = 0}, '. For a = (a1, ..., a,) we have

n

oan (G 3 cums) = 82 (T ) s (1 3o o),

ﬁlw-wﬂq:l k=1
(2.40)
in which we have assumed that the Y}’s take values in R™. So
1 q
Oag(r) = E((aaf) (ﬁ 1;1 CvYy + :U))
m q 1 n q
=t 32 (ILewCo ) [ 0,0, (£( 77 30 Comet o)) [T o )
BisesBg=1 k=1 k=1 k=1
m q n q
— (71)‘17111/2 Z ( H 71 Cle Oélmﬁk)/ (7 Z LYk + I) H (3', 8x DY}, (yk)dyl...dyq.
_ . Ram \F — -t Yk
B1s..,Bq=1 k=1 = k=1
It follows that
|0ag()] < qu/2L0(f)/ (14 |a] + Z ly )0 H [Vpy, ()| dys...dyq
k=1 k=1
< On2Lo(f)(1+ |a])o) H M) (Py)-
k=1

We conclude that l,(g) = lo(f) and Ly(g) < Cn?2Lo(f) [Tf_, m1.(s)(Py:)- The same is
true for ¢ = 0 and so (2.39) gives

a 1 Cen 1 1
IR,| < CLo(f)I}:[lm1,zo(f)(ka)(ﬁ +n%e ) < CLo(f) [T maocr)(pyi) % N

k=1

the last inequality being true if n%/2e=<" < n=1/2,

So (2.38) says that we succeed to replace Yy, g+ 1 <k <nby Gi,q+1 <k <nand
the price to be paid is CLo(f) [T{_1 m1,1,(5) (Py,) ¥ ﬁ Now we can do the same thing
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and replace Yi,1 < k < g by G,1 < k < g and the price will be the same (here we use
CrGi,k =q+1,...,2q instead of Cy Y%,k =1, ...,q). So (2.36) is proved for polynomials P
of degree i = 0.

We assume now that (2.36) holds for every polynomials of degree less or equal to
1 — 1 and we prove it for a polynomial P of order i. We have

Oa(Px f)= Y 9P x0,f

(B7)=a
so that
P X Oof =0a4(P x f) — Z 95 P; x 0. f.
(Byy)=c
[B1>1

Since || > 1 the polynomial 9z P has degree at most i—1. Then the recurrence hypothesis
ensures that (2.36) holds for 93P x 0, f. Moreover, using again (2.36) for g = P x f we
obtain (2.36) in which Lg(g) < Lo(P)Lo(f) and lo(g) < lo(P) + lo(f) appear. So A. is
proved.

Let us prove B. We denote f,(y) = HZ:1 1(2,00)(y) and, for a multiindex a = (az, ..., og)
we denote @ = (a1, ..., g, 1, ..., d). Then, using a formal computation (which may de done
rigorously by means of a regularization procedure) we obtain

P(2)0aps, () = / 50y — 1) P(y)Oaps, (v)dy
= 0 Y [ ooty - 010, Puips, ()
(By)=a
SIS / 0512 (1)0, P(y)ps, (v)dy
(By)=a
= ()Y E@5£(5. (V)0 P(Su(Y)).
(By)=a

A similar computation holds with S,,(Y) replaced by S,,(G). So we have

[P(2)(Oaps, () = Oay()]

< > ‘E(aﬁfz(sn(y))a’vp(sn(z))) — E(052(5:(G)) 0 P(5:(G)))
(B7)=a
C d(P) q+d
< ‘HT kljl Mo (£)+10(P) (PYi)
the last inequality being a consequence of (2.36). O

Remark 2.13. We would like to obtain Edgeworth’s expansions as well — but there
is a difficulty: when we use the expansion for Sr(lq)(Z ) we are in the situation when
the covariance matrix of S\” (Z) is not the identity matrix. So the coefficients of the
expansion are computed using a correction (see the definition of A, in Proposition 2.9).
And this correction produces an error of order n~'/2. This means that we are not able to
go beyond this level (at least without supplementary technical effort).

3 Examples

3.1 An invariance principle related to the local time

In this section we consider a sequence of independent identically distributed, cen-
tered random variables Yy, k£ € IN, with finite moments of any order and we denote
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Sn(k,Y) Y;.
\f Z
Our aim is to study the asymptotic behavior of the expectation of

1 & 1
= — e n 7Y ith e r) = —1 z|<en}-
nkZ::liﬁ L(Sn(k,Y)) with . () 5o Hlsl<=)

So L,(Y) appears as the occupation time of the random walk S, (k,Y),k = 1,....n
and consequently, as €, — 0, one expects that it has to be close to the local time in
zero at time 1, denoted by [y, of the Brownian motion. In fact, we prove now that
E(L,(Y)) — E(l;) as n — oo.

Theorem 3.1. Lete, = n~2(=7) with p € (0,1). We consider a centered random variable
Y € ©(r,e) which has finite moments of any order and we take a sequence Y;,i € IN of
independent copies of Y. We define

N(Y) = max{2k : E(Y?) = E(G*)} -1>1

and we denote py(y)y = 8(1 + (N(Y) + 1)(N(Y) + 3))(4 + (N(Y) + 1)(N(Y) + 3)). For
every n < 1 there exists a constant C depending on r, ¢, p,n and on ”Y”me such that

C

’E(Ln(Y)) - E(Ln(G))‘ < IRTL (3.1)
n2 2
The above inequality holds for n which is sufficiently large in order to have
2
3 _m pn) < 1
n exp( 5 <" < T (3.2)
As a consequence, we have
lim E(L,(Y)) = E(l1), (3.3)

n—oo

1 denoting the local time in the point 0 at time 1 of a Brownian motion.

Proof. All over this proof we denote by C a constant which depends on ¢, p,n and
on ||Y]| pn(y, (@S in the statement of the lemma) and which may change from a line to
another.

Step 1. We take k,, = n"”. Suppose first that k£ < k,,. We write

B, (8,00, Y) = = (1= B(IS,(5Y)] 2 2,)
so that

[E (e, (Sn(k,Y))) = E(e, (Sn(k, G)))] < gi(]P(ISn(/f, V)| 2 en) + P(ISn(k, G)| > n)).-

n

Using Chebyshev’s inequality and Burkholder’s inequality we obtain for every p > 2

(1)

C p/2 Ckpr/2 C Jen p/2
SW(E"“) <G -z )

P(1S,(k, V)| > 25) = ((

>5nf)
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And the same estimate holds with Y; replaced by G;. We conclude that

(3 S vsi) =53 S )| = g < 13 (5

C kn/m C kny\ 511
< P/2 00 — an
= o X/O P “dx & X ( )

C C

a

nFA-mts-—3p — ¥

1+pnN(Y)

— and we obtain
p(1—m)

We take p =

‘E(% kzﬂ wen(sn(k’ Y))) - E(% i we” (Sn(k7 G))) ’ - %Y)P
k=1 k=1

Step 2. We fix now k£ > k, and we apply our Edgeworth development (2.22) to

L
— Y.

In particular the constants C,(Y’) defined in (2.3) are given by C,(Y) = ||Y||>. We denote

x) = / Ve, (Y)dy = hy p(ox). (3.4)

This gives ¢, (z) = I, () and h},(z) = ok}, (az).
[P nlloo < |a|/en, so that

< 1 and

1
Lo(han) =1 and Li(han) = |a| x ~

n

We now write

E(e, (Sa(k,Y))) = E(h;,(Su(kY))) = (ha7l(\/§\}Eim))

_ \/ZE(%”QE;Y,.)).

We use now (2.22) with f = h \/E and here 0, is the first order derivative. Then, by
(2.22) with N = N(Y)

B0, (5263) = [ (B 2 (0908000 ) + R ()

where W denotes a Brownian motion and with

C m;
[Bver®] < g Lot )+ Cla rp Jexp (= 35 x k)

C k1 m?
S ez T C\/; X g, P ( ETRS k)

Here C is the constant from (2.22) defined in (2.23). Notice that by (3.2), for k£ > k,, = n"”
one has
k 1 2 2
\/7>< —exp(—& xk) < n%exp<—& xn”")
n &y 32 32
1 1 C

S LINOYTm gD = FNTF
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so that |Ry(y)(k)| < Ck=(WO)+1D/2 Then

‘ zn: \/ER (k)l‘ < ¢ Z L « 1
S VO S O Sy 552

< ds _ C i Ny C
= p(N(Y)+1)/2 oo /1 JRETRte” T p(N(Y)+1)/2 (n/kn) = N(¥)en

nzt
We recall now that (see (2.21))

N(Y)
Ppny)(x) =1+ Z HFk N

with pr (z) linear combination of Hermite polynomials (see (2.15) and (2.20)). Notice
that if [ is odd then I';,; is a linear combination of differential operators of odd order (see
the definition of A,, ; in (2.14)). So H[‘k,l is an odd function (as a linear combination of
Hermite polynomials of odd order) so that ¢, x Hr, , is also an odd function. Since W}
and — W, have the same law, it follows that

E(ngn(\/z x Wl)Hkyp,,(Wl)> — E(wen (\/E x (—Wl))Hpk)l(—Wl))
—E(wan (\/E x Wl)HF,M(Wl))

and consequently

\/Z X ]E( ’\/Zn(Wl)Hrkl(Wl)) = E(Wen(\/f X W1>Hrk,z(W1)) =0

Moreover, by the definition of N(Y), for 21 < N(Y) we have E(Y?!) = E(G?) so that
Hr, ,, = 0. We conclude that

\/ZE< /\/g’n(Wl)q)k,N(Y)(Wl)) = \/ZE( /\/gn(Wl)> = E(wsn (\/E X W1))
= E(¥e, (Su(k, G))).

We put now together the results from the first and the second step and we obtain (3.1).
Step 3. We prove (3.3). Recall first the representation formula

B [ vesWas) =B [ v (aitaa).

where ¢ denotes the local time in a € R at time 1, so that [; = {{. Since a — [{ is Holder
continuous of order £ for every p’ < 1, we obtain

1
/ 1
B[ ve,(Wods) —B0)| < e/ = —rr (3.5)
0 n_1
We prove now that, for every p’ < 1 and n large enough,
! C
'E(/ e, (We)ds) — E(Ln(G))‘ <. (3.6)
0 n-z
To begin we notice that S, (k, ) has the same law as W}, /,,, so that we write
1 n (k+1)/n
E(/ e, (Wa)ds ) ~B(Ln(G) =B ( Y 6). with 8= // (ther, (W) =tbe,, (Wi ) )ds.
0 k=1 k/n
EJP 23 (2018), paper 45. http://www.imstat.org/ejp/
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As above, we take k,, = n”" and for k < k,,, we have

1 (k4+1)/n
E(d) = o y (IP(|W3| > en) — P([Winl > en))ds.

Since P(|Wy| > &,) < Cexp(——) this immediately gives

|E(5k)\§n£exp(—%5ix z )ﬁgexp<—152 kn >—£exp(_%np(1fn)>

En k+1 ne, +1 nen
so that
En c
B0 < — exp(—gni") < —
k=1 n noz

for n large enough.
We consider now the case k > k,,. Using a formal computation, by applying the
standard Gaussian integration by parts formula, we write

1 s . 1 e )
B, (V) e, W) = 5 [ Bl (Voo = 5 [ B, (Vi)
:/k/n (Rt (\FW1)H3(W1))dU—// 7 2/2 E(hy . (voW1) H3(W1))do,

in which we have used (3.4) and where Hj3 denotes the third Hermite polynomial. The
above computation is formal because 1., is not differentiable. But, since the first and
the last term in the chain of equalities depends on 1., only (and not on the derivatives)
we may use regularization by convolution in order to do it rigorously. Notice also that the
first equality is obtained using Ito’s formula and the last one is obtained using integration
by parts. It follows that

(k+1)/n s 1 (k+1)/n 1
IE(5e)] < /k/n s /k B ) s <

and consequently

kn

1 C
So (3.6) is proved, and thlS together with (3.5) and (3.1), give (3.3). O
3.2 Small ball estimates
We look to
S, (u,Y) = IZCM w)Yi, ueR, (3.7)

where Yj, € R, k € IN, and C,, ;. (u) € Mat(d x d) (so, here m = d).

Theorem 3.2. Suppose that {Yy}ren C D(e,7), with My,(Y') = sup,, [|Yx||, < oo, and that
u v C% (u) is twice differentiable. We assume that for every n € N,k <n and u € R’

d
2,00 + = Z Z ||830:1’,Jk

i,j=1|a|<2

|G,

< Qy2 < 00, (3.8)

—chk (u) > As >0, (3.9)

A. There exist C > 1 and ¢ > 0 such that for everyn > 0
sup P(|S,(u,Y)| < 1) < C(nt 4 e~°). (3.10)
u€R?
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B. Suppose thatd > (. Let a > 0 and ¢ > ;. Then, for every ¢ > 0
. 1 C
P(,iat, I5:(w. )] < ne) < D -ar G0

The constant C depends on m, (from Doeblin’s condition), on Q. 2, A+, {,d and on M,(Y")
for sufficiently large p.

We first prove the following lemma.

Lemma 3.3. Under the hypotheses of Theorem 3.2, for every q > ¢, i € {1,...,d} and
R > 0 one has

E( sup |8¢Sn(u,Y)|q> < CRIQ1 ,MI(Y). (3.12)
lul<R ’

where C is a constant which depends on q.

Proof. As an immediate consequence of Morrey’s inequality one may find a universal
constant C (independent of R) such that

l 1/
sup [0S, (u,Y)| SC</ . 1\aisn(u,yw+Z|ajaisn(u,5/)|%zu) !
u -+ j=1

jul<R
so that
£
E( sup |95, (u,Y)|%) < C (B10:8u(u, V)|* + 3 10,0, (u, )| ) du.
[u|<R Ju|<R+1 j=1
Since
0;0:5n Za 10 Cr 1o (u) Y,

we can use the Burkholder’s inequality for martlngales and we obtain

n

a/2
10301 Co () (D100 Co ()" I [ |

!

k=

([%imﬂq ) < CQIMIY).
k=1

A similar estimate holds for E |0;S,,(u,Y)|?, so that (3.12) is proved. O

E[0;0;Sn(u,Y)|* < ({%

IN

Proof of Theorem 3.2. A. Let us prove (3.10). We take n > 0 and we consider the
functions

1 T Td—1
Qdm(l‘) = Wl‘xlém @dm(iﬂ) = / dl’g/ dl’dgd,n(l') (313)

— 00 — 00

with ¢q such that [, 04, (z)dz = 1. Then 9;....0404,,) = ba,,, so that
P(|Sy (u, V)| < 1) = (can) B(Oa,n(Sn(u, Y)) = (can) E(0r....040 4.y (Sn (u, Y)).

We denote S, (t,G) the sum from (3.7) in which Y,k € N, are replaced by standard
normal random variables and we use Theorem 2.3, specifically (2.22), in order to obtain

E(01....0004.0 (Sn (1, Y)) = B(8y....0404. (S(u, G)) + n(n)

where 1
eam] < €= + %)
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Here C is a constant which depends on m, (from Doeblin’s condition) on Q. and on
M, (Y") for a sufficiently large p. We conclude that

P([Sn(u,Y)| < 1) = (can) E(01....000 a4, (Sn(u,Y)))
< (can) (E(01....04O9a, (S (u, G))) + len(n)] )
= CP(|S(u,G)| < n) + Cn®|en(n)|.

Since S, (u, G) is a non degenerate Gaussian random variable we have P(|S, (u, G)| <

1) < Crx; /% and finally we get

P(|S,(ta, Y)| < 1) < CrtOL Y + en(n)]) < Cpt + e

B. We denote R,, = n%, §,, = n~? and we take h > 0 (to be chosen later on). For o € Z*
we denote to, = (tay, s ta,) = (haq,..., hay) and Iy, = [ta;,tay+1) X =+ X [tay, tay+1), SO,
if |u| < R, then u € Uy |<g, Io. Moreover we denote

Gn = B0 [Su(. V)], woo = inf [Sy(u.Y)
and we have
Wy > Mmin wy, q.

lta|<Rn

If wyo < 0y then there is some u, € I, such that |S,(u,)| < d,. So, with U,, =
SUP|u|<R, VS, (u,Y)|, we have

[Sn(ta)] < |Sn(ua)| + Unh < 6, + Uph.
Now we take A > 0 (to be chosen later on) and we write, with ¢ > /,
P(wn < 0,) < P(wn < 6n,Up < A) +P(U, > A)
< Y PWna <00, Un < A) + AEUY)

lta|<Rn

< (R,/h)" S P([Sy(ta,Y)| < 6n 4+ Ah) + CATIRLQT ,MI(Y)

o to|<R

< C(Rn/h)é(((gn + Ah)d +e )+ CA?quL Z,2M3(Y)v

in which we have used (3.12) and (3.10). We recall that R,, = n® and §,, = n—?. We take
\ = n® for a sufficiently small € > 0 and h = n~(?+¢). Then, for large enough ¢, we get

IP(OJn < 611) < Cn(a+9+s)€ ~ n—ed +Cn % néa < Cn—(ﬁd—(a—&-&—!—s)é). 0

3.3 Expected number of roots for trigonometric polynomials: an invariance
principle
In this section we look to trigonometric polynomials with random coefficients of the

form
n

Qn(t,Y) = Z (Y, cos(kt) + Y, sin(kt))
k=1
where Y, = (V},Y?),k € N, are independent centered random variables such that
Y € D(g,r) for each k. Our aim is to estimate the asymptotic behavior, as n — oo, of
the expected number of zeros in the interval (0,7) of these polynomials. This clearly
coincide with the number of zeros in (0, n7) of the renormalized polynomials

Po(t,Y) = in Y (Y,j cos (%) +V2sin (%)) (3.14)
k=1
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So we denote by N, (Y') the number of zeros of P, (¢,Y) in (0,n). It is known that if we
replace Y by G, independent standard normal random variables then (see [22, 24])

1 1
lim —E(N,(G)) = —.
m E(NW(G)) =
Our aim is to prove that this remains true for any sequence Y, k € IN of independent but
non necessarily identically distributed random variables. So we will prove:

Theorem 3.4. Suppose thatY = (Y;)rew is a sequence of independent random variables
in C ®(e,r), having finite moments of any order. Then

1 1 C

—E(N,(Y)) — —E(N,(G))| < —.

LEV() — L B(V(G)] <
Proof. . The first ingredient in the proof is Kac-Rice lemma that we recall now. Let
f i [a,b] = R be a differentiable function and set

(3.15)

wa,b(f) = faepap (| (2)] +[f'(2)]) and 64,5 (f) = min{[f(a)[, [f(0)], wa,p(f)}-

We denote by N, ;,(f) the number of solutions of f(¢t) =0 for ¢ € [a,b] and

b
dt
Low(f,9) =/ |£'(t)] Liswi<sy g5 6> 0.
a
The Kac-Rice lemma says that if d,,(f) > 0 then
Na,b(.f) = a,b(fa 6) for 4 < 5a,b(f)~ (3.16)
Notice that we also have, for every ¢ > 0,
Lop(8, f) <1+ Nap(f'). (3.17)

Indeed, we may assume that N, ,(f’) = p < oo and then we take a = ap < a1 < .... <
» < apt1 = b to be the roots of f’. Since f is monotonic on each (a;,a;+1) one has
a1,u1+1(5 f) <1s0(3.17) holds.
We will use this result for f(t) = P,(¢,Y) so we have N,,(Y) = Ny . (P.(t,Y)). We
denote 0, (Y) = donx(Pn(t,Y))), we take § = 3 and we write

1 1 1
EE(N”(Y)) E]E(Nn( s, (v)y<n—0}) — EE(IO,W(@ Po(Y) s, (vy<n—o3)
1
=+ EE(IO nﬂ(d Pn( aY)))

=:An(Y) = A, (V) + Ba(Y).

A trigonometric polynomial of order n has at most 2n roots on (0, 7). So the number of
roots of P,(¢,Y) on (0,7) is upper bonded by 2n, so that consequently N, (Y) < 2n. It
follows that A,,(Y) < 2P(5,(Y) < n~?). Since P, is also a trigonometric polynomial of
order n, by (3.17) we also have Iy (0, P, (.,Y)) < 1+ Ny nr(P)(t,Y)) < 2n+ 1. It follows
that [A],(Y)| < 3P(6,(Y) <n~f%).

We will use Theorem 3.2 and Theorem 2.3 for S,,(¢,Y) = (P,(t,Y), P/.(t,Y)), so we
have to check the hypotheses there. Notice that in this case we have { = 1,d = 2 and

cos(%L)

On,k(t)=< —E gin(kt) S":;E)g()’if) )
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First, (3.8) trivially holds. Moreover, for every ¢ € R? one has |C,, x()¢]? = n2 so that

n

. Z Con(ef = =3 L /1x2d:c X €l = % [¢P
n . n 4 n? ~Jo 3

k=1

This means that (3.9) holds with )\, = % and we are able to use (3.11) in order to get
A, (Y) < C/nand |4, (Y)| < C/n. Moreover, by (3.16)

1 nmw dt .
B,(Y) = fIE)(/O |P;(t,Y)|1{|Pn(t7y)‘§5n}6f) with 4, =
n

n nt

We now use the Theorem 2.3 applied to U5, (1, 22) = |x2|©1,5, (1) with ©; 5, defined in
(3.13). Then

1
fIE/ O1s, ( ))dt) with 4, = —.

We have ||Us, ||, . < d,* so, using (2.22) we get

1
IE(0105, (Su(t,Y))) — B(01W5, (Su(t,G)))| < c(ﬁ + nse—cﬂ)
and this gives |B,(Y) — B,(G)| < Cn~'/2. As above we have A4,(G) < Cn~! and
|A! (G)] < Cn~! so we finally obtain (3.15). O

4 The case of smooth test functions

We first study a variant of our main Theorem 2.3, namely, we assume that ¢ = 1
therein and we ask for a smooth function f. In this case, thanks to the regularity
assumption for f, we do not need any Doeblin’s condition. This will be used in a second
step, where we will be able to relax the smoothness assumption for f by means of a
regularization result from Malliavin calculus.

We come back to the notation introduced in Section 2. We just recall here the
corrector polynomial ®,, y defined in (2.21):

N
1
@n’N(l‘) =1 + Z WHFn,k(‘r)7
k=1

where Hr, , is the Hermite polynomial associated with the differential operator I';, x
defined in (2.15).

The result we prove in this section is the following:
Theorem 4.1. Let N € IN be given. Suppose that the normalization property (2.2) and
the moment bounds (2.3) both hold (the latter being sufficient for p < N + 3). Then for
every f € CQN(LN/2J+N+5)(Rd)

[Ef(Sn(Y)) = E(f(W)®nn (W))]

< HNcgéxjfvf;;zLN/Qj)( )1+ CQlﬁ(f)(Y))2N+32(N+2)(lﬁ(f)+l)Lﬁ(f) <

1 (4.1)

CNtL

n- 2

in which N = N(2|N/2] + N + 5), Hy is a positive constant depending on N and W
denotes a standard normal random variable in R?. As a consequence, taking f(z) = 2
with |B| = k, one gets

1

N(N N,

IE(S,(Y)?)—EW:d N (W))| < ”HNCE(NH*)QL /2J)( )(1+C2k(y))2N+32(N+2)(k+l)XW
(4.2)
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In order to give the proof of Theorem 4.1, we introduce a decomposition allowing us
to work with suitable semigroups. But first, in order to simplify the forthcoming notation,
we set

1 1
Inj = %Cn,kyk and Gpp = %Cn,ka
so that . .
Sn(Y) = Znp=5,(2) and S,(G) =Y Gni=:5.(G). (4.3)
k=1 k=1

Notice that the covariance matrices of Z, ;, and G,, ,, are both given by

1
COV(ZTLJG) = COV(Gn,k’) =0Opnk = Egn,ka

so the normalization condition (2.2) reads

zn: Onk = Idg.
k=1

Sketch of the proof. The proof of the above theorem is rather long and technical,
so, in order to orient the reader, we give first a sketch of it. The strategy is based on
the classical Lindeberg method but it turns out that it is convenient to do it in terms of
semigroups (the so called Trotter’s method). We define the Markov semigroup

p—1
P f(x) = E(f (rc +y Zn)) (4.4)
i=k
with the convention Plf »'f = f. Then Lindberg’s decomposition gives
Zmn G,n Zmn Zmn Gn G,n
Pk,n+1 - Pk,n+1 = Z Pr+1,n+1(Pr,r+1 - Pr,r+1)PI~c7r : (4.5)
r==k

We use now Taylor expansion of order three. The terms of order one and two cancel
(because the moments of order one and two of Y,. and G, coincide) and we obtain

Surf(@) = (PE" — PO ) (@) = B(f( + Zuy)) — E(f(x + Gny))  (4.6)
1

— é Z / E(0% f(Ank + (1 = NGni)(Z5 1 — Go 1)) dA 4.7)
laj=3"0

so one obtains ||, f (), < Cllfll3,0 # We insert this in (4.5) and we obtain P,CZ);?’+1 -
P ~n x Lz = —L This is the proof of the classical CLT. Now, if we want to obtain
Edgeworth development of order NV, we have to go further. First we iterate (4.5) and we

obtain

N n
Zmn G,n
PET L F=PS Y Y T f+RY

=1 1<rm<...<m<n
with

-1
o G,n G,n
TTl,...,T‘lf = Pm+1,n+1 H (5"7”PM—1,T7’,> f and
=1

n N
N _ Zmn G,n
Rn f - Z PTN+1+1,77,+1 H (6nsTiP’l"i71,’l"if) .
1<rm<...<ry+1<n =1
. . _ . . _3
Since each of §,, .. f is of order n~3/2 it follows that RY f is of order n’V*! x n=2(N+1) =
- (N+1)/2.
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We look now to 7}, ., f. We expect this term to be of order n*%l, and indeed, it
is. But we notice that J, ,, contains information on the whole law of Y, and not only
on its moments (see (4.6)). So, if we want to obtain the real coefficient of order n~/2
in the Edgeworth development, we have to replace J, , by some gn,r which depends
on the moments only - and this is done by using Taylor expansion as in (4.6). But, as
we want to obtain a final error of order n~(M+1)/2 the development of order three is
no more sufficient and we need now a development of order N + 2. This will involve
differential operators of order less or equal to N + 2 with coefficients computed by
using the difference of moments given in (2.12). Here is that the Hermite polynomials
come on, due to the following integration by parts formula: if G is a standard normal
random variable then E(0° f(G)) = E(f(G)H,(G)) where 0% is the differential operator
associated to the multi-index « and H,, is the Hermite polynomial corresponding to a.
Collecting the terms of order n~'/2 from all the 1), .. .,'s we get the corrector of order
[ in the Edgeworth expansion. These are the main ideas of the proof. However, the
precise description of the coefficients of the Edgeworth expansion, turns out to be a very
technical matter. We do all this through the following lemmas in this section.

We go no on and give the complete proofs. Let N € {0,1,...}. For D, , given in (2.12),

we define
N+2

1

=1

Since fo,)r =0 forl = 0,1, 2, the above sum actually begins with [ = 3 and of course this
is the basic fact. Then, with the convention 212:3 = 0, we have

N+2
2

Ton.f(@) =) ng,)rf(l‘)-

=3

We also define

1 1
ok flx) = o > /0 (1= NP E(af (€ + AZny) 25, )dX  and
" lal=N+3

T}y, f() 0% fla) = Tog  f(2).

For a matrix ¢ € Mat(d x d) we recall the Laplace operator L, associated to o (see
(2.11)) and we define

(4.9)

Lv/2)

Wyof(@) = fla)+

—1)!
ilQZ!Léf(x% (4.10)
(—1)IN/21+1

1 —
hyof(z) = nIN/2I+1 2IN/2]+1 N /2]1

1
/SLN/QJ]E(L(EN/%H]C(Q;+gl/2\/§W))ds. (4.11)
0

In (4.11), W stands for a standard Gaussian random variable. Then we define
Up nof (@) =B, f(x+Gn,)) and U, y.f(z) =hy,, f(x). (4.12)

We now put our problem in a semigroup framework. For a sequence Xi, k > 1, of
independent r.v.’s, for 1 < k < p we define

PY,f(z) = f and for p > k > 1 then PX f(x) = E(f(:z: +yp) X)) (4.13)
By using independence, we have the semigroup and the commutative property:

PX = PX P =PXPX k<r<p. (4.14)
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We use PX with X, = Z,, , and X, = G,, x, that we call PkZI’jn and P,CGZ’)" because each
local random variables depend on n.

Moreover, form = 1,..., N we denote
m , m
(m) _ 2 : q; a5
Qn:Nfrlxuw"‘m - H Un,N,ri H Tn N,rj and
Sl a4, g >0 =1 Jj=1
gi,q; € {0,1}
(m) _ G,n G,n G.n G n ~(m)
Rn,N,k - Z P7'771+177LP7'7n—1+177'm Pn+1 ro k 1 Qn NP

k<ri<--<rm<n

(4.15)

Notice that in the first sum above the conditions ¢;,¢; € {0,1} and ¢1 + -+ + ¢m + ¢ +
-+ —+ 4}, > 0 say that at least one of ¢;, ¢}, = 1, ...,m is equal to one. We notice that the
operators T% N and U,y 1 represent “remainders” and they are supposed to give

small quantities of order n™2 (N +1)| So the fact that at least one ¢; or ¢} is non null means
that the product ([];, sz N )T 1 Ty ,,) has at least one term which is a remainder

(so is small), and consequently sz X & is a remainder also.
Finally we define

N+1
(N+1) B 0 1
Qn,N,rl ..... TN41 - H (TN,ri + TN,n) and
=1
(N+1) Zmn G,n G,n G,n~(N+1)
RnNk - 2 : P’I"N+1+1 TLPT‘N-‘rl N1 Pr1+1 rsz rlQn,N,rl,...,rNJrl

k<ri<---<ry41<n
(4.16)
As a preliminary result for Theorem 4.1, we study the following “backward Taylor
formula”:

Lemma 4.2. Let NV, k € N, denote independent centered Gaussian random variables
in R? with covariance matrix o, k € IN, and set Sp = Zzlek. For o € Mat(d x d), we
define

l
HN0'¢ +Z 2ll| L

1 (_I)NH N N+1 1/2
Hy o) = / SVB(LY oo + oM W,)ds,
+JO

where W is a d—dimensional Brownian motion independent of S,,. Then for every ¢ €
C?*N*+2(R?) one has

E(¢(Sp)) = E(HY o,,,$(Sp+1)) + E(Hy 5, 6(Sp)) (4.17)

Proof. We use the following property: for every N € N, N >0, and g € CEN +2(IE{d) one
has

(_1)N+1
2N+1 NI

1
/ sNIE(L(ITVHg(Jl/QWS))ds,
0

(4.18)
in which W denotes a standard Brownian motion in R¢ and L, is given in (2.11). The
decomposition (4.18) is proved in [8] (see Appendix C therein) in the case ¢ = Id and
(4.18) represents a straightforward generalization to any covariance matrix o.

We notice that AV,;; has the same law as a;lel. We denote ¥, (z) = ¢(Sp(w) + ).
Then, using the independence property and (4.18) we obtain

N
9(0) = B(e'/2W7)) +Z 2411 Log(a'?Wh)) +
=1
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N
E(u(0) = E@u(e2W)+3> & 2”, LL (o, W)
1=1
(71)N+1
+W NE(Lgﬂlﬁw(U;ﬁWe)))dS-
Since B(L!, (0,3 W1)) = B(LL , &(Sp11)) and B(LY | v, (0, Wh)) = B(LY 1 (S, +
;ﬁW )) the above formula is exactly (4.17). O

We are now able to give our first result:

Proposition 4.3. Let N > 1 and let TC ., h% v, and R\, m = 1,...,N + 1, be
given through (4.8), (4.10) and (4.15)-(4.16). Then for every 1 < k < n + 1 and

f € CNCN/2ITNTE)(Rd) one has
n m m N+1
n G,n G.n m
PI<Z71+1f = Pk,,n+1f+ Z Z Pk n+1(HTS,N,T1>(Hh%[-ﬁn,rj)f—’_ Z Rgi/vj\)/ka'
m=1k<r;<---<r, <n i=1 j=1 m=1

(4.19)

Proof. Step 1 (Lindeberg method). We use the Lindeberg method in terms of semi-
groups: for1 <k <n+1

Z,n G,n 2: Z,n G,n G,n
Pk,n+1 Pk n+1 Pr+1 n+1 7 r+1 Pr r+1)P .

Then we define
App = lickspr<n (P2, — P PO (4.20)

(here n is fixed so we do not stress the dependence of A}, , on n) and the above relation
reads

Z,n G,n
Pk n+1 = Pk ;n+1 + Z r+1 n+1Ak~,T+1' (421)
r=k

We will write (4.21) as a discrete time Volterra type equation (this is inspired from the
approach to the parametrix method given in [13]: see equation (3.1) there). For a family
of operators Fj, ,, k < p we define AF by

p—1

(AF Z Fr+1 pAk r+1
r=k
and we write (4.21) in functional form:
pan = pGn 4 Ap%n, (4.22)
By iteration,
PZ,n _ PG’n+APG’n+~'~+ANPG’n+AN+1PZ’n. (423)

By the commutative property in (4.14), straightforward computations give

m pG,n _ Gon G.n G,n G,n/ pZn G,n
(A Vig )kyl) - 1k:§p—m Z Prm—i-l,p 1Prm 1+1,7m : Prl-l—l rng,rl (Pp—Lp - Pp—l,p)x
k<ri<---<rm<p—2
Z,n G,n Z,n G,n Z,n G,n
X(PTmﬂ"m"rl - T”mﬂ"m"rl)( Tm—1,"m—1+1 Tm,—lﬂ"m—l"t‘l) e ( r1,r1+1 PTl T1+1)
(4.24)

Step 2 (Taylor formula). The drawback of (4.23) is that A depends on PZ" also,
see (4.20), so we use the Taylor’s formula in order to eliminate this dependence We take

EJP 23 (2018), paper 45. http://www.imstat.org/ejp/
Page 26/51


http://dx.doi.org/10.1214/18-EJP174
http://www.imstat.org/ejp/

CLT in distribution norms

into account (2.3) and we consider a Taylor approximation at the level of an error of
N+42
order n= "3 . We use the following expression for the Taylor’s formula: for f € C;;O(]Rd),

N+2

fla+y) = +Z D Oaf(@)y” N+2 oy / NNF20, f (2 + Ay)dA

\al =p |oa|=N+3

Then we have, with DSL?T. defined in (2.12),

(PZ%, = PO () = B(f (2 + Zny)) — B(f (2 + Gny)) = ) Lp® p(a)+
rr41 rr4l n,r n,r - I
1 ' N+2 a
T |a|§+3 /O (1= NNF2E@ f(x + A0, ZS,)
— B(Oaf (2 + MG ) GE,)]dN

= T(L),N,T‘f( ) TnNrf( )

By using the independence property, one can apply commutativity and by using (4.24)
we have

(AmF)k,rJrl

m

G Gn
= li<rt1-m § : it B e, Bl k 1 H )

k<ri<--<rp,<r j=1
(4.25)
Notice that the operator in (4.25) acts on f € C"(N+3),
Step 3 (Backward Taylor formula). Since

n m
G,n G,n G,n G,n
Prm+1,n+1PTm71+1,rm Pr1+1 T2Pk T f(z) E(f (55 + Z Gn — Z Gn,rj)),
i=k j=1

the chain P&Lm PS¢ s PC}";’IL contains all the steps, except for the steps correspond-
ing to r;,7 = 1,...,m (remark that for each 1, Pg,’:ﬁl is replaced with TS’ 4+ T N, n)
In order to “insert” such steps we use the backward Taylor formula (4.17) up to or-
der N = [N/2|. With &, = Z0,, = Cov(G,,), one has HY 5 = hY o, . and

H}VU = hyg, . W, and hy ,  being given in (4.10) and (4.11) respectively.

So, we have

T2—1

PO P @) = B(f (24 Y G G, ))
1=k
T2—1

—E (0, f(z+ 2_:1 Gri)) + B (W F(r4 Y Gui = Gur))
2 i=k

G, G, G,
P”lfl 72Pk T?(Pf'h:}l"rth On,rq + h}V,O'n,'r‘l )f(x)
G, G
- PTlfl T2 k TT(U’S N,rqy + Un,N,rl)f(x)7

US’N_H and Un,N’T1 being given in (4.12). For every i = 1,2, ..., m, we use this formula in

(4.25) evaluated in r = n and we get

m pG,n _ G,n G,n G.n
(A P )k,n+1 - E Pm+1 n+1" Pr1+1 QP}c et
kE<ri<--<rm<n

m

< (TIWS N, + ki) (ﬁ O+ Ting)).  (426)

i=1 j=1

EJP 23 (2018), paper 45. http://www.imstat.org/ejp/
Page 27/51


http://dx.doi.org/10.1214/18-EJP174
http://www.imstat.org/ejp/

CLT in distribution norms

Notice that the above operator acts on Cj'?Y/2FV+5) (Rd)  Our aim now is to isolate

the principal term, that is the sum of the terms where only U,?, N, and TT?, N, appear.
(m)

N1,

m m
m pG,n _ E G.n G,n G.n 0 0
(A P )k,n+1 — Prm+1,n+1 e Pr1+1,r2pk;7r1 (H Un,N,m) ( H T?L,N,rj>
i=1 j=1

k<ri<--<rm<n

So, we use ) . defined in (4.15) and we write

G,n G,n G,n ~(m)
+ § : Pr7n+1,n+1 T Pr1+1,T2Pk,r1 QnyN,ﬁ 77777 Tm "
E<ri<--<rm<n

The second term is just Rflml\)[ & in (4.15). In order to compute the first one we notice that

for every v’ < r < r” we have
Gn GnpGn G,n
Pr+1,r”Pr’,r Pr,r+1 - Pr/,r”

so that
m m
Gn G,n Gn 0 _ pGn 0
Prm-‘rl,n-i-l e Prl+1,r2Pk,r1 (H UmN,m) - Pk,n+1(H hN,U,L,,,,Z. )
=1 i=1
Then, form=1,...,.N

m n G.n m
(A pre )k',n-&-l = Z P}g,n+1 ( H h(l)v,anm) (H TT(L),N,'!‘»;) + R’EL]\)[,’C'
1=1 1=1

k<ri<---<rp,<n
We treat now ANt PZ%" Using (4.25) we get

(AN+1PZ’n)k’n+1

N
i Zn G,n G,n G,n 0 1 _ p(N+1)
- Z PTN+1+1,n+1P7‘N+1,7‘N+1 T Pr1+1,7‘2Pk,r1 H(Tn,N,ri + Tn,N,ri) - Rn,N,k )
k<r<..<rny+1<n =1
. N(N+3
which acts on Cj, (N+3), O

We give now some useful representations of the remainders.

Lemma 4.4. Let m € {l,.,.N+ 1} andr; < --- < r,, < n be fixed. Set N,, :=
m(2|N/2| + N +5) form < N and N,, = (N + 1)(N + 3) otherwise. Then, the operators

leml\), ..., defined in (4.15) form = 1,...,N and in (4.16) for m = N + 1, can be
written as
m 1 a
Qfm,%,rl,...,rm,f(x) — T Ntsm Z An,ry . rm (a)on,rl,...,rmaaf(x)7 f € C’;}Vn), (Rd)a
2 3<|a|<Nn,
(4.27)

where a,, , .. r,. (@) € R are suitable coefficients with the property

(s (@)] < (CCEH ()™, (4.28)
and 63, . :C2(R?Y) — C°(R?) is an operator which verifies

.....

105 O f ()] < (22 DTECYR L (Z) (14 Caty, (1)(2))%) " v, (H)(L A+ ) D)

(4.29)
C > 0 being a suitable constant. Moreover, 07, . = can be represented as
eg,rl ..... rmf(‘r) = / f(x +yr+---+ me)/J“z,rl ..... Tm (dyla vy dy?m) (430)
(Rd)27n

where p . . is a finite signed measure such that |ug . . |(R*™4) < O, for a
suitable constant C, independent of n and depending just on N and on the moment
bounds C,(Y) for p large enough.
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Proof. In a first step we construct the measures yy, ., . ~and the operators 67,
and in a second step we prove that the coefficients an7r17,,,7rm( ) verify (4.28). We start
by representing TS’N_’T defined in (4.8). Set

v (dy) = Anp(@)do(dy),  |af =12 3.
Notice that if |a| = > 3 then |A,, . (a)| < 2C;(Y). So, we have

N+2

Tonat Z Z T /}Rd daf(x +y)vy2(dy) with

? al=t (4.31)
/Rdu Flyl) A1) < 20(Y), Jal=1<N+2, 720

Concerning 7, y . in (4.9), for |a| = N + 3 set V,lL}lVT(dy) =n'3 fol(l — NN (E)> x
[1az,., (dy) — u,\gm(dy)]d)\ [rZ, .. TESP. prG, .. denoting the law of A\Z,, ., resp. AG.,,.
In other words,

v (A) =0

1

/ (1= NP2 E(ZS 1az,,ea) — B(GS 1, ea)]d), |a| =N +3,
0

for every Borel set A C R%. Then we have

1 1
7! = § S — Oq La (4 ith
nvrf (@) nz(N+3) la|=N+3 (N +2)! /Rd f($+y)V”’N”’( y) wi
+1

27
7 ) < g CalRe (N + Cor (Y)Y, Jal =N 43, 520
(4.32)

We represent now the operator U} v .f(z) = E(hY,  f(z+ Gn,)) with by f defined
in (4.10). Notice that '

LN/2J l
W, Lo =1d+ Z Z Co, . (@)0q With cy(a) = 2ll' H g1k o] = 2] > ().
=1 |a|=2 P

So, by denoting p0 the law of G, ., we have

Uv(z),N,rf(x) = E(ho n,,.f(aj + Gn,r))

LN/2)
72 > ol / Oaf(x +y)py, (dy) with
=0 |a|=21
C
o (@)] < 22(”,) and / (L+[y)lpg, , [(dy) < 27(1+Cy(Y)), v 2 0. (4.33)
' R4

We now obtain a similar representation for h}V,o’ f(z) defined in (4.11). Set

1
ptlj'(dy) = (/ SLN/2J¢01/2\/§W(y)dS)dy7
0

in which ¢,1/2, /5w denotes the density of a centered Gaussian r.v. with covariance matrix
so. Then we write

1
hivof(z) = N2 Z by, (a / o f (z + y)py (dy) with
lee|=2(LV/2]+1)

(_1)LN/2J+1 IN/2]+1
2LN/2]+1 |_N/2J!

A2k —1,02k

bN,U (Oé) =
k=1
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So, we have

Ui,N,rf(w) = h}V,Un,,.f(‘r)

1 .
Y e () [0uf( 4 o)el, (dy) with
la|=2(LN/2]+1)
1

[N/2|+1
‘bN,le,vv(Oé)' S 2LN/2J+1 |_N/2J'02(Y>
2’Y
d 1 Mol (dy) < —— (1 + C (Y > 0. 4.34
and [ (ol () € (14 €))7 2 (@34
Using (4.31), (4.32), (4.33) and (4.34) we obtain (4.27) with the measure /,L%Jl)mwm from

(4.30) constructed in the following way:

/d ) f(y17"'7y7n7y1a"'7gM)ﬂz,7’1,...,rm(dy17'"adymadgla"'vdgﬂ’L)

RdX2m

:/d ) FWis e Ym Y1y Um)m(dyn) - i (dym )1 (Y1) -+ T (dYim)
RaX2m

where 7); is one of the measures V;{;fi, q = 0,1, and 7; is one of the measures pf
q=0,1. o

Let us check that the coefficients a, ,, ..., (o) which will appear in (4.27) ver-
ify the bounds in (4.28). Take first m € {1,...,N}. Then Q%"i)lr is the sum of
(T, Uﬁ%Nmi)(H;”’:l T;ffN’,_j) where ¢;,q; € {0,1} and at least one of them is equal to
one. And a’'>" () is the product of coefficients which appear in the representation

of UZ%N’” and 7,y . . Recall that the coefficients of 7)) y . are all bounded by Cn~%/
and the coefficients of 7, v, are bounded by Cn~2(N+3)_ Moreover the coefficients
of Ug,Nm_ are bounded by C’CéN/2J (Y) and the coefficients of U} , . are bounded by
CCINAFY ()~ (N/204+1)  Therefore, ([T, Ug%N’n)(H;":l T,'x.,) is upper bounded by

(n (c ))Ez';lqix( c )zy;l(l—qi) (ccgN/z”l(Y))z:Lq;x(CC%WQJ(Y)) L (1-q))

L(N+3 n3/2 nlN/2]+1
1 \Zha O™ 1 Tihia LN/2]+1 (yryym
= (ﬁN) g (nLN/2J+1) X (OC; )
(CcéN/QJ-H(Y))m 3 (CC%N/QHI(Y))’” (chN/QJ-‘rl(Y))m
S T et (V2D a3 © p E R e, ) nE

We finally prove (4.29). We have
0% ... r O f ()]

< [ 10u 1o X ot D)l ) ol G 7 051) < )
, 2

< Ly, (N + 2 D (T] /R ) Oy ) (T1 /R A+ ) Dl (dy) )

< Ly, (£ 1+ [2) ¥ O (2Cw42(V)) vV 2N DFLOE L (V) (14 Caty, (V)

x (24 D1+ oy, (V)

< (2 DRy D)1+ Caty, (1) (Y)?) " L, ()L [ D)
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because Cni2(Y) < CQ(N+3)(Y)2<IJVV++23> < CQ(N+3)(Y)%. So the proof concerning

Qfl"}\), vy m = 1,.., N, is completed. The proof for QilN]\J,”iz _____ rny, 18 clearly the
same. O

We give now the representation of the “principal term”:

Lemma 4.5. Let the set-up of Proposition 4.3 hold. Then,

i ) (HTSNTL)(ﬁhN% )= iv:n,}/QFH,HQSL,N (4.35)
Jj=1 k=1

m=11<r;<...<r,<n i=1
with I, , defined in (2.15) and

1
0o _
nN = NTD2 cn,N(@)0q
N+1<|a|<N(N+2|N/2)) (4.36)

with |cnn ()| < (CON11(Y)Ca(Y))NNH2LN/2D
Proof. Let A,, and A,, ; be the sets in (2.14). Notice that, for fixed m, the A,, ;’s are
disjoint as k varies. Suppose that m € {1,...,N}. Then A,,,, =0 ifk ¢ {m,...,N(N +
2|N/2])} so that A, = UQJX(N“)Am 1 and consequently

UN_ Ay = UN_ UNOVH2LN/ZD) § o NONHRUNZD g

It follows that

DS (T2 ) (1)

m=11<r<..<r,<n i=1
N+2 N/2 i
= Z > > > (a2 (I o e
nli/2 17 i Vgl
m=111,.. lm=31,,.,1/, =01<r <..<r,m<n i=1 v j=1"'""“2""%"
N(N+2|N/2]) &k

1 el
= > > ) W(HQDJZ”)

k=1 m=1(11,1]),...;(Im,l,) ) EAm & 1ST1 <. <P <0 i=1
!
S -Dh
X . Lg
2l] l/ ' n,T
Jj=1 J
N
1
= E k/2 Pn k+ Qn N
n
k=1
with
0 — 1
n,N nN+1/2

N(N+2(N/2)) & n(N+1)/2

S SR Y > ()

E=N+1  m=1(I1,0})ee(lm,l,)) EApm 1 1<T1 <. <rm<n
m (71) i 7
< (TI 5 Lans, )
=1 2 Jl;.! J
which is a differential operator of the form (4.36). Moreover,

m m l
[en, v ()] < 0™ x nim <I1 (QCN+|1<Y)) <I1 (C;Z;(l},:)) < (CCNa(Y)Co (V)™
i=1 v i=1 i

< (CCNn41(Y)Co(Y))™
and the estimate in (4.36) follows. O
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We are now ready for the

Proof of Theorem 4.1. We denote p7n = Pfr . and PS" = P, so that, since
Sp(Y) = Sn(2),

B(/(8a(1)) ~ B (W)@x(W)) = PL7(0) = P (14 37 —T0) £0).
k=1

Putting together (4.19) and (4.35), we can write

N
1
P77 f(z) = PS" (Id +) er)f(x) + I f(@) + Lf(x) + I f(x) (4.37)
k=1
with
Li@) = PO )
1 - n(N+1)/2 n n,N )
Z,n G,n G,n G,n~(N+1
Igf(ﬂf) = Z PT‘N+1+177I,PT'N+1,T'N+1 e PT1+17T‘2P]§77’1 Q5L7N,7'2,...,7'N+1 f(il?)
1<rm<...<rnt1<n
N
G,n G,n G,n G,n~(m
Igf(:l?) = Z Z Prm,Jrl,nPrm,_lJrl,rm e Pr1+1,T2Pk,r1 gL,J\)f,rl,...,rmf(I)v

m=11<r;<...<r,,<n

(4.38)
so it is sufficient to study the remaining terms I, Is and I3 above. In such study, we will
use the following easy consequence of Burkholder’s inequality for discrete martingales:
if M,, = ZZ:1 Ay with A,k =1,...,n independent centered random variables, then

n

i, < cu((S1an)) " = 3 [aP H;Z < C(Z 1a2)". @9
k=1 k=1

We first estimate I f. Let us set N, = N(N + 2| N/2]). So, (4.36) gives

0@ < i S len(@)] [PE7 05 (@)

N+1<|a|<N.

< 2 e @l v () + ) OB((1+] 3 G

N+1<|a|<N. k=1

)ZNN* (f))
1

51 (CCN1 (Y)Ca(Y) VN Lyn, (f) (1 + [a])! =) s 28D (1 4 Cop (9 (V).

n 2

<

in which we have used the Burkholder inequality (4.39).
The study of I, and I3 is similar, so we consider I3. Take m € {1,..., N}. We use
Lemma 4.4 (recall N,, given therein) and in particular (4.27):

G.n G,n G,n G,n ~(m)
Prerl,nPrm,lJrl,rm T Pr1+1,r2P1,T1 Qn,N,rl ..... rmf
1 G,n G,n G,n G,n
_ E , , ) N o
- N+3m anﬂ“lw-ﬂ“m (a)Prm+1,nPrm,1+1,rm e Pr1+1,r2P1,r1 en,rl,...,rmaaf'

2 3<]al<N,

Notice that if [g(z)| < L(1 + |z|)! then
)
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< L0+ o) B((1+| iGn,klkg{rl,m,Tm}Dl)

k=1
!
‘l) '

Since the G, k1p¢(r,,....r,1'S are centered and independent, with ||Gp xlegr ...yl <
CI(Y)/nl/Q, we can use the Burkholder inequality (4.39), we get

n
< L1+ |z))! (1 + H > Grkligrr.irn
k=1

G, G, G, G 1/1
‘PTmT-&L-l,n,PrmlLl—&-l,'r'm o Prlfl,Tgpl,rng(x)‘ < L(l + |x‘)l(1 + Cl/ (Y))l
<2' 1+ Cy(Y)L( + |z (4.40)

We use now this inequality with g = 6% .. 0a.f: by applying (4.29) we get

G.n G,n G,n G,n m
[P WPy PE PEQW, L f(@)] € K ()1 Jz]) e (D
with
1/2 m
Knm(f) = 250D (14 Coy ()25 DT 5 (V) + Cary, (0 (V)?) " L, (-

Moreover, using (4.28)

G, G, G, G,n ~(m
‘Prmilmprmlll'i‘l,'f'm T P7’1f177“2P1,7‘1LQ51,1\)/,7‘1,..A,Tmf(x)‘
1
< KA+ [)™D —mmms D0 Janrern (@)
0<|a|<N+1
1 N/2|+1 m
< HNKCN (f) (1 4 |z])in () — (COS I (yyym,
nz(NJrSm)

‘Hy denoting a constant depending on N only. Since the set {1 <r; < ... <7, <n} has
less than n" elements, we get

[Iaf (2)] < N xn™ x 7 X MK () (1 [])on D (0C5 2 ()

n%(NJrSm
1

< NHNKNm ()1 + |2]))3m D (cCP 2 (v)ym x ————
ny(N+1)

The estimate for I5(f) is analogous. So, we get

3
Z |1 f ()]

< HNC;géf;SQLN/QD(Y)(l + szﬁ(f) (Y))2N+32(N+2)(lﬁ(f)+l)Lﬁ(f)(1 + |x|)zﬁ(f) <

N+1
n 2

with N = N(2|N/2] + N +5), and statement (4.1) follows. Concerning (4.2), it suffices
to notice that for f(z) = z” with [3| = k then L5 (f) =1 and l5(f) = k. 0

5 The case of general test functions

5.1 Differential calculus based on the Nummelin’s splitting

In this section we use the variational calculus settled in [6, 5, 11, 12] in order to treat
general test functions. Let us give the definitions and the notation.

We fix r,e > 0 and we consider a sequence of independent random variables Y, €
D(r,e),k € N. Then, using the Nummelin’s splitting (2.7) we write

Yi = xeVi + (1 — x%)Ug, (5.1)

EJP 23 (2018), paper 45. http://www.imstat.org/ejp/
Page 33/51


http://dx.doi.org/10.1214/18-EJP174
http://www.imstat.org/ejp/

CLT in distribution norms

the law of yx, Vi and U being given in (2.8). We assume that xx, Vi, Ux, k € IN, are
independent. We define G = o(xx, Uk, k € IN). A random variable F' = f(w,V1,...,V,,)
is called a simple functional if f is G x B(R¢*") measurable and for each w, f(w,-) €
Ce°(R4*™). We denote S the space of the simple functionals. Moreover we define the
differential operator D : & — I := I3(R%) by D, F = XkOyi f(w, V1, ..., Vo). Then the
Malliavin covariance matrix of F € (F1, ..., F™) € S™ is defined as

W = (DF',DF7), ZZD(k F X Doy F7, i j=1,..,m. (5.2)
k=1p=1
If oF is invertible we denote vp = a;l.
Moreover, we define the iterated derivatives D™ : S — I5™ by DE;’I)“) i) =
D, i)+ D(kyn.in,) @nd on S we consider the norms

q o] d

= |F| +Z|DmF|l®m =Py Y S D@D im F|

m=1kq,..., km=11%1,...,im=1

and
1F,, = EF)?. (5.3)
We introduce now the Ornstein-Uhlenbeck operator L. We denote 6, ; = 9; Inpy, (Vi) =
2(Vie = yv) Lo vi—yy 12<2000(|Vi — v, |*), pv, being the density of V}, (see (2.8)) and a, is
given in (2.5). So, we define

oo d
== > (DeyDgoiyF + Digeiy F % Oc). (5.4)
k=1 1i=

—

Using elementary integration by parts on R? one easily proves the following duality
formula: for F,G € S
E((DF,DG),,) = E(FLG) = E(GLF). (5.5)

Finally, for ¢ > 2, we define

IEW,p = 1Flg, + [ILE] (5.6)

q—2,p "

We recall now the basic computational rules and the integration by parts formulas.
For ¢ € C'(R%) and F = (F',...,F¥) € S we have

d
F)="0;¢6(F)DF’, (5.7)
and for ;G € S

L(FG) = FLG + GLF — 2 (DF, DG).. (5.8)

The formula (5.7) is just the chain rule in the standard differential calculus and (5.8) is
obtained using duality. Let H € S. We use the duality relation and (5.5) we obtain

E(HFLG)=E(D(HF), DG>l2) =IE(H (DF, DG>l2) + E(F(DH, DG>l2).
A similar formula holds with GLF instead of F'LG. We sum them and we obtain
E(H(FLG+ GLF)) = 2E(H (DF, DG)ZQ) +E((DH, D(FG)>Z2)
= 2E(H (DF, DG>12) + E(HL(FQ)).

We give now the integration by parts formula (this is a localized version of the
standard integration by parts formula from Malliavin calculus).
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Theorem 5.1. Let 7 > 0 be fixed and let ¥,, € C*°(R) be such that 11, /2 ) < ¥, < 1p;; o)

and for every k € IN one has |U{"|| < Cn*. Let F € S% and G € S. For every
peCP(RY),n>0andi=1,...d

E(0;¢(F)G¥,(det or)) = E(¢p(F)H;(F,G¥,(det or))) (5.9)
with

d
H;(F,GU,(detor)) =Y (GU,(detop))y’ LF? + (D(GV,(detop)vy), DF?), . (5.10)
j=1

Letm € N,m > 2 and a = (o, ..., au) € {1,...,d}™. Then
E(00¢(F)G¥,(detor)) = E(¢(F)Ho(F, GV, (detop))) (5.11)
with H,(F, GV, (det o)) defined by recurrence
Hay,..oam) (F,GYy(det op)) == Ha,, (F, Ha,.....a,, ) (F, G¥y(det or))).

The proof is standard, for details see e.g. [7, 11].

We give now useful estimates for the weights which appear in (5.11):
Lemma 5.2. Let g,m € N and F € S and G € S. There exists a universal constant
C > 1 (depending on d, g, m only) such that for every multiindex o with |«| = ¢ and every
n > 0 one has

C

|Ho(F, W, (detop)G)| = < T Kam(F) X |Gl yas (5.12)
with
Kam(F) = (Fly gt T 1LF Ly ) (U [Fly iy gy)? 9™, (5.13)
In particular, taking m = 0 and G = 1 we have
C
[Ha (F, ¥y(detop))], < e 1Kq.0(E),, (5.14)

The proof is straightforward but technical so we leave it for Appendix A.

We go now on and we give the regularization lemma. We recall that a super kernel
¢ : R? — R is a function which belongs to the Schwartz space S (infinitely differentiable
functions which rapidly decrease at infinity), [ ¢(z)dz = 1, and such that for every
multiindexes « and [, one has

/yad)(y)dy =0, [a|>1, (5.15)

/ Y™ 10s0(y)| dy < oo. (5.16)

As usual, for |a| = m then y* =[]~ ya,. Since super kernels play a crucial role in our
approach we give here the construction of such an object (we follow [29] Section 3,
Remark 1). We do it in dimension d = 1 and then we take tensor products. So, if d =1
we take 1 € S which is symmetric and equal to one in a neighborhood of zero and we
define ¢ = F~ !4, the inverse of the Fourier transform of 1/} Since F~! sends S into S
the property (5.16) is verified. And we also have 0 = 1/;(’” =3 " fxmaﬁ )dx so (5.15)
holds as well. We finally normalize in order to obtain f ¢ = 1
We fix a super kernel ¢. For ¢ € (0,1) and for a function f we define

6ow) = 56(%) and fi=fry,

the symbol * denoting convolution. For f € C¥(R?), we recall the constants Ly(f) and
le(f) in (2.10).
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Lemma 5.3. Let F € S¢ and ¢,m € IN. There exists some constant C > 1, depending on
d,m and q only, such that for every f ¢ Cg:lm(IRd) every multiindex v with |y| = m and
everyn,d >0

IE(W, (det o), f(z + F)) — E(T, (det 0)0, fs(z + F))|

. 5 (5.17)
< C2°Dey g1 LoD 1P Covm (F) oy (1 lal) o)
with
cp = / |6(2)| (1 + [2])Pdz and C,(F) = [[Kpo(F)ll;, (5.18)

Kp.0(F) being defined in (5.13). Moreover, for every p > 1
B0, f(x + F)) = E(, fs(z + F)| < OO+ ||, (1 + )
. 59
x (Lt 2 OBON P et <) + 20 Detyir) g Lo(F) gtz Carm (F))
(5.19)

Proof. A. Using Taylor expansion of order ¢
0,1(2) = 0,s(w) = [ (0,1(z) ~ 0, 1w)osl ~ )y
= [ Latwoste -y + [ Ralo.p)ésta vy

with

Ly g(z,y) Z D 0.0y f(2)(x — y)*,

1= 1 \(1| i
Ry Z/ a0 F (& + My — 2)) (@ — )*(1 — \)%dA.
\Oél q

Using (5.15) we obtain f I(z,y)¢s(x — y)dy = 0 and by a change of variable we get
/quxyqﬁgx— )dy = — Z//d2¢5 (2)0a0~ f(z 4+ X2)2%(1 — X)%dA.

Ia\ =q

So, we have

E(V, (detop)dy f(x + F)) — E(¥,(det op)0 fs(x + F))

- E(/\I/n(det oF) Ry g(a + F,y)¢s5(x + F — y)dy)

= Z / /dwg o(det 0p) a0y fx + F + Az))2*(1 — X)7dA.

|al=q
Using integration by parts formula (5.11) (with G = 1)
(W, (det 07)0udy f( + F + \2))|
= [B(f(F + X2) H(y 0 (F, U (det op) )|
< Lo(FE((L + || + [2] + |F)Y) [H, oy (F, W, (det ap)))
<O+ [2))o D@+ [2) 0D Lo(f) | Fl 1 H o) (F, y(detop))]l2.

The upper bound from (5.14) (with p = 2) gives

C
|Ho(F, 0, (det op))l|, < Gt % I1Kq-+m,0(F)l5
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And since [ dz |¢s(2)z%] (1 + |2])0) <87 [ |p(2)| (1 + |2])*I+0(H)dz we conclude that

[E(, (det 05))0, f (¢ + F)) — E(T, (det o)), f5(z + F))|

(o)

l
<+ lal)*Deryipy Lo 151, 1Katmo Pl sy

and (5.17) holds. Concerning (5.19), we set L, s = Lo(0,fs5) V Lo(dyf) and 1,5 =
lo(0yfs) V1o(0yf). So, for every p > 1, we have

IE((1— ¥, (detop))dy f(z+ F)) — E((1 — ¥, (det o)), fs(x + F))|

2Ly sE((1 = Wy(detop))(1+ [a] +[F|)?)

2L%62l%5(1 + |z))s (14 ||F) YoV (NPpE=D/P(det o < 7).

VANV

plo(fs)Vio(f)

So the proof of (5.19) will be completed as soon as we check that Iy (0, fs) < {n(f) and
Lo(0yf5) < Lun(f) [+ [y D |¢(m)| dy = Lun(f)et,, s

101 fs(x)] = \ [outt- y)%(y)dy] < L) [+ 1o = al) D fos(y)] dy
< L)1+ fa) 0 [ (14 1) fotw)] dy. .

5.2 CLT and Edgeworth’s development

In this section we take F' = S, (Y) = ﬁ > i—y Cn Yy defined in (2.1), and we recall
that o, 1, = C’n’kCﬁ‘L,k = Cov(Cy 1Y%). From now on, we assume that Y, € ©(r,¢) so we
have the decomposition (5.1). Consequently

1 & 1 «
F=8,Y)= 7 > CoiVi = NG > Crk Vi + (1= xa)Us).
k=1 k=1

We will use Lemma 5.3, so we estimate the quantities which appear in the right hand
side of (5.17).

Lemma 5.4. Let Y}, € ©(2¢,r) and let the moment bounds condition (2.3) hold. For
every k € IN and p > 2 there exists a constant C depending on k, p only, such that

C, (Y
sup |, (V)| <2 x Cp(Y) and sup [[[S.(Y)]l,., < C x % (5.20)

Proof. Using the Burkholder inequality (4.39) and (2.3) we obtain |5, (Y)|, < Cx Cy(Y).
We look now to the Sobolev norms. It is easy to see that, S,(Y)¢ denoting the ith
component of S, (Y),

. 1 o
D jySn(Y)' = %xk(};’fk and DWS,(Y)=0forl > 2.

Since £ 37 |onk| < C2(Y) it follows that

1Sn(V)l),,) < 2Cp(Y) VkeN,p>2.

Moreover
1 & 1 &
LSy(Y)=—= CoiLlY, = ——— CorAr(Vi),
w(Y) \/ﬁ; kLY \/HI;X}C nkAr (Vi)
with A, (Vi) = 1<y —yy <2 X 20.(IVi = yv|?) (Vi — uv,.)-
EJP 23 (2018), paper 45. http://www.imstat.org/ejp/
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We prove that
C
1L (Yl < 5 < Cp(Y), (5.21)

C depending on k, p but being independent of n.
Let k = 0. The duality relation gives E(LY}) = E((D1, DY}),, ) = 0. Since the LY}’s
are independent, we can apply (4.39) first and then (2.3), so that

125, < (231G, 0i)12) " < o(Cay) ZnA vil)”
k=1

By (2.6) E(JA,(Vk)[P) < Cr7P so [|[LS,(Y)]], < Cr=1 x C3(Y) and (5.21) follows for k = 0.
We take now k = 1. We have

) 1 1
D(%]’)Lsn(Y)l = %D(qﬁj) (XkCn,qAr(V:])) = %Xkon,qD(QJ)Ar(V:])

so that, using again (2.3),

n d

C
IDLS, (V)2 = ZZ\xkc,quj (P <ex ZIOS S p A wP.

n
q 1j=1 q=1j=1

We notice that D, j) A, (V,) is not null for r < |V, —yy, |* < 2r and contains the derivatives
of a, up to order 2, possibly multiplied by polynomials in the components of V, — yy,
of order up to 2. Since |V, — yy,|* < 2r, by using (2.6) one obtains E(|DLS,, (Y)[}) <
Cr=2r x C’Q’/Q(Y)7 so (5.21) holds for £ = 1 also. And for higher order derivatives the
proof is similar. O

Remark 5.5. For further use, we give here an upper estimate of the quantity ||/Cq 0 (F)||,,
with /Iy o(F) defined in (5.13), in the case F' = S,,(Y") (recall that S,,(Y") takes values in
R%). From (5.13), it follows that

1Ka0(E)lp < I 2gp (L + 1Fllg+1,8aq0) -

So, for F = S,,(Y) we use (5.20) and for a suitable constant C' depending on d, ¢ and p
only, we obtain

)
8
a0 (Sn(Y))llp < € x — s (5.22)
We give now estimates of the Malliavin covariance matrix. We have
— 1 -
)= ZXkUn,k-
k=1
We denote
1 < -
==Y oni A= inf (3,68, A, = sup (8.6,€). (5.23)
n 1€1=1 £l=1

For reasons which will be clear later on, we do not consider here the normalization
condition ¥,, = Id;. We have the following result.

Lemma 5.6. Letn = (2(1\”/\ )) A and )\, being given in (5.23). Then

e3Cq 12(1 4 2X,)\ ¢ A m?
P(detos, (v) < 1) < gd( (Aan )) exp(—zgxn xn), (5.24)

¢q denoting a positive constant depending on the dimension d only.
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Proof. Since o, = C,C} , we have

(05,1)&:§) = %Z k(onké, &) = ZXk 1C k]
k=1

Take &1,....,&n € Sg_1 =: {¢ € R? : [¢] = 1} such that the balls of centers ¢; and radius
nl/d cover S,_1. One needs N < Edn_l points, where ¢, is a constant depending on
the dimension. It is easy to check that £ > (0g, ()&, §) is Lipschitz continuous with
Lipschitz constant 2X, so that infje_; (0, (£)&,€) > infimq,. n{0s, ()&, &) — 2Xm/ %
Consequently,

2

P(detos, (z) <n) < P(lglzf (05, (2)&, &) <n*'¥) < Z (o8, ()&, &) < M+ 22,nM %)

\ S

max ]P(<Usn(2)§z,&> <M1+ 20,)).

<
= I
So, it remains to prove that for every £ € S;_; and for the choice 1 = ( 3 (fjr';f ))d
- 2¢e3 A m?
P((75,(2)6:€) < (L+ 2" < T exp (= T35 x ).

We recall that E(x;) = m, and we write

P((os, (26 &) < (1+2X)n"?)

n

=P (>0 ) Gt < (1 20— e 3 (Gl
1 k=1

1 —
<P{-- - > _ 1/d
< IP( - ;(Xk m,.) [Cnr€)® > Amy — (14 2X,)7 )

the last equality being true because, from (5.23),

fZ |Crtl* = Z (T k6 €) = (Zn&, &) 2 A, €7 = A,

k 1

A, My
2(142X,,)

So, we take n = ( )4 and we get

_ n Aom,
P((05,()68) < (1+ 2" <P =D 00— m,) [Cofl® > 22 xn)
k=1

We now use the following Hoeffding’s inequality (in the slightly more general form
given in [16] Corollary 1.4): if the differences X; of a martingale M,, are such that
P(|Xg| < bx) = 1 then P(M,, > x) < (2¢%/9) exp(—|z|?> x n/(2(b% + --- + b2))). Here,
we choose X, = —(xx — m,.) |C’n7k§|2. These are independent random variables and
| X4 < 2|Cpx€]?. Then

( Zn:X m,.) [Ché* > /\m7‘xn)<2egexp( AELm%x r )
k=) [Cn —— < - -
k=1 2 9 4 4Zk:1 |Cn7k€|2
< 27 ( A?ng X ) O
— €eX Il nij.
=79 P 6y,

We are now able to give the regularization lemma in our specific framework.
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Lemma 5.7. Let h,q € IN. There exists a constant C' > 1, depending just on h,q, such
that for every 6 > 0, every multiindex v with |y| = q and every f € Cg(IRd) one has

By f(x + 5n(Y))) — E(9, f5(z + Su(Y)))]

2m2 (5.25)
1/2 Ay h l(f)
< OO (V) Qna(V) (Lo(f) exp (= S5 xn) + Lo(£)5" ) (1 + '
with
(4d+1)(h+4) _
Qn.q(Y) = ola(£) . Cl6d(h+q) (Y) ( 21+ 2)\n)>2d(h+q) (5.26)
na(Y) = L (Vo) +) g (g T) X, ’ :

¢p being given in (5.18).

Proof. We will use Lemma 5.3. Since Cj44(S5,(Y)) = ||Kpn,0(Sn(Y))||2, (5.22) gives

Cg‘é¢2+1)(h+f1)(y)

(h+q)

C}H‘Q(STL(Y)) < C x T(h+q)(h+q+1) ;

C depending on d and h + ¢. And by using the Burkholder inequality (4.39), one has
1S, (V)oY < ¢/2 (V). So (5.19) (with p = 2) gives

2Lo(f) 2Lo(f)
[0y f(z 4+ Sn(Y))) — E(9, fs(z + Sn(Y)))]
C(4d+1)(h+q)(y)
1/2 I 16d(h+q)
< CCQlO(f)(Y)Q (f)Clq(f)v(lo(f)Jrh)WCM

5h
X (Lq(f)IPl/2(det o8, (v) < 1)+ LO(f)W) (1+ |x|)lq(f)_

A, My
2(14+Xy,)

We take now 1 = ( )4 and we use (5.24) in order to obtain

[E(Oy f(z + Sn(Y))) — E(0y fs(x + Sn(Y)))]
4d+1)(h
Clodinrg (V)
r(h+q)(h+q+1)
2.2

2(1 + 2X,) \ 2(h+a) A2m2
x (1v %) (Lol exo (- P n) + Lo(/)8") (1 + fa])«D. O

n T

1/2 lq
< CCql (V) 2 Der (pyviao(y o)

We are now able to characterize the regularity of the semigroup P?" :
Proposition 5.8. Let f € CZ(R). If |7| = q then

[B(0, /(2 + Su(Y))| < € x 24IBy(¥)(1+ CHll} (V) (1 + [a])a)

A2 m2 (5.27)
X |L ex ( - 2T x n) + L }
Lot esp (= o olf)
where (4t )
_ 2(1+ X))\ 24 Ciggy  (Y)
B,(Y) = (1 Y m ) ey (5.28)
and C' is a constant depending on q only.
Proof. We take 1 = ( 2(51:%2) )% and the truncation function ¥, and we write
EO,f(x+S,(Y))=1+J
EJP 23 (2018), paper 45. http://www.imstat.org/ejp/

Page 40/51


http://dx.doi.org/10.1214/18-EJP174
http://www.imstat.org/ejp/

CLT in distribution norms

with
=E@0, f(x+5,(Y))(1 -V, (detos,))), J=EO,f(x+ S.(Y))¥,(detog,)).
We estimate first

| < Ly(HE((L+ |2] + S (V)P (1 = W, (det 05,)))
Lo(F)(B((1 + [2] + [Su (V) )) 2P 2 (det o5, < n)

IN

2(1 + 2X,) \ 4/2 A2 m?2
< lq(f) lq(f) n _Zn’r
< sl () (- 2 )

in which we have used the Burkholder’s inequality (4.39). In order to estimate J we use
integration by parts and we obtain

[T = |E(f(z+ Sn(Y) Hy(Sn(Y), Ty(detos,)))
< Lo(NE((L+ |2] +[Sa)Y) |Hy (Sa(Y), ¥y (detos,))|)

< CLo(N2°D (1 + [a)oD (1 + 'l (v V) (B(|Hy (S (Y), U (det os, ) |?)) /.

Then using (5.14) and (5.22)

By (4d+1)q
2(1 4 Xp) (240 Ciggq (V) .
| Ha(Sn(Y), ¥,y (det o, v)))]|, < C % (AT) (1 + []) )
so that
— (4d+1)q
2(1+X,)\ 240 Ciggy (V)
1< CxLo(N2 1+ 2P+ CYE (V)% (T3 =2 ) x = (1
(5.27) now follows from the above estimates for I and J. O
5.3 Proofs of the results in Section 2
5.3.1 Proof of Theorem 2.3
Step 1. We assume first that f € Cg+(N+1)(N+3)(]Rd) and we prove that
[E(0yf(5n(Y))) = E(0yf(W)2N (W)
C ~ o (5.29)
< s X Cgp(N+1)+(N+3),N ~n(f,Y) Lq+(N+1)(N+3)(f)€ 128 +Lo(f)},

where C'is a constant depending only on ¢ and N and

N
N(f,Y) = Cg[N/2J+1)(N+1)( )2(N+3)l,,(f)cé](\’]\;ri;§2( )(1+C FHIV( “)(Y))x

20, (f)
4d+1
«(1v 2) Clagy " (Y)
m, rp(p+1)

(5.30)
Notice that (5.29) is analogous to (2.22) but here L,(f) and [,(f) are replaced by
Loyyv+1y(nv+3)(f) and lgy (v41)(v+3)(f). We will see in Step 2 how to drop the dependence
ong+ (N+1)(N +3).
We recall (4.37) and (4.38): we have

N

B(0,/(S0(V)) ~ B0, (W), (W) = PA7 (2, £)(0) = PE™ (1443 104 ) 0,£)(0)
k=1

= 1(0,1)(0) + 12(0,1)(0) + L3(0,./) (0)
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with
G,n 0
Il = Pn Qn,Na
o 2 : Zn G,n G,n G,n ~(N+1)
I2 - P’I‘N+1+1,TL+1PTN+1,TN+1 e PT1+1,T2P1,T1 Qn,N,rl,...,rN+1

1<r <--<ryt1<n (5.31)

N
G,n G,n G.n G,n ~(m)
§ : § : Prm+1,n+1Prm71+1,rm o 'Pr1+1,r2P1,T1 Qn,N,m,»-.mm

m=11<r; <--<r,m<n

I3

and (see (4.27) and (4.36))
m 1 (63
ng,r)l,,,_,rm = T Nism Z An,r,.rm (a)on,rl,.i.,rmaaa

N2 3<jal<N,

1
QN nf(x) = SN2 Z Cn,N (@) 0a,

N+1<|a|<N(N+2|N/2])

(5.32)

N,, being given in Lemma 4.4: N,, = m(2|N/2] + N +5)form < Nandifm =N +1
then N, = (N + 1)(IN + 3). By (4.28) and (4.36), the coefficient which appear above
satisfy

(g (@)] < (CCEYPHY))™ and (e, n(@)] < (CCn4 (V) Ca(Y))NNH2LIN/2D),

(5.33)
We first estimate I>(0, f). Let us prove that for every r < --- < ry41
Z.n G,n G.n G,n (N+1 C
PTN+1+1,TZPTN+1,TN+1"’PT1+1,T2P]€7T1 Q’I("l,j—.,’r)‘N_*_la'Yf(x)‘ S n4N2+3 X
m?
XCoy(N+1)+(N+3), 8 ([ Y) | Lo vy vts) () e =" + L()(f)] (1 + |z|)latrvnav+a (F)
(5.34)
where C depends only on g and N and C, x(f,Y) is given by (5.30).
Recall that o, ,, < 2C2(Y). We take n > 4(N + 1)C2(Y) so that
1 N 1
= oy, < 71da. (5.35)
n 4 ’ 4
=1
Recall that % Zle on,r = Idg. So we distinguish now two cases:
Case 1 1 i: > 1Id (5.36)
: - Onger Z 5 ’ .
, 9 d
r=ry4+i1+1
1 1
C 2: — na > =1dg. 5.37
ase . ; O, 51dd ( )

We treat Case 1. Notice that all the operators coming on in (5.31) commute so, using
also (5.32) we obtain

Z,n G,n G,n G,n~(N+1)
PT’N+1+177L+1PTN+1,TN+1"'PT1+1J’2PI€,T1 N,?"1,..-,7"N+18'Yf('r)
1
_ E : @
- n(4N+3)/2 An,ry,e,r N1 (a)en,rl,...,rN+1
3<|a| <(N+1)(N+3)
G,n G,n G,n pZ,n
XP’I"NflJrl,TN T PT1+1,7‘2P17’I“1 PTN+1,na'Yaaf(x)'

We use now (5.27) with m = |y|+|a| < ¢+ (N+1)(N+3) and Su(Y) = =371, Cop Vi =
> k=1 Zn,; replaced by >3, ., Z, ), whose covariance matrix is >} ) 0n
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Under (5.36) we have £ < )\ <\, <1, so (5.27) gives

Z.n
|PrN+1+1,n+1a’yaaf($)|

~ lq f
<O x 2lq+(N+1)(N+3)(f)Bq+(N+1)(N+3) (Y)(l + Czl:j::;ii()l(vjjj;()(;)(}/))x

m2
X | Lo (N+1)(v+3) (f) e ™5™ + Lo(f)} (1 + [a])larovenoves ()
where C' is a constant depending only on ¢ and N and ]§p(Y) is the constant B, (Y") given
in (5.28) with )\, = 1/2 and \,, = 1, that is,
(4d+1)p

~ (1v 8 )de Cigap ~ (Y)

mir ,rp(p-‘rl)

Therefore, we can write

lQ (P7f\;21+1,n878af) :lq+(N+1)(N+3) (f)a
LO (PZ,TL 8’yaaf) —C % 2lq+(N+1)(N+3)(f)],—)\)q+(N+1)(N+3)(Y)(1 + Clq+(N+1)(N+3)(f) (Y))X

rN+1+1,n gt v+ +3)(f)

my
X | Lqsvenoves () e "+ Lo(/)].
Now, in the proof of Theorem 4.1 we have proven that (see (4.40)

P PO, PO ()] < 2090 (14 Ciy ) (V) Lo(g) (1 + )01

rN-1+1l,7rN ri+l,re” 1,m

and following the proof of Lemma 4.4 we have

0%, . g@)| < (gzo<g>c§{fv+3)(Y)(1 - Ca iy (V))2) ™ Lo(g)(1 + )o@,

MyT1yeeny
So, taking all estimates, we obtain

« G,n G,n GnpZn
|07L7T"1,4..,7”N+1P7’N_1+1,T‘N e Pr1+1,r2 1,71 PTN+1,n+16’Ya(¥f(x)|

m3
< C xDgpvinyv+s)(f.Y) [Lq+(N+1)(N+3)(f) e 12" 4 Lo(f)} (1 + |a]) e+ avsnas (F)

where
C(4d+1)p(Y)
— o(N+3)l,(f) o(N+1)/2 L (F)V(N+1) 8 \24 Cigap
Dy(f,Y) =2 OO (L4 O ) (1v mf) e

(N+1)
N,r1,....;TN+1

We use now formula (5.32) for @ and the estimate (5.33) for the coefficients

Anry,...rneq @Dd We get

P et P o P P QR 0 04 (@)

rN+1+1,n+18 v+l eyt i+l Tl sTN41

1 ~ m2
<C—gyzz X CulfY) [Lgrivsnyves) (f) €™ B8 ™ 4 Lo(f)| (14 [z fasovsnovsa (D)
n 2

where C depends only on ¢ and N and @*(f, Y) is given by
~ N+1
Co(£,Y) = (CEH W) Dy vy (vasy (£, Y).

Since 6*(f, Y)= 6q+(N+1)(N+3),N(f7Y), (5.34) is proved in Case 1.
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We deal now with Case 2, that is, we assume (5.37). We write
Zn G,n G,n G,n(N+1)
PrN+1+1,n+1PTN+1,TN+1 "'Pr1+1,r2P1,T1 QN,rl,...,rN+1a’Yf(z)
1 z
_ o ,n
- 4N+3 an77'17~--,TN+1 (O‘)en,rl,.“,m\urlPTN+1+1,n+1
n 3<]al<(N+1)2

% PG7” N PG’n PG)naryaaf(x)'

rN+1,rN41 ri+1l,r2® 1,r

Notice that
pén PO PETO 0, f(2) = B(0,0a f (z 4+ G))

rN+1,rN41 ri+1l,r2" 1,m

. . . . 1 TN41 1 N+1
where G is a centered Gaussian random variable of variance = > .2 0y =2 > i Onpy >

%Idd, as it follows by using also (5.35). So standard integration by parts yields

P s P s L 0D f (1)) < CLo(f)(1 + o]},

rN+LrNgt T ratlre 1y

Now the proof follows as in the previous case. So (5.34) is proved in Case 2 as well.
Therefore, by summing over r; < ry < --- < ry4+1 < n (giving a contribution of order
nN+1), inequality (5.34) gives

C ~ _my
L0, N)@)] € 5 % Calf, V) [Larovenoves () e B8 4+ Lo(£)] (1 + [allavevvs (D
n-2
Exactly as in Case 2 presented above (using standard integration by parts with respect
to the law of Gaussian random variables) we obtain

10, 1)@+ (0, @] £ —zr % CullYILalA)(1 + ).

So, recalling that 6*(f, Y)= (qu+(N+1)(N+3)7N(f, Y), (5.29) is proved.

Step 2. We now come back and we replace L, (n+1)(nv+3)(f) by Lg(f) in (5.29). We
will use the regularization lemma. So we fix § > 0 (to be chosen in a moment) and we
write

(D f(Sn(Y))) = E(D, f(W)PN(W))| < As(f) + A5(f) + A5(f)
with
As(f) = [E(0, f5(Sn(Y))) — E(0y fs(W)Pn(W))|
A5(f) = [E(0, £ (Su(Y))) — E(0, f5(Sn(Y)))]
AG(f) = [E(0, f(W)@n(W)) = E(0, fs(W)PNn(W))].

We will use (5.29) for f5. Notice that L,(fs) < ¢,,5)Lo(f)07P, with ¢,; = 1V
maxo<|aj<p [ (1 + |2])|0ad(z)|dz, and I,(fs) = lo(f). So,

() <~z X B (V) Lo() [y © 7 +1],
where
Ho (£,) = G2 (gD Cgi® (v) (1 4+ C (Y (1) ¢
(4d+1)(g+(N+1)(N+3))
IOV R 411 O MNP

We use now (5.25) with £ = 0 and with some h to be chosen in a moment. We then obtain
2 LV
A5(F) £ CCyY% 1 (V) Qna (V) (Lol £ 54" 4+ Lo(£)6")
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with Qp, 4(Y) given in (5.26). And we also have AY(f) < CLo(f)d" (the proof is identical
to the one of (5.19) but one employs usual integration by parts with respect to the
Gaussian law). We put all this together and we obtain

C w2 n
(0, f(Sn(¥))) = B0, (W)Bx (W))| < e Hon (/Y ) Lo ) s ¢+

+ CCy% 1 (V)Qug (V) Lg(f)e™ 2 + CLo(f)8"

We take now ¢ such that
S S
59+ (N+1)(N+3)

and h = ¢+ (N + 1)(IV + 3), so that

2 2
min men

§h = e~ 128 XAF i — o~ kg
—=e q+(N+1)(N+3) — e~ 256

With this choice of h and § we get

+ Ccél/oz(f) (Y)Qqr(v+1y(N+3),0(Y) Lg(f)e™ 22

We take now n sufficiently large in order to have
1 m2n
nE(N‘Fl)e*ﬁ <1.
The statement now follows by observing that, with C,(Y') given in (2.23),

C.(Y) > Hyn(£,Y) and Cu(Y) > Cop (V) Qqr (v 1) (v 18).4(Y)- O

5.3.2 Proof of Corollary 2.5

We first explicitly write the expression of the polynomials Hr, , (z) for k = 1,2, 3. Recall
formula (2.15) for the kth operator I', ; and recall formula (2.14) for the set A,,
appearing in (2.15). Recall also formula (2.25) for ¢, («) and d,(a, 3).

Case k= 1. Then m = 1 and [ = 3,1’ = 0. So the first order operator is given by

n

Fn,l = %Z éD»EE?n = % Z Z An,r(a)aou

r=1 r=1|a|=3
so that, with ¢, («) given in (2.25),

Hr, () = 5 3 cula)Ha(a) = Ho (@)
|a|=3

and formula (2.27) holds.

Case k = 2. Then m = 1 or m = 2, and we call ', , and I'} , the corresponding
operator. Suppose first that m = 1. Then we need that [ + 2!’ = k + 2m = 4. This means
that we have [ = 4,1’ = 0. Then

1t 1 1 « 1
Tho =0 2 5i P = g1 2 3 Al = 57 3 eale)d
r=1 r=1|a|=4 |a|=4
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Suppose now that m = 2. Then we need that [y + I + 2(I] +15) = k + 2m = 6. The only
possibility is I; = l; = 3, I} =1, = 0 and the corresponding term is

1 1 . 1
FZ,Q ) Z %DS%DS?«Q = 36m2 Z Z Z Ay (@) Anry (8)0a0p

0<ri<ra<n 1<ri<rz<n|a|=3|8|=3

- 721TL2 Z Z Z AnWl (a)An,rz(ﬁ)aaaﬁ.

1<r1#r2<n |a|=3|8|=3

We notice that, for |o| = |8] =3,

1 1
w2 Z Apr (@) An iy (B) = cn(a)en(B) — ﬁdn(aa B)
1<r1#ra<n
with
sup |dn (o, B)| < 4C3(Y), |a| =8| = 3. (5.38)

So, by inserting,
Tho=5 Zch B3)0a0s — —ZZd 8)a8s.
Ia\ 3|8=3 la|=318|=3
We conclude that
HFn,Q (.73) - HF’,IWQ (x) + HF;Z‘Q (JJ) = Hn 2 ~ Z Z dn H(a B) ( )
Ial 318]=3

Hn,2(x) being given in (2.28).

Casek=3.m=1.Weneedthat!+2'=k+2m=5.S0l=3,I"=1o0rl=5,'=0.
The operator term corresponding to [ = 3,1’ = 1 is

n d
Mha= gy S DL, = 37 3 a0, )10,

r=1 la|=3 3.j=1

¢, (i, 7) being given in (2.25). The term corresponding to [ = 5,1’ =0 is

2, = %Z 51| D) = % Z Z Ay ()0, = é Z Cn ()0,

r=1 r=1|a|=5 " al=5

m = 2. We need 1 + lo + 2(I] +15) = k + 2m = 7. The only possibility is [; = 3, I, =4,
Iy =10,=0andl; =4, 13 =3, 1} =1, =0. The corresponding term is

2 1
3 _ 3 (4) _ I
Fn,S - ﬁ Z gDr(z 7)"1 4172 - 3|4| Z Z [cn Cn ndn(aaﬁ)} 8@486,
1<ri1<ra<n |a|=3|8|=4
with
sup |dn(a, B)] < CC3(Y)Cy(Y) < CCAY), |a| =3,|8 =4 (5.39)

m = 3. We need Iy + Iy + I3+ 2(I] + 15+ 1) =k +2m = 3 + 6 = 9. The only possibility
isly =1y =13 =3,l5 =1, =14 =0 and the corresponding term is

P > D) Df),DE

63 7’L3 n,r1 - n,ron,
1<r1<rz<rz<n

B m Z Z Z Z Anﬁrl(a)Anﬂ“z(ﬁ)An,rs(V)aaaﬂ87>

1<r1#ro#ra<n |a|=3 |3|=3 |y|=3

g

3
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where the notation r # ry # r3 means that rq, 9, r3 are all different. Now, straightfor-
ward computations give

nl3 Z Anml (a)An,m (B)An,'r‘z (7) = Cn(a)cn(ﬁ)cn(’y) - %en(aa 57’7)7

1<ri#ra#rs<n

with
sup [en(a, 8,7)] < C x C3(Y), |a| =8| =l =3. (5.40)

So, we obtain

1 1
th?, = m Z Z Z Cn(a)cn(ﬁ)cn('}/)a(xaﬂa'y_ﬁ Z Z Z €n(04,5a7)3aa,66w~
" lal=3|8]|=3|v|=3 |a|=318]=3 |y|=3

We conclude that

4

1
Hr, (2) =) Hr: () =Hoz3(2) + - > fal@)Ha(x),
i=1 lal<9

with #,, 3(x) as in (2.29) and with

sup | fn(a)| < CCZ(Y). (5.41)

By resuming, we get

3
Z 1 1
¢n,N(x) = ]' + nk/2 HTLJC(‘('C) + ﬁlpn(x%
k=1

where, taking into account (5.38), (5.39), (5.40) and (5.41),

Pn(x) = Z gn(@)Hy(z) with  sup g, ()] < C x C3(Y),
la|<9 "

where C' a universal constant. Therefore
[E(0,£(8.1))) = B0, £07) (1+ ; ()|

< [B(0, F(5.(Y)) — B0, FW ) (W) + 5 [E(, F(W)PA (W)
Lo(f)

<Cx (36

Ly (f)e™ ) 4 (B0, V)P (W)

in which we have used (2.22). Now, by using the standard integration by parts for the
Gaussian law, we have

[E(8, fF(W)PL(W))| = [E(FW)G (W, Pu(W))| < 1 F W) [l2]| G (W, Pr(W)) |2,

where G, (W, P,(IW)) denote the weight from the integration by parts formula. Since
‘P, is a linear combination of Hermite polynomials with bounded coefficients, we have
|G- (W, P, (W))||2 < C, C depending on q. Moreover, |f(W)| < Lo(f)(1 + [W[°()), so

(0, f(W)Po(W))| < C x Lo(£)C 3 (V).

The statement now follows. O
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5.3.3 Proof of Proposition 2.8

The idea is that, since ) ,_" o > %I , the random variables Y;,k < n — m contain
sufficient noise in order to give the regularization effect.
We show the main changes in the estimate of I5(f) (for I1(f), Is(f) the proof is ana-

logues). We split P Yt = = P2 e WPz “"..» and we need to have sufficient noise
in order that PTZN 21 +1.n—m 9ives the regularization effect. Then, the two cases described
in (5.36) and (5.37) are replaced now by > " a1 Ongi = 4] and ZTN+1+1 o > %I
N+1

respectively. And the condition (5.35) becomes ) ;" oy, r, < é[ . Then the proof follows
exactly the same line. O

A Norms

The aim of this section is to prove Lemma 5.2. For F' = (Fy,..., F;) We work with the
norms

d k
|F|1,k = ZZ Fj|7.[®i’ |F|k = |F|+|F|1,k
j=11=

gy = I1F |1k||p7 1M = IE N, + 1F 1 g -

To begin we give several easy computational rules:

FGl, < C Y |Fl, [Gly, (A1)
ki1+ko=k
(DE,DG)|, < C Y [Flyg i1 |Clijyes s (A.2)
k1 +ko=k
1 IGIk
Ve (A.3)
’G . 1G] & Z 716"
Now, for F' = (F1, ..., F;) we consider the Malliavin covariance matrix 0z J = <DFz DFi >

and, if det o # 0, we denote yp = a;l. We write
i — op
F det of

where ¢ a J is the algebraic complement . Then, using (A.1)

’7 ’k<0 Z ’Am’kl

ki1+ko=k

det OF |

By (A.1) and (A.2),

Aw‘k <C|F|2(d D and |det opl,, <C|F|1k 41 - Then, using (A.3)

1,ki+1
k l 2id
1 < C Zz |det UF|k2 Z |} ko1
detop|,, ~ [detop| |det oo \det or| = |detop|
so that 2D 2(d-1)

| 1,k+1 |F|1 1 |F1k4:1 |F|1 1
<o L (1 ) Ad
| ’k - |detap\ Z(|detap|) |det o | * |det op| (A.4)

We denote 2(d—1) .y
o — IFl rr (F L pgr + [LF () _ (A.5)
b detop| ’ |detop| '
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and
K (F) = (Fly pgngr + LF )" (L4 [Pl gopngr) 4R (A.6)

We also recall that for > 0, we consider a function ¥, € C*°(R) such that 1(y,) < ¥, <
100,29 and 04| < Cyn~*, ¥k € IN. Then we take &, = 1 — ¥,,.

Lemma A.1l. A. For every k,n € IN there exists a universal constant C' (depending on k
and n) such that, for w such that det op(w) > 0,

H{(F, G)'k <Calpn S0 GL, (14 Brin). (A.7)
p1+p2=k+n
B. For everyn >0

. c
’H,g )(F, @, (det JF)G)‘k < g % Knd(F) % Gl (A.8)

Proof. A. We first prove (A.7) for n = 1. We have
HV(F,G) = =Y Gy LF? + G(Dy}, DFY) + 7} (DG, DFY).
j=1
Using (A.1)
|H"(F,G)|,

<C Z <|7F|k1 |LE|y, |Gl + 7P gy a1 L gy 1 |Gl + 1Py 1F ] gy i |G|k3+1)
ki+ko+ks=k

< CFly HIEFL) D2 (el Gl + by, 1Glp,1) -
p1+p2<k

For n > 1, we use recurrence and we obtain

n
‘HS")(R G)Ik < C(Fjynsr + ILF )" 3 1 e, < G
pit+...+pnt1<k+n—1i=1

Pnt1”

Then, using (A.1) first and (A.4) secondly, (A.7) follows.
B. Let G;) = ®,(detop)G). For every p € IN one has |G, < Cn‘p|G\p|F|‘f’p+1.
Moreover one has H,E")(F, Gy) = et U¢>n/2}H,()") (F,Gy). So (A.7) implies (A.8). O
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