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Abstract

Motivated by the study of directed polymer models with random weights on the
square integer lattice, we define an integrability property shared by the log-gamma,
strict-weak, beta, and inverse-beta models. This integrability property encapsulates a
preservation in distribution of ratios of partition functions which in turn implies the so
called Burke property. We show that under some regularity assumptions, up to trivial
modifications, there exist no other models possessing this property.
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1 Introduction

One method which has been used to study certain models of percolation and poly-
mers is to introduce a version of the model with boundary conditions that possesses
a stationarity property. This stationarity property allows for the exact computation of
some quantities of interest, such as the free energy. In [16] O’Connell and Yor introduce
a model for a directed polymer in a Brownian environment with a Burke-type stationarity
property. In [20] Seppäläinen and Valkó use this stationarity to find bounds on the
fluctuation exponents of the free energy and the fluctuation of the paths. In [4] Cator
and Groeneboom relate a stationary version of the Hammersley process to the location
of a second class particle and determine the order of the variance of the longest weakly
north-east path. In [1] Balázs, Cator, and Seppäläinen use a stationary version of the
last passage growth model with exponential weights to study the variance of the last
passage time and transversal fluctuations of the maximal path.

We define the integrability property Th,Y -invariance (Definition 1.1) which encapsu-
lates this stationarity in the setting of lattice directed polymers. This property implies a
preservation in distribution of ratios of partition functions. The first model discovered
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Characterizing stationary polymers

possessing this property is the log-gamma model, introduced by Seppäläinen in [19].
In his paper Th,Y -invariance is used to prove the conjectured values for the fluctuation
exponents of the free energy and the polymer path in the stationary point-to-point case
and to prove upper bounds for the exponents in the point-to-point and point-to-line cases
without boundary conditions. In [10] Georgiou and Seppäläinen use Th,Y -invariance
to obtain large deviation results for the log-gamma polymer. In the setting of directed
polymer models, this is the first instance where precise large deviation rate functions for
the free energy were derived.

Thereafter three additional models admitting Th,Y -invariant versions were found:
the strict-weak model, introduced simultaneously by Corwin, Seppäläinen, and Shen in
[7] and O’Connell and Ortmann in [15], the beta model, introduced by Barraquand and
Corwin in [3] as the beta RWRE, and the inverse-beta model, introduced by Thiery and Le
Doussal in [23]. The stationary versions of these models were given by Balázs, Rassoul-
Agha, and Seppäläinen in [2] for the beta model, Thiery in [22] for the inverse-beta
model, and by Corwin, Seppäläinen, and Shen in [7] for the strict-weak model.

In this paper we present a uniqueness result for Th,Y -invariant models. That is, under
some regularity assumptions and up to the two natural modifications of reflection and
scaling, the log-gamma, strict-weak, beta, and inverse-beta are the only Th,Y -invariant
models.

This work is similar in spirit to the physics works of Evans, Majumdar, and Zia
([8], [24], and [9]), who consider mass transport models on graphs and provide a
characterization of the models which have a product form stationary measure. The work
of Povolotsky [17] uses the framework of Evans, Majumdar, and Zia and obtains a three
parameter family of zero range mass transfer models which are integrable via Bethe
ansatz. In fact, both the beta and the inverse-beta models were obtained as limits of
Povolotsky’s family of models.

In the paper [5] we use Th,Y -invariance along with a Mellin transform framework to
simultaneously prove the conjectured values for the fluctuation exponents of the free
energy and polymer path in the stationary point-to-point version of these four models.

1.1 The polymer model

The directed polymer in a random environment, first introduced by Huse and Henley
[11], models a long chain of molecules in the presence of random impurities. Imbrie and
Spencer [12] formulated this model as a random walk in a random environment. See the
lectures by Comets [6] for a survey of results on directed polymers. We consider a class
of 1+1-dimensional directed polymers on the integer lattice.

Notation: N “ t1, 2, . . .u, Z` “ t0, 1, . . .u, and R denotes the real numbers. On each
edge e of the Z2

` lattice we place a positive random weight. For x P N2, let ux and vx
denote the horizontal and vertical incoming edge weights. We assume that the collection
of pairs tpux, vxquxPN2 is independent and identically distributed, but do not insist that
ux is independent of vx (in fact we will later assume vx is a function of ux). Call this
collection the bulk weights. For x P Nˆ t0u, let R1

x denote the horizontal incoming edge
weight, and for x P t0u ˆN, let R2

x denote the vertical incoming edge weight. We assume
the collections tR1

xuxPNˆt0u and tR2
yuyPt0uˆN are independent and identically distributed,

and refer to them as the horizontal and vertical boundary weights, respectively. We
further assume that the horizontal boundary weights, the vertical boundary weights,
and the bulk weights are independent of each other. This assignment of edge weights is
illustrated in Figure 1.

For pm,nq P Z2
`ztp0, 0qu, let Πm,n be the collection of all up-right paths from p0, 0q

to pm,nq. See Figure 2 for an example of such a path. We identify paths x‚ “

px0, x1, . . . , xm`nq by their sequence of vertices, but also associate to paths their sequence
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Figure 1: Assignment of edge weights.

of edges pe1, . . . , em`nq, where ei “ txi´1, xiu. The point-to-point partition function for
the directed polymer is defined as

Zm,n :“
ÿ

x‚PΠm,n

m`n
ź

i“1

ωei for pm,nq P Z2
`ztp0, 0qu,

where ωe is the weight associated to the edge e. At the origin, define Z0,0 :“ 1.

Figure 2: An up-right path from p0, 0q to p5, 5q.

Write α1 “ p1, 0q, α2 “ p0, 1q. The partition functions satisfy the recurrence relation

Zx “ uxZx´α1
` vxZx´α2

for x P N2. (1.1)

For k “ 1, 2 define ratios of partition functions

Rkx :“
Zx

Zx´αk

for all x such that x´ αk P Z
2
`.

Note that these extend the definitions ofR1
i,0 andR2

0,j , since for example Zi,0 “
śi
k“1R

1
k,0.

The recurrence relation (1.1) yields the recursions

R1
x “ ux ` vx

R1
x´α2

R2
x´α1

R2
x “ ux

R2
x´α1

R1
x´α2

` vx

for x P N2. (1.2)
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We look to exploit these recursions to obtain more structure of the ratios R1
x and R2

x,
which in turn allows us to analyze quantities of interest such as the free energy, logZm,n.

The notation X
d
“ Y is used to specify that random vectors X and Y have the same

distribution. We look for cases where pR1
x, R

2
xq

d
“ pR1

x´α2
, R2

x´α1
q, under the assumption

that ux and vx have a functional dependence of the form pux, vxq “
`

Yx, hpYxq
˘

for some
positive random variable Yx and positive function h. We further assume that there
exist positive random variables R1, R2, Y such that the horizontal boundary weights, the
vertical boundary weights, and the bulk weights are distributed as R1, R2, and

`

Y, hpY q
˘

,
respectively.

When Y is a random variable taking values in the domain of h and pR1, R2q is a
random vector taking values in p0,8q2, define the random vector

Th,Y pR1, R2q :“

ˆ

Y ` hpY q
R1

R2
, Y

R2

R1
` hpY q

˙

. (1.3)

Note that with pux, vxq “
`

Yx, hpYxq
˘

, the recursive equations (1.2) imply
`

R1
x, R

2
x

˘

“ Th,Yx
`

R1
x´α2

, R2
x´α1

˘

for all x P N2. (1.4)

Definition 1.1. Let O3 Ă p0,8q, h : O3 Ñ p0,8q, and assume the random variable Y

takes values in O3. Let pR1, R2q be a random vector taking values in p0,8q2 that is

independent of Y . We say that pR1, R2q is Th,Y -invariant if Th,Y pR1, R2q
d
“ pR1, R2q.

Definition 1.1, while stated in terms of the random variables pR1, R2q and Y , is really
a property of the distributions of pR1, R2q and Y .

If pR1, R2q is Th,Y -invariant with R1 independent of R2, then (1.4) and an induction
argument imply that the polymer model possesses a form of stationarity:

`

R1
x, R

2
x

˘ d
“
`

R1, R2
˘

for all x P N2. (1.5)

Although our two main theorems require R1 and R2 to be independent, the results in
Section 2 hold without this independence.

1.2 Main results

Our first main result, Theorem 1.2, consists of showing that, under some regularity
assumptions, Th,Y -invariance can only occur if h is of the form hpyq “ a ` by for real
numbers a, b satisfying a _ b ą 0. Our second main result, Theorem 1.4, consists of
showing that if h has this form, then Th,Y -invariance only arises as a modification of the
four known invariant models (described in (1.7) through (1.10)). In the case of hpyq “ y,
which is equivalent to vertex disorder, the uniqueness of the vertex weight distributions
was already shown (Lemma 3.2 of [19]).

Given a real valued function f we call tx : fpxq ‰ 0u the support of f . Note that we
do not insist on taking the closure of this set. Define the non-random analogue of (1.3),

Th,ypr1, r2q :“
`

y ` hpyq r1r2 , y
r2
r1
` hpyq

˘

. (1.6)

Theorem 1.2. Let R1, R2, Y be positive, independent random variables with respective
densities f1, f2, f3. Assume that the support of fj is Oj Ă p0,8q for j “ 1, 2, 3, where
each Oj is open and O3 is connected. Assume f1, f2 are twice differentiable on O1 and
O2 respectively and that f3 is three times differentiable on O3. Suppose h : O3 Ñ p0,8q

is four times differentiable, the mapping O1 ˆO2 ˆO3 Q pr1, r2, yq ÞÑ Th,ypr1, r2q surjects
onto O1 ˆ O2, and r2

r1
` h1pyq ‰ 0 for all pr1, r2, yq P O1 ˆ O2 ˆ O3. If pR1, R2q is Th,Y -

invariant, then h must be of the form hpyq “ a`by, where a, b are real numbers satisfying
a_ b ą 0.
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Remark 1.3. If pR1, R2, Y q has support O1 ˆ O2 ˆ O3 and pR1, R2q is Th,Y -invariant,
then the surjectivity condition is a natural assumption. The assumption r2

r1
` h1pyq ‰ 0

is a convenience used in Lemma 2.7 which allows us to extend the preservation of
distribution of the pair pR1, R2q to the triple pR1, R2, Y q (see Definition 2.2). However,
this assumption can be removed by an application of Sard’s theorem (see Lemma 2.8) at
the expense of making a.e. statements throughout Section 2. As an example for when the
assumption r2

r1
` h1pyq ‰ 0 is satisfied, we can take h to be any differentiable increasing

function. Note that the assumptions do not require O1 or O2 to be connected.

Before giving the second main result we give the form of each of the four known
invariant models.

The notation X „ Gapα, βq is used to denote that a random variable is gammapα, βq
distributed, i.e. has density Γpαq´1βαxα´1e´βx supported on p0,8q, where Γpαq “
ş8

0
xα´1e´xdx is the gamma function. X „ Bepα, βq is used to say that X is betapα, βq

distributed, i.e. has density Γpα`βq
ΓpαqΓpβqx

α´1p1 ´ xqβ´1 supported on p0, 1q. We then use

X „ Ga´1
pα, βq and X „ Be´1

pα, βq to denote that X´1 „ Gapα, βq and X´1 „ Bepα, βq,
respectively. We also use X „

`

Be´1
pα, βq ´ 1

˘

to denote that X ` 1 „ Be´1
pα, βq. The

symbol b is used to denote (independent) product distribution.

• Inverse-gamma: This is also known as the log-gamma model. Assume µ ą λ ą

0, β ą 0 and
`

R1, R2, Y
˘

„ Ga´1
pµ´ λ, βq b Ga´1

pλ, βq b Ga´1
pµ, βq. (1.7)

Then pR1, R2q is Th,Y -invariant, where hpyq “ y. (See Lemma 3.2 of [19].)

• Gamma: This is also known as the strict-weak model. Assume λ, µ, β ą 0 and
`

R1, R2, Y
˘

„ Gapµ` λ, βq b Be´1
pλ, µq b Gapµ, βq. (1.8)

Then pR1, R2q is Th,Y -invariant, where hpyq “ 1. (See Lemma 6.3 of [7].)

• Beta: Assume λ, µ, β ą 0 and
`

R1, R2, Y
˘

„ Bepµ` λ, βq b Be´1
pλ, µq b Bepµ, βq. (1.9)

Then pR1, R2q is Th,Y -invariant, where hpyq “ 1´ y. (See Lemma 3.1 of [2].)

• Inverse-beta: Assume µ ą λ ą 0, β ą 0 and
`

R1, R2, Y
˘

„ Be´1
pµ´ λ, βq b

`

Be´1
pλ, β ` µ´ λq ´ 1

˘

b Be´1
pµ, βq. (1.10)

Then pR1, R2q is Th,Y -invariant, where hpyq “ y ´ 1. (See Proposition 3.1 of [22].)

The name of each model refers to the distribution of the bulk weights. We call these
models the four basic beta-gamma models.

Theorem 1.4. Let Oj Ă p0,8q for j “ 1, 2, 3 and assume h : O3 Ñ p0,8q has the form
hpyq “ a ` by, where a, b are real numbers satisfying a _ b ą 0. Assume the mapping
O1 ˆ O2 ˆ O3 Q pr1, r2, yq ÞÑ Th,ypr1, r2q surjects onto O1 ˆ O2, and R1, R2, Y are non-
degenerate, independent random variables taking values in O1, O2, O3 respectively.

(a) If a “ 0 and b ą 0, then pR1, R2q is Th,Y -invariant if and only if
`

R1, 1
bR

2, Y
˘

is
distributed as in (1.7).

(b) If a ą 0 and b “ 0, then pR1, R2q is Th,Y -invariant if and only if
`

R1, 1
aR

2, Y
˘

is
distributed as in (1.8).

(c) If a ą 0, b ă 0, and ´b R t yx : px, yq P O1ˆO2u, then pR1, R2q is Th,Y -invariant if and
only if either

`

´ b
aR

1, 1
aR

2,´ b
aY

˘

or
`

1
aR

2,´ b
aR

1, 1` b
aY

˘

is distributed as in (1.9).

(d) If a ă 0 and b ą 0, then pR1, R2q is Th,Y -invariant if and only if
`

´ b
aR

1,´ 1
aR

2,´ b
aY

˘

is distributed as in (1.10).
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(e) If a, b ą 0, then pR1, R2q is Th,Y -invariant if and only if
`

1
aR

2, baR
1, 1` b

aY
˘

is
distributed as in (1.10).

Figure 3 illustrates which one of the four basic beta-gamma models corresponds to
each choice of parameters a, b.

a

b

1

-1

-1

1

– Inverse-gamma

– Gamma

– Beta

– Inverse-beta

– Not allowed

Figure 3: Modifications of the four beta-gamma models.

In the related physics paper [23], Thiery and Le Doussal study the implications of
Bethe ansatz solvability in the context of 1` 1-dimensional lattice directed polymers. In
their work, they consider the model without boundary and do not impose the additional
assumption that the weights on incoming horizontal and vertical edges, ux and vx, have
a functional dependence. Making the assumption of coordinate Bethe ansatz solvability
(for a precise definition see II.B in [23]), they arrive at a formula for the joint moments
of ux and vx. This is carried out under the assumption that all joint moments of ux and
vx are finite. Ignoring the finiteness of these moments, they consider the implications
of the joint moment conditions in an attempt to classify all weights ux and vx leading
to coordinate Bethe ansatz solvability. From this classification they are able to retrieve
the four basic beta-gamma models. This suggests a direct connection between the
integrability properties of Bethe ansatz solvability and stationarity. In the current paper
we do not further explore this connection, but consider it an interesting direction for
future research.

Structure of the paper: In Section 2 we define the stronger property Th-invariance,
and give conditions for when Th,Y -invariance is equivalent to Th-invariance. Th-
invariance will be used as a tool in proving our main theorems. The proof of Theorem
1.2 is then given in Section 3. In Section 4 we describe the natural modifications of
reflection and scaling. The proof of Theorem 1.4 is given in Section 5.

2 Equivalences between T h,Y -invariance and T h-invariance

First define

Th1 pr1, r2, yq :“ y ` hpyq
r1

r2
Th2 pr1, r2, yq :“ y

r2

r1
` hpyq. (2.1)
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Notice that pR1, R2q is Th,Y -invariant if and only if

`

Th1 , T
h
2

˘`

R1, R2, Y
˘

:“
`

Th1 pR
1, R2, Y q, Th2 pR

1, R2, Y q
˘ d
“
`

R1, R2
˘

.

In this section we determine conditions which allow us to construct a function Th3
such that

`

Th1 , T
h
2 , T

h
3

˘

pR1, R2, Y q
d
“ pR1, R2, Y q. Moreover, Th3 will be such that T :“

`

Th1 , T
h
2 , T

h
3

˘

is an involution. Recall that a function T is an involution if T ˝ T is the
identity function. This augmentation of our mapping Th,Y to an involution T encapsulates
a form of reversibility of the polymer model.

Definition 2.1. Let O Ă p0,8q2, O3 Ă p0,8q, and h : O3 Ñ p0,8q. We say that an
involution T : O ˆ O3 Ñ O ˆ O3 is a polymer involution adapted to h if its first two
coordinates are as in (2.1).

Existence and uniqueness of polymer involutions is addressed in Lemma 2.4. When
the polymer involution adapted to h is unique we write Th. In our two main theorems we
assume that R1 and R2 are independent and therefore take O “ O1 ˆO2. We allow for
arbitrary O Ă p0,8q2 since the results in this section allow for dependence between R1

and R2.

Definition 2.2. Suppose pR1, R2, Y q is a random vector taking values in O ˆO3, where
O Ă p0,8q2, O3 Ă p0,8q, and Y is independent of pR1, R2q. Let h : O3 Ñ p0,8q. If there

exists a polymer involution T on OˆO3 adapted to h such that T pR1, R2, Y q
d
“ pR1, R2, Y q,

then we say pR1, R2, Y q is T -invariant (with respect to h).

If pR1, R2, Y q is T -invariant, the polymer model with weight distributions pR1, R2, Y q

not only has property (1.5), but possesses a stronger form of stationarity called the
Burke property (see Theorem 3.3 of [19]), named after Burke’s theorem on the output
distribution of M/M/1 queues (see the reference [13]). In Definition 2.1 we restrict our
attention to involutions, as T -invariance not only implies stationarity, but also a form of
reversibility: the construction of a dual measure (see Section 3.2 of [19] and Proposition
III.3 of [22] for more details).

The four basic beta-gamma models are not only Th,Y -invariant, but are in fact Th-
invariant as well. The rest of this section is dedicated to relating the properties of
Th,Y -invariance and Th-invariance, as given in the following proposition.

Proposition 2.3. Let O Ă p0,8q2, O3 Ă p0,8q, and h : O3 Ñ p0,8q. Assume pR1, R2, Y q

is a random vector taking values in O ˆO3 and that Y is independent of pR1, R2q. Then
the following two conditions are equivalent.

(a) The mapping OˆO3 Q pr1, r2, yq ÞÑ Th,ypr1, r2q surjects onto O, for every pr1, r2q P O

the function O3 Q y ÞÑ y r2r1 ` hpyq is injective, and pR1, R2q is Th,Y -invariant.

(b) There exists a unique polymer involution Th adapted to h on OˆO3 and pR1, R2, Y q

is Th-invariant.

The proof of Proposition 2.3 follows from combining Lemmas 2.4, 2.6, and Remark
2.5 below.

We use the notation πj : p0,8q2 Ñ p0,8q to denote the projection onto the j-th
coordinate for j “ 1, 2. Given O Ă p0,8q2, QpOq will denote the set

 

y
x : px, yq P O

(

.
When O “ O1 ˆO2 we will write O2

O1
for QpOq.

When T is a polymer involution adapted to h we will often use the following notation

prr1, rr2, ryq :“ T pr1, r2, yq. (2.2)

More precisely, by equations (2.1)

rr1 :“ y ` hpyq
r1

r2
, rr2 :“ y

r2

r1
` hpyq, ry :“ Th3 pr1, r2, yq.
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Note that these definitions imply that

rr2

rr1
“
r2

r1
. (2.3)

This equality of ratios will turn out to be quite useful.
The following lemma gives an equivalence to the existence of a unique polymer

involution.

Lemma 2.4. Let O Ă p0,8q2, O3 Ă p0,8q, h : O3 Ñ p0,8q, and Th1 , T
h
2 be as in (2.1).

Then the following are equivalent:

(a)
`

Th1 , T
h
2

˘

pOˆO3q “ O and for every pr1, r2q P O the functionO3 Q y ÞÑ Th2 pr1, r2, yq “

y r2r1 ` hpyq is injective.

(b) Gps, yq :“
´

y ` hpyq
s , ys` hpyq

¯

is a bijection between QpOq ˆO3 and O.

(c) There exists a unique polymer involution Th on O ˆO3 adapted to h. Moreover,

Th “ pGb idq ˝ ψ2,3 ˝ pGb idq´1, (2.4)

where ψ2,3pa, b, cq “ pa, c, bq and pGb idqpa, b, cq :“ pGpa, bq, cq.

(d) There exists a polymer involution on O ˆ O3 adapted to h such that Th3 has no
y-dependence.

Proof. paq ñ pbq: Note that

G
`

r2
r1
, y
˘

“
`

Th1 , T
h
2

˘

pr1, r2, yq (2.5)

implies G
`

QpOq ˆO3

˘

“ O. Injectivity of G follows from π2˝Gps,yq
π1˝Gps,yq

“ s and the injectivity

condition on Th2 .
pbq ñ pcq: We first show uniqueness. Suppose T “

`

Th1 , T
h
2 , T

h
3

˘

is a polymer involution
on O ˆO3 adapted to h. For fixed pr1, r2, yq P O ˆO3, with notation as in (2.2), we have
T prr1, rr2, ryq “ pr1, r2, yq since T is an involution. Using (2.3) we have

pr1, r2q “
`

Th1 , T
h
2

˘

prr1, rr2, ryq “ G
`

r2
r1
, ry
˘

.

Therefore
G´1pr1, r2q “

`

r2
r1
, Th3 pr1, r2, yq

˘

. (2.6)

Since G´1 has no y-dependence, neither does Th3 . One can now check that

T “ pGb idq ˝ ψ2,3 ˝ pGb idq´1 (2.7)

proving uniqueness. Existence follows by simply setting Th3 pr1, r2, yq “ π2 ˝G
´1pr1, r2q.

This forces equality (2.7), the right side of which is indeed a polymer involution adapted
to h.
pcq ñ pdq is clear.
pdq ñ paq: Let T be a polymer involution on O ˆ O3 adapted to h for which Th3 has

no y-dependence. Clearly the first two components of T ,
`

Th1 , T
h
2

˘

, surject onto O. Now
fix pr1, r2q P O. Since Th1 pr1, r2, yq “

r1
r2
Th2 pr1, r2, yq and T is itself injective, we have

injectivity of y ÞÑ Th2 pr1, r2, yq.

Remark 2.5. Note that the conditions in part (a) of Lemma 2.4 depend only on the sets
O, O3, and the function h. The condition

`

Th1 , T
h
2

˘

pOˆO3q “ O in part (a) is equivalent to
the condition that the mapping O ˆO3 Q pr1, r2, yq ÞÑ Th,ypr1, r2q surjects onto O (recall
definition (1.6)).
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Characterizing stationary polymers

When the polymer involution T is such that Th3 has no y-dependence, we will simply
write Th3 pr1, r2q. The following lemma gives conditions for when Th,Y -invariance is
equivalent to Th-invariance.

Lemma 2.6. Suppose O, O3, and h satisfy one of the equivalent conditions in Lemma
2.4. Let pR1, R2, Y q be a random vector taking values in O ˆ O3 and assume that Y is
independent of the pair pR1, R2q. Let Th be the unique polymer involution adapted to h,
defined by (2.4), and write rY “ Th3 pR

1, R2q. Then the following are equivalent:

(a) pR1, R2q is Th,Y -invariant.

(b) R2{R1 is independent of rY and rY
d
“ Y .

(c) pR1, R2, Y q is Th-invariant.

Proof. paq ô pbq: Put
`

rR1, rR2
˘

“
`

Th1 , T
h
2

˘

pR1, R2, Y q. Using equations (2.5) and (2.6),

G
`

R2{R1, Y
˘

“
`

rR1, rR2
˘ d
“
`

R1, R2
˘

ô
`

R2{R1, Y
˘ d
“ G´1

`

R1, R2
˘

“
`

R2{R1, rY
˘

ô R2{R1 is independent of rY and Y
d
“ rY .

pcq ñ paq is clear. We now show that paq and pbq imply pcq. Since Th3 has no y-dependence,
Y is independent of the pair pR2{R1, rY q. Therefore the triple pR2{R1, Y, rY q is independent.

Thus
`

rR1, rR2
˘

“ GpR2{R1, Y q is independent of rY . Now combining paq and rY
d
“ Y we

get
`

rR1, rR2, rY
˘ d
“ pR1, R2, Y q.

We now give an analogue of Lemma 2.4 in which h and Th are continuously differen-
tiable. We compute the Jacobian matrix and determinant of Th in order to later give an
explicit form for the density of ThpR1, R2, Y q in terms of the density of pR1, R2, Y q (see
proof of Proposition 3.1).

Given a differentiable transformation F : U Ñ Rm, where U Ă Rn is open, use the
notations DF puq and DrF spuq to denote the Jacobian matrix of F evaluated at the point
u P U . When m “ n we say F is a C1-diffeomorphism if F is injective, continuously
differentiable, and its Jacobian matrix is invertible throughout U .

Lemma 2.7. Let O Ă p0,8q2, O3 Ă p0,8q, h : O3 Ñ p0,8q, and Th1 , T
h
2 be as in (2.1).

Further assume O and O3 are open, O3 is connected, and h is continuously differentiable.
Then the following are equivalent:

(a)
`

Th1 , T
h
2

˘

pO ˆO3q “ O and the following function does not vanish on QpOq ˆO3

Lps, yq :“ s` h1pyq. (2.8)

(b) Gps, yq :“
´

y ` hpyq
s , ys` hpyq

¯

is a C1-diffeomorphism between QpOq ˆO3 and O.

Moreover its Jacobian matrix and determinant are given by

DGps, yq “

„

´hpyq{s2 Lps, yq{s

y Lps, yq



, detDGps, yq “ ´
Lps, yq

s

ˆ

y `
hpyq

s

˙

. (2.9)

(c) There exists a unique C1-diffeomorphic polymer involution Th on O ˆO3 adapted
to h. Moreover Th3 has no y dependence and the Jacobian matrix and determinant
of Th are given by

DThpr1, r2, yq “
1

r1

»

–

hpyq{s ´hpyq{s2 Lps, yqr1{s

´ys y Lps, yqr1

rys{Lps, ryq hpryq{
`

sLps, ryq
˘

0

fi

fl , (2.10)
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detDThpr1, r2, yq “ ´

ˆ

y

r1
`
hpyq

r2

˙

Lps, yq

Lps, ryq
,

where s “ r2
r1

and ry “ Th3 pr1, r2q.

(d) There exists a differentiable polymer involution on O ˆO3 adapted to h.

Proof. paq ñ pbq: For fixed pr1, r2q P O, since y ÞÑ
BTh

2

By pr1, r2, yq “ L
`

r2
r1
, y
˘

does not
vanish on the connected set O3, the conditions of Lemma 2.4-(a) are satisfied. Therefore
G is a bijection. The continuous differentiability of h now implies that G is continuously
differentiable. The Jacobian matrix and determinant of G can now be calculated. Notice
that for all ps, yq P QpOqˆO3, y`hpyq{s “ π1 ˝Gps, yq P π1pOq Ă p0,8q. Thus the Jacobian
determinant of G does not vanish on QpOq ˆO3, which shows it is a C1-diffeomorphism.
pbq ñ pcq: Since G is a bijection, Lemma 2.4 gives existence and uniqueness of the

polymer involution Th “ pG b idq ˝ ψ2,3 ˝ pG b idq´1. Since G is a C1-diffeomorphism,
the inverse function theorem tells us Th is a C1-diffeomorphism as well. Now fix
pr1, r2, yq P O ˆO3 and put ps, ryq “

`

r2
r1
, Th3 pr1, r2q

˘

. By (2.6)

ps, ryq “ G´1pr1, r2q. (2.11)

DG´1pr1, r2q is now the inverse of the matrix DG
`

G´1pr1, r2q
˘

“ DGps, ryq. (2.11) implies
pr1, r2q “ Gps, ryq “

`

ry ` hpryq{s, rys` hpryq
˘

. Using this one can show that

DG´1pr1, r2q “
1

r1

«

´s 1
sry

Lps,ryq
hpryq

sLps,ryq

ff

and detDG´1pr1, r2q “ ´
s

r1Lps, ryq
. (2.12)

Using equations (2.9), (2.11), and (2.12) we can compute

DThpr1, r2, yq “
“

DpGb idq
`

ψ2,3 ˝ pG
´1 b idqpr1, r2, yq

˘‰

¨
“

Dψ2,3

`

pG´1 b idqpr1, r2, yq
˘‰

¨
“

D
`

G´1 b id
˘

pr1, r2, yq
‰

“rDGps, yq b 1s ¨ rDψ2,3s ¨
“

DG´1pr1, r2q b 1
‰

“

»

–

´hpyq
s2

Lps,yq
s 0

y Lps, yq 0

0 0 1

fi

fl ¨

»

–

1 0 0

0 0 1

0 1 0

fi

fl ¨
1

r1

»

—

–

´s 1 0
sry

Lps,ryq
hpryq

sLps,ryq 0

0 0 r1

fi

ffi

fl

“
1

r1

»

–

hpyq{s ´hpyq{s2 Lps, yqr1{s

´ys y Lps, yqr1

rys{Lps, ryq hpryq{
`

sLps, ryq
˘

0

fi

fl

and

det
`

DThpr1, r2, yq
˘

“ det
`

DGps, yq
˘

det
`

Dψ2,3

˘

det
`

DG´1pr1, r2q
˘

“ ´
Lps, yq

s

ˆ

y `
hpyq

s

˙

p´1q

ˆ

´
s

r1Lps, ryq

˙

“ ´

ˆ

y

r1
`
hpyq

r2

˙

Lps, yq

Lps, ryq
.

pcq ñ pdq is clear.
pdq ñ paq: If T is a differentiable polymer involution adapted to h, then its Jacobian

matrix has the same entries as the 2ˆ3 upper portion of (2.10), as
`

Th1 , T
h
2

˘

are completely
determined. Therefore the determinant of the top-left 2ˆ 2 minor of the Jacobian matrix
of T is zero. Thus L vanishing at a point ps, yq P QpOq ˆ O3 would imply the Jacobian
determinant of T vanishes at any point pr1, r2, yq P O ˆO3 such that r2

r1
“ s. Since T ˝ T

is the identity function, the Jacobian determinant of T cannot vanish on O ˆO3. Thus L
cannot vanish on QpOq ˆO3.
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Let B :“
 

pr1, r2, yq P OˆO3 : r2r1 `h
1pyq “ 0

(

. The following Lemma shows that when

h is twice continuously differentiable, the image of B under the mapping
`

Th1 , T
h
2

˘

has
Lebesgue measure zero.

Lemma 2.8. Take all assumptions from Lemma 2.7 with the addition that h is twice
continuously differentiable. Then

`

Th1 , T
h
2

˘

pBq has Lebesgue measure zero.

Proof. For convenience define Hpr1, r2, yq :“
`

Th1 , T
h
2

˘

pr1, r2, yq. The Jacobian matrix of
H is given by the top 2ˆ 3 portion of the matrix (2.10). Therefore pr1, r2, yq is a critical
point of H, meaning the rank of DHpr1, r2, yq ă 2, if and only if L

`

r2
r1
, y
˘

“ 0
`

since

y r2r1 `hpyq “ rr2 ą 0
˘

, which occurs if and only if pr1, r2, yq P B. Sard’s theorem [18] yields
the desired result.

3 Proof of Theorem 1.2

We begin by using Lemma 2.7 to give another useful equivalence to T -invariance
under some regularity assumptions. In the appendix of [22], Thiery uses a specific case
of the following proposition to prove the invariance of the inverse-beta model. It can
also be used to prove invariance of the other three basic beta-gamma models.

Proposition 3.1. Let pR1, R2, Y q be a random vector with density ρ and assume Y is
independent of pR1, R2q. Suppose the support of ρ equals O ˆ O3 where O Ă p0,8q2

is open and O3 Ă p0,8q is open and connected. Let h : O3 Ñ p0,8q be continuously
differentiable and T be a differentiable polymer involution adapted to h on OˆO3. Then
pR1, R2, Y q is T -invariant if and only if

q ˝ T pxq “ qpxq for a.e. x P O ˆO3

where qpr1, r2, yq :“ r2
|Lpr2{r1,yq|

ρpr1, r2, yq and Lps, yq “ s` h1pyq, as given in (2.8).

Proof of Proposition 3.1. Recall the notation (2.2). By Lemma 2.7, L does not vanish on
QpOq ˆO3 and T is in fact a C1-diffeomorphism with

detDT pr1, r2, yq “ ´

ˆ

y

r1
`
hpyq

r2

˙

Lpr2{r1, yq

Lpr2{r1, ryq
“ ´

rr2Lpr2{r1, yq

r2Lpr2{r1, ryq
.

Therefore T pR1, R2, Y q has density

pρpxq :“ ρ
`

T´1pxq
˘
ˇ

ˇdetDT´1pxq
ˇ

ˇ “ ρ
`

T pxq
˘

|detDT pxq|

supported on x P O ˆ O3. Thus T -invariance of pR1, R2, Y q is equivalent to ρpxq “ pρpxq

a.e. on O ˆO3.

Using (2.3) we can explicitly write pρpr1, r2, yq “ ρprr1, rr2, ryq
ˇ

ˇ

ˇ

rr2Lpr2{r1,yq
r2Lprr2{rr1,ryq

ˇ

ˇ

ˇ
. After rear-

ranging terms, the condition ρpxq “ pρpxq for a.e. x P O ˆO3 yields the desired result.

We now prove the first main result.

Proof of Theorem 1.2. pR1, R2, Y q has density ρ
`

r1, r2, y
˘

“ f1pr1qf2pr2qf3pyq. By Lemma
2.7, there exists a unique differentiable polymer involution Th on O1ˆO2ˆO3 adapted to
h and the function Lps, yq “ s` h1pyq does not vanish on the set O2

O1
ˆO3. By Lemma 2.6,

pR1, R2, Y q is Th-invariant. Applying Proposition 3.1 gives q ˝Th “ q a.e. on O1ˆO2ˆO3.
Since f1, f2, f3, and Th are continuous, this equality holds everywhere on O1 ˆO2 ˆO3.
Since the support of fj equals Oj , we can further assume fjpxq “ exppηjpxqq for x P Oj ,
j “ 1, 2, 3. Note that ηj has the same differentiability properties as fj . Set s “ r2

r1
and
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recall the notation (2.2). Taking logarithms of the equality q ˝ Th “ q then computing the
total derivative we obtain

Drlog qsprr1, rr2, ryq ¨DT
hpr1, r2, yq “ Drlog qspr1, r2, yq, (3.1)

where DTh is given in (2.10) and

Drlog qspr1, r2, yq “

„

r2

r2
1Lps, yq

` η11pr1q,
h1pyq

r2Lps, yq
` η12pr2q,´

h2pyq

Lps, yq
` η13pyq



.

Using the fact that Th is an involution and (2.3), r2 “ Th2 prr1, rr2, ryq “ rys` hpryq. One can
then check that

DThpr1, r2, yq ¨ rr1, r2, 0sT “ r0, 0, r2{Lps, ryqs
T .

Thus multiplying both sides of equation (3.1) on the right by rr1, r2, 0sT gives

1` r1η
1
1pr1q ` r2η

1
2pr2q “ r2gps, ryq, (3.2)

where

gps, yq :“
η13pyq

Lps, yq
´

h2pyq

Lps, yq2
.

Applying the operator B
2

Br1Br2
to the left-hand side of (3.2) gives zero. We now exploit

the fact that B
2

Br1Br2
applied to the right hand side must equal zero to ultimately arrive at

the conclusion that h2pyq “ 0.
Note that if f is differentiable then for all non-negative integers k and n,

D

„

skfpyq

Lps, yqn



ps, yq “ sk´1

„

1

Lps, yqn
,
´nfpyq

Lps, yqn`1



¨

„

kfpyq sf 1pyq

s sh2pyq



. (3.3)

First calculate, using (2.10) and (3.3),

B

Br1

`

r2gps, ryq
˘

“ r2Dgps, ryq ¨

„

Bs

Br1
,
Bry

Br1

T

“ s2Dgps, ryq ¨

„

´1,
ry

Lps, ryq

T

“ s

„

1

Lps, ryq
, ´

η13pryq

Lps, ryq2



¨

„

0 sη23pryq

s sh2pryq



¨

„

´1,
ry

Lps, ryq

T

´ s

„

1

Lps, ryq2
, ´

2h1pryq

Lps, ryq3



¨

„

0 sh2pryq

s sh2pryq



¨

„

´1,
ry

Lps, ryq

T

“ tps, ryq :“
4
ÿ

j“2

s2κjpryq

Lps, ryqj
,

where

κ2pyq “ yη23pyq ` η
1
3pyq

κ3pyq “ ´yh
2pyqη13pyq ´ yh

3pyq ´ 2h2pyq

κ4pyq “ 2yh2pyq2.

Taking an r2 partial derivative and multiplying by r1, by (2.10)

0 “ r1
B2

Br2Br1

`

r2gps, ryq
˘

“ r1
B

Br2
tps, ryq

“ r1Dtps, ryq ¨

„

Bs

Br2
,
Bry

Br2

T

“ Dtps, ryq ¨

„

1,
hpryq

sLps, ryq

T

.
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This equality holds for all pr1, r2, yq P O1 ˆ O2 ˆ O3. Since Th is an involution on
O1 ˆ O2 ˆ O3, it also holds after interchanging pr1, r2, yq Ø prr1, rr2, ryq. Notice that, by
(2.3), s “ r2

r1
is unaffected by this interchange. Therefore, applying this interchange and

using (3.3)

0 “ Dtps, yq ¨

„

1,
hpyq

sLps, yq

T

“

4
ÿ

j“2

s

„

1

Lps, yqj
,
´jκjpyq

Lps, yqj`1



¨

„

2κjpyq sκ1jpyq

s sh2pyq



¨

„

1,
hpyq

sLps, yq

T

for all ps, yq P O2

O1
ˆO3. Multiplying by Lps, yq6{s gives

0 “
4
ÿ

j“2

“

Lps, yq5´j ,´jκjpyqLps, yq
4´j

‰

¨

„

2κjpyq κ1jpyq

s h2pyq



¨ rLps, yq, hpyqs
T
. (3.4)

Now fix y P O3. The right hand side is now a fourth degree polynomial in s which
vanishes on the open set O2

O1
. It must therefore vanish at all values s P R. Taking

s “ ´h1pyq so that Lps, yq “ 0, (3.4) gives

0 “ ´4κ4pyqhpyqh
2pyq “ ´8yhpyqh2pyq3.

The fact that y and hpyq are positive implies h2pyq “ 0. Since this holds for all y P O3,
which we assumed to be connected, h has the form hpyq “ a ` by where a, b are real
numbers. The condition a _ b ą 0 follows from the fact that h maps a subset of p0,8q
into p0,8q.

4 Reflection and scaling

We describe two procedures which preserve T -invariance. By applying these pro-
cedures to the four basic beta-gamma models, we can obtain a T -invariant model
corresponding to hpyq “ a` by for each choice of a, b such that a_ b ą 0.

We first define the reflection procedure. Let T be a polymer involution adapted to
h on O1 ˆ O2 ˆ O3 and assume that h is injective so that h : O3 Ñ hpO3q is a bijection.
Define the mapping ρpr1, r2, yq :“ pr2, r1, hpyqq. Define the mapping and the random
vector

pT :“ ρ ˝ T ˝ ρ´1 and
`

pR1, pR2, pY
˘

:“
`

R2, R1, hpY q
˘

. (4.1)

One can then check that pT is a polymer involution adapted to h´1 on O2 ˆO1 ˆ hpO3q.
Furthermore, pR1, R2, Y q is T -invariant with respect to h if and only if

`

pR1, pR2, pY
˘

is
pT -invariant with respect to h´1.

In the directed polymer setting, this procedure of mapping

h ÞÑ h´1
`

R1, R2, Y
˘

ÞÑ
`

pR1, pR2, pY
˘

T ÞÑ pT

corresponds to interchanging the horizontal and vertical coordinates while remaining in
the same framework. This is illustrated in Figure 4.

We now define the scaling procedure. If O Ă p0,8q and c is a positive constant,
define cO :“ tcx : x P Ou. Note that cO Ă p0,8q. Let c1, c2 be positive constants.
Let T be a polymer involution adapted to h on O1 ˆ O2 ˆ O3. Define the mapping
σpr1, r2, yq :“ pc1r1, c2r2, c1yq. Define the two mappings and the random vector

qT :“ σ ˝ T ˝ σ´1
qhpyq :“ c2h

`

y
c1

˘ `

qR1, qR2, qY
˘

:“
`

c1R
1, c2R

2, c1Y
˘

. (4.2)
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R2

R1

Y

hpY q

Original

R1

R2

hpY q

Y

Reflected

pR2

pR1

pY

h´1ppY q

`

R2, R1, hpY q
˘

“
`

pR1, pR2, pY
˘

Figure 4: Reflection.

One can check that qT is a polymer involution adapted to qh on c1O1 ˆ c2O2 ˆ c1O3.
Furthermore, pR1, R2, Y q is T -invariant with respect to h if and only if

`

qR1, qR2, qY
˘

is
qT -invariant with respect to qh.

In the directed polymer setting, this procedure of mapping

h ÞÑ qh
`

R1, R2, Y
˘

ÞÑ
`

qR1, qR2, qY
˘

T ÞÑ qT

corresponds to scaling the horizontal axis weights by c1 and the vertical axis weights by
c2 while remaining in the same framework. This procedure is illustrated in Figure 5.

R2

R1

Y

hpY q

Original

c2R
2

c1R
1

c1Y

c2hpY q

Scaled

qR1

qR2

qY

qhpqY q

`

c1R
1, c2R

2, c1Y
˘

“
`

qR1, qR2, qY
˘

Figure 5: Scaling.

One can also check that the reflection and scaling procedures commute. By using
the reflection and scaling procedures, the following lemma reduces the existence and
uniqueness of T -invariant models corresponding to hpyq “ a` by where a_ b ą 0 to the
existence and uniqueness for values pa, bq = p0, 1q, p1, 0q, p1,´1q, and p´1, 1q.

For real numbers a, b such that a_ b ą 0, define

T pa,bqpr1, r2, yq :“
´

y ` pa` byq r1r2 , y
r2
r1
` pa` byq, r1pr2´aqr2`br1

¯

. (4.3)

One can check that when hpyq “ a ` by, (2.4) implies that Th “ T pa,bq. The domain of
T pa,bq is discussed prior to Lemma 5.4.

Lemma 4.1. Let a, b be real numbers satisfying a_ b ą 0, hpyq “ a` by, and T “ T pa,bq

as defined in (4.3). Let R1, R2, and Y be random variables.

(a) If a “ 0 and b ą 0, then pR1, R2, Y q is T -invariant with respect to h if and only if
`

R1, 1
bR

2, Y
˘

is T p0,1q-invariant with respect to qhpyq “ y.
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(b) If a ą 0 and b “ 0, then pR1, R2, Y q is T -invariant with respect to h if and only if
`

R1, 1
aR

2, Y
˘

is T p1,0q-invariant with respect to qhpyq “ 1

(c) If a ą 0 and b ă 0, then pR1, R2, Y q is T -invariant with respect to h if and only if
`

´ b
aR

1, 1
aR

2,´ b
aY

˘

is T p1,´1q-invariant with respect to qhpyq “ 1´ y.
(d) If a ă 0 and b ą 0, then pR1, R2, Y q is T -invariant with respect to h if and only if

`

´ b
aR

1,´ 1
aR

2,´ b
aY

˘

is T p´1,1q-invariant with respect to qhpyq “ y ´ 1.
(e) If a ą 0 and b ą 0, then pR1, R2, Y q is T -invariant with respect to h if and only if

`

b
aR

1, 1
aR

2, baY
˘

is T p1,1q-invariant with respect to qhpyq “ y ` 1.
(f) If a “ 1 and b “ 1, then pR1, R2, Y q is T -invariant with respect to h if and only if
pR2, R1, 1` Y q is T p´1,1q-invariant with respect to h´1pyq “ y ´ 1.

Proof. Let c1, c2 be positive constants. After applying the scaling procedure with pc1, c2q,
with notation as in (4.2), one can check that

qhpyq “ ac2 `
bc2
c1
y and qT “ T pac2,bc2{c1q.

Recall that
`

qR1, qR2, qY
˘

“
`

c1R
1, c2R

2, c1Y
˘

is qT -invariant with respect to qh if and only if
`

R1, R2, Y
˘

is T -invariant with respect to h. Now (a) through (e) follow by taking

pc1, c2q “
`

1, 1
b

˘

,
`

1, 1
a

˘

,
`

´ b
a ,

1
a

˘

,
`

´ b
a ,´

1
a

˘

,
`

b
a ,

1
a

˘

respectively.
For part (f), after applying the reflection procedure, with notation as in (4.1), one can

check that pT “ T p´1,1q. Since
`

pR1, pR2, pY
˘

“ pR2, R1, 1` Y q is pT -invariant with respect to
h´1pyq “ y ´ 1 if and only if pR1, R2, Y q is T -invariant with respect to hpyq “ y ` 1, the
result follows.

5 Proof of Theorem 1.4

The following two theorems, due to Seshadri and Wesołowski (2003) and Lukacs
(1955) give characterizations of gamma and beta random variables, which will be used
in the sequel.

Theorem 5.1 ([21]). Let A and B be non-degenerate independent random variables

taking values in p0, 1q. Then the pair pC,Dq :“
´

1´B
1´AB , 1´AB

¯

is independent if and

only if there exist positive constants p, q, r such that pA,Bq „ Bepp, qq b Bepp` q, rq, in
which case pC,Dq „ Bepr, qq b Bepr ` q, pq.

Theorem 5.2 ([14]). Let A and B be non-degenerate independent positive random

variables. Then the pair pC,Dq :“
´

A`B, A
A`B

¯

is independent if and only if there

exist positive constants λA, λB , β such that pA,Bq „ GapλA, βqbGapλB , βq, in which case
pC,Dq „ GapλA ` λB , βq b BepλA, λBq.

Notice that the mapping pA,Bq ÞÑ
`

A ` B, A{pA ` Bq
˘

has the inverse pA,Bq ÞÑ
`

AB, Ap1´Bq
˘

. The following statement is a corollary of Theorem 5.2.

Corollary 5.3. Let A and B be non-degenerate independent random variables. Further
assume that A is positive and B takes values in p0, 1q. Then the pair pC,Dq :“

`

AB, Ap1´

Bq
˘

is independent if and only if there exist positive constants λA, λB , β such that
pA,Bq „ GapλA ` λB , βq b BepλA, λBq in which case pC,Dq „ GapλA, βq b GapλB , βq.

The next lemma constrains the sets on which T pa,bq (as defined by (4.3)) can be a
polymer involution. To specify this constraint, we define the following sets. For real
numbers pa, bq such that a_ b ą 0,

V ˘a :“ tx ą 0 : ˘px´ aq ą 0u, W˘
a,b :“ tx ą 0 : ˘pa` bxq ą 0u

D˘a,b :“W˘
a,b ˆ V

˘
a ˆW`

a,b.
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Lemma 5.4. Let a, b be real numbers satisfying a_ b ą 0. Let Oj Ă p0,8q for j “ 1, 2, 3

such that O3 is not a singleton. If T pa,bq, as defined in (4.3), is a polymer involution on
O1 ˆ O2 ˆ O3 with respect to h of the form hpyq “ a ` by then O1 ˆ O2 ˆ O3 Ă D`a,b or

O1 ˆO2 ˆO3 Ă D´a,b assuming D˘a,b is non-empty.

Proof. We first show the following holds:

(i) For all pr1, r2q P O1 ˆ O2, the three numbers a ` br1,
r2
r1
` b, r2 ´ a are all either

strictly positive, strictly negative, or equal to zero.

Fix pr1, r2, yq P O1 ˆO2 ˆO3 and put ry “ T
pa,bq
3 pr1, r2q “

r1pr2´aq
r2`br1

. Then the following two
equalities hold

r2 ´ a “ ry
`

r2
r1
` b

˘

, a` br1 “
r1
r2

`

a` bry
˘`

r2
r1
` b

˘

. (5.1)

Since T pa,bq is an involution on O1 ˆ O2 ˆ O3, ry P O3. Recall that, by Definition 2.1, h
maps O3 Ñ p0,8q. Therefore O3 ĂW`

a,b and the four numbers r1, r2, ry, and hpryq “ a` bry

are all positive. (5.1) now gives (i).
By Lemma 2.4, for all pr1, r2q P O1 ˆ O2 the mapping O3 Q y ÞÑ T

pa,bq
2 pr1, r2, yq “

yp r2r1 ` bq` a is injective. Therefore r2
r1
` b does not vanish for any pr1, r2q P O1ˆO2. Thus,

by (i)

O1 ˆO2 Ă
`

W`
a,b ˆ V

`
a

˘

Y
`

W´
a,b ˆ V

´
a

˘

. (5.2)

If O1 XW
`
a,b “ H, then by (5.2) O1 ˆO2 ĂW´

a,b ˆ V
´
a . In this case O1 ˆO2 ˆO3 Ă D´a,b.

On the other hand, if O1 XW
`
a,b ‰ H then there exists r1 P O1 such that a` br1 ą 0. By

(i), r2´ a ą 0 for all r2 P O2. Thus O2 Ă V `a . Now (5.2) implies that O1ˆO2 ĂW`
a,bˆ V

`
a

which gives O1 ˆO2 ˆO3 Ă D`a,b, completing the proof.

Using (5.1) one can in fact check that T pa,bq is an involution on both D`a,b and D´a,b
assuming they are non-empty.

The following proposition characterizes Th-invariant models corresponding to hpyq “
a` by when pa, bq “ p0, 1q, p1, 0q, p1,´1q, and p´1, 1q.

Proposition 5.5. For a, b real numbers, let hpyq “ a` by and assume T pa,bq, as defined
in (4.3), is a polymer involution adapted to h on O1 ˆ O2 ˆ O3 Ă p0,8q3. Assume
that pR1, R2, Y q are non-degenerate independent random variables taking values in
O1 ˆO2 ˆO3.

(a) If pa, bq “ p0, 1q, then pR1, R2, Y q is T p0,1q-invariant if and only if
`

R1, R2, Y
˘

is
distributed as in (1.7)

(b) If pa, bq “ p1, 0q, then pR1, R2, Y q is T p1,0q-invariant if and only if
`

R1, R2, Y
˘

is
distributed as in (1.8)

(c) If pa, bq “ p1,´1q, then pR1, R2, Y q is T p1,´1q-invariant if and only if either
`

R1, R2, Y
˘

or pR2, R1, 1´ Y q is distributed as in (1.9)

(d) If pa, bq “ p´1, 1q, then pR1, R2, Y q is T p´1,1q-invariant if and only if
`

R1, R2, Y
˘

is
distributed as in (1.10).

Proof. Observe that T pa,bq3 has no y-dependence. Thus, by Lemma 2.4, T pa,bq is the
unique polymer involution adapted to h on O1 ˆO2 ˆO3. By Lemma 2.6, pR1, R2, Y q is
T pa,bq-invariant if and only if the following two properties hold:

(i) R2

R1 is independent of T pa,bq3 pR1, R2q.

(ii) Y
d
“ T

pa,bq
3 pR1, R2q.
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Recall that

T
pa,bq
3 pR1, R2q “

R1pR2 ´ aq

R2 ` bR1
.

We now prove (a). Put pA,Bq :“
`

pR1q´1, pR2q´1
˘

. Then pA,Bq are non-degenerate
independent positive random variables. Now

R2

R1
“
A

B
and T

p0,1q
3 pR1, R2q “ pA`Bq´1.

So (i) holds if and only if A{pA ` Bq “ p1`B{Aq
´1 is independent of A ` B. By

Theorem 5.2 this occurs if and only if there exist positive constants λA, λB , β such that
pA,Bq „ GapλA, βq b GapλB , βq. In such a case, A ` B “ C „ GapλA ` λB , βq. Thus

T
p0,1q
3 pR1, R2q “ pA`Bq´1 „ Ga´1

pλA ` λB , βq. Now put pµ, λq “ pλA ` λB , λBq and use
(ii) to get pR1, R2, Y q „ Ga´1

pµ ´ λ, βq b Ga´1
pλ, βq b Ga´1

pµ, βq. This completes the
proof of (a).

We now prove (b). Notice that D´1,0 “ H. Therefore by Lemma 5.4 we have that
pR1, R2, Y q takes values inD`1,0 “ p0,8qˆp1,8qˆp0,8q. Put pA,Bq :“

`

R1, pR2q´1
˘

. Then
pA,Bq are non-degenerate independent random variables taking values in p0,8q ˆ p0, 1q.
Now

R2

R1
“

1

AB
and T

p1,0q
3 pR1, R2q “ Ap1´Bq.

So (i) holds if and only if AB is independent of Ap1´Bq. By Corollary 5.3, this occurs if
and only if there exist positive constants λA, λB , β such that pA,Bq „ GapλA ` λB , βq b

BepλA, λBq. In such a case, T p1,0q3 pR1, R2q “ Ap1 ´ Bq “ D „ GapλB , βq. Now put
pµ, λq “ pλB , λAq and use (ii) to get pR1, R2, Y q „ Gapµ ` λ, βq b Be´1

pλ, µq b Gapµ, βq.
This completes the proof of (b).

We now prove (c). By Lemma 5.4, pR1, R2, Y q either takes values in

D`1,´1 “ p0, 1q ˆ p1,8q ˆ p0, 1q or D´1,´1 “ p1,8q ˆ p0, 1q ˆ p0, 1q.

First consider the case when pR1, R2, Y q takes values inD`1,´1. Put pA,Bq :“
`

pR2q´1, R1
˘

.
Then pA,Bq are non-degenerate independent random variables, both taking values in
p0, 1q. Now

R2

R1
“

1

AB
and T

p1,´1q
3 pR1, R2q “ 1´

1´B

1´AB
.

So (i) holds if and only if 1 ´ AB is independent of p1 ´ Bq{p1 ´ ABq. By Theorem
5.1, this occurs if and only if there exist positive constants p, q, r such that pA,Bq „

Bepp, qqbBepp`q, rq. In such a case, 1´T
p1,´1q
3 pR1, R2q “ p1´Bq{p1´ABq “ C „ Bepr, qq.

Thus T p1,´1q
3 pR1, R2q „ 1´ Bepr, qq “ Bepq, rq. Now put pµ, λ, βq “ pq, p, rq and use (ii) to

get pR1, R2, Y q „ Bepµ` λ, βq b Be´1
pλ, µq b Bepµ, βq.

In the case where pR1, R2, Y q takes values in D´1,´1, applying the reflection proce-

dure as in (4.1), one can check that pT “ T p1,´1q and the resulting random variables
`

pR1, pR2, pY
˘

“ pR2, R1, 1´ Y q take values in D`1,´1. By the first case, we are done. This
completes the proof of (c).

We now prove (d). Notice that D´´1,1 “ H. Therefore by Lemma 5.4 pR1, R2, Y q must
take values in D`´1,1 “ p1,8qˆ p0,8qˆ p1,8q. Put pA,Bq :“ p1´ pR1q´1, 1´ pR2 ` 1q´1q.
Then pA,Bq are non-degenerate independent random variables, both taking values in
p0, 1q. Therefore

ˆ

1`
R2

R1

˙´1

“
1´B

1´AB
and T

p´1,1q
3 pR1, R2q “

1

1´AB
.

So (i) holds if and only if p1 ´ Bq{p1 ´ ABq is independent of 1 ´ AB. By Theorem
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5.1, this occurs if and only if there exist positive constants p, q, r such that pA,Bq „

Bepp, qqbBepp`q, rq. In such a case, T p´1,1q
3 pR1, R2q “ p1´ABq´1 “ D´1 „ Be´1

pr`q, pq.
Now put pµ, λ, βq “ pr`q, r, pq and use (ii) to get pR1, R2, Y q „ Be´1

pµ´λ, βqbpBe´1
pλ, β`

µ´ λq ´ 1q b Be´1
pµ, βq. This completes the proof of (d).

We now prove the second main result.

Proof of Theorem 1.4. When hpyq “ a ` by, for all fixed pr1, r2q P O1 ˆ O2 the mapping
y ÞÑ Th2 pr1, r2, yq “ y

`

r2
r1
` b

˘

` a is injective whenever b ě 0. In the case b ă 0 and a ą 0

this injectivity follows from the assumption ´b R
 

y
x : px, yq P O1 ˆO2

(

. Therefore the
conditions of Proposition 2.3-(a) are satisfied in all cases, which gives the existence
of a unique polymer involution Th adapted to hpyq “ a ` by such that pR1, R2, Y q is
Th-invariant. By (2.4), Th “ T pa,bq as defined in (4.3). Now applying Lemma 4.1 then
Proposition 5.5 completes the proof.

References

[1] Márton Balázs, Eric Cator, and Timo Seppäläinen, Cube root fluctuations for the corner
growth model associated to the exclusion process, Electron. J. Probab. 11 (2006), no. 42,
1094–1132. MR-2268539

[2] Márton Balázs, Firas Rassoul-Agha, and Timo Seppäläinen, Large deviations and wandering
exponent for random walk in a dynamic beta environment, ArXiv e-prints (2018).

[3] Guillaume Barraquand and Ivan Corwin, Random-walk in beta-distributed random environ-
ment, Probab. Theory Related Fields 167 (2017), no. 3–4, 1057–1116. MR-3627433

[4] Eric Cator and Piet Groeneboom, Second class particles and cube root asymptotics for
Hammersley’s process, Ann. Probab. 34 (2006), no. 4, 1273–1295. MR-2257647

[5] Hans Chaumont and Christian Noack, Fluctuation exponents for stationary exactly solvable
lattice polymer models via a Mellin transform framework, ArXiv e-prints (2017).

[6] Francis Comets, Directed polymers in random environments, Lecture Notes in Mathematics,
vol. 2175, Springer, Cham, 2017, Lecture notes from the 46th Probability Summer School
held in Saint-Flour, 2016. MR-3444835

[7] Ivan Corwin, Timo Seppäläinen, and Hao Shen, The strict-weak lattice polymer, J. Stat. Phys.
160 (2015), no. 4, 1027–1053. MR-3373650

[8] M. R. Evans, Satya N. Majumdar, and R. K. P. Zia, Factorized steady states in mass transport
models, J. Phys. A 37 (2004), no. 25, L275–L280. MR-2073204

[9] M. R. Evans, Satya N. Majumdar, and R. K. P. Zia, Factorized steady states in mass transport
models on an arbitrary graph, J. Phys. A 39 (2006), no. 18, 4859–4873. MR-2243199

[10] Nicos Georgiou and Timo Seppäläinen, Large deviation rate functions for the partition
function in a log-gamma distributed random potential, Ann. Probab. 41 (2013), no. 6, 4248–
4286. MR-3161474

[11] David Huse and Christopher Henley, Pinning and roughening of domain walls in Ising systems
due to random impurities, Phys. Rev. Lett. 54 (1985).

[12] John Z. Imbrie and Thomas Spencer, Diffusion of directed polymers in a random environment,
J. Statist. Phys. 52 (1988), no. 3–4, 609–626. MR-0968950

[13] F. P. Kelly, Reversibility and stochastic networks, Cambridge Mathematical Library, Cambridge
University Press, Cambridge, 2011, Revised edition of the 1979 original with a new preface.
MR-2828834

[14] Eugene Lukacs, A characterization of the gamma distribution, Ann. Math. Statist. 26 (1955),
319–324. MR-0069408

[15] Neil O’Connell and Janosch Ortmann, Tracy-Widom asymptotics for a random polymer model
with gamma-distributed weights, Electron. J. Probab. 20 (2015), no. 25, 18. MR-3325095

[16] Neil O’Connell and Marc Yor, Brownian analogues of Burke’s theorem, Stochastic Process.
Appl. 96 (2001), no. 2, 285–304. MR-1865759

EJP 23 (2018), paper 38.
Page 18/19

http://www.imstat.org/ejp/

http://www.ams.org/mathscinet-getitem?mr=2268539
http://www.ams.org/mathscinet-getitem?mr=3627433
http://www.ams.org/mathscinet-getitem?mr=2257647
http://www.ams.org/mathscinet-getitem?mr=3444835
http://www.ams.org/mathscinet-getitem?mr=3373650
http://www.ams.org/mathscinet-getitem?mr=2073204
http://www.ams.org/mathscinet-getitem?mr=2243199
http://www.ams.org/mathscinet-getitem?mr=3161474
http://www.ams.org/mathscinet-getitem?mr=0968950
http://www.ams.org/mathscinet-getitem?mr=2828834
http://www.ams.org/mathscinet-getitem?mr=0069408
http://www.ams.org/mathscinet-getitem?mr=3325095
http://www.ams.org/mathscinet-getitem?mr=1865759
http://dx.doi.org/10.1214/18-EJP163
http://www.imstat.org/ejp/


Characterizing stationary polymers

[17] A. M. Povolotsky, On the integrability of zero-range chipping models with factorized steady
states, J. Phys. A 46 (2013), no. 46, 465205, 25. MR-3126878

[18] Arthur Sard, The measure of the critical values of differentiable maps, Bull. Amer. Math. Soc.
48 (1942), 883–890. MR-0007523

[19] Timo Seppäläinen, Scaling for a one-dimensional directed polymer with boundary conditions,
Ann. Probab. 40 (2012), no. 1, 19–73, Corrected version available at http://arxiv.org/abs/0911.
2446. MR-2917766

[20] Timo Seppäläinen and Benedek Valkó, Bounds for scaling exponents for a 1 ` 1 dimensional
directed polymer in a Brownian environment, ALEA Lat. Am. J. Probab. Math. Stat. 7 (2010),
451–476. MR-2741194

[21] Vanamamalai Seshadri and Jacek Wesołowski, Constancy of regressions for beta distributions,
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