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Abstract

We show that, for general convolution approximations to a large class of log-correlated
fields, including the 2d Gaussian free field, the critical chaos measures with deriva-
tive normalisation converge to a limiting measure µ′. This limiting measure does
not depend on the choice of approximation. Moreover, it is equal to the measure
obtained using the Seneta–Heyde renormalisation at criticality, or using a white-noise
approximation to the field.
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1 Introduction

The theory of Gaussian multiplicative chaos was developed by Kahane, [16], in order
to rigorously define measures of the form

µγ(dx) := eγh(x)−
γ2

2 E[h(x)
2] dx

where h is a rough centered Gaussian field, satisfying certain assumptions, and γ > 0 is
a real parameter. Since h is not defined pointwise, a regularisation procedure is required
to define µγ . In [16], it is assumed that the covariance kernel K of h is σ-positive,
meaning that K can be approximated by a series of smooth positive kernels Kn. It is
then possible to associate to such an approximation the sequence of measures µn(dx) :=

exp{γhn(x) − (γ2/2)var(hn(x))}dx. Kahane proved that these measures converge as
n → ∞, and that the limit is independent of the choice of approximation. We call this
limit the γ-chaos measure associated to h.

However, σ-positivity can be hard to check pointwise, and in recent years this theory
has been significantly generalised by several authors [21, 6, 14, 22]. When K is not
σ-positive, a natural way to approximate h is to convolve it with a general mollifier
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Critical Gaussian chaos in the derivative normalisation

function θ. Writing hε for these regularisations, it has been shown that for log-correlated
h, and under very general conditions on θ, the approximate measures

µγε (dx) := eγhε(x) e−
γ2

2 var(hε(x)) dx (1.1)

converge weakly in law [21] and in probability [6, 22] as ε→ 0. The limit is non-zero if
and only if γ2 < 2d. Moreover, it is universal in that it does not depend on the choice of
regularisation [6, 14, 22].

When γ2 = 2d, an additional renormalisation is required in order to yield a non-trivial
limiting measure. Motivated by the theory of multiplicative cascades and the branching
random walk [8, 2] one can hope to renormalise at criticality in one of two different
ways. The first is called the Seneta–Heyde renormalisation, and involves premultiplying
the sequence of measures (1.1) by the deterministic sequence

√
log(1/ε). The other is a

random renormalisation, which is defined by taking a derivative of the measure (1.1) in
γ. It has been shown in [9, 10] that for a special class of fields h having so-called ?-scale
invariant kernels, and for a specific sequence of approximations to h, both procedures
yield the same non-zero limiting measure (up to a constant). However, the result in these
papers relies heavily on the cut-off approximation used for the kernel of h, and does not
generalise to arbitrary convolution approximations. These are somewhat more natural,
local approximations to the field, and the goal of the paper will be to extend the theory
to this set-up.

In this paper we will be particularly, but not exclusively, interested in the specific case
where the underlying field h is a 2d Gaussian free field with zero-boundary conditions.
In this case the measure µγ (when it is defined and non-zero) is known as the Liouville
measure with parameter γ. This has been an object of considerable recent interest
due to its strong connection with 2d Liouville quantum gravity and the KPZ relations
[11, 19, 5]. Recent works in the case γ < 2 include [11, 19, 6], which among other things
make an in-depth study of its moments, multifractal structure, and universality. Recently,
in [4], it has also been shown that these measures can be approximated using so-called
local sets of the Gaussian free field. This is a particularly natural construction because it
is both local and conformally invariant.

The critical case γ = 2 has also been considered for the Gaussian free field: [10, 13,
14, 4]. In [10], the authors generalised their construction for ?-scale invariant kernels to
show convergence in the Seneta–Heyde and derivative renormalisations for a specific
“white noise” approximation to the field. These both yield the same (up to a constant)
non-trivial limiting measure µ′, that we will call the critical Liouville measure. However,
this proof again does not extend to convolution approximations.

The purpose of this article is to complete the picture for convolution approximations
to critical chaos. We will focus specifically on the case of the 2d GFF, and fields with
?-scale invariant kernels (in any number of space dimensions). This builds on recent work
of Junnila and Saksman [14] (and also [13] in the case of the free field), who show that
in either of the cases above, the critical measure can be constructed using convolution
approximations in the Seneta–Heyde renormalisation.

To complete the story, therefore, it remains to show that the random “derivative”
renormalisation procedure will also yield the same limit for general convolution approx-
imations. This is the main result of the current paper. We remark that the derivative
renormalisation is somewhat more natural, and in fact, it is usually easier to show
convergence of this before convergence in the Seneta–Heyde renormalisation (which is
then obtained by a comparison argument). Here we will reverse this procedure.

Suppose that h is a log-correlated field in D ⊂ Rd with kernel K(x, y). By this
we mean that (h, ρ)ρ∈M is a centered Gaussian process, indexed by the set of signed
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Critical Gaussian chaos in the derivative normalisation

measures ρ whose positive and negative parts ρ± satisfy
∫∫

ρ±(dx)|K(x, y)|ρ±(dy) <∞,
with covariance structure

cov((h, ρ)(h, ρ′)) =

∫∫
ρ(dx)K(x, y)ρ′(dy)

for ρ, ρ′ ∈M. Also suppose that θ ∈M is a positive measure of unit mass, supported in
B(0, 1), and such that ∫

1√
|u− v|

θ(du) = O(1) (1.2)

uniformly over v ∈ B(0, 5). Then we define a sequence of θ-mollified approximations to h
by setting for ε > 0,

hε := h ? θε(x) = (h, θε,x), (1.3)

where θε is the image of θ under the map y 7→ εy and θε,x is the image of θε under the
map y 7→ y + x. We define the measures Mε and Dε associated with this approximation
by setting

Mε(O) :=

∫
O

e
√
2dhε(x)−dvar(hε(x)) dx;

Dε(O) :=

∫
O

(−hε(x) +
√

2dvar(hε(x)))e
√
2dhε(x)−dvar(hε(x))dx (O ⊂ D).

Note that Mε is exactly the same as µ
√
2d

ε (but we introduce the new notation to distin-
guish the special case γ =

√
2d and avoid confusing notation when d = 2). Our aim will

be to prove the following:

Theorem 1.1. Suppose that h is a 2d Gaussian free field and Dε is defined as above, for
a mollifier θ satisfying (1.2). Then Dε converges weakly in probability as ε → 0 to the
critical Liouville measure µ′ constructed in [10]. In particular limεDε does not depend
on θ.

Theorem 1.2. Suppose that h is a Gaussian field in Rd (d ≥ 1) with ?-scale invariant
kernel and Dε is defined as above, for a mollifier θ satisfying (1.2) and with Hölder
continuous density. Then Dε converges weakly in probability as ε → 0 to a limiting
measure. This measure is independent of the choice of approximation, and agrees with
the critical measure constructed in [9, 14] (see Theorems 2.6 and 2.7).

There is one further motivation for proving Theorem 1.1. In [4], the authors construct
a critical measure for the Gaussian free field, using a simple and natural approximation
based on its local sets. This is closely related to the classical construction of multiplicative
cascades [15], and we believe that this connection can be exploited to help us improve
our understanding of the situation at criticality (in particular, to prove a conjecture given
in [9].) However, it is a priori hard to connect the measure of [4] to the measure µ′ of
[10]. It turns out that Theorem 1.1 is exactly what is needed to show that they are in
fact equal (for details of this argument, see [4]). In conclusion, Theorem 1.1 gives us a
universality statement for critical Liouville quantum gravity, that is now in line with the
statement for the subcritical case [6, 22, 4].

Outline We will begin in Section 2 by giving a brief introduction to log-correlated
fields, and explaining how to approximate them using general mollifiers. We will also
discuss here some of the existing literature concerning subcritical and critical Gaussian
multiplicative chaos, and recall some basic facts about the 3-dimensional Bessel process.
These occur naturally in critical Gaussian multiplicative chaos; roughly, as the value of
the field locally about a typical point, and will be instrumental in the proof of Theorems
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Critical Gaussian chaos in the derivative normalisation

1.1 and 1.2. In Section 3 we concentrate on the case when h is a 2d Gaussian free field,
and prove Theorem 1.1. We begin in Section 3.1 by showing that certain families of
“cut-off” approximations to the derivative measures (that we shall call Dβ

ε ) are uniformly
integrable. In fact, this will not be used directly in the proof of Theorem 1.1, but is
needed for the aforementioned application to [4], and introduces technical facts required
for the rest of the proof. Section 3.2 contains the bulk of the proof. The main idea is
to connect the derivative measures Dε with the renormalised measures

√
log(1/ε)Mε,

which we know converge by [14, 13]. To do this, we use a technique similar to that first
applied in [2], and then in [10], although the details of the proof are quite different. This
is centred around the fact that for the circle average approximation to the free field, there
is a natural “rooted measure” arising from the definition of Dε, under which it becomes a
3d Bessel process. We can also show that for a general convolution approximation, under
the corresponding rooted measure, the process is approximately a Bessel (unfortunately,
this introduces many technicalities in the proof.) Properties of the Bessel process then
allow us to conclude. Finally, in Section 4, we show how the proof can be adapted for
the case of ?-scale invariant kernels, to give Theorem 1.2.

2 Preliminaries

2.1 Log-correlated fields, 2d Gaussian free field and ?-scale invariant kernels

Let us recap the definition of log-correlated fields from the introduction. Suppose we
have a non-negative definite kernel K(x, y) on D ⊂ Rd of the form

K(x, y) = log(|x− y|−1) + g(x, y) (2.1)

where g is a C1 function on D̄ × D̄. As in the introduction, we letM be the set of signed
measures ρ := ρ+ − ρ− whose positive and negative parts satisfy∫∫

D×D
|K(x, y)|ρ±(dx)ρ±(dy) <∞.

The centered Gaussian field h, with covariance K(x, y), is then defined as in [6] to be the
unique centred Gaussian process (h, ρ)ρ∈M indexed byM, such that

cov((h, ρ), (h, ρ′)) =

∫∫
D×D

K(x, y)ρ(dx)ρ′(dy)

for all ρ, ρ′ ∈M.
We say that a kernel K is ?-scale invariant if it takes the form

K(x, y) =

∫ ∞
1

k(u|x− y|)
u

du (2.2)

for k : [0,∞)→ R a compactly supported and positive-definite C1 function with k(0) = 1.
One can easily check that such a K indeed has the form (2.1). Although this does not
cover all kernels satisfying (2.1) it is still a natural family to consider, due to the nice
scaling relations it possesses, [3]. Moreover, the sequence of “cut off” approximations to
K given by

Kε(x, y) =

∫ 1
ε

1

k(u|x− y|)
u

du

yields a family of approximating fields that exhibit a useful decorrelation property (see
the proof of Theorem 1.2).

As mentioned in the introduction, we will also be interested in the special case when
h is a 2-dimensional Gaussian free field. To define this, let D ⊂ C be a simply-connected
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domain. Then the zero boundary Gaussian free field h on D is defined as above, to be the
log-correlated field whose kernel K is given by the Green function, GD, for the Laplacian
on D. This satisfies

GD(x, y) = − log |x− y|+ g(x, y) (2.3)

for g a smooth function on D̄ × D̄.

One feature that makes the Gaussian free field particularly nice to work with is that
it satisfies the following spatial Markov property: if A ⊂ D is a closed subset, then we
can write h = hA + hA where hA, hA are independent, hA is a zero-boundary GFF on
D \A, and hA is harmonic when restricted to D \A. We will see how this is useful to us
in Section 3.

In the following we will always assume, for technical reasons and without loss of
generality, that our domain D ⊂ Rd contains the ball of radius 10 around the origin.

2.2 Convolution with mollifiers

Suppose we have a field h with kernel K satisfying (2.1). As discussed in the
introduction, since h is not defined pointwise, we need to use a regularisation procedure
to define its chaos measures. A natural approach is to convolve h with an approximation
to the identity. Let θ be a non-negative Radon measure on Rd, satisfying the conditions
described in the introduction, and define the convolution approximations (hε(x))ε>0 as
in (1.3). The assumption (1.2) on θ will be important to show various properties of the
convolution approximations later on (cf. Lemma 2.1 and Corollary 2.4). We remark here
that (1.2) is more restrictive than the condition given in [6], but includes most of the
important examples. In particular, it includes the case when θ is uniform measure on
the unit circle, or when θ has an Lp density with respect to Lebesgue measure for some
p > 2.

We have the following estimate for the covariances of (hε)ε:

Lemma 2.1 ([6]). Suppose θ satisfies (1.2) and hε is defined as above. Then:

cov(hε(x), hε′(y)) = log(1/(|x− y| ∨ ε ∨ ε′)) + O(1). (2.4)

where by O(1) we mean something that is uniformly bounded in ε, ε′, and x, y.

Remark 2.2. Similarly, whenever we use order notation in the sequel, we will mean the
order in ε, uniformly in whatever spatial position(s) we are considering.

2.3 Maxima of the mollified fields

It will also be important for us in this article to get a hold of how fast our approxima-
tions hε can blow up. For this we use the work of [1]. Among other things, this gives us
the following Lemma (in fact, we state here a slight modification of the result, that is
proved in [13]).

Lemma 2.3. Let (Y xε : x ∈ [0, 1]d)ε>0 be a family of Gaussian fields indexed by [0, 1]d for
any integer d. Suppose that for some 0 < CY <∞ and all x, y ∈ [0, 1]d we have

1. |cov(Y xε , Y
y
ε ) + log(max{ε, ‖x− y‖})| ≤ CY and

2. E
[
(Y xε − Y yε )2

]
≤ CY

√
‖x− y‖/

√
ε for all ‖x− y‖ < ε.

Then, almost surely,

inf
ε

inf
x∈[0,1]d

{−Y xε +
√

2d log(1/ε)} > −∞.

This Lemma, together with the assumption (1.2), allows us to deduce the following:
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Corollary 2.4. Suppose that θ satisfies our usual conditions, including (1.2), and that h
has kernel K satisfying (3.14). Assume further that O ⊂ Rd is bounded. Then

inf
ε

inf
x∈O
{−hε(x) +

√
2d log(1/ε)} > −∞

almost surely.

Proof. Condition (1) of Lemma 2.3 is easy to verify. To show condition (2) we write
K(x, y) = (log |x − y|−1) + g(x, y) where g is C1 on Rd × Rd. We need only prove that
E[hε(x)(hε(x)− hε(y))] ≤ C

√
‖x− y‖/

√
ε for all ‖x− y‖ < ε and an absolute constant C.

The result then follows by symmetry.
To show this we write

E[hε(x)(hε(x)− hε(y))] =

∫∫
log

∣∣∣∣x− y + ε(v − w)

ε(v − w)

∣∣∣∣ θ(dv)θ(dw)

+

∫∫
g(x+ εv, y + εw)− g(x+ εv, x+ εw)θ(dv)θ(dw)

Since g has continuous derivative and we are working on a bounded set, it is clear that
the second term satisfies the required condition. To deal with the first we note that∣∣∣∣log

∣∣∣∣x− y + ε(v − w)

ε(v − w)

∣∣∣∣∣∣∣∣ ≤ max

{
log

(
1 +

|x− y|
ε|v − w|

)
, log

(
1 +

|x− y|
|x− y + ε(v − w)|

)}
,

where we have used that |x− y| < ε (and that |v − w| ≤ 1) to remove the modulus inside
the log on the left-hand side. Since log(1 + |a|) ≤

√
|a| for all a, we can conclude using

assumption (1.2).

2.4 Previous works on subcritical and critical Gaussian multiplicative chaos

As discussed in the introduction, Gaussian multiplicative chaos theory is a frame-
work we can use to make sense of measures of the form “eγh(x)−γ

2/2var(h(x)) dx” for
log-correlated Gaussian fields h. This stems from the classical martingale theory of the
branching random walk [7, 17] and multiplicative cascades [15], and was initiated by
Kahane [16] in the 1980’s. In the special case where h is a 2d Gaussian free field, the
Gaussian multiplicative chaos measure is often referred to as the Liouville measure [11].
Here we will state precisely some of the results mentioned in the introduction.

When γ <
√

2d (the subcritical regime) there are various approximation procedures
that can be used to construct the chaos measure with parameter γ. One natural choice
is to use the convolution approximations hε described in the previous section, and define
approximate measures µγε by setting

µγε (dx) := E[eγhε(x)]−1 eγhε(x) dx (2.5)

for ε > 0. Note that the normalisation factor here is equal to ε
γ2

2 (up to a bounded
constant that depends on x). We have the following result.

Theorem 2.5 ([6]). For γ <
√

2d the measures µγε converge to a non-trivial measure µγ

weakly in probability. Moreover, for any fixed Borel set O we have that µγε (O) converges
in L1.

We emphasise that this limit µγ does not depend on the choice of mollifier θ. In fact,
one can approximate the field in other, completely different ways (for instance using
a Karhunen–Loève expansion [6]) and find the same limit. For the case of the 2d free
field, this will even work for “non-Gaussian” approximations. Indeed, in [4] the authors
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construct (the same) Liouville measure for γ < 2 using sequences of so-called “local sets”
of the field.

For general h, the subcritical measures µγ with γ <
√

2d are almost surely atomless,
and assign positive mass to any open set. On the other hand, as discussed in the
introduction, it is known that for γ ≥

√
2d, the measures µγε converge to zero [21]. To

define the critical (and supercritical) measures we must therefore make an additional
renormalisation. These cases turn out to be much more tricky to deal with than the
subcritical case, in part because the limiting measure will not possess any moments of
order greater than or equal to 1. Consequently a complete theory is still lacking, but
some progress has been made (see [20] for a survey). Here and in the rest of this paper
we will discuss the critical case γ =

√
2d.

2.4.1 Critical measures

Motivated by the corresponding constructions for multiplicative cascades, [8, 2], we
expect to be able to obtain a non-trivial measure at criticality using either of two
renormalisation procedures: one deterministic and one random. Let us outline how this
should work. Suppose you have some approximations hε to a log-correlated field h, that
are continuous fields for each ε. Then each of the following sequences should converge
to the same (up to a constant) limiting measure.

• The sequence of measures
√

log(1/ε)µ
√
2d

ε :=
√

log(1/ε)Mε, where µγε is defined by
(2.5). This is known as the Seneta–Heyde renormalisation.

• The sequence of signed “derivative” measures, obtained by taking the derivative of
µγε with respect to γ and evaluating at γ =

√
2d. That is, the sequence

Dε(dz) := (−hε(z) + γE[hε(z)
2]) exp

(
γhε(z)−

γ2

2
E
[
hε(z)

2
])

dz

(where we have also multiplied by −1 in order to yield a non-negative limit mea-
sure.)

This statement was verified for a specific set-up in [9, 10].

Theorem 2.6 ([9, 10]). Suppose h has a ?-scale invariant kernel K(x, y) =
∫∞
1
k(u|x−

y|)/u dx as in (2.2) and the approximate fields hε have kernels given by

Kε(x, y) :=

∫ 1/ε

1

k(u|x− y|)
u

du.

Then the two sequences of approximating measures described above converge weakly
in probability to the same limiting measure, up to a constant

√
2/π. In particular, for

any open set O ⊂ Rd,
√
π/2

√
ln(1/ε)Mε(O) and Dε(O) converge in probability and in Lp

(any p < 1) to the same limit.

The authors in [9, 10] were also able to generalise this approach to the case when h
is a 2d Gaussian free field, using a white-noise decomposition for the field and another
specific sequence of “cut-off” approximations for the kernel. However, both of these
proofs rely strongly on a martingale property satisfied by the choice of approximating
fields hε. In particular, they do not extend to general convolution approximations.

Convolution is clearly a natural way to approximate the field h, and so we would like
to have a version of Theorem 2.6 for such approximations. Using comparison techniques,
Junnila and Saksman were able to do this for the Seneta–Heyde renormalisation.

Theorem 2.7 ([14]). Let h be a ?-scale invariant field, and assume that in addition to
(1.2), the mollifier θ has a Hölder continuous density. Then the measures

√
log(1/ε)Mε
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converge to a limiting measure weakly in probability as ε → 0. This limit is equal to√
2/πµ′ where

• µ′ is the measure from Theorem 2.6,

• E [µ′(O)] =∞ for any O ⊂ Rd and

• µ′(O) is positive almost surely for any O ⊂ Rd.

Again we have that for any open set O ⊂ Rd,
√
π/2

√
ln(1/ε)Mε(O) and Dε(O) converge

in probability and in Lp (p < 1) to the same limit.

This has also been proven for the 2d-Gaussian free field.

Theorem 2.8 ([13, 14]). Let h be a 2d-GFF, and take any mollifier θ satisfying (1.2).
Then the measures

√
log(1/ε)Mε converge to a limiting measure weakly in probability

as ε→ 0. This limit is equal to
√

2/πµ′ where µ′ is the critical Liouville measure of [10].

Note that Theorem 2.8 places a weaker constraint on the mollifier θ. This is due to
the proof given in [13]. The aim of this paper will be to prove the analogues of Theorems
2.7 and 2.8 for the derivative renormalisation.

2.5 Bessel processes

To conclude this introduction, we need to recall some basic properties of Brownian
motion; in particular, of the 3dimensional Bessel process. Let P denote the law of a
standard Brownian motion Bt in R, started from a possibly random position B0 such that
P(B0 < 0) > 0 and B0 has finite exponential moments of all orders.1 Then it is easy to
check that for any β, γ > 0, the process

(−Bt + γvar(Bt) + β)1{−Bu+γvar(Bt)+β>0 ∀u∈[0,t]} eγBt−
γ2

2 var(Bt) (2.6)

is a non-negative martingale. Let Ft be the filtration generated by the Brownian motion
and define a new measure Q by letting its Radon–Nikodym derivative when restricted to
Ft be given by the martingale (normalised to have expectation one) at time t. One can
check that this yields a well-defined law Q, under which the process (−Bt + γvar(Bu) +

β)t≥0 is a 3d Bessel process started from −B0 + γvar(B0) + β. Note that this starting
position will also be biased, and will be positive almost surely under Q. The next lemma
records some properties of the 3d Bessel process that we will use in our proofs.

Lemma 2.9. Let (Xt)t≥0 be a 3d Bessel process started from a random (positive) position
X0 with finite variance, and law Q. Then

1. Q[ 1
Xt

] =
√

2
πt + o(t−1/2) where the error term is less than 2√

t
(
Q[X2

0 ]
t + Q[X0]√

t
).

2. Q[ 1
X2
t

] ≤ 2/t, uniformly in the starting position.

3. Q[
√
u

log(2+u)2 ≤ Xu ≤ (1 +
√
u log(1 + u)) eventually ] = 1

4.

Q

[ √
u

R log(2 + u)2
≤ Xu ≤ R(1 +

√
u log(1 + u)) ∀u ≥ 0

]
→ 1

as R→∞, uniformly over X0 with Q[X0] ≤ K for any K.

5. Q[ 1
Xt
1{Xt≤t1/4}] ≤

C
2t , uniformly in the starting position, where C is an absolute

constant.

Proof. (1),(2) and (5) are straightforward to verify using direct calculation and scaling
arguments. (3) is a classical result due to Motoo [18] and then (4) follows by continuity
and Markov’s inequality.

1So that the expectation of (2.6) lies in (0,∞).
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3 Proof of Theorem 1.1

In this section we will work to prove Theorem 1.1. Recall that this concerns the
case when the underlying field h is a 2d Gaussian free field in a domain D ⊂ R2. For
this choice of field, there is a particular convolution approximation, when θ is uniform
measure on the unit circle, that plays an important role. We call this the circle average
process and distinguish it by writing h̃ε := h ? θε. The Markov property of the field allows
us to deduce the following:

Lemma 3.1. For each x ∈ D and δ < d(x, ∂D), {h̃e−u(x) : u ≥ log(1/δ)} is a Brownian
motion started from h̃δ(x).

We will also need to compare h̃ε with a general convolution approximation hε.

Lemma 3.2. Let hε and h̃ε be the mollified and circle averages of h at a point x with
d(x, ∂D) > ε. Then we can write

hε(x) = λε(x)h̃ε(x) + Yε(x) (3.1)

where λε(x) = 1 + O(log(1/ε)−1) (uniformly in x) and Yε(x) is independent of h̃ε(x),
Gaussian, and has mean 0 and variance O(1).

Proof. For this, we observe (by an easy calculation using (2.3)) that

cov(hε(x), h̃ε(x)) = log(1/ε) + O(1)

for any x ∈ D and ε < d(x, ∂D). Let λε(x) := cov(hε(x), h̃ε(x))/cov(h̃ε(x), h̃ε(x)), so that
by direct calculation cov(hε − λεh̃ε, h̃ε) = 0. Then by Gaussianity, h̃ε and Yε := hε − λεh̃ε
are independent. Using Lemmas 3.1 and 2.1, we see that the variance of Yε is O(1) and
that λε = 1 + O(log(1/ε)−1).

Remark 3.3. We will often drop the x from λε(x) when it is clear from the context.

Lemma 3.4. Yε(x) also has bounded covariances with Yε(y) and h̃ε(y) for any x, y ∈ D.
Moreover, for δ ≥ ε, we have

−ρεδ(x)/2 := cov(Yε(x), h̃δ(x)) = O(1),

uniformly in ε, δ and x.

Proof. The first claims follow using direct calculation similar to the above. For the
final claim note that E[Yε(x)h̃δ(x)] = E[hε(x)h̃δ(x)] − λε(x)E[h̃ε(x)h̃δ(x)] where both
expressions on the right-hand side are log(1/δ) + O(1).

Remark 3.5. Lemma 3.2 implies that ρεε(x) = 0 for all ε, x.

Let us now move on to the proof of Theorem 1.1. By standard arguments, see [6], we
need only prove that Dε(O)→ µ′(O) in probability for each fixed O ⊂ D. In fact, without
loss of generality we may assume that O := B(0, 1) is the unit disc. From now on we will
work with this assumption.

3.1 A uniformly integrable family

We know from [10] that if µ′ is the critical Liouville measure, µ′(O) has infinite
expectation for any O ⊂ D. Therefore, we cannot hope to have L1-convergence or
uniform integrability of Dε(O). Since we prefer to work with uniformly integrable
families, we instead consider a sequence of cut-off approximations Dβ

ε to Dε. It will be
very important to choose these cut-offs correctly, but for the right choice they will be
uniformly integrable (for each β) and moreover, will converge as ε→ 0 (albeit in some
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slightly unusual sense, see Lemma 3.10). Obtaining the desired convergence in Theorem
1.1 then amounts to letting β →∞ and using Lemma 2.3 to see that Dβ

ε is actually very
close to Dε for large enough β.

So, let us fix ε0 > 0, such that B(x, ε) ⊂ D for every ε ≤ ε0 and x ∈ O. Then we define
for β > 0 and ε ∈ (0, ε0], the “cut-off” approximations

Mβ
ε (O) :=

∫
O

e2hε(x)−2var(hε(x)) 1Lε(x)1{−hε(x)+2var(hε(x))+β>1} dx; and

Dβ
ε (O) :=

∫
O

(−hε(x) + 2var(hε(x)) + β)e2hε(x)−2var(hε(x))1Lε(x)1{−hε(x)+2var(hε(x))+β>1};

where
Lε(x) := {−h̃δ(x) + 2λε(x)var(h̃δ(x)) + β − ρεδ(x) > 0; ∀ δ ∈ [ε, ε0]}.

Note that both Mβ
ε (O) and Dβ

ε (O) are positive by definition, and also that Mβ
ε (O) ≤

Dβ
ε (O). For ease of notation we set

fβε,γ(x) = −hε(x) + γvar(hε(x)) + β gε,γ(x) = γhε(x)− (γ2/2)var(hε(x))

f̃βε,γ(x) = −h̃ε(x) + γvar(h̃ε(x)) + β g̃ε,γ(x) = γh̃ε(x)− (γ2/2)var(h̃ε(x))

fβ,Yε,γ (x) = −Yε(x) + γvar(Yε(x)) + β gYε,γ(x) = γYε(x)− (γ2/2)var(Yε(x))

recalling the definition of Y from Lemma 3.2. Then we have

Mβ
ε (O) :=

∫
O

egε,2(x) 1Lε(x)1{fβε,2(x)>1} dx;

Dβ
ε (O) :=

∫
O
fβε,2(x)egε,2(x)1Lε(x)1{fε,2(x)β>1} dx

and
Lε(x) = {f̃βδ,2λε(x)(x)− ρεδ > 0∀δ ∈ [ε, ε0]}.

The decomposition

fβε,2(·) = λε(·)f̃βε,2λε(·)(·) + f0,Yε,2 (·) + (1− λε(·))β and gε,2(·) = g̃ε,2λε(·)(·) + gYε,2(·). (3.2)

will also come in very useful in what follows.

Proposition 3.6. For fixed β > 0, (Dβ
ε (O))ε≤ε0 is a uniformly integrable family.

Proof. The proof of this Lemma is inspired by that of Berestycki [6], who shows uniform
integrability of µγε in the subcritical case. In analogy to his approach, for a ≥ ε > 0 we
define the good event GRε,a(x) :={ √

log(1/u)

R log(2 + log(1/u))2
≤ f̃βu,2λε(x)(x) ≤ R(1 +

√
log(1/u) log(1 + log(1/u))) ∀u ∈ [ε, a]

}

and write Dβ
ε (O) = Jβε + Ĵβε , where Jβε is the integral over all “good” x, for which GRε,ε0(x)

holds. 2 The rationale behind choosing G in this way is that it separates bad points of the
field, which are “too thick” and make the second moment explode, from the good points.

To conclude, it is enough to prove the following two lemmas.

Lemma 3.7. E[Ĵβε ] ≤ p(R) for all ε ≤ ε0 where p(R)→ 0 as R→∞;

Lemma 3.8. For fixed R, Jβε is uniformly bounded inL2.

We first give a very rough idea of why these should hold:

2Note that we are setting a = ε0 here, but we define the more general notation GR
ε,a for use later on.
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• E[Ĵβε ] corresponds to the probability of GRε,ε0(x) not holding under a weighted law:
specifically, under the law with Radon–Nikodym derivative (with respect to P)
proportional to

fβε,2(x) egε,2(x) 1Lε(x)1{fβε,2(x)>1}.

Under this law we know that f̃βu,2λε(x)(x) is (approximately) a Bessel process. Thus
we know by Lemma 2.9 that this probability tends to 0 as R→∞.

• Now we move on to the L2 bound. Every time we write ≈ it requires a lot of
justification, usually because hε is not exactly a Brownian motion. First note that
by the Markov property of the field and the fact that (2.6) is a martingale,

E[fβε,2(x)fβε,2(y) egε,2(x) egε,2(y) 1Lε(x)1Lε(y)]

≈ E[fβδ,2(x)fβδ,2(y) egδ,2(x) egδ,2(y) 1Lδ(x)1Lδ(y)]

for x, y ∈ O, where δ = δ(x, y) = (|x−y|/3)∨ε. Now, on the event GRε,ε0(x)∩GRε,ε0(y),

fβδ,2(x) ≈
√

log(1/δ), fβδ,2(y) ≈
√

log(1/δ) and gδ,2(y) ≈ −2
√

log(1/δ) + 2 log(1/δ).

We can use this to show that, roughly,

E[fβδ,2(x)fβδ,2(y) egδ,2(x) egδ,2(y) 1GRε,ε0 (x)
1GRε,ε0 (y)

] . δ−2 log(1/δ) e−2
√

log(1/δ)E[egδ,2(x)]

= δ−2 log(1/δ) e−2
√

log(1/δ) .

We then only need to verify that this function of δ(x, y) is integrable over O ×O.

We prove Lemmas 3.7 and 3.8 below. As already mentioned, there are several technical
difficulties with making the above argument rigorous.

Proof of Lemma 3.7. Consider for x ∈ O

E
[
fβε,2(x)egε,2(x)1Lε(x)1{fβε,2(x)>1}1GRε,ε0 (x)

c

]
. (3.3)

To prove the lemma, we need to show that this converges to 0 as R→∞, uniformly in ε
and x. The strategy is to rewrite it as an expectation with respect to a different measure,
under which we understand well the behaviour of f̃ε,2λε(x). We set

dQ̃β,ε
x

dP
= (Z̃βε (x))−1f̃βε,2λε(x) egε,2(x) 1Lε(x); Z̃βε (x) = E

[
f̃βε,2λε(x) egε,2(x) 1Lε(x)

]
.

This measure will be extremely important throughout the paper because, under Q̃β,ε
x ,

the process
{f̃βu,2λε(x)− ρεu(x); u ∈ [ε, ε0]}

is a time changed 3d Bessel process. To see why this is true, we split the weighting that
defines Q̃β,ε

x into two steps. By decomposition (3.2) we have gε,2(x) = g̃ε,2λε(x) + gYε,2(x)

and so we can first consider what happens if we only weight by exp(gYε,2(x)). Let us call

this intermediate law P̂. By the Cameron–Martin–Girsanov theorem, and the definition
ρεδ(x) := −2cov(h̃δ(x), Yε(x)), the process

−h̃δ(x)− ρεδ(x)

is a time changed Brownian motion under P̂. For the second step in the weighting we
use the definition of Lε(x), and the fact that ρεε(x) = 0. This means that this second step
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is simply the Bessel process weighting described in Section 2.5, with γ = 2λε(x). The
same argument also implies that Z̃βε (x) does not depend on ε for each x, since (2.6) is a
martingale.

To prove the lemma, and we will apply this technique over and over again, we rewrite
(3.3) as

Z̃βε (x)Q̃β,ε
x

[
fβε,2(x)

f̃βε,2λε(x)
1{fβε,2>1}1GRε,ε0 (x)

c

]

where by Lemma 2.9 part (4) we know that Q̃β,ε
x (GRε,ε0(x)c)→ 0 as R→∞, uniformly in

ε and x (using the uniform boundedness of (ρεδ(x))δ>ε.)
Using the fact that

fβε,2(x) = λε(x)f̃βε,2λε(x)(x) + O(1)− Yε(x),

(cf. decomposition (3.2)), and Hölder’s inequality, it is enough for us to show that

Q̃β,ε
x

( |Yε(x)|+ O(1)

f̃βε,2λε(x)

)3/2
 = O(1).

However, this follows by Cauchy–Schwarz, since

Q̃β,ε
x

( |Yε(x)|+ O(1)

f̃βε,2λε(x)

)3/2
2

≤ Q̃β,ε
x

[
(|Yε(x)|+ O(1))3

f̃βε,2λε(x)

]
Q̃β,ε
x

[
1

f̃βε,2λε(x)2

]

and

• Q̃β,ε
x [(f̃βε,2λε(x))−2] is bounded by Lemma 2.9, part (2);

• Q̃β,ε
x [|Yε(x)|p/f̃βε,2λε(x)] . E[|Yε(x)|p egε,2(x)] is bounded for p = 1, 2, 3.

Proof of Lemma 3.8. First, we make the simple bound

E[(Jβε )2] ≤
∫∫
O2

E
[
|fβε,2(x)||fβε,2(y)| egε,2(x) egε,2(y) 1Lε(x)1Lε(y)1GRε,ε0 (x)

1GRε,ε0 (y)

]
dy dx

(3.4)
and fix some x ∈ O. For this fixed x, we will break the integral over y into two parts:
those with |x− y| > 3ε, and those with |x− y| ≤ 3ε. Let us begin with the first case. For
such a y, we set δ = δ(x, y) := |x− y|/3, so that the δ-balls around x and y are disjoint.
We are going to use the fact that the circle averages around x and y decorrelate after
this time. More precisely, if we let H be the σ-algebra generated by h|D\(B(x,δ)∪B(y,δ)),
then we have the following observations, which we state as a lemma.

Lemma 3.9. [(1)]

1. Conditionally on H, the processes (h̃δ e−t(x)− h̃δ(x))t≥0 and (h̃δ e−t(y)− h̃δ(y))t≥0)

are independent Brownian motions.

2. We can write Yε(x) = Y 1
ε (x) + Y 2

ε (x) and Yε(y) = Y 1
ε (y) + Y 2

ε (y) where:

• Y 1
ε (x) and Y 1

ε (y) are measurable with respect to H;

• Y 2
ε (x) is independent of H, Y 2

ε (y) and (h̃η(y)− h̃δ(y))η≤δ;

• Y 2
ε (y) is independent of H, Y 2

ε (x) and (h̃η(x)− h̃δ(x))η≤δ;

• Y iε (x), Y iε (y) for i = 1, 2 have bounded variance; and
• 2cov(Y 2

ε (x), h̃η(x)− h̃δ(x)) = −ρεη(x) + ρεδ(x) (similarly if x is replaced with y).
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3. We have

E[f̃βε,2λε(x) egε,2(x) 1Lε(x) | H] = (f̃βδ,2λε − ρ
ε
δ(x))1{f̃η,2λε−ρεη(x)>0; ∀ η∈[δ,ε0]}

× eg̃δ,2λε (x) e2Y
1
ε (x)−2var(Y 1

ε (x)) e2ρ
ε
δ(x) .

4. We also have E[ |Y 2
ε (x)| egε,2(x) 1Lε(x) | H] ≤ C eg̃δ,2λε (x) e2Y

1
ε (x) where C is a univer-

sal constant.

5. Items (3) and (4) also hold when x is replaced by y.

Proof of Lemma 3.9. By the Markov property of the Gaussian free field, conditionally
on H we can write h = hH + hH where:

• hH is measurable with respect to H and harmonic when restricted to B(x, δ) ∪
B(y, δ); and

• hH, independent of H, is a sum of two independent zero boundary GFFs: one in
B(x, δ) and one in B(y, δ).

We use this to prove the points in turn.

(1) This follows from the fact that hH(x) = h̃δ(x) and hH(y) = h̃δ(y) (by harmonicity),
and the fact that the circle average process of a Gaussian free field is a Brownian motion.

(2) We have Yε(x) = hε(x) − λε(x)h̃ε(x) by definition and so we can write Y 1
ε (x) =

(hH, θε,x)− λε(x)(hH, θ̃ε,x) and Y 2
ε = (hH, θε,x)− λε(x)(hH, θ̃ε,x), where θ̃ is uniform mea-

sure on the unit circle. The claimed properties of this decomposition are easy to see.

(3) We first take out the H-measurable parts from the conditional expectation on the
left-hand side. To this end we write for η < δ

f̃βη,2λε(x) = f̃βδ,2λε(x)− ρεδ − (h̃η(x)− h̃δ(x)) + 2λε log(δ/η) + ρεδ

:= W − (h̃η(x)− h̃δ(x)) + 2λε log(δ/η) + ρεδ

where W = f̃βδ,2λε(x)− ρεδ is H measurable. We can also write

Lε(x) = L1
ε ∩ L2

ε

:= {f̃βη,2λε(x)− ρεη > 0∀ η ∈ [δ, ε0]} ∩ {−(h̃η(x)− h̃δ(x))− (ρεη − ρεδ) +W > 0∀ η ∈ [ε, δ]}

where L1
ε is alsoH-measurable. Putting these together, using that ρεε = 0 and breaking

up gε,2(x) using (3.2) and point (2), we see that

E[f̃βε,2λε(x) egε,2(x) 1Lε(x) | H] = e2λερ
ε
δ(x) eg̃δ,2λε (x) e2Y

1
ε (x)−2var(Y 1

ε (x)) 1L1
ε(x)

×

E[(W − (h̃ε(x)− h̃δ(x)) + 2λε log(δ/ε) + ρεδ) e2λε(h̃ε(x)−h̃δ(x))−2λ
2
ε log(δ/ε)−2λερ

ε
δ(x)

e2Y
2
ε (x)−2var(Y 2

ε (x)) 1L2
ε(x)
| H]

Now we can use Girsanov’s theorem, as in the proof of Lemma 3.7, to get rid of the
exp{2Y 2

ε (x) − 2var(Y 2
ε (x))} term. More precisely, changing measure by exp{2Y 2

ε (x) −
2var(Y 2

ε (x))} has the effect of shifting the law of (h̃η(x)− h̃δ(x))η∈[ε,δ] by adding on the
deterministic function ρεδ(x)− ρεη(x). We then see that the conditional expectation above
is nothing but the expectation of the Brownian motion martingale (2.6), starting from W .
The result follows.

(4) For this we bound the indicator 1Lε(x) by 1, and take out the parts which are
measurable with respect to H as in part (3). Then we are left with the expectation of
|Y 2
ε (x)| under a shifted law, where Y 2

ε (x) is still a Gaussian with O(1) mean and variance
(since Y 2

ε (x) has bounded covariances with everything.) This proves the claim.
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This lemma allows us to deduce that the integrand of (3.4), in the case |x− y| > 3ε, is
less than or equal to some constant, depending on β only, times

E
[
(f̃βδ,2λε(x)(x) + 1 + |Y 1

ε (x)|)(f̃βδ,2λε(y)(y) + 1 + |Y 1
ε (y)|)

× eg̃δ,2λε(x)(x) eg̃δ,2λε(y)(y) e2Y
1
ε (x) e2Y

1
ε (y) 1GRδ,δ(x)

1GRδ,δ(y)
]

where δ = δ(x, y) = |x − y|/3. Here we used that ρεδ(·) and var(Y 1
ε (·)) are uniformly

bounded, and changed GRε,ε0(·) to the larger H-measurable event GRδ,δ(·), so that it would
not interfere with the conditioning step.

Now we can use the definition of GRδ,δ. This, together with the fact that Y 1
ε (·) has

bounded variance and covariance with everything, tells us that the above is bounded by
a constant times

δ−2FR(log(1/δ)) ; FR(z) := R2(1 +
√
z log(1 + z))2 e−

2
√
z

R(log(2+z)) .

As in the sketch of this proof (given just after the statement of Lemmas 3.7 and 3.8) we
have put deterministic bounds on f̃βδ,2λε(x)(x), f̃βδ,2λε(y)(y) and eg̃δ,2λε(y)(y), and integrated

over eg̃δ,2λε(x)(x).
Hence we can bound the integral (3.4), restricted to the set x ∈ O, y ∈ O \B(x, 3ε),

by a multiple of∫
x∈O

∫
y/∈B(x,3ε)

1

|x− y|2
FR(− log |x− y|) dy dx ≤ C

∫
x∈O

∫ log(1/ε)

0

FR(u)du dx.

Since FR is integrable we see that this is uniformly bounded in ε.
Finally, we must deal with the integral over the set x ∈ O, y ∈ B(x, 3ε). By the

same reasoning as above (although now we do not need to do any conditioning, since
δ(x, y) = ε) we see that the integrand on this region is less than some constant times
ε−2FR(log(1/ε)). That the integral is uniformly bounded in ε then follows from that fact
that FR(log(1/ε)) is bounded, and that the area of B(x, 3ε) is O(ε2).

3.2 Convergence

We now need to show that Dβ
ε (O) converges (in some sense) as ε→ 0. To do this, we

define the change of measure
dQβ,ε

dP
=

Dβ
ε (O)

E[Dβ
ε (O)]

(3.5)

for each ε > 0. Note that this is not a martingale change of measure, but it is well
defined for each ε > 0. We will prove the following lemma (from now on we drop the
dependence on O from our notation for compactness.)

Proposition 3.10. For each fixed β and ε0, and for any δ > 0

Qβ,ε

[∣∣∣∣∣Mβ
ε

Dβ
ε

√
log(1/ε)−

√
2

π

∣∣∣∣∣ > δ

]
→ 0

as ε→ 0.

Remark 3.11. SinceDβ
ε andMβ

ε are close toDε andMε for large β (Lemma 2.3) andQβ,ε

is defined by a uniformly integrable change of measure (Proposition 3.6) this is almost
exactly what we need (recall that by Theorem 2.8 we have Mε

√
log(1/ε)→

√
π/2µ′ as

ε→ 0.) Indeed, we will see that the proof of Theorem 1.1 follows in a straightforward
manner once we have completed the proof of Proposition 3.10.
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Remark 3.12. The proof of Proposition 3.10 follows the general outline of the main
proof in [2]. However, the details of each step are somewhat different, and rely on
the precise way we have constructed Dβ

ε . One of the main difficulties is to make exact
statements about the behaviour of hε using what we know about the behaviour of h̃ε.

Before starting the proof, we make a few remarks about the change of measure (3.5).
Define

Q̂β,ε(dx, dh) =
fβε,2(x) egε,2(x) 1{x∈O}1Lε(x)1{fβε,2(x)>1}dxP[dh]

E[Dβ
ε ]

to be the rooted measure on (h, x) where h is a field and x is a point inO. Introducing this
type of measure is a classical tool for dealing with branching processes, that also comes
in very useful in the context of Gaussian multiplicative chaos. We have the following
description of how the point x and the field h interact under Q̂β,ε:

• the marginal law of h under Q̂β,ε is E[Dβ
ε ]−1Dβ

ε dP (i.e. the same law as under Qβ,ε);

• the marginal law of x under Q̂β,ε, that we shall call dmβ,ε(x), is proportional to

Zβε (x) := 1{x∈O}E[fβε,2(x) egε,2(x) 1Lε(x)1{fβε,2(x)>1}].

• the conditional law of the field h given the point x is given by

Qβ,ε
x := Q̂β,ε(· | x) = (Zβε (x))−1fβε,2(x) egε,2(x) 1{x∈O}1Lε(x)1{fβε,2(x)>1} dP.

• the conditional law of the point x given the field h is proportional to

fβε,2(x) egε,2(x) 1{x∈O}1Lε(x)1{fβε,2(x)>1}dx.

Also note that
dQβ,ε

x

dQ̃β,ε
x

=
Z̃βε (x)

Zβε (x)

fβε,2(x)

f̃βε,2λε(x)
1{fβε,2(x)≥1}

where we recall from the proof of Lemma 3.7 that under Q̃β,ε
x the process

{(f̃βe−u,2λε(x)− ρεe−u(x) ; u ∈ [log(1/ε0), log(1/ε)]}

has the law of a 3d Bessel process, whose starting point is also biased (and a.s. positive.)
In fact, one of the key ideas in the proof of Proposition 3.10 will be to say that fβε (x)

under Qβ,ε
x also behaves essentially like a Bessel process. As a warm up, let us first

prove the following:

Lemma 3.13.
Zβε (x)

Z̃βε (x)
→ 1 (3.6)

uniformly in x as ε→ 0.

This justifies in some sense that the measures Qβ,ε
x and Q̃β,ε

x are similar for small ε,
and is a result we will use many times.

Proof. We consider the ratio

Zβε (x)/Z̃βε (x) = (Z̃βε )−1E[fβε,2(x) egε,2(x) 1Lε(x)1{fβε,2(x)>1}]

= Q̃β,ε
x

[
(fβε,2(x)/f̃βε,2λε(x))1{fβε,2(x)>1}

]
.
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To show this converges to 1 we write, using decomposition (3.2),

fβε,2(x)

f̃βε,2λε(x)
= 1 + o(1) +

O(1)− Yε(x)

f̃βε,2λε(x)
.

Then by exactly the same Cauchy–Schwarz argument as in the proof of Lemma 3.7, it is
enough to show that

Q̃β,ε
x [fβε,2(x) ≤ 1]→ 0 (3.7)

uniformly in x. Since f̃βε,2λε(x) is close to
√

log(1/ε) with high probability under Q̃β,ε
x , and

fβε,2(x) = λε(x)f̃βε,2λε(x) + O(1) + Yε(x), it is sufficient to control the tails of Yε(x) under

Q̃β,ε
x . For this we observe that, by Cauchy–Schwarz again,

Q̃β,ε
x [1{Yε(x)>a}]

2 ≤ (Z̃βε (x))−1Q̃β,ε
x [f̃βε,2λε(x)]E[1{Yε(x)>a} eg̃ε,2λε (x) eg

Y
ε,2(x)] ≤ log(1/ε) e−ka

(3.8)
for some k, since Yε(x) is Gaussian with bounded variance under P, f̃ε,2λε(x)β has the
law of a 3d-Bessel process at time log(1/ε) under Q̃β,ε

x , and Z̃βε (x) is bounded below by
a constant times the probability that a Brownian motion stays above −β + 1 up to time
log(1/ε). This allows us to conclude.

Proof of Proposition 3.10. Our strategy to prove Proposition 3.10 is to show the
following two things:

Qβ,ε
[
Mβ
ε

Dβ
ε

]
=

√
2

π log(1/ε)
+ o

(
1√

log(1/ε)

)
as ε→ 0; and (3.9)

Qβ,ε

[(
Mβ
ε

Dβ
ε

)2
]
≤ 2

π log(1/ε)
+ o

(
1

log(1/ε)

)
as ε→ 0. (3.10)

The result then follows using Jensen’s and Markov’s inequalities. (3.9) is relatively
straightforward. Observe that, by the discussion preceeding this proof, we have

Mβ
ε

Dβ
ε

= Q̂β,ε

[
1

fβε,2(x)
| h

]
. (3.11)

This means that

Qβ,ε
[
Mβ
ε /D

β
ε

]
= Q̂β,ε

[
Mβ
ε /D

β
ε

]
= Q̂β,ε[fβε,2(x)−1] =

∫
O
Qβ,ε
x [fβε,2(x)−1] dmβ,ε(x),

which is a useful representation, because we can write

Qβ,ε
x [fβε (x)−1] =

Z̃βε (x)

Zβε (x)
Q̃β,ε
x [f̃βε,2(x)−11{fβε,2(x)>1}]

for each x ∈ O. The first moment estimate then follows by (3.7), (3.6) and Lemma 2.9,
parts (1) and (2).

(3.10) is rather more difficult, and requires several steps.
Step 1: We show that restricting to an event of high probability under Q̂β,ε does not

affect our second moment too much. That is, we show that if we can find a sequence of
events Eε = Eε(x) with Q̂β,ε[Eε]→ 1 and

Q̂β,ε

[
Mβ
ε

Dβ
ε

1

fβε,2(x)
1Eε

]
≤ 2

π log(1/ε)
+ o

(
1

log(1/ε)

)
, (3.12)
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then this will prove (3.10).
To see how this implies (3.10), take such an event Eε and write

Qβ,ε

[(
Mβ
ε

Dβ
ε

)2
]

= Q̂β,ε

[(
Mβ
ε

Dβ
ε

)2
]

= Q̂β,ε
[
Mβ
ε

Dβ
ε

Q̂β,ε[fβε,2(x)−11Eε | h]

]
+ Q̂β,ε

[
Mβ
ε

Dβ
ε

Q̂β,ε[fβε,2(x)−11Ecε | h]

]
= Q̂β,ε

[
Mβ
ε

Dβ
ε

1

fβε,2(x)
1Eε

]
+ Q̂β,ε

[
Mβ
ε

Dβ
ε

Q̂β,ε[fβε,2(x)−11Ecε | h]

]
.

We would like to show that the second term in the final expression is o(log(1/ε)−1). For
this, it is enough by Cauchy–Schwarz, to show that

• Q̂β,ε
[
(Mβ

ε /D
β
ε )2
]

= O(log(1/ε)−1), and

• Q̂β,ε
[
ξ2ε
]

= o(log(1/ε)−1) where ξε := Q̂β,ε
[
fβε,2(x)−11Ecε | h

]
.

We deal with each point in turn. For the first point, note that by conditional Jensen’s
inequality we have

Q̂β,ε
[
(Mβ

ε /D
β
ε )2
]
≤ Q̂β,ε

[
fβε,2(x)−2

]
=

∫
O
Qβ,ε
x

[
fβε,2(x)−2

]
dmβ,ε(x)

and then by changing measure and rearranging as usual, we can write

Qβ,ε
x

[
fβε,2(x)−2

]
= (Z̃βε (x)/Zβε (x)) Q̃β,ε

x

[
1

f̃βε,2λε(x)fβε,2(x)
1{fβε,2(x)>1}

]
.

To show that this is O(log(1/ε)−1) we need to be a little bit careful, although heuristically
it is clear from the fact that f̃ is a Bessel process and Yε(x) is small. The way to make
this precise is to consider the expectation on the “good” event,

{f̃βε,2λε(x) > log(1/ε)1/4} ∩ {Yε(x) < (1/2) log(1/ε)1/4}

and its complement separately. On the good event we have that fβε,2(x) ≥ cf̃βε,λε(x) for
some constant c, and so the expectation is O(log(1/ε)−1) by Lemma 2.9, part (2). On
the bad event, we use (3.8) and Lemma 2.9, part (5), to see that the expectation is also
O(log(1/ε)−1).

Now we treat the second point. By Jensen’s inequality, and for any a > 0, we have

Q̂β,ε
[
ξ2ε
]
≤ Q̂β,ε

[
fβε (x)−21Ecε

]
= Q̂β,ε

[
1Ecε

fβε,2(x)2
1{fβε,2(x)≥a

√
log(1/ε)}

]
+ Q̂β,ε

[
1

fβε,2(x)2
1{fβε,2(x)<a

√
log(1/ε)}

]
.

It is clear by definition that the first term is less than Q̂β,ε[Ecε ]/(a
2 log(1/ε)), and for

the second term, we write it as∫
O

Z̃βε (x)

Zβε (x)
Q̃β,ε
x

[
1

f̃βε,2λε(x)fβε,2(x)
1{fβε,2(x)>1}1{fβε,2(x)<a

√
log(1/ε)}

]
dmβ,ε(x). (3.13)

Similarly to before, we consider the expectation on the event

{Yε(x) < (a/2) log(1/ε)1/4} ∩ {f̃βε,2λε(x) > a log(1/ε)1/4}

EJP 23 (2018), paper 31.
Page 17/26

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP157
http://www.imstat.org/ejp/


Critical Gaussian chaos in the derivative normalisation

and its complement separately. This allows us to bound (3.13) by some constant times
a log(1/ε)−1 +

√
log(1/ε) exp(−(ak/2) log(1/ε)1/4), where k > 0 is the constant from (3.8).

Thus,
lim sup
ε→0

log(1/ε) Q̂β,ε
[
ξ2ε
]
≤ Ca

for any a > 0 and some fixed finite C. Taking a→ 0, this allows us to conclude step 1.
Step 2: We define the event Eε, and set up the scales for the multiscale argument

we will use.
To do this we let rε > ε be a sequence with

log(1/rε)

log(1/ε)1/3
→∞ and

log(1/rε)

log(1/ε)1/2
→ 0 (3.14)

as ε→ 0 (so rε is tending to 0 much slower than ε). Given this, we break up D and M as

Dβ
ε = Dβ,in

ε +Dβ,out
ε and Mβ

ε = Mβ,in
ε +Mβ,out

ε

where the subscript in refers to the integral inside B(x, rε) and the subscript out refers
to the integral outside of it.

The basic idea is that Dβ,in
ε and Mβ,in

ε will be small with high probability (this will
be part of the definition of Eε) and on this event, Mβ

ε /D
β
ε will be close to Mβ,out

ε /Dβ,out
ε .

Heuristically, this occurs with high probability because the limits of Mε and Dε should
be atomless measures, and rε is tending to 0. Next, we claim that Mβ,out

ε /Dβ,out
ε is

essentially independent of fβε,2(x). This is because rε is much larger than ε and f

is approximately a (time changed) Bessel process, so its value at time ε is basically
independent of its value at time (rε − ε). From here (3.12) follows, since we already
know that Mβ

ε /D
β
ε and fβε,2(x)−1 have (the same) expectation, of the right order.

We now choose our event Eε, according to this plan. To do this, we first have to
observe that, by the Markov property of the field, Yε(x) = hε(x) − λε(x)h̃ε(x) can be
written as

Yε(x) := Y 1
ε (x) + Y 2

ε (x),

where Y 2
ε is independent of h|D\B(x,rε−ε) and Y 1

ε is measurable with respect to h|D\B(x,rε−ε)
(see the proof of Lemma 3.9 for a more detailed explanation.) Given this definition, we
set Eε = E1

ε ∩ E2
ε where

E1
ε = {Dβ,in

ε ≤ log(1/ε)−2}

E2
ε = {f̃βu,2λε(x) ∈ [ 3

√
log(1/u), log(1/u)] ∀u ∈ [rε − ε, rε]} ∩ {Y 1

ε (x) < (log(1/ε))1/4}

(we will prove that Q̂β,ε [Eε]→ 1 later on.) We remark that the event E2
ε here is needed

for the “independence” step.
Step 3: We split the left hand side of (3.12) into two parts: one concerning the

measures restricted to O ∩ B(x, rε), and one concerning the measures restricted to
O∩ (B(x, rε) \B(x, ε)). We show that the first of these is negligible compared to log(1/ε).

More precisely, we write

Q̂β,ε

[
Mβ
ε

Dβ
ε

1

fβε,2(x)
1Eε

]
≤ Q̂β,ε

[
Mβ,in
ε

Dβ
ε

1

fβε,2(x)
1Eε

]
+ Q̂β,ε

[
Mβ,out
ε

Dβ,out
ε

1

fβε,2(x)
1E2

ε

]
. (3.15)

Then by definition we have that Mβ,in
ε ≤ Dβ,in

ε , and so on the event Eε it holds that
Mβ,in
ε ≤ log(1/ε)−2. Moreover, we know that fβε,2(x) is greater than 1 under Q̂β,ε and

also that Q̂β,ε[1/Dβ
ε ] = E[Dβ

ε ]−1 = O(1). Thus, the first term is o(log(1/ε)−1) and we need
only treat the second term.
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Step 4: We condition on the field outside of B(x, rε − ε) in order to factorise the
second term on the right-hand side of (3.15). We show that the conditional expectation
of fβε,2(x)−1 is of order

√
2/π log(1/ε)(1 + o(1)) uniformly on E2

ε .
More precisely, we condition on Frε−ε, the σ-algebra generated by the point x and

the field h restricted to D \B(x, rε− ε). Then Mβ,out
ε , Dβ,out

ε and E2
ε are measurable with

respect to Frε−ε, meaning that the second term on the right-hand side of (3.15) is equal
to

Q̂β,ε

[
Mβ,out
ε

Dβ,out
ε

1E2
ε
Q̂β,ε

[
1

fβε,2(x)
| Frε−ε

]]
.

Now we write

Q̂β,ε

[
1

fβε,2(x)

∣∣∣Frε−ε
]

= Qβ,ε
x

[
1

fβε,2(x)

∣∣∣h|D\B(x,rε−ε)

]

=

Q̃β,ε
x

[
1

f̃βε,2λε (x)
1{fβε,2(x)≥1}

∣∣∣h|D\B(x,rε−ε)

]
Q̃β,ε
x

[
fβε,2(x)

f̃βε,2λε (x)
1{fβε,2(x)≥1}

∣∣∣h|D\B(x,rε−ε)

] .
We will show that, on the event E2

ε , the numerator in the final expression is less than or
equal to

√
2/(π log(1/ε)) + o(log(1/ε)−1/2) and the denominator is 1 + o(1). To do this we

observe that, on E2
ε and under the conditional law Q̃β,ε

x [ · | hD\B(x,rε−ε)]:

• f̃βε,2λε(x) has the law of a Bessel process started from a position in

[ 3
√

log(1/(rε − ε)), log(1/(rε − ε))] and evaluated at time log(rε − ε)− log(ε);

• by choice of rε and Lemma 2.9 part (1), this implies that the conditional expectation
of (f̃βε,2λε(x))−1 is equal to

√
2/(π log(1/ε))(1 + o(1));

• the conditional expectation of |Y 2
ε |/f̃ε,2λε(x) is o(1), by Cauchy–Schwarz; and

• |Y 1
ε (x)| times the conditional expectation of (f̃βε,2λε(x))−1 is also o(1), by the second

point, and definition of E2
ε .

Together these imply that, uniformly on E2
ε ,

Q̂β,ε
[
1/fβε,2(x) | Frε−ε

]
≤
√

2/(π log(1/ε))(1 + o(1)).

Step 5: We show that Q̂β,ε
[
Mβ,out
ε

Dβ,outε
1E2

ε

]
is also bounded above by

√
2/(π log(1/ε))(1 +

o(1)). This completes the proof of (3.12) for our choice of Eε.
This is the most delicate step. To do this, we define yet another event

E3
ε = {f̃βu,2λε(x) ≥ 6

√
log(1/rε) ∀u ∈ [ε, rε]}.

Step 5(i): We will first show that

Q̂β,ε
[
Mβ,out
ε

Dβ,out
ε

1E2
ε
1E3

ε

]
≥ Q̂β,ε

[
Mβ,out
ε

Dβ,out
ε

1E2
ε

]
(1 + o(1)) (3.16)

so we can instead consider the term on the left-hand side (which turns out to be easier
to deal with.) To see why (3.16) is true we again condition on Frε−ε. This gives us that

Q̂β,ε
[
Mβ,out
ε

Dβ,out
ε

1E2
ε
1E3

ε

]
≥ Q̂β,ε

[
Mβ,out
ε

Dβ,out
ε

1E2
ε
Q̂β,ε

[
E3
ε | Frε−ε

]]
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where by changing measure as in step 4 we have

Q̂β,ε
[
(E3

ε )c | Frε−ε
]

=

Q̃β,ε
x

[
fβε,2(x)

f̃βε,2λε (x)
1{fβε,2(x)≥1}

1(E3
ε)
c

∣∣∣h|D\B(x,rε−ε)

]
Q̃β,ε
x

[
fβε,2(x)

f̃βε,2λε (x)
1{fβε,2(x)≥1}

∣∣∣h|D\B(x,rε−ε)

] .

We already know that the denominator is 1 + o(1) uniformly on E2
ε by our previous

discussion. In fact, the numerator is also o(1) uniformly on E2
ε . To show this, again using

our observations from step 4, it is enough for us to prove that

Q̃β,ε
x

[
E3
ε | h|D\(B(x,rε−ε))

]
→ 1

uniformly on E2
ε . For this we again use the fact that, under this conditional law, the pro-

cess f̃βu,2λε(x) for u ≤ rε − ε is a time-changed Bessel process (plus a small deterministic

fluctuation ρεu(x)) starting from a position in [ 3
√

log(1/(rε − ε)), log(1/(rε − ε))]. Thus we
need to calculate the probability that such a Bessel process, and we can clearly forget
about the fluctuations, remains greater than log(1/rε) up to time log(1/ε)− log(1/(rε −
ε)). It is clear that this probability is smallest if we take the starting point x0 to be
3
√

log(1/(rε − ε)). In this case we have, writing Qy for the law of a Bessel process started
at y, and by scaling, that

Qx0
(Xt ≥ 6

√
log(1/rε) ∀t ∈ [0, log(1/ε)− log(1/(rε − ε))])

≥ Q1(Xt ≥
6
√

log(1/rε)
3
√

log(1/(rε − ε))
∀t ∈ [0,∞]).

Taking ε→ 0 we see that this converges to 1: the probability that a 3d Bessel process
started at 1 never hits 0.

Step 5(ii): Having done this, we can now consider the left-hand side of (3.16) and
instead try to show that this is bounded above by

√
2/(π log(1/ε))(1 + o(1)). Again this

will require a few arguments. We write

Q̂β,ε
[
Mβ,out
ε

Dβ,out
ε

1E2
ε∩E3

ε

]
≤ Q̂β,ε

[
Mβ,out
ε

Dβ,out
ε

1E2
ε∩E3

ε
1E1

ε
1{Dβε>log(1/ε)−1}

]
+

Q̂β,ε
[
Mβ,out
ε

Dβ,out
ε

1E2
ε
1E1

ε
1{Dβε≤log(1/ε)−1}

]
+ Q̂β,ε

[
Mβ,out
ε

Dβ,out
ε

1E2
ε∩E3

ε
1(E1

ε)
c

]
and will show that the first term is of the order we want, and the second and third are
negligible. Indeed, it is clear that the first term is less than or equal to

Q̂β,ε
[
Mβ
ε

Dβ
ε

]
(1 + o(1)) ≤

√
2

π log(1/ε)
(1 + o(1))

by definition of the events (these imply that Dβ
ε /D

β,out
ε = 1 + o(1)) and our previous

estimate (3.9) for the first moment. Moreover by Markov’s inequality for (1/Dβ
ε ), and

the fact that Mβ,out
ε /Dβ,out

ε ≤ 1, the second is o(
√

log(1/ε)
−1

).

Step 5(iii): So we are left to deal with the third term, which we would also like to show

is o(
√

log(1/ε)
−1

). To do this, we first observe that we can bound it above by

Q̂β,ε
[
E2
ε ∩ E3

ε ∩ (E1
ε )c
]
≤ Q̂β,ε

[
E3
ε ∩

{
Dβ,in
ε >

1

log(1/ε)2

}]
. (3.17)
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Our strategy here will be to use Markov’s inequality for Dβ,in
ε . For this we have to

calculate the Q̂β,ε expectation of Dβ,in
ε , which by definition is the same as calculating the

P expectation of Dβ
ε ×Dβ,in

ε . Thus, we can use similar techniques to those in the proof
of uniform integrability (Lemma 3.7), where we calculated the P expectation of (Dβ

ε )2 on
a “good” event.

As we did there, we will break up Dβ,in
ε into two parts: the integral over B(x, 3ε), and

the rest. To deal with the integral over B(x, 3ε) we define a further event E4
ε (which has

high probability) and on which fβε,2 is close to
√

log(1/ε). Crude estimates on this event,
using that |B(x, 3ε)| = O(ε2), then give the desired expectation. To deal with the integral
over B(x, rε) \ B(x, 3ε) we need to be more careful. Here we use the definition of E3

ε ,
which allows us to control the value of f̃βε,2λε(x) at all times between rε and ε. Applying a
decorrelation argument similar to that in the proof of Lemma 3.7 then allows us to reach
the desired conclusion.

Let us first define E4
ε , using the following lemma:

Lemma 3.14. For all p ∈ (1/4, 1/2) we have

E4
ε = {fβε,2(x) ∈ [log(1/ε)1/2−p, log(1/ε)1/2+p]}

satisfies Q̂β,ε
[
(E4

ε )c
]

= o(log(1/ε)−1/2).

Proof of Lemma 3.14. This is possible because for any p > 0

(E4
ε )c ⊂ {f̃βε,2λε(x) /∈ [2 log(1/ε)1/2−p,

1

2
log(1/ε)1/2+p]} ∪ {|Yε(x)| > log(1/ε)1/2−p}

and then

Q̂β,ε
[
(E4

ε )c
]
≤
∫
O
Qβ,ε
x

[
|Yε(x)| > log(1/ε)1/2−p

]
+ Qβ,ε

x

[
f̃βε,2λε(x) /∈ [2 log(1/ε)1/2−p,

1

2
log(1/ε)1/2+p]

]
dmβ,ε(x).

It is easy to see (using the definition of the measure Qβ,ε
x ) that the first probability inside

the integral decays exponentially in log(1/ε). For the second, we can write it as

Zβε (x)

Z̃βε (x)
Q̃β,ε
x

[
fβε,2(x)

f̃βε,2λε(x)
1{f̃βε,2λε (x)/∈[2 log(1/ε)1/2−p, 12 log(1/ε)1/2+p]}

]
.

which by Cauchy–Schwarz is less than or equal to

λε(x)Q̃β,ε
x

[
1{f̃βε,2λε (x)/∈[2 log(1/ε)1/2−p, 12 log(1/ε)1/2+p]}

]
+

Q̃β,ε
x

[
(Yε(x) + O(1))2

f̃βε,2λε(x)

]1/2
Q̃β,ε
x

[
1{f̃βε,2λε (x)/∈[2 log(1/ε)1/2−p, 12 log(1/ε)1/2+p]}

f̃βε,2λε(x)

]1/2
.

A standard Bessel calculation (if (βt; t ≥ 0) is a 3d Bessel process then
E[(βt)

−11βt≤t(1/2−p) ] . t−1/2−2p) plus the fact that

Q̃β,ε
x

[
(O(1) + Yε(x))2/f̃βε,2λε(x)

]
= O(1)

(seen by changing back to the measure P), gives that this is o(log(1/ε)−1/2) for p ∈
(1/4, 1/2).
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Using this new event E4
ε , and Markov’s inequality, we next bound the right-hand side

of (3.17) above by

o(log(1/ε)−1/2) + log(1/ε)2 Q̂β,ε

[
1E4

ε

∫
w∈B(x,3ε)

fβε,2(w)1Lε(w)1{fβε,2(w)>1} egε,2(w) dw

]

+ log(1/ε)2 Q̂β,ε

[
1E3

ε

∫
w∈B(x,rε)\B(x,3ε)

fβε,2(w)1Lε(w)1{fβε,2(w)>1} egε,2(w) dw

]
(3.18)

where the first term comes from the Q̂β,ε probability of E4
ε . Recall that, to conclude, we

need to show this whole expression is o(log(1/ε)−1/2). Let us look at the expectation in
the second term. By definition of Q̂β,ε this is equal to E[Dβ

ε ]−1 times∫
x∈O

∫
w∈B(x,3ε)

E
[
1E4

ε
fβε,2(w)1Lε(w)1{fβε,2(w)>1} egε,2(w) fβε,2(x)1Lε(x)1{fβε,2(x)>1} egε,2(x)

]
∫
x∈O

∫
w∈B(x,3ε)

ε−2 log(1/ε)1/2+p e−2 log(1/ε)1/2−p E
[
fβε,2(w)1Lε(w)1{fβε,2(w)>1} egε,2(w)

]
where the second line follows from the definition of E4

ε . Hence, the expectation in the

second term of (3.18) is less than or equal to O(1)× log(1/ε)1/2+p e−2 log(1/ε)1/2−p , meaning
that the term itself is o(log(1/ε)−1/2).

We finish by dealing with the third term of (3.18). Writing Aε = B(x, rε) \ B(x, 3ε),
we have that the expectation in this term is equal to

E[Dβ
ε ]−1

∫∫
x∈O
w∈Aε

E
[
1E3

ε
fβε,2(w)1Lε(w)1{fβε,2(w)>1} egε,2(w) fβε,2(x)1Lε(x)1{fβε,2(x)>1} egε,2(x)

]
Then, by exactly the same reasoning used in the proof of Lemma 3.7, we can deduce that
this is less than or equal to some constant times∫∫

x∈O
w∈Aε

E
[
eg̃δ,2λε(x)(x) eg̃δ,2λε(w)(w) 1{f̃βδ,2λε (x)≥log(1/rε)

1/6}(f̃
β
δ,2λε(x)

(x) + 1)(f̃βδ,2λε(w)(w) + 1)
]

(3.19)
where δ(x, y) = |x− y|/3. The final observation to make is that, by orthogonal projection,
we have

h̃δ(w) = αδx,wh̃δ(x) + Zδx,w

for αδx,w = cov(h̃δ(x), h̃δ(w))/var(h̃δ(x)) where Zδx,w is independent of h̃δ(x); distributed

as a centered normal random variable with variance (1− (αδx,w)2)var(h̃δ(w)). The proof
of this is the same as the proof of Lemma 3.2. Moreover, by Lemma 2.1, we have
αδx,w = 1 + O(log(1/δ)−1) uniformly in x,w.

Thus, by conditioning on h̃δ(x), we can calculate that the integrand in (3.19) is less
than or equal to a constant times

E[1{f̃βδ,2λε (x)≥log(1/rε)
1/6} e

g̃δ,2λε(x)(x)+g̃δ,2λε(w)αδx,w
(x)

(f̃βδ,2λε(x)(x)+1)(αδx,wf̃
β
δ,2λε(w)αδx,w

(x)+1)]

which by a simple calculation can be bounded again by

e−(log(1/rε))
1/6

δ−2E
[
eg̃δ,2λε(x)(x)(1 + |f̃βδ,2λε(x)(x)|2)

]
times some constant. This last expectation can be estimated by observing that changing
measure by eg̃δ,2λε(x)(x) turns f̃βδ,2λε(x)(x) into a Gaussian random variable with mean β

and variance log(1/δ) + O(1). Hence the integrand of (3.19) is less than

C e−(log(1/rε))
1/6

δ−2(1 + log(1/δ))

EJP 23 (2018), paper 31.
Page 22/26

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP157
http://www.imstat.org/ejp/


Critical Gaussian chaos in the derivative normalisation

for some constant C. Integrating over Aε gives that the third term of (3.18) is .
e− log(1/rε)

1/6

log(1/ε)4, and so we conclude, using our assumption (3.14) on rε, that (3.18)
is of the correct order.

Step 6: We show that Q̂β,ε [Eε]→ 1 as ε→ 0.
Firstly, it is clear that Q̂β,ε[E2

ε ]→ 1. Then since we have already shown, see (3.17),
that Q̂β,ε

[
E2
ε ∩ E3

ε ∩ (E1
ε )c
]
→ 0 and that

Q̃β,ε
x

[
E3
ε | h|D\(B(x,rε−ε)

]
→ 1

uniformly on E2
ε , the claim follows straight away. The proof is complete.

It is now relatively simple to show the convergence of Dε(O). To use Proposition 3.10,
we must first compare Mβ

ε (O) and Dβ
ε (O) with Mε(O) and Dε(O).

Lemma 3.15. We have

P(Cβ) := P
(
{inf
ε

inf
x∈D

(−h̃ε(x) + 2var(h̃ε(x))) > −(β + 10)}

∩ {inf
ε

inf
x∈D

(−hε(x) + 2var(hε(x))) > −(β + 10)}
)

converges to 0 as β → 0.

Proof. This is a consequence of Corollary 2.4.

Remark 3.16. Note that on the event Cβ we have Mβ
ε (O) = Mε(O) and also Dβ

ε (O) =

Dε(O) + βMε(O) for all O ⊂ D.

We are now ready to prove the main result.

Proof of Theorem 1.1. It is enough to show that for O ⊂ D and δ > 0 fixed

P

[∣∣∣∣∣Mε(O)

Dε(O)

√
log(1/ε)−

√
2

π

∣∣∣∣∣ > δ

]
→ 0 (3.20)

as ε → 0. Then since
√

log(1/ε)Mε(O) →
√

π
2µ
′(O) in probability, by Theorem 2.8, we

also have Dε(O) → µ′(O) in probability. Let us prove (3.20). By Proposition 3.10 we
know that for any β > 0

Q̂β,ε

[∣∣∣∣∣Mβ
ε (O)

Dβ
ε (O)

√
log(1/ε)−

√
2

π

∣∣∣∣∣ > δ

]
→ 0

as ε→ 0, and we also know that, on the event Cβ , we can compare Mβ
ε , D

β
ε with Mε, Dε

by Remark 3.16. With this in mind, we bound (3.20) above by

P
[
A1
β,ε

]
+ P

[
A2
β,ε ∩ (A1

β,ε)
c
]

where

A1
β,ε =

{∣∣∣∣∣ Mε(O)

Dε(O) + βMε(O)

√
log(1/ε)−

√
2

π

∣∣∣∣∣ > δ

2

}
and

A2
β,ε =

{√
log(1/ε)

∣∣∣∣ Mε(O)

Dε(O) + βMε(O)
− Mε(O)

Dε(O)

∣∣∣∣ > δ

2

}
.

In fact, the event A2
β,ε ∩ (A1

β,ε)
c is deterministically non possible if ε is small enough.

Thus, it is enough to show that P(A1
β,ε) can be made arbitrarily small by choosing β

large, and then ε small. To do this, we observe by Remark 3.16 that

P(A1
β,ε) ≤ P[Ccβ ] + P

[{∣∣∣∣∣Mβ
ε (O)

Dβ
ε (O)

√
log(1/ε)−

√
2

π

∣∣∣∣∣ > δ/2

}
∩ Cβ

]
.
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Furthermore, by the definition of Q̂β,ε, the right-hand side for any η > 0, is less than or
equal to

P[Ccβ ] + P[Cβ ∩ {Dβ
ε < η}] +

E[Dβ
ε ]

η
Q̂β,ε

[∣∣∣∣∣Mβ
ε (O)

Dβ
ε (O)

√
log(1/ε)−

√
2

π

∣∣∣∣∣ > δ

2

]
.

Now note that by Markov’s inequality

P[Cβ ∩ {Dβ
ε < η}] ≤ P[

√
log(1/ε)Mε(O) < η1/4] +

√
ηE[Dβ

ε ] Q̂β,ε

[
log(1/ε)

(
Mβ
ε

Dβ
ε

)2
]
.

Hence using Proposition 3.10 and Lemma 3.15, together with the fact that
√

log(1/ε)Mε(O)

converges to
√
π/2µ′(O) (which is positive almost surely) and that E[Dβ

ε ] =
∫
x
Zβε (x) is

bounded, we can conclude by letting β →∞, then η → 0, and finally ε→ 0.

4 ?-scale invariant kernels

In this section we prove Theorem 1.2 using a simple adaptation of our arguments
from the previous section. Recalling the set-up, we have:

• θ : Rd → R a mollifier, supported in B(0, 1), with Hölder continuous density and
satisfying (1.2);

• k : [0,∞) → R, a compactly supported and positive-definite C1 function with
k(0) = 1; and

• h a ?-scale invariant field on Rd with covariance kernel

K(x, y) =

∫ ∞
1

k(u|x− y|)
u

du.

We would like to prove that if hε(x) = h ? θε(x) is the θ-convolution approximation to h,
the signed measures

Dε(dx) := (−hε(x) +
√

2d log(1/ε)) e
√
2dhε(x) εd dx

converge weakly in probability to a limiting measure. Moreover, we would like to show
that this limiting measure is equal to the measure defined in [9, 14] (see Theorems 2.6
and 2.7).

Proof. First pick g such that g ? g(u) = k(u) (we can do this by our assumptions on k,
[12]). Then we can define a field h with the correct covariance structure by setting

h(x) :=

∫ ∞
1

∫
Rd

g(y − xu)√
u

W (dy, du), (4.1)

where W (·, ·) is a standard space-time white noise. It is then proved in [9] that if we let

h̃ε(x) :=

∫ 1
ε

1

∫
Rd

g(y − xu)√
u

W (dy, du),

the signed derivative measures D̃ε(dx) := (−h̃ε(x)+
√

2d log(1/ε)) e
√
2dh̃ε(x) εd dx converge

almost surely to a positive limiting measure µ′. It is further shown in [10] that

M̃ε(dx) :=
√

log(1/ε) e
√
2dh̃ε(x) εd dx
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converges to
√

2/πµ′ in probability and in [14] that

Mε :=
√

log(1/ε) e
√
2dhε(x) εd dx

also converges to
√

2/πµ′ in probability.
To prove the convergence of Dε(dx) we use the same strategy as for the proof of

Theorem 1.1, now letting h̃ε play the role of the circle average. In particular we need
only prove Proposition 3.10 (the result then following by Corollary 2.4 and Lemma 3.15
in exactly the same way.) We observe that:

• h̃ε(x) is a (time-changed) Brownian motion for each x ∈ Rd; and

• cov(hε(x), h̃δ(x)) = log(1/(ε ∧ δ)) + O(1), so we can define λε(x), Yε(x) and ρεδ(x) as
in Lemmas 3.2 and 3.4, and the statements of these lemmas will still hold.

This is enough to prove (3.9) and step 1 of (3.10). For step 2 we need to explain how
we define a few things. We let rε be chosen as before, and without loss of generality
we assume that supp(k) ⊂ B(0, 1). It is then easy to check using the definition of h
that hε(z) and (h̃η(x)− h̃rε−ε(x))η≤rε−ε are independent for all z /∈ B(x, rε). We let Fε =

σ({h̃u(x) : u ≥ rε − ε}) ∨ σ({hε(z) : z ∈ D \B(x, rε)}) so that (h̃η(x)− h̃rε−ε(x))η≤rε−ε(x)

is independent of Fε, and Mβ,out
ε /Dβ,out

ε is measurable with respect to it. This is what
we will use in place of Frε−ε from the original proof. Using standard properties of
Gaussian processes we see that we can also write Yε(x) = Y 1

ε (x) + Y 2
ε (x) where Y 1

ε (x) is
measurable with respect to Fε and Y 2

ε (x) is independent of it. From this point onwards
we can define everything in the same way, and steps 3 and 4 follow, using only properties
of the 3d Bessel process.

To conclude, we need only complete step 5, since step 6 is a straightforward conse-
quence of this (as in the original proof.) For this step we note that by our assumption
on supp(k), (h̃δ+η(x) − h̃δ(x))η≥0 and (h̃δ+η(y) − h̃δ(y))η≥0 are independent as soon as
|y − x| ≥ δ. Since this is the only extra property we used in this step, the proof of
Proposition 3.10 goes through.

Remark 4.1. We remark here that the authors in [9, 10] suggest that their constructions
should hold for more general kernels than the ?-scale invariant ones. In particular,
for any positive definite kernel of the form K(x, y) = − log(|x − y|) + g(|x − y|) with g

continuous, one has a white-noise decomposition for the corresponding field h, analogous
to (4.1). This means that the theory in [10, Appendix D] should go through, and as a
consequence, the result of Theorem 1.2 should also hold. More generally we conjecture
that Theorem 1.2 should hold for any K satisfying (2.1).
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