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Exponential concentration of cover times
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Abstract

We prove an exponential concentration bound for cover times of general graphs in
terms of the Gaussian free field, extending the work of Ding, Lee, and Peres [8] and
Ding [7]. The estimate is asymptotically sharp as the ratio of hitting time to cover
time goes to zero.

The bounds are obtained by showing a stochastic domination in the generalized
second Ray-Knight theorem, which was shown to imply exponential concentration of
cover times by Ding in [7]. This stochastic domination result appeared earlier in a
preprint of Lupu [22], but the connection to cover times was not mentioned.
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1 Introduction

Let G = (V,E) be a finite undirected graph, possibly with self-loops and multiple
edges. For the continuous time simple random walk on G started at a given vertex
v0 ∈ V , define τcov to be the first time that all the vertices in V have been visited at least
once. This quantity, known as the cover time, is of fundamental interest in the study of
random walks.

Another fundamental object in the study of random walks on graphs is the Gaussian
free field (GFF). For purposes of stating our main result, let us define the GFF {ηx}x∈V on
G with ηv0 = 0 to be the Gaussian process given by covariances E(ηx − ηy)2 = Reff(x, y),
where Reff denotes effective resistance. More background is given in Section 2.

Our main result is the following concentration bound on the cover time in terms of
the Gaussian free field.

Theorem 1.1. Let G = (V,E) be a finite undirected graph with a specified initial vertex
v0 ∈ V . Let {ηx}x∈V be the Gaussian free field on G with ηv0 = 0. Define the quantities

M = Emax
x∈V

ηx, R = max
x,y∈V

Reff(x, y) = max
x,y∈V

E (ηx − ηy)
2
.
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Exponential concentration of cover times

Then, there are universal constants c and C such that for the continuous time random
walk started at v0, we have

P
(∣∣∣τcov − |E|M2

∣∣∣ ≥ |E|(√λR ·M + λR)
)
≤ Ce−cλ

for any λ ≥ C.

Remark 1.2. Our result is most easily stated for a continuous time random walk, i.e. a
random walk having the same jump probabilities as a simple random walk, but whose
times between jumps are i.i.d. unit exponentials. However, note that if a continuous
time random walk has run for time t, then the number of jumps it has made has Poisson
distribution with mean t, which exhibits Gaussian concentration with fluctuations of
order

√
t. Thus, Theorem 1.1 can be easily translated into a similar bound for discrete

random walks.

Remark 1.3. Note that the definition of M is given in terms of a starting vertex v0, but it
does not depend on v0. Indeed, let v′0 be another starting vertex. Then, η′ = {ηx−ηv′0}x∈V
has the law of a GFF with η′v′0

= 0, and

Emax
x∈V

η′x = Emax
x∈V

ηx.

Remark 1.4. We actually show Theorem 1.1 in the slightly more general setting of
electrical networks, which are introduced in Section 2.

We prove Theorem 1.1 following the approach first appearing in a paper of Ding, Lee,
and Peres [8] and later refined by Ding [7]. Indeed, Ding observed that Theorem 1.1 is
implied by a certain stochastic domination; in [7], the domination was proved for trees,
but the general case was left as conjecture ([7], Question 5.2). Thus, the key missing
piece is to prove the stochastic domination for general graphs; this is done in Theorem
3.1, whose proof is the main content of this paper.

In relation to [8] and [7], Theorem 1.1 extends Theorem 1.2 of [7], which gave the
same concentration bound for trees. It also sharpens Theorem 1.1 of [8], where the
equivalence of cover times and |E|M2 (in the notation of Theorem 1.1) was proven up to
a universal multiplicative constant. By “sharpen”, we mean that we are able to remove
the constant factor under the assumption

√
R � M . We mention that this was done

already for bounded-degree graphs in Theorem 1.1 of [7], albeit without exponential tail
bounds.

The condition
√
R � M is a relatively mild one. Indeed, define τhit(x, y) to be the

time it takes for a random walk started at x to hit y, and define

thit = max
x,y∈V

Eτhit(x, y), tcov = max
x∈V

Exτcov,

where in the definition of tcov, Ex denotes the expectation for the random walk started
at x. The well-known commute time identity ([21], Proposition 10.6) states that

Eτhit(x, y) + Eτhit(y, x) = 2|E| ·Reff(x, y).

It follows that
thit ≥ |E| ·R.

On the other hand, Theorem 1.1 of [8] states that for some universal constant C > 0, we
have

C−1|E| ·M2 ≤ tcov ≤ C|E| ·M2. (1.1)

It follows that
R

M2
≤ C · thit

tcov
,

so
√
R�M holds whenever thit � tcov. We obtain the following corollary.
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Exponential concentration of cover times

Corollary 1.5. Let G = (V,E), v0, η, M , and R be as in Theorem 1.1. Then,(
1− C

√
thit

tcov

)
· |E| ·M2 ≤ tcov ≤

(
1 + C

√
thit

tcov

)
· |E| ·M2,

for a universal constant C.

Remark 1.6. We can also deduce the statement (1.1) directly from Theorem 1.1. This
yields a simpler proof of Theorem 1.1 in [8] and a self-contained derivation of Corollary
1.5.

To make the deduction, note that R = O(M2). Then, Theorem 1.1 implies tcov =

|E| · (M2 + O(
√
RM)). This immediately gives the upper bound tcov = O(|E| ·M2) and

also gives the lower bound tcov = Ω(|E| ·M2) as long as R < cM2 for some sufficiently
small constant c. In the remaining case that R ≥ cM2, we may instead use the inequality
tcov ≥ thit ≥ |E| ·R ≥ c|E| ·M2, establishing (1.1) in all cases.

Remark 1.7. There is a deterministic polynomial-time approximation scheme (PTAS)
due to Meka [26] for computing the supremum of a Gaussian process. Applying this to
the quantity M gives a PTAS for tcov when thit � tcov.

Conversely, it was shown by Aldous [1] that if thit is of the same order as tcov, then
the cover time cannot be concentrated about its expectation (see the introduction of [7]
for a more detailed discussion).

The main tool for estimating cover times employed by [8] and [7] is the generalized
second Ray-Knight theorem, which is an identity in law relating the Gaussian free field
to the time spent at each vertex by a continuous time random walk. In fact, the upper
bound on tcov in Corollary 1.5 was previously established as Theorem 1.4 of [8] (the same
argument also proves the corresponding upper tail estimate in Theorem 1.1).

As mentioned earlier, it was shown in [7] that the matching lower bound reduces to
proving a stochastic domination in the generalized second Ray-Knight theorem, and we
prove this in Theorem 3.1. The main idea for proving Theorem 3.1 is to view the random
walk as Brownian motion on a metric graph. After writing up an early draft of the proof,
it was pointed out to us that this idea appeared previously in a recent preprint of Lupu
[22] to prove essentially the same result ([22], Theorem 3). In that context, the idea was
mainly used to study the percolation of loop clusters ([22], Theorems 1 and 2; see also
subsequent work by Sznitman [32]). However, the application to cover times was not
mentioned.

Even though Theorem 3.1 uses the same ideas as Theorem 3 of [22], we include
a proof in order to establish the result in the language of our specific application.
Additionally, our exposition is intended to be more accessible to audiences interested in
cover times of random walks.

1.1 Related work on cover times

Cover times have been studied in many papers over the last few decades. We highlight
several of them below; see also §1.1 of [8] for further background.

We first mention some results relating cover times and hitting times. Clearly, tcov ≥
thit. A classical result of Matthews [25] is that on a graph of n vertices, tcov ≤ thit(1+log n).
This was proved by a clever argument analogous to the analysis of the coupon collector’s
problem. Matthews also gave an expression for a lower bound, which was later shown
by Kahn, Kim, Lovasz, and Vu [14] to approximate the cover time to within (log log n)2.

In [1], Aldous analyzed a generalization of the coupon collector’s problem. As a
consequence, he showed that τcov is concentrated around its expectation with high
probability as thit

tcov
→ 0. More precisely, for any ε > 0, there is a small enough δ so that

P (|τcov − tcov| ≤ εtcov) ≥ 1− ε
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Exponential concentration of cover times

whenever thit

tcov
< δ. This shows qualitatively the concentration of cover times.

On the other hand, cover times have also been estimated for many specific classes of
graphs, including regular graphs [15], lattices [33], and bounded degree planar graphs
[13], to name a few. Precise asymptotics are known for the two-dimensional discrete
torus [6] and regular trees [2].

More recently, a breakthrough was made by Ding, Lee, and Peres [8] whereby the
cover time was given (up to a constant factor) in terms of the Gaussian free field. Their
result gives in some sense a quantitative estimate of the cover time that works for any
graph. As touched upon earlier, Ding [7] later removed the constant factor for trees and
bounded degree graphs. We complete the picture by extending this to general graphs.

1.2 Outline

The remaining sections are organized as follows. In Section 2, we establish notation
and provide a brief review of electrical networks, local times, Gaussian free fields, and the
generalized second Ray-Knight theorem. The notation mostly follows [7]. Section 3 states
the key stochastic domination result (Theorem 3.1) and gives a heuristic description
of the proof. In Section 4, we apply Theorem 3.1 to analyze cover times and obtain
Theorem 1.1. Finally, in Section 5, we provide the full details for proving Theorem 3.1.

2 Definitions and preliminaries

An electrical network G is a finite, undirected graph (V,E), allowing self-loops,
together with positive weights on the edges called conductances. We use either cxy or
cyx to denote the conductance of an edge (x, y), and for vertices x, y ∈ V that do not
share an edge, we define cxy = 0. It is convenient to define the quantity cx =

∑
y∈V cxy,

which we refer to as the total conductance at x.
The name “electrical network” comes from the fact that G can be used to model an

electric circuit, where each edge (x, y) corresponds to placing a resistor with resistance
1
cxy

between vertices x and y. For any x, y ∈ G, we can define the effective resistance

Reff(x, y) between x and y to be the physical resistance when a voltage is applied between
x and y. Mathematically, this quantity can be defined as a certain minimum energy (see
Chapter 9 of [21] for more background on effective resistance and electrical networks).

There is a canonical discrete time random walk on an electrical network defined by
taking the transition probability from x to y to be cxy

cx
. In the case where the non-zero

conductances are all equal, this reduces to the simple random walk on the underlying
graph.

We will also want to consider the continuous time random walk on an electrical
network. This is a continuous time process {Xt}t∈R+ which can be sampled by having the
same transition probabilities as the discrete time walk but introducing unit exponential
waiting times between transitions. (Contrast this with the discrete time random walk,
which we can think of as having waiting times that are deterministically equal to 1.)

In what follows, unless otherwise specified, all the electrical networks we consider
will have a distinguished vertex v0 ∈ V , and all random walks will be assumed to start at
v0.

2.1 Local times

Let X = {Xt}t∈Z+ be a discrete time random walk on an electrical network G. For
each time t and vertex v, we define the quantity

LXt (v) =

t∑
i=0

1{Xi=v},

EJP 23 (2018), paper 32.
Page 4/22

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP149
http://www.imstat.org/ejp/


Exponential concentration of cover times

which counts the number of visits of X to v up to time t.
We also define a continuous analogue of LXt (v). Suppose now that X = {Xt}t∈R+ is a

continuous time random walk on G. For any time t ≥ 0 and vertex v ∈ V , we define the
local time LXt (v) of X at v to be

LXt (v) =
1

cv

∫ t

0

1{Xs=v}ds.

Note the factor of 1
cv

; this is a convenient normalization for various formulas. When
there is no risk of confusion about the random walk X, we will sometimes shorten the
notation to Lt(v) or Lt(v).

Clearly, the cover time is related to the local time; it is the first time that all local
times are positive. For a continuous time random walk X, we have

τcov = inf

{
t ≥ 0 : min

x∈V
LXt (x) > 0

}
.

We will also frequently consider the first time that v0 accumulates a certain amount of
local time. We give a formal definition for this stopping time. For a continuous time
random walk X and any t > 0, define the inverse local time τ+(t) as

τ+(t) = inf{s ≥ 0 : LXs (v0) ≥ t},

It will always be clear what X is, so it is not included in the notation for sake of brevity.

2.2 Gaussian free fields

For an electrical network G = (V,E), the Gaussian free field ηS with boundary S ⊂ V
is defined to be a random variable taking values in the set RV \S of real-valued functions
on V \ S. Its probability density at an element f ∈ RV \S is proportional to

exp

−1

4

∑
x,y∈V

cxy(f(x)− f(y))2

 , (2.1)

where we define f(x) = 0 for each x ∈ S. For our purposes, Gaussian free fields will
always have boundary S = {v0}. Thus, if we refer to the Gaussian free field on some
network, we will mean the one with this boundary, and we will drop the subscript S.

From (2.1) it is clear that η is a multidimensional Gaussian random variable. It is not
too hard to calculate (e.g., Theorem 9.20 of [12]) that for all x, y ∈ V ,

E (ηx − ηy)
2

= Reff(x, y),

which confirms that our definition of the GFF is consistent with the one given in the intro-
duction. Noting that ηv0 = 0, the above formula completely determines the correlations
of η in terms of the effective resistances.

The Gaussian free field comes into the picture via a class of identities known as
Isomorphism Theorems. The first such theorems were proved independently by Ray [28]
and Knight [16] relating the local times of Brownian motion to a 2-dimensional Bessel
process. More generally, it turns out that for any strongly symmetric Borel right process,
there is an identity relating its local times to an associated Gaussian process.

Inspired by formulas of Symanzik [29] and Brydges, Fröhlich, and Spencer [4], Dynkin
[9] gave the first isomorphism of this type to be expressed in terms of Gaussian free
fields. Various related identities were subsequently discovered by Marcus and Rosen
[23], Eisenbaum [10], Le Jan [18], Sznitman [31], and others. There is a nice version
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of the isomorphism in the case of continuous time random walks on finite electrical
networks, first appearing in [11] (see also Theorem 8.2.2 of the book by Marcus and
Rosen [24]).

Theorem 2.1 (Generalized Second Ray-Knight Theorem). Let G = (V,E) be an electrical
network, with a given vertex v0 ∈ V . Let X = {Xt}t≥0 be a continuous time random walk
on G started at v0, and for any t > 0, define τ+(t) = inf{s ≥ 0 : LXs (v0) ≥ t} to be the
first time that v0 accumulates local time t. Then, we have{

LXτ+(t)(x) +
1

2
η2
x

}
x∈V

law
=

{
1

2

(
ηx +

√
2t
)2
}
x∈V

.

For more background on isomorphism theorems, we refer the interested reader
to [24] and [30]. See also [19] for information relating Gaussian free fields to loop
measures.

3 Stochastic domination in the generalized second Ray-Knight
theorem

We are now ready to state the key stochastic domination theorem, which is a variant
of Theorem 3 in [22].

Theorem 3.1 (variant of [22], Theorem 3). Let τ+(t) and η be as in Theorem 2.1. Then,
we have {√

Lτ+(t)(x) : x ∈ V
}
� 1√

2

{
max

(
ηx +

√
2t, 0

)
: x ∈ V

}
,

where � denotes stochastic domination.

Theorem 3.1 extends Theorem 2.3 from [7], which proves the result for trees. The
approach in [7] uses a Markovian property of local times for trees which does not seem
to extend to general electrical networks. We take a different approach of embedding
the finite-dimensional Gaussian free field inside a larger infinite-dimensional Gaussian
free field, which has desirable continuity properties that were not apparent in the finite-
dimensional setting. As mentioned in the introduction, we discovered while writing up
our results that this idea appeared earlier in [22].

Let us first give a heuristic description of the approach. Recall that the continuous
time random walk on an electrical network makes jumps at exponentially distributed
random intervals. An equivalent way of sampling the continuous time random walk is
to perform a Brownian motion along the edges of the network. By this we mean that
our discrete state space V is replaced by a larger state space V̂ which includes not only
the vertices in V but also each point along each edge of E (regarding the edges as line
segments, so that V̂ is topologically a simplicial 1-complex). The object V̂ is known as a
metric graph and arises in physics and chemistry (see e.g. §5 of [5]).

A Brownian motion on V̂ is, informally, a continuous Markov process X̂ = {X̂(t)}t≥0

taking values in V̂ that behaves like a one-dimensional Brownian motion on edges. The
earliest rigorous development of this idea we could find was carried out by Baxter and
Chacon [3]. See also [17] for a more recent treatment.

It turns out that the Gaussian free field η̂ on V̂ (without defining this precisely) is
almost surely continuous in the topology of V̂ .1 We can also define a notion of local
time LX̂t (v), and we can define the stopping time τ+(t) analogously to the discrete case.

For convenience, let us write L̂t for LX̂τ+(t). With an appropriate normalization, the

1The Gaussian free field on V̂ can be constructed by sampling the GFF on V and then sampling Brownian
bridges on each edge.
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restrictions of η̂ and L̂t to V ⊂ V̂ have the same laws as the corresponding objects on the
original network G = (V,E). The generalized second Ray-Knight theorem translates to{

L̂τ+(t)(v) +
1

2
η̂2
v : v ∈ V̂

}
law
=

{
1

2

(
η̂′v +

√
2t
)2

: v ∈ V̂
}
, (3.1)

where η̂′ is another copy of η̂, and cv is a continuous analogue of the total conductance
at a vertex.

Now, suppose that η̂ and η̂′ are coupled in a way so that the two sides in equation 3.1
are actually equal. Consider the function f : V̂ → R given by f(x) = (η̂′x +

√
2t)− η̂x. We

have that f(v0) =
√

2t > 0, f is continuous, and if f(x) = 0, then L̂t(x) = 0. It turns out
that the set U = {v ∈ V̂ : L̂t(v) > 0} is connected, and clearly it includes v0. It follows
that f(x) > 0 for all x ∈ U , which is exactly the desired stochastic domination once we
restrict to V ⊂ V̂ .

The assertion that U is connected deserves some elaboration. It is intuitively clear
that the closure of U should be connected, since any point v ∈ V̂ which accumulates
positive local time must have been visited along some connected path from v0 to v. Thus,
every non-trivial segment along this path should have also accumulated positive local
time.

On the other hand, it is not immediately obvious why U itself is connected, since
there might be local times of 0 at isolated points. However, we can see heuristically
that this pathology doesn’t occur by the first Ray-Knight theorem (stated in Section
5.2 below). The first Ray-Knight theorem equates the local times of a certain stopped
Brownian motion to the distance of a planar Brownian motion from the origin. Because
planar Brownian motion is not point-recurrent, the local times are all positive almost
surely, and in particular, the set of points with 0 local time does not have isolated points.

To avoid technicalities, we will not actually use Brownian motion in our proof. Instead,
we will use a discrete approximation of Brownian motion and pass to the limit. Arguments
involving the continuity of Gaussian free fields and positivity of local times will be
translated into corresponding quantitative estimates.

4 Application to cover times

Before diving into the detailed proof of Theorem 3.1, let us explain how Theorem 3.1
implies Theorem 1.1. Essentially, by showing that various quantities are concentrated
around their expectation, one can deduce results about cover times from statements
about local times (such as Theorem 3.1). In fact, the exact same arguments used in
proving Theorem 1.2 of [7] carry through, replacing Theorem 2.3 there with Theorem
3.1 of the previous section. For the sake of completeness, we repeat the main parts
of the argument from [7]. It should be mentioned that the argument for the upper tail
bound is originally from [8] (see §2.2).

First, we record two auxiliary results used in [7]. Recall the notation that M =

Emaxx∈V ηx for the Gaussian free field η and R = maxx,y∈V E (ηx − ηy)
2.

Lemma 4.1 (Lemma 2.1 of [7]). Let X be a continuous time random walk on an electrical
network G = (V,E). Let ctot =

∑
x,y∈V cxy be the total conductance of G. For any t ≥ 0

and λ ≥ 1,

P

(∣∣τ+(t)− ctot · t
∣∣ ≥ 1

2

(√
λRt+ λR

)
ctot

)
≤ 6 exp

(
− λ

16

)
.

Proof. See Lemma 2.1 of [7] and the associated remark. We have replaced 2|E| by
ctot.
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The next result is a well-known Gaussian concentration bound. See for example
Theorem 7.1, Equation (7.4) of [20].

Proposition 4.2. Let {ηx : x ∈ S} be a centered Gaussian process on a finite set S, and
suppose Eη2

x ≤ σ2 for all x ∈ S. Then, for α > 0,

P

(∣∣∣∣max
x∈S

ηx − Emax
x∈S

ηx

∣∣∣∣ ≥ α) ≤ 2 exp

(
− α2

2σ2

)
.

Note that by symmetry, max can be replaced by min in Proposition 4.2, which is the
version that we will use. We now give a proof of Theorem 1.1, closely following the proof
of Theorem 1.2 in [7].

Proof of Theorem 1.1. We will prove Theorem 1.1 in the slightly more general setting
where G = (V,E) is an electrical network. As before, define ctot =

∑
x,y∈V cxy.

We first estimate τcov in terms of τ+. Let β ≥ 3 be a parameter to be specified later.
In what follows, we will often use the fact that

R = max
x,y∈V

E (ηx − ηy)
2 ≥ max

x∈V
Eη2

x.

To prove an upper bound, let t+ = (M+β
√
R)2

2 , and define the event

E =

{
min
x∈V

(
Lτ+(t+)(x) +

1

2
η2
x

)
≥ β2R

8

}
,

where η is an independent copy of the Gaussian free field as in Theorem 2.1. We also
have by Proposition 4.2 that

P

(
min
x∈V

1

2

(
ηx +

√
2t+
)2

≤ β2R

8

)
≤ P

(
min
x∈V

(
ηx +

√
2t+
)
≤ β
√
R

2

)

= P

(
min
x∈V

ηx ≤ −M −
β
√
R

2

)
≤ 2e−

β2

8 ,

so that in light of the isomorphism theorem (Theorem 2.1),

P (Ec) ≤ 2e−
β2

8 . (4.1)

Suppose now that τcov > τ+(t+). Then, Lτ+(t+)(x) = 0 for some x ∈ V . Since

P

(
η2
x ≥

β2R

4

)
≤ 2e−

β2

8

and η is independent of the random walk, it follows that

P
(
E
∣∣ τcov > τ+(t+)

)
≤ 2e−

β2

8 . (4.2)

Combining equations (4.1) and (4.2), we conclude that

P
(
τcov > τ+(t+)

)
≤ 2e−

β2

8

1− 2e−
β2

8

≤ 6e−
β2

8 .

For the lower bound, let t− = (M−β
√
R)2

2 . By Theorem 3.1, we have

P
(
τcov < τ+(t−)

)
= P

(
min
x∈V
Lτ+(t−)(x) > 0

)
≤ P

(
min
x∈V

(
ηx +

√
2t−
)
> 0

)

EJP 23 (2018), paper 32.
Page 8/22

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP149
http://www.imstat.org/ejp/


Exponential concentration of cover times

= P

(
min
x∈V

ηx > −M +
β
√
R

2

)
≤ 2e−

β2

2 ,

where the last inequality follows again from Proposition 4.2.

Combining the upper and lower bounds, it follows that

P
(
τ+(t−) ≤ τcov ≤ τ+(t+)

)
≥ 1− 8e−

β2

8 .

For λ ≥ 9, we now take β =
√
λ. Note that

ctot · t+ +
1

2

(√
λRt+ + λR

)
ctot =

ctot

2

(
M2 + 3

√
λRM + 3λR

)
ctot · t− −

1

2

(√
λRt− + λR

)
ctot =

ctot

2

(
M2 − 3

√
λRM − λR

)
,

so by Lemma 4.1,

P

(
τ+(t+) ≥ ctotM

2

2
+

3ctot(
√
λRM + λR)

2

)
≤ 6 exp

(
− λ

16

)

P

(
τ+(t−) ≤ ctotM

2

2
− 3ctot(

√
λRM + λR)

2

)
≤ 6 exp

(
− λ

16

)
.

We thus conclude that for λ ≥ 9,

P

(∣∣∣∣τcov −
ctotM

2

2

∣∣∣∣ ≥ 3

2
ctot(
√
λRM + λR)

)
≤ 20 exp

(
− λ

16

)
.

We obtain Theorem 1.1 upon an appropriate rescaling of λ, noting that ctot = 2|E| in the
case where all conductances are 1.

5 Proof of Theorem 3.1

The goal of this section is to provide the detailed proof of Theorem 3.1. Our starting
point is to form a discrete approximation of the metric graph described in the heuristic
proof.

5.1 A discrete refinement of G

Recall our setting of an electrical network G = (V,E) with conductances {cxy :

x, y ∈ V }. For each positive integer N > 1, we define a refinement GN = (VN , EN ) by
subdividing each edge (x, y) ∈ E into a length N path whose vertices we denote by

{x = vxy,0, vxy,1, . . . , vxy,N = y}.

We thus have edges between vxy,i and vxy,i+1 for each 0 ≤ i < N . We will use vyx,i to
denote the same vertex as vxy,N−i, and we will regard V as a subset of VN , so that a
vertex x ∈ V will sometimes be considered as a vertex in VN .

We choose the conductances of GN so that the effective resistance between x, y ∈ V
as vertices in G will be the same when they are considered as vertices in GN . In
particular, we set the conductance between vxy,i and vxy,i+1 to be Ncxy. Since the
effective resistances are equivalent, G is in some sense a projection of GN . The following
proposition makes this explicit.
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Proposition 5.1. Let η be the GFF on G, and let X be a continuous time random walk
on G. Let ηN and XN denote the corresponding objects for GN . Then, for any t > 0 we
have the following two identities in law.

{ηN,v : v ∈ V } law
= {ηv : v ∈ V }{

LXNτ+(t)(x) : x ∈ V
}

law
=
{
LXτ+(t)(x) : x ∈ V

}
.

The identity between ηN and η is immediate from the equivalence of effective resis-
tances. The identity between local times then follows from Theorem 2.1. However, there
is also a very direct way to see the equivalence of local times which we now describe.

If XN (t) is a continuous time random walk on GN started at v0, then XN (t) induces a
random walk XG

N (t) on G by only recording the time spent in V . More formally, define
t0 = 0, and for each i ≥ 0, define

ti+1 = inf{t > ti : XN (t) ∈ V and XN (t) 6= XN (ti)}.2

Define also

si =

∫ ti+1

ti

1{XN (s)=XN (ti)}ds

to be the amount of time spent in XN (ti) during the time interval [ti, ti+1].

Then, consider the V -valued process XG
N (t) which starts at v0 and, for each i, jumps to

XN (ti+1) at time
∑i
j=1 sj . Note that if XN (ti) = x ∈ V , at the next jump XN transitions

to vxy,1 with probability cxy
cx

for each y neighboring x in G. After that, XN behaves like a
simple random walk on Z started at 1 and stopped upon hitting either 0 (corresponding
to vxy,0 = x) or N (corresponding to vxy,N = y). Thus, with probability N−1

N it returns to
x, and with probability 1

N it hits y.

Consequently, between times ti and ti+1, the number of times XN visits x is geomet-
rically distributed with mean N , and so the accumulated local time si is exponentially
distributed with mean N . Moreover, we see that

P (XN (ti+1) = y |XN (ti) = x) =
cxy
cx
,

so XG
N (t) has the same law as a continuous time random walk on G except that the

waiting times between jumps are scaled by N . In particular, we have{
LXNτ+(t)(x) : x ∈ V

}
=

{
1

N
· LX

G
N

τ+(Nt)(x) : x ∈ V
}

law
=
{
LXτ+(t)(x) : x ∈ V

}
,

where X is a continuous time random walk on G. Note that the factor of N appearing in
the middle expression comes from the normalization by total conductance at x, which
differs for G and GN .

5.2 Random walks on paths and the first Ray-Knight theorem

In preparation for our analysis of GN , we need some technical results about random
walks on paths. In this setting, it is a classical theorem proved independently by Ray and
Knight that the local times of a continuous time random walk can be related to Brownian
motion.

2We are taking our process XN to be right continuous, so the infimum is achieved, and in particular
XN (ti+1) ∈ V .
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Theorem 5.2 (First Ray-Knight Theorem). For any a > 0, let Bt be a standard one-
dimensional Brownian motion started at B0 = a, and let T = inf{t : Bt = 0}. Let {Wt}t≥0

be a standard two-dimensional Brownian motion. Then,{
LBtT (x) : x ∈ [0, a]

}
law
=
{
|Wx|2 : x ∈ [0, a]

}
,

where LBtT denotes the local time of Brownian motion.

In Section 2.1, we did not define the local time of Brownian motion, which requires
some minor technicalities due to the fact that it can only be defined as a density. For
background on Brownian local times and Theorem 5.2, we refer the reader to [27],
Chapter 6. However, we will only use a discretized version of Theorem 5.2, where we
restrict our attention to a finite set of values for x. This is equivalent to replacing the
Brownian motion Bt with a continuous time random walk on a path.

Corollary 5.3. Let G = (V,E) be an electrical network whose underlying graph is a
path, with vertices labeled 0, 1, 2, . . . , N and conductances ck,k+1 between k and k+ 1 for
0 ≤ k < N . Let Xt be a continuous time random walk on G started at X0 = N , and let
T = inf{t : Xt = 0}. Define

ak =

k−1∑
i=0

1

ci,i+1
,

and let {Wt}t≥0 be a standard two-dimensional Brownian motion. Then,{
LXT (k) : 1 ≤ k < N

}
law
=
{
|Wak |2 : 1 ≤ k < N

}
.

Proof. The equivalence to Theorem 5.2 can be seen as follows. For the discrete time
random walk on a path started at a vertex x, the time spent at x before hitting one of the
endpoints is geometrically distributed. Analogously, for any x ∈ R, let Bt be a Brownian
motion started at x and stopped upon hitting x − r or x + s. Then, a variant of [27],
Lemma 6.30 (whose proof can be adapted) tells us that the local time accumulated at x
is distributed as an exponential random variable with mean rs

r+s .

When x = ak, r = 1
ck,k−1

and s = 1
ck,k+1

, this corresponds to an exponential jump time

from the vertex k in G, scaled by a factor of 1
ck,k−1+ck,k+1

which appears in the definition

of LXT (k).

In light of Corollary 5.3, it is useful to know something about two-dimensional Brown-
ian motion. For our purposes, we need the following estimate, which is a quantitative
verson of the standard fact that two-dimensional Brownian motion is not point-recurrent.

Lemma 5.4. Let Wt be a standard two-dimensional Brownian motion. For any ε ∈ (0, 1)

and λ > 0, we have

P

(
inf

ε≤t≤1
|Wt|2 < λ

)
≤ 2

log ε−1
+

5

ε
exp

(
− log λ−1

log ε−1

)
.

Proof. See Appendix.

Finally, the next lemma shows that certain conditioned random walks on paths are
equivalent to random walks on a path of different conductances. Thus, the first Ray-
Knight theorem may be applied in a conditional setting as well. This will be important
when we study random walk transitions on general electrical networks.
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Lemma 5.5. Let N be a positive integer and r > 0 a real number.
Consider an electrical network G = (V,E) whose underlying graph is a path, with

vertices labeled 0, 1, 2, . . . , N + 1. Suppose that the conductances are ck,k+1 = 1 for
0 ≤ k < N and cN,N+1 = r. Let X = {Xt}t≥0 be a discrete time random walk on G

started at N , and let τ be the first time that X hits 0 or N + 1.
On the other hand, let G′ be a path on vertices 0, 1, 2, . . . , N with conductances

c′k,k+1 =

(
N − k − 1 + 1

r

) (
N − k + 1

r

)
1
r

(
1 + 1

r

)
for 0 ≤ k < N . Let Y = {Yt}t≥0 be a discrete time random walk on G′ started at k.
Then, the paths of Y stopped upon hitting 0 have the same distribution as the paths of X
conditioned on Xτ = 0.

Proof. This can be easily checked by calculating hitting probabilities, which can then be
used to calculate transition probabilities for Xt conditioned on Xτ = 0. See Appendix.

Corollary 5.6. Let N , r, and G be as in Lemma 5.5, and suppose further that r < 1. Let
X be a continuous time random walk on G started at N , and let τ = inf{t ≥ 0 : Xt =

0 or N + 1}. Then, for any ε ∈ (0, 1) and β > 0,

P

(
min

εN≤k<N
LXτ (k) ≤ βN

∣∣∣∣Xτ = 0

)
≤ 2

log ε−1 − Cα
+
Cα
ε

exp

(
− log β−1 − Cα

log ε−1 + Cα

)
where α = rN , and Cα > 0 is a number depending only on α.

Remark 5.7. The statement of Corollary 5.6 takes this somewhat awkward form because
it will be used for r on the order of 1

N .

Proof. By Lemma 5.5 (using the same notation), the paths of X are distributed as a
random walk on a path of N edges with conductances

c′k,k+1 =

(
N − k − 1 + 1

r

) (
N − k + 1

r

)
1
r

(
1 + 1

r

)
for 0 ≤ k < N . Thus, by Corollary 5.3,

P

(
min

εN≤k<N
LXτ (k) ≤ βN

∣∣∣∣Xτ = 0

)
= P

(
min

εN≤k<N
|Wak |2 ≤ βN

)
,

where Wt is a two-dimensional Brownian motion, and

ak =
k−1∑
i=0

1

c′i,i+1

=

k−1∑
i=0

1

r

(
1 +

1

r

)(
1

N − i− 1 + 1
r

− 1

N − i+ 1
r

)

=
1

r

(
1 +

1

r

)(
1

N − k + 1
r

− 1

N + 1
r

)
.

From the above equations, the following bounds are easy to verify for εN ≤ k < N .

c′k−1,k+1 + c′k,k+1 ≥ 2

ak ≥
1

r

(
1 +

1

r

)(
1

N − εN + 1
r

− 1

N + 1
r

)
>

εN

(1 + rN)2
.

ak ≤ aN ≤
2

r
.
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It follows that

P

(
min

εN≤k<N
LXτ (k) ≤ βN

∣∣∣∣Xτ = 0

)
≤ P

(
inf

εN
(1+rN)2

≤t≤ 2
r

|Wt|2 ≤ βN

)

= P

(
inf

εrN
2(1+rN)2

≤t≤1
|Wt|2 ≤

βrN

2

)
= P

(
inf

εα
2(1+α)2

≤t≤1
|Wt|2 ≤

βα

2

)

≤ 2

log ε−1 − Cα
+
Cα
ε

exp

(
− log β−1 − Cα

log ε−1 + Cα

)
,

for Cα sufficiently large. In the second line, we have used the scale-invariance of
Brownian motion, and the third line is an application of Lemma 5.4.

5.3 Local times of GN

Using the results of the previous subsection, we will establish two estimates con-
cerning local times on GN , stated as Lemmas 5.9 and 5.11 below. These correspond to
our assertion that the set U is connected in the heuristic proof outline provided at the
beginning of the section.

In the lemmas that follow, we consider a continuous time random walk XN (t) on GN
started at a vertex x ∈ V . Let τx denote the first time the walk hits another vertex y ∈ V
distinct from x. The first estimate states, roughly, that it is very likely for vertices near x
to accumulate significant local time.

We will need a standard concentration estimate for sums of i.i.d. exponential random
variables. Unfortunately, we were unable to find a reference that contained both tail
bounds, so a short proof is included in the appendix.

Lemma 5.8. Let X1, X2, . . . , XN be i.i.d. exponential random variables with mean µ.
Then, for any α ∈ [0, 1], we have

P

(∣∣∣∣∣
N∑
i=1

Xi − µN

∣∣∣∣∣ ≥ αµN
)
≤ 2e−

1
4α

2N .

Proof. See Appendix.

Lemma 5.9. Let y ∈ V be any neighbor of x in G, let ε ∈
(
0, 1

2

)
, λ > 0 be given, and

define k = bεNc. Then,

P

(
min

0≤i≤k
Lτx(vxy,i) < λ

)
≤ CG · εN

(
λ+ exp

(
− λN

8CG

))
for some constant CG depending on G but not N .

Proof. Recall the notation Lτx(x) for the number of visits to x up until time τx, and recall
also from Section 5.1 that Lτx(x) is distributed as a geometric random variable with
mean N . Conditioning on Lτx(x), we may decompose the walk up until time τx into
Lτx(x) excursions from x and a path to a neighbor of x in G. Each excursion may be
sampled independently.

Let us now consider one excursion. The first step of the excursion goes to some vertex
vxz,1, where z is a neighbor of x in G. As noted earlier, from there the walk behaves like
a simple random walk on Z started at 1, stopped upon hitting 0 (corresponding to the
return to x), and conditioned on hitting 0 before N (corresponding to avoiding z).

Let Em denote the event that a simple random walk on Z started at 1 hits m before 0.
By a standard martingale argument, we have P(Em) = 1

m . Thus,
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P (Ek |EcN ) =
P(Ek ∩ EcN )

P(EcN )
≥ 1

k
− 1

N
>

1

2k
.

In particular, this implies that for each excursion, there is a cxy
cx

probability that the

first step is vxy,1, and with probability at least 1
2k the excursion will then hit vxy,k. In

other words, letting p be the probability that a single excursion includes vxy,k, we have
p ≥ cxy

2kcx
.

Let L denote the number of excursions which hit vxy,k. By the preceding discussion,
it is the sum of Lτx(x) i.i.d. Bernoulli random variables with expectation p. Since Lτx(x)

is geometrically distributed with mean N , it follows that L is geometrically distributed
with mean pN . We thus have

P (L < 2λcxN) ≤ 2λcxN

pN
≤ 4λc2xεN

cxy
. (5.1)

Note that for each i ∈ {0, 1, 2, . . . , k}, the vertex vxy,i is visited at least L times, and
the total conductance of vxy,i is at most Ncx. Thus, Lτx(vxy, i) stochastically dominates

1
Ncx

times the sum of L i.i.d. unit exponentials. By Lemma 5.8 with α = 1
2 , we have

P
(
cxN · Lτx(vxy,i) < λcxN

∣∣∣L ≥ 2λcxN
)
≤ 2 exp

(
−λcxN

8

)
,

and so

P

(
min

0≤i≤k
Lτx(vxy,i) < λ

∣∣∣∣L ≥ 2λcxN

)
≤ 2εN exp

(
−λcxN

8

)
.

Combining this with equation (5.1) gives

P

(
min

0≤i≤k
Lτx(vxy,i) < λ

)
≤ 4λc2xεN

cxy
+ 2εN exp

(
−λcxN

8

)
,

which takes the desired form for CG sufficiently large.

Corollary 5.10. Let S = {y ∈ V : (x, y) ∈ E} be the set of neighbors of x in G. Then,

P

(
min
y∈S

min
0≤k≤ N

log3 N

Lτx(vxy,k) <
log2N

N

)
−→ 0

as N →∞.

Proof. This follows immediately from Lemma 5.9 by taking λ = log2N
N and ε = 1

log3N
.

The second estimate states that, conditioned upon XN (τx) = y, it is very likely that
vertices along the path from x to y are visited a large number of times, as long as they
are not very close to y. This essentially follows from Corollary 5.6.

Lemma 5.11. Let y be a neighbor of x in G. Then, for any ε, λ ∈ (0, 1), we have

P

(
min

εN≤k<N
Lτx(vyx,k) < λ

∣∣∣∣XN (τx) = y

)
≤ 2

log ε−1 − CG
+
CG
ε

exp

(
− log λ−1 − CG

log ε−1 + CG

)
for some constant CG depending on G but not N .

Proof. Let S = {z ∈ V : (x, z) ∈ E}. Note that the process XN up to time τx induces a
continuous time random walk Y = {Yt}t≥0 on the vertices

{vxy,0, vxy,1, . . . , vxy,N} ∪ S
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by ignoring visits to vertices outside of that set (namely, those of the form vxz,k for z 6= y

and 1 ≤ k < N ). We can define a stopping time Tx analogous to τx as the first time Y
hits S.

For convenience, define pxz = cxz
cx

for each z ∈ S. Note that

P (XN hits vxy,1 before hitting S or returning to x) = pxy

P (XN hits S before hitting vxy,1 or returning to x) =
1− pxy
N

.

Thus, we can interpret Y up to time Tx as a continuous time random walk on a path
with vertices (w0, w1, w2, . . . , wN+1), where all the conductances are 1 except that the
conductance between wN and wN+1 is 1−pxy

Npxy
. Here, wk corresponds to vyx,k (so Y is

started at wN ), and wN+1 corresponds to any vertex in S \ {y} (we may combine all of
these states because Y is stopped upon hitting this set anyway).

We are now in the setting of Corollary 5.6, as conditioning on YTx = y corresponds to
conditioning on hitting w0 before wN+1. Following the notation of Corollary 5.6, we have
r =

1−pxy
Npxy

, so that α =
1−pxy
pxy

.
We apply the corollary with β = λcxy. Note that the total conductances at vyx,k are

2Ncxy as opposed to 2 in the statement of Corollary 5.6, so the local times will be scaled
accordingly. It follows that

P

(
min

εN≤k<N
LXNτx (vyx,k) < λ

∣∣∣∣XN (τx) = y

)
= P

(
min

εN≤k<N
LYTx(wk) < λcxyN

∣∣∣∣YTx = y

)

≤ 2

log ε−1 − Cα
+
Cα
ε

exp

(
− log λ−1 − log cxy − Cα

log ε−1 + Cα

)
≤ 2

log ε−1 − CG
+
CG
ε

exp

(
− log λ−1 − CG

log ε−1 + CG

)
,

whenever CG > max(Cα, Cα + log cxy). In particular, since there are only finitely many
possible values of pxy and hence of α, we can choose CG sufficiently large so that this
holds independently of N . This proves the lemma.

Corollary 5.12. Let y be a neighbor of x in G. Then, we have

P

(
min

N
log3 N

≤k≤N
Lτx(vyx,k) <

log2N

N

∣∣∣∣∣Xτx = y

)
−→ 0

as N →∞.

Proof. We apply Lemma 5.11 with ε = 1
log3N

and λ = log2N
N . It suffices to show that both

terms on the right hand side tend to zero. Clearly,

2

log ε−1 − CG
→ 0

as N →∞. To bound the other term, note that for sufficiently large N , we have

log λ−1 − CG
log ε−1 + CG

=
logN − 2 log logN − CG

3 log logN + CG
≥ logN

6 log logN
,

in which case

CG
ε

exp

(
− log λ−1 − CG

log ε−1 + CG

)
≤ CG log3N exp

(
− logN

6 log logN

)

= CG exp

(
− logN

6 log logN
+ 3 log logN

)
−→ 0.
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5.4 Proof of the stochastic domination

We now prove Theorem 3.1, following the plan described in Section 3. Let us first
prove an approximation of Theorem 3.1.

Lemma 5.13. Let t > 0 be given. Let ΩN be a probability space with random variables
ηN , η′N , and XN = {XN (t)}t≥0 such that ηN and η′N are distributed as Gaussian free fields
on GN , and XN is distributed as a continuous time random walk on GN . Furthermore,
suppose that ηN and XN are independent, and almost surely for each v ∈ VN ,

1

2
η2
N,v + LXNτ+(t)(v) =

1

2

(
η′N,v +

√
2t
)2

.

(Theorem 2.1 ensures that such a construction is always possible.) Then, for any ε > 0,
we have

P
(

for some x ∈ V , both LXNτ+(t)(x) > 0 and η′N,x +
√

2t < 0
)
≤ ε

for N sufficiently large.

Remark 5.14. Note that the hypothesis of Lemma 5.13 implies for each x ∈ V that√
LXNτ+(t)(x) ≤ 1√

2

∣∣∣η′N,x +
√

2t
∣∣∣ .

Consequently, the conclusion of the lemma may be expressed equivalently as

P

(√
LXNτ+(t)(x) >

1√
2

max

(
0, η′N,x +

√
2t

cv0

)
for some x ∈ V

)
≤ ε.

Proof. To shorten notation, we use τ+ to denote τ+(t).

Call a vertex x ∈ V well-connected at time s if there exists a sequence of vertices
v0 = w0, w1, . . . , wn = x in VN such that (wi, wi+1) ∈ EN and LXNs (wi) ≥ log2N

N for each
i. We will show that with high probability, every vertex in V with positive local time at
time τ+ is well-connected. (This corresponds to connectedness of the set U from Section
5.13.)

Recall from the discussion in Section 5.1 that XN induces a random walk on G which,
when regarded as a sequence of visited vertices (disregarding holding times), has the
same law as a discrete time random walk on G. Thus, one way of sampling from XN is
to first sample a path

P = (v0 = x0, x1, x2, . . .)

of the discrete time random walk on G. Then, we construct XN as follows. For each
i ≥ 0, let Yi(t) be a continuous time random walk on GN started at xi, and let τi be the
first time that Yi hits a neighbor of xi in G.

Let Zi have the law of a copy of Yi conditioned on the event Yi(τi) = xi+1. Then, we
may form XN by concatenating the walks Zi up to time τi. More formally, we may define

n(s) = max

{
n ≥ 1 :

n−1∑
i=1

τi ≤ s

}

and set XN (s) = Zn(s)

(
s−

∑n(s)−1
i=1 τi

)
.

To lighten notation, let us write Li = LYiτi and Pi(·) = P (· |Yi(τi) = xi+1), noting
that the randomness of the Yi are independent. Let P (s) = (x1, x2, . . . , xn(s)) denote
the truncation of P up until time s. We will say that P (s) is well-connected if each xi
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appearing in P (s) is well-connected at time s. Then,

P
(
P (τ+) is not well-connected

∣∣∣P (τ+)
)

≤
|P (τ+)|−1∑

i=1

Pi

(
min

0≤k≤N
Li(vxixi+1,k) <

log2N

N

)

=

|P (τ+)|−2∑
i=1

Pi

(
min

0≤k≤N− N
log3 N

Li(vxixi+1,k) <
log2N

N

)
+

|P (τ+)|−1∑
i=2

Pi

(
min

0≤k< N
log3 N

Li(vxixi−1,k) <
log2N

N

)
(5.2)

Fix a number T sufficiently large so that P
(
|P (τ+)| > T

)
≤ ε

4 . Again, by the

discussion of Section 5.1, the law of P (τ+) does not depend on N , so the number T can
be chosen independently of N . Note that by Corollaries 5.10 and 5.12, each summand
in either sum of the last expression of (5.2) is bounded by ε

8T for sufficiently large N .
Consequently, for sufficiently large N , the whole expression is bounded by 2|P (τ+)| · ε

8T ,
and we have

P
(
P (τ+) is not well-connected

)
≤ P

(
|P (τ+)| > T

)
+

P
(
P (τ+) is not well-connected

∣∣∣ |P (τ+)| ≤ T
)

≤ ε

4
+ 2T · ε

8T
=
ε

2
.

Note that almost surely, the vertices x ∈ V for which Lτ+(x) > 0 are exactly those
appearing in P (τ+). Thus, we have

P
(

for some x ∈ V , Lτ+(x) > 0 but x is not well-connected
)
≤ ε

2
. (5.3)

We next show that with high probability, the values of η′N at adjacent vertices do not
differ by very much. (This corresponds to the continuity of the Gaussian free field on the
metric graph and means that it is unlikely for η′N +

√
2t to change sign at two adjacent

vertices with large local times.)
Consider any (x, y) ∈ E and 0 ≤ k < N . For notational convenience, let u = vxy,k and

w = vxy,k+1. We have

E(η′N,u − η′N,w)2 = Reff(u,w) ≤ 1

Ncxy
.

Since η′N,u − η′N,w has a Gaussian distribution, it follows that

P

(
|η′N,u − η′N,w| ≥

logN√
N

)
≤ exp

(
−cxy log2N

)
.

Taking a union bound over all adjacent pairs (u,w) ∈ EN , we obtain

P

(
max

(u,w)∈EN
|η′N,u − η′N,w| ≥

logN√
N

)
≤ N exp

(
−
(

min
(x,y)∈E

cxy

)
log2N

)
≤ ε

2
(5.4)

for N sufficiently large.
Finally, we may combine equations (5.3) and (5.4) to deduce the lemma. Indeed,

suppose that for some x ∈ V , we have LXNτ+ (x) > 0 but
√

2t + η′N,x < 0. If x is well-
connected at time τ+, which occurs with high probability by (5.3), then there exists a
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path v0 = w0, w1, . . . , wn = x in GN such that each LXNτ+ (wi) is at least log2N
N . Observe

that
√

2t+ η′N,v0 =
√

2t > 0, so for some i we must have

√
2t+ η′N,wi > 0 and

√
2t+ η′N,wi+1

< 0.

However, we also have

1√
2

∣∣∣√2t+ η′N,wi

∣∣∣ =

√
LXNτ+ (wi) +

1

2
η2
N,xi

≥ logN√
N

.

Therefore, this can only happen if∣∣∣η′N,wi − η′N,wi+1

∣∣∣ ≥ 2 logN√
N

.

But by equation (5.4), this is unlikely. Thus, we have

P
(

for some v ∈ V , both LXNτ+ (v) > 0 and
√

2t+ η′N,v < 0
)

≤ P
(

max
(u,w)∈EN

|η′N,u − η′N,w| ≥
logN√
N

)
+

P
(

for some x ∈ V , Lτ+(x) > 0 but x is not well-connected
)

≤ ε

2
+
ε

2
= ε,

proving the lemma.

Theorem 3.1 is now an easy consequence of Lemma 5.13.

Proof of Theorem 3.1. Let A ⊂ RV be any monotone set. We wish to show that

P

({
1√
2

max
(

0, ηx +
√

2t
)}

x∈V
∈ A

)
≥ P

({√
1

cx
LXτ+(t)(x)

}
x∈V
∈ A

)
. (5.5)

Let ε > 0 be given, and take N sufficiently large so that the conclusion of Lemma 5.13
holds.

Let ηN be the Gaussian free field on GN , and let XN be a continuous time random
walk independent of ηN . We will now try to define another Gaussian free field η′N,v on
the same probability space so as to satisfy the hypotheses of Lemma 5.13. In fact, by the
isomorphism theorem, η′N can be given in terms of ηN and the local times up to a choice
of sign in taking the square root.

To determine the signs, we can artificially introduce some additional randomness.
Fix an arbitrary ordering on {−1, 1}VN . For each σ = {σv}v∈VN ∈ {−1, 1}VN , define the
function fσ : RVN → R by

fσ(Z) = P

(
ηN,v = σv

√
Zv −

√
2t for all v ∈ VN

∣∣∣∣ (ηN,v +
√

2t
)2

= Zv for all v ∈ VN
)
.

Let U be uniformly distributed on [0, 1] and independent of ηN and XN . For any u ∈ [0, 1]

and Z ∈ RVN , we may define

σ∗(u, Z) = max

{
σ ∈ {−1, 1}VN : u ≥

∑
ρ<σ

fρ(Z)

}
.

We can then define

ζN,v =
1

2
η2
N,v +

1

cv
LXNτ+(t)(v)

EJP 23 (2018), paper 32.
Page 18/22

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP149
http://www.imstat.org/ejp/


Exponential concentration of cover times

η′N,v = σ∗ (U, 2ζN,v)
√

2ζN,v −
√

2t.

We are now in the setting of Lemma 5.13, which gives

P
(

for some v ∈ V , both LXNτ+(t)(v) > 0 and η′N,v +
√

2t < 0
)
≤ ε,

or equivalently (by Remark 5.14),

P

(√
LXNτ+(t)(x) >

1√
2

max
(

0, η′N,x +
√

2t
)

for some x ∈ V
)
≤ ε.

Now, let η and X be the GFF and a continuous time random walk on G, respectively.
By the relationship between GN and G described in Proposition 5.1, we have

P

({
1√
2

max
(

0, ηx +
√

2t
)}

x∈V
∈ A

)
= P

({
1√
2

max
(

0, η′N,x +
√

2t
)}

x∈V
∈ A

)

≥ P
({√

LXNτ+(t)(x)
}
x∈V
∈ A

)
− ε = P

({√
1

cx
LXτ+(t)(x)

}
x∈V
∈ A

)
− ε.

This holds for each ε > 0, so taking ε→ 0, we obtain (5.5), as desired.

6 Appendix

6.1 Proof of Lemma 5.4

To break up the proof, we first establish a lemma.

Lemma 6.1. Let r > 0 be given, and consider any point y ∈ R2 such that |y| > r. Let
{W y

t }t≥0 be a standard planar Brownian motion started at y. Then,

P

(
inf

t∈[0,1]
|W y

t | ≤ r
)
≤ inf

0≤α≤|y|

(
2 logα−1

log r−1
+ 4α2

)
.

Proof. Note that P
(
inft∈[0,1] |W y

t | ≤ r
)

is decreasing in |y|, so it suffices to show the
inequality only for α = |y|. Let s = 1

|y| . Define two stopping times

T = inf{t ≥ 0 : |W y
t | 6∈ [r, s]}

T ′ = inf{t ≥ 0 : |W y
t | 6∈ [r,∞)}

Now, consider the stopped martingale Xt = log |W y
T∧t|, noting that X0 = log |y| and

Xt ∈ [log r, log s]. By the martingale property, we have

P (X1 = log r) ≤ log s− log |y|
log s− log r

=
2 log |y|−1

log |y|−1 + log r−1
≤ 2 log |y|−1

log r−1
.

Moreover, by Doob’s maximal inequality3 on the submartingale |W y
t |2,

P
(

min(T, 1) 6= min(T ′, 1)
)
≤ P

(
sup
t∈[0,1]

|W y
t | ≥ s

)
≤ min

(
1,
|y|2 + 2

s2

)
≤ 4|y|2.

It follows that

P

(
inf

t∈[0,1]
|W y

t | ≤ r
)

= P
(
T ′ ≤ 1

)
≤ P

(
X1 = log r or min(T, 1) 6= min(T ′, 1)

)
≤ 2 log |y|−1

log r−1
+ 4|y|2,

as desired.
3We use Doob’s maximal inequality for brevity only. Other methods such as the reflection principle would

serve just as well; the bound on sup |W y
t | does not need to be sharp for our purposes.
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Proof of Lemma 5.4. Define λ′ = λ
1

log ε−1 . Recall that the probability density of the
standard two-dimensional Gaussian is bounded above by 1

2π , and so the probability
density of Wε is bounded above by 1

2πε . Thus,

P
(
|Wε|2 ≤ λ′

)
≤ 1

2πε
· πλ′ =

1

2ε
exp

(
− log λ−1

log ε−1

)
.

We now apply Lemma 6.1 with y = Wε, r =
√
λ, and taking α =

√
λ′ in the infimum.

This gives

P

(
inf

ε≤t≤1
|Wt|2 < λ

∣∣∣∣ |Wε|2 ≥ λ′
)
≤ 2 log λ′−1

log λ−1
+ 4λ′

=
2

log ε−1
+ 4 exp

(
− log λ−1

log ε−1

)
≤ 2

log ε−1
+

9

2ε
exp

(
− log λ−1

log ε−1

)
.

This along with the previous inequality proves the lemma

6.2 Proof of Lemma 5.5

Proof. Define

f(x) =

{
x : 0 ≤ x ≤ N
N + 1

r : x = N + 1

Note that f(X) is a martingale. Thus, for a walk started at k, the probability of hitting
0 before N + 1 is

f(N + 1)− f(k)

f(N + 1)− f(0)
=
N − k + 1

r

N + 1
r

.

It follows that for 1 ≤ k < N ,

P
(
Xt+1 = k + 1

∣∣∣Xt = k,Xτ = 0
)

P
(
Xt+1 = k − 1

∣∣∣Xt = k,Xτ = 0
) =

N − k − 1 + 1
r

N − k + 1 + 1
r

=
c′k,k+1

c′k−1,k

,

where

c′k,k+1 =

(
N − k − 1 + 1

r

) (
N − k + 1

r

)
1
r

(
1 + 1

r

) .

Thus, the transition probabilities of X conditioned on Xτ = 0 are exactly the un-
conditioned transition probabilities of Y . Consequently, their paths have the same
distribution.

6.3 Proof of Lemma 5.8

Proof. For any t < 1
µ , we have by direct calculation

log

(
E exp

(
t

N∑
i=1

Xi

))
= N log

(
1

1− µt

)
.

If in fact |t| ≤ α
2µ , we have

log

(
1

1− µt

)
=

∞∑
k=1

µktk

k
≤ µt+ µ2t2 = µt(1 + 2µt)− µ2t2.

and so
E exp

(
t
∑N
i=1Xi

)
exp (t(1 + 2µt)µN)

≤ e−µ
2t2N .
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By Markov’s inequality with t = α
2µ and t = − α

2µ , we obtain

P

(
(1− α)µN ≤

N∑
i=1

Xi ≤ (1 + α)µN

)
≤ 2e−

1
4α

2N .
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