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Abstract

We define linear stochastic heat equations (SHE) on p.c.f.s.s. sets equipped with
regular harmonic structures. We show that if the spectral dimension of the set is
less than two, then function-valued “random-field” solutions to these SPDEs exist
and are jointly Hölder continuous in space and time. We calculate the respective
Hölder exponents, which extend the well-known results on the Hölder exponents of
the solution to SHE on the unit interval. This shows that the “curse of dimensionality”
of the SHE on Rn depends not on the geometric dimension of the ambient space
but on the analytic properties of the operator through the spectral dimension. To
prove these results we establish generic continuity theorems for stochastic processes
indexed by these p.c.f.s.s. sets that are analogous to Kolmogorov’s continuity theorem.
We also investigate the long-time behaviour of the solutions to the fractal SHEs.
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1 Introduction

The stochastic heat equation (or SHE) on Rn, n ∈ N is a stochastic partial differential
equation which can be expressed formally as

∂u

∂t
(t, x) = Lu(t, x) + Ẇ (t, x),

u(0, ·) = u0

for (t, x) ∈ [0,∞) × Rn, where L is the Laplacian on Rn, u0 is a (sufficiently regular)
function on Rn and Ẇ is a space-time white noise on R×Rn. Written in the differential
notation of stochastic calculus this is equivalent to

du(t) = Lu(t)dt+ dW (t),

u(0) = u0,
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Stochastic heat equations on p.c.f. fractals

where W is a cylindrical Wiener process on L2(Rn). A solution to this SPDE is a process
u = (u(t) : t ∈ [0, T ]) taking values in some space containing L2(Rn) that satisfies the
above equations in some weak sense; see [4] for details. The SHE on Rn is one of the
prototypical examples of an SPDE and has been widely studied, see for example [5], [8]
and [21]. It has two notable properties that are relevant to the present paper. The first is
its so-called “curse of dimensionality”. Solutions to the SHE on Rn are function-valued
only in the case n = 1; in dimension n ≥ 2 solutions are forced to take values in a wider
space of distributions on Rn, see [21]. Secondly if n = 1 and u0 = 0 then the solution
is unique and jointly Hölder continuous in space and time, see again [21]. One of the
aims of the present paper is to investigate what happens regarding these two properties
in the setting of finitely ramified fractals, which behave in many ways like spaces with
dimension between one and two.

The family of spaces that we will be considering is the class of connected post-
critically finite self-similar (or p.c.f.s.s.) sets endowed with regular harmonic structures.
This family includes many well-known fractals such as the Sierpinski gasket and the
Vicsek fractal but not the Sierpinski carpet. The unit interval [0, 1] also has several
formulations in the language of p.c.f.s.s. sets that belong to this family. Analysis on these
sets is a relatively young field which started with the construction of a “Brownian motion”
on the Sierpinski gasket in [9], [17] and [3]. This broader theory was then developed and
provides a concrete framework where reasonably explicit results can be obtained, see
[15] and [2]. Associated with a regular harmonic structure on a p.c.f.s.s. set (F, (ψi)

M
i=1)

is an operator, called the Laplacian on F , which is the generator of a “Brownian motion”
on F by analogy with the Laplacian on Rn as the generator of Brownian motion in Rn. We
will see that there exists a constant ds > 0 associated with the harmonic structure known
as the spectral dimension, and it will turn out that the assumption that the harmonic
structure is regular implies that ds ∈ [1, 2). The existence of a Laplacian allows us to
define certain PDEs and SPDEs on F , such as a heat equation and a stochastic heat
equation. The former has been studied extensively, see [15, Chapter 5] and further
references. The latter is the subject of the present paper.

For examples of some previous work in this area, in [6] it is shown that on certain
fractals a stochastic heat equation can be defined which yields a random-field solution,
that is, a solution which is a random map [0, T ]× F → R. We extend this result in the
main theorem of Section 4 of the present paper. In [14] (see also [12]) it is shown that
solutions to some nonlinear stochastic heat equations on more general metric measure
spaces have Hölder continuous paths when considered as a random map from a “time”
set to some space of functions. However in that paper the authors do not consider the
Hölder exponents of the solution when considered as a random field, which is what we
will do.

The structure of the present paper is as follows: In the following subsection we
describe the precise set-up of the problem and the specific SPDE that we will be studying,
and state a theorem which is an important corollary of our main result. In Section 2
we recall some useful spectral theory for Laplacians on p.c.f.s.s. sets from [15] and
show that (unique) solutions to the SPDE exist as L2(F )-valued stochastic processes.
In Section 3 we prove generic results analogous to Kolmogorov’s continuity theorem
for families of random variables indexed by F and by [0, 1] × F . In Section 4 we show
that the resolvent densities associated with the Laplacian are Lipschitz continuous with
respect to the resistance metric on F . More importantly we also show that evaluations
of solutions to the SPDE at points (t, x) ∈ [0,∞)× F can be done in a well-defined way,
which is necessary for us to talk about continuity of these solutions. Section 5 contains
the main results of the paper, which use our continuity theorems to establish space-time
Hölder continuity of solutions to the SPDE and compute the respective Hölder exponents.
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Stochastic heat equations on p.c.f. fractals

Section 6 serves as a “coda” of the paper, where we prove results on the invariant
measures and long-time behaviour of the solutions to the SPDE.

1.1 Description of the problem

Let M ≥ 2 be an integer. Let S = (F, (ψi)
M
i=1) be a connected p.c.f.s.s. set (see [15])

such that F is a compact metric space and the ψi : F → F are injective strict contractions
on F . Let I = {1, . . . ,M} and for each n ≥ 0 let Wn = In. Let W∗ =

⋃
n≥0Wn and let

W = IN. We call the sets Wn, W∗ and W word spaces and we call their elements words.
Note that W0 is a singleton containing an element known as the empty word. Words
w ∈Wn or w ∈W will be written in the form w = w1w2w3 . . . with wi ∈ I for each i. For
a word w = w1, . . . , wn ∈W∗, let ψw = ψw1

◦ · · · ◦ ψwn and let Fw = ψw(F ).
If W is endowed with the standard product topology then there is a canonical

continuous surjection π : W → F given in [2, Lemma 5.10]. Let P ⊂ W be the post-
critical set of S (see [15, Definition 1.3.4]), which is finite by assumption. Then let
F 0 = π(P ), and for each n ≥ 1 let Fn =

⋃
w∈Wn

ψw(F 0). Let F∗ =
⋃∞
n=0 F

n. It is easily
shown that (Fn)n≥0 is an increasing sequence of finite subsets and that F∗ is dense in F .

Let the pair (A0, r) be a regular irreducible harmonic structure on S such that
r = (r1, . . . , rM ) ∈ RM for some constants ri > 0, i ∈ I (harmonic structures are defined
in [15, Section 3.1]). Here regular means that ri ∈ (0, 1) for all i. Let rmin = mini∈I ri and
rmax = maxi∈I ri. If n ≥ 0, w = w1, . . . wn ∈W∗ then write rw :=

∏n
i=1 rwi . Let dH > 0 be

the unique number such that ∑
i∈I

rdHi = 1.

Then let µ be the self-similar Borel probability measure on F such that for any n ≥ 0,
if w ∈Wn then µ(Fw) = rdHw . In other words, µ is the self-similar measure on F in the
sense of [15, Section 1.4] associated with the weights rdHi on I. Let (E ,D) be the regular
local Dirichlet form on L2(F, µ) associated with this harmonic structure, as given by
[15, Theorem 3.4.6]. This Dirichlet form is associated with a resistance metric R on F ,
defined by

R(x, y) = (inf{E(f, f) : f(x) = 0, f(y) = 1, f ∈ D})−1
,

which generates the original topology on F , by [15, Theorem 3.3.4]. Additionally, let

D0 = {f ∈ D : f |F 0 = 0}.

Then by [15, Corollary 3.4.7], (E ,D0) is a regular local Dirichlet form on L2(F \ F 0, µ).
By [2, Chapter 4], associated with the Dirichlet form (E ,D) on L2(F, µ) is a µ-

symmetric diffusion XN = (XN
t )t≥0 which itself is associated with a C0-semigroup

of contractions SN = (SNt )t≥0. Let LN be the generator of this diffusion. Likewise associ-
ated with (E ,D0) we have a µ-symmetric diffusion XD with C0-semigroup of contractions
SD and generator LD. The process XD is similar to XN , except for the fact that it
is absorbed at the points F 0, whereas XN is reflected. The letters N and D indicate
Neumann and Dirichlet boundary conditions respectively. As a consequence of theory
developed in [7, Sections 1.3 and 1.4], the operator −LN is the non-negative self-adjoint
operator associated with the form (E ,D), in the sense that D = D((−LN )

1
2 ) and

E(f, g) = 〈(−LN )
1
2 f, (−LN )

1
2 g〉µ

for all f, g ∈ D. An analogous result holds with −LD and (E ,D0). This justifies us calling
LN the Neumann Laplacian and LD the Dirichlet Laplacian.

Example 1.1. Let F = [0, 1] and take any M ≥ 2. For 1 ≤ i ≤ M let ψi : F → F be the
affine map such that ψi(0) = i−1

M , ψi(1) = i
M . It follows that F 0 = {0, 1}. Let ri = M−1
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Stochastic heat equations on p.c.f. fractals

for all i ∈ I and let

A0 =

(
−1 1

1 −1

)
.

Then all the conditions given above are satisfied. We have D = H1[0, 1] and E(f, g) =∫ 1

0
f ′g′. The associated generators LN and LD are respectively the standard Neumann

and Dirichlet Laplacians on [0, 1]. In particular, the induced resistance metric R is none
other than the standard Euclidean metric. This interpretation of the unit interval as a
p.c.f.s.s. set that fits into our set-up will be useful to us later on.

The object of study in the present paper is the following SPDE on F :

du(t) = Lbu(t)dt+ (1− Lb)−
α
2 dW (t),

u(0) = u0 ∈ L2(F, µ),
(1.1)

where b ∈ {N,D} and α ∈ [0,∞) are parameters and W is a cylindrical Wiener process
on L2(F, µ). That is, W formally satisfies

E
[
〈f,W (s)〉L2(F,µ)〈W (t), g〉L2(F,µ)

]
= (s ∧ t)〈f, g〉L2(F,µ)

for all s, t ∈ [0,∞) and f, g ∈ L2(F, µ). Note that W is not an L2(F, µ)-valued process;
to be precise, it takes values in some separable Hilbert space in which L2(F, µ) can
be continuously embedded (see [4]). The vast majority of results in this paper hold
regardless of the value of b; whenever this is not the case it will be explicitly stated.

The SPDE (1.1) in the case α = 0 will be called the stochastic heat equation or SHE
for (A0, r) on F . It is well known (see for example [21]) that the solution to the standard
SHE on [0, 1] with initial condition u0 = 0 is jointly continuous with Hölder exponents of
essentially 1

2 in space and essentially 1
4 in time (the meaning of “essentially” is given in

Definition 2.10). The following extension of this result is a simple consequence of our
main result Theorems 5.6 and 5.7 and was the original motivation for the writing of the
present paper:

Theorem 1.2. Equip F with the resistance metric R. Then for each b ∈ {N,D}, the
SHE for (A0, r) on F with u0 = 0 has a unique solution u = (u(t, x))(t,x)∈[0,∞)×F which is
jointly continuous, essentially 1

2 -Hölder continuous in space (i.e. in (F,R)) and essentially
1
2 (1− ds

2 )-Hölder continuous in time, where

ds =
2dH
dH + 1

is the spectral dimension of (F,R).

Note that many p.c.f.s.s. sets F can be embedded into Euclidean space in such a
way that R is equivalent to the Euclidean metric up to some exponent. Therefore, for
such sets, we can also make sense of the above result with respect to a spatial Euclidean
metric, see Remark 5.8.

Example 1.3. (1). (Interval.) Take F = [0, 1] with the Dirichlet form given in Example
1.1. Then ds = 1 and the resistance metric is the Euclidean metric, so using the
above theorem we obtain the usual well-known Hölder exponents for the SHE on
[0, 1].

(2). (n-dimensional Sierpinski gasket.) See [15, Example 3.1.5] and [13, Section 3]. The
standard harmonic structure on the n-dimensional Sierpinski gasket (for n ≥ 2) fits
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Stochastic heat equations on p.c.f. fractals

into our set-up; it is given by M = n+ 1,

A0 =


−n 1 1 · · · 1

1 −n 1 · · · 1

1 1 −n · · · 1
...

...
...

. . .
...

1 1 1 · · · −n

 ,

and ri = n+1
n+3 for all i ∈ I. In fact for n = 1 we have the binary decomposition of the

unit interval and recover the usual case. For n = 2 the diffusion XN is known as
Brownian motion on the Sierpinski gasket and is ubiquitous in the field of analysis
on fractals ([9], [17], [3]). We can compute dH = log(n+1)

log(n+3)−log(n+1) and ds = 2 log(n+1)
log(n+3) .

This gives us a family of examples which live naturally in Rn for any geometric
dimension n and where the spectral dimension can be made arbitrarily close to
2 by taking n large. Using the properties of the resistance metric we can have
solutions that have arbitrarily small spatial (with respect to the Euclidean metric)
and temporal Hölder exponents. See Remark 5.8 for further discussion.

2 Existence (and uniqueness)

Definition 2.1. Henceforth we let H = L2(F, µ). Denote the inner product on H by
〈·, ·〉µ. Let T > 0. Following [4], an H-valued predictable process u = (u(t) : t ∈ [0, T ]) is
a (mild) solution to (1.1) if

u(t) = Sbtu0 +

∫ t

0

Sbt−s(1− Lb)−
α
2 dW (s)

almost surely for every t ∈ [0, T ]. We write u : [0, T ] → H, where we suppress the
dependence of u on the underlying probability space. If T = ∞ we call the solution
global.

Remark 2.2. Global solutions to (1.1) are unique up to versions by definition.

Notice that for any f ∈ H, u is a solution to (1.1) with u0 = 0 if and only if u+ Sbf is
a solution to (1.1) with u0 = f . Thus we can safely assume that u0 = 0, and so we are
interested in the properties of the stochastic convolution

W b
α(t) :=

∫ t

0

Sbt−s(1− Lb)−
α
2 dW (s). (2.1)

Observe that if a solution exists for u0 = 0, then it must equal W b
α up to versions.

The first thing to investigate is the validity of the operator (1 − Lb)−
α
2 in the case

α > 0. For an operator A onH, we denote the domain of A by D(A). If A is bounded then
let ‖A‖ denote its operator norm. The following statements are immediate by standard
operator theory (see [18, Theorem VIII.5] and [19, Theorem 12.31]):

Corollary 2.3. For b ∈ {N,D} we have that

(1). Sbt = exp(tLb) for t ≥ 0,

(2). Sb can be extended to an analytic semigroup (which we will identify with Sb),

(3). For α ≥ 0, (1− Lb)−
α
2 is a bounded linear operator.

Remark 2.4. The operator (1− Lb)−
α
2 is known as a Bessel potential, see [14], [20].
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Stochastic heat equations on p.c.f. fractals

2.1 Spectral theory of Laplacians

Now that we have established the close relationship between Lb and E , we may make
use of the spectral theory of these Laplacians developed in [15, Chapters 4 and 5]. We
summarise the useful definitions and results below:

Definition 2.5. The unique real dH > 0 such that∑
i∈I

rdHi = 1

is the Hausdorff dimension of (F,R), see [15, Theorem 1.5.7 and Theorem 4.2.1]. The
spectral dimension of (F,R) is given by

ds =
2dH
dH + 1

.

See [15, Theorem 4.1.5 and Theorem 4.2.1].

Remark 2.6. (1). The definition of ds given in [15] is far more general, but the definition
above is equivalent for our purposes. We immediately see that ds ∈ (0, 2) a priori.
Were the harmonic structure (A0, r) not regular, it would be possible to have ds ≥ 2

via its more general definition.

(2). It is possible to show that dH ≥ 1. Indeed, by [15, Theorem 1.6.2 and Lemma 3.3.5]
we have that

max
x,y∈F 0

R(x, y) ≤
∑
i∈I

max
x,y∈F 0

R(Fi(x), Fi(y)) ≤

(∑
i∈I

ri

)
max
x,y∈F 0

R(x, y),

so that
∑
i∈I ri ≥ 1 =

∑
i∈I r

dH
i and thus dH ≥ 1. It follows that ds ∈ [1, 2).

Proposition 2.7. For b ∈ {N,D} the following statements hold:

There exists a complete orthonormal basis (ϕbk)∞k=1 of H consisting of eigenfunctions
of the operator −Lb. The corresponding eigenvalues (λbk)∞k=1 are non-negative and
limk→∞ λbk =∞. We assume that they are given in ascending order:

0 ≤ λb1 ≤ λb2 ≤ · · · .

There exist constants c1, c2, c3 > 0 such that if k ≥ 2 then

c1k
2
ds ≤ λbk ≤ c2k

2
ds

and

‖ϕbk‖∞ ≤ c3|λbk|
ds
4 .

Proof. This is a simple corollary of results in [15, Chapters 4, 5], in particular Theorem
4.5.4 and Lemma 5.1.3.

Remark 2.8. Note that all functions f ∈ D must be at least 1
2 -Hölder continuous with

respect to the resistance metric since

|f(x)− f(y)|2 ≤ E(f, f)R(x, y)

for all x, y ∈ F (see [2, Proposition 7.18]). Thus it makes sense to consider ϕbk(x) for

x ∈ F . The above proposition then implies that |ϕbk(x)| ≤ c3|λbk|
ds
4 for all x ∈ F , k ≥ 2.

EJP 23 (2018), paper 22.
Page 6/30

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP148
http://www.imstat.org/ejp/


Stochastic heat equations on p.c.f. fractals

Remark 2.9. The reason why we require k ≥ 2 in the above proposition is that we may
have λb1 = 0. In this case it follows that E(ϕb1, ϕ

b
1) = 0. By the properties of the resistance

metric R, for any distinct x1, x2 ∈ F we have that

|ϕb1(x1)− ϕb1(x2)|2

R(x1, x2)
≤ E(ϕb1, ϕ

b
1) = 0.

It follows that ϕb1 is constant. Since ‖ϕb1‖µ = 1 and µ is a probability measure we conclude
that ϕb1 ≡ 1. This confirms that if 0 is an eigenvalue it must necessarily have multiplicity
1, so we always have λb2 > 0. It also implies that we have λb1 = 0 if and only if b = N ,
since the non-zero constant functions are elements of D \D0. In the case that λb1 > 0, we
will assume that c1, c2, c3 are chosen such that the estimates in the above proposition
hold for k ≥ 1.

The existence of a complete orthonormal basis of eigenfunctions of Lb allows us to
write down series representations of elements of H and operators defined on subspaces
of H in a way analogous to the Fourier series representations of elements of L2(0, 1). For
example, an element f ∈ H has a series representation

f =

∞∑
k=1

fkϕ
b
k

where fk = 〈ϕbk, f〉µ. Then for any map Ξ : [0,∞)→ R we have that the operator Ξ(−Lb)
has the representation

Ξ(−Lb)f =

∞∑
k=1

fkΞ(λbk)ϕbk,

and the domain of Ξ(−Lb) is exactly those f ∈ H for which the above expression is in H.
In particular

Sbt f =

∞∑
k=1

fke
−λbktϕbk

for all f ∈ H.

2.2 Existence of solution

Recall the expression (2.1). If we can show that W b
α(t) ∈ H almost surely for every

t > 0, then we have a unique global solution of (1.1) for u0 = 0, and thus by the discussion
after Definition 2.1 we have a unique global solution for any initial value u0 ∈ H. In fact
we can do better than that:

Definition 2.10. Let (M1, d1) and (M2, d2) be metric spaces, and let f : M1 → M2 be
continuous. For δ ∈ (0, 1] we say that f is essentially δ-Hölder continuous if it is γ-Hölder
continuous for every γ < δ. That is, for every γ ∈ (0, δ) there exists a constant εγ such
that d2(f(x), f(y)) ≤ εγd1(x, y)γ for all x, y ∈M1.

Theorem 2.11 (Existence). For every α ≥ 0, b ∈ {N,D} and T ≥ 0 we have that

E
[
‖W b

α(T )‖2µ
]
<∞.

In particular for any α ≥ 0, b ∈ {N,D} and any initial condition u0 ∈ H there exists a
unique (up to versions) global solution to (1.1). There exists an H-continuous version
of this solution. Moreover if u0 = 0 then this version is essentially 1

2

(
1 ∧ (1− ds

2 + α)
)
-

Hölder continuous on compact intervals.
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Proof. We refer to the proof of [10, Theorem 5.13]. By Itō’s isometry for Hilbert spaces
we have that

E
[
‖W b

α(T )‖2µ
]

=

∫ T

0

‖(1− Lb)−
α
2 Sbt ‖2HSdt,

where ‖ · ‖HS is the Hilbert-Schmidt norm. If there exists β ∈ (0, 1
2 + α

2 ) such that
‖(1− Lb)−β‖HS <∞, then by the spectral decomposition of (1− Lb)β−

α
2 Sbt we have that

‖(1− Lb)−
α
2 Sbt ‖HS ≤ ‖(1− Lb)−β‖HS‖(1− Lb)β−

α
2 Sbt ‖

≤ C ′(1 ∨ tα2−β)
(2.2)

for some constant C ′ > 0, and the last expression is square-integrable on the interval
[0, T ]. Therefore finding such a β is sufficient for W b

α(t) to be square-integrable. We see
from Proposition 2.7 that

‖(1− Lb)−β‖2HS =

∞∑
k=1

‖(1− Lb)−βϕbk‖2µ

=

∞∑
k=1

(1 + λbk)−2β

≤ 1 + c1

∞∑
k=1

k−
4β
ds

and the final expression is finite for β > ds
4 . Since we know that ds < 2 we can pick any

β ∈ (ds4 ,
1
2 + α

2 ) 6= ∅ to show that E
[
‖W b

α(t)‖2µ
]
<∞.

For the continuity results, it follows from (2.2) that for any positive γ < 1
2 (1 ∧ (1 −

ds
2 + α)) we have that ∫ T

0

t−2γ‖(1− Lb)−
α
2 Sbt ‖2HSdt <∞.

The continuity statements then directly follow from [10, Theorems 5.10 and 5.17].

3 Some Kolmogorov-type continuity theorems

It is well-known that solutions to the one-dimensional stochastic heat equation are
essentially 1

4 -Hölder continuous in time and essentially 1
2 -Hölder continuous in space,

so we would like to prove analogous results for our SPDE. It will become clear that the
natural “spatial” metric to use on F is the resistance metric R.

The usual method of proving continuity of processes indexed by R is to use Kol-
mogorov’s continuity theorem. Our aim in this section is to prove versions of this
theorem for the spaces F and [0, 1]× F .

3.1 Partitions and neighbourhoods

We introduce some more theory and notation from [15] and develop it further for our
purposes.

Definition 3.1. If n ≥ 1 and w = w1 . . . wn ∈Wn then let

Σw := {w′ = w′1w
′
2 . . . ∈W : w′i = wi ∀i ∈ {1, . . . , n}}.

If n = 0 and w ∈W0 then w is the empty word and we set Σw := W.

Definition 3.2. A finite subset Λ ⊆W∗ is a partition if Σw ∩ Σv = ∅ for any w 6= v ∈ Λ

and W =
⋃
w∈Λ Σw. A partition Λ is a refinement of a partition Λ′ if either Σw ⊆ Σv or

Σw ∩ Σv = ∅ for any (w, v) ∈ Λ× Λ′.
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Stochastic heat equations on p.c.f. fractals

Definition 3.3. For a ∈ (0, 1) let

Λ(a) = {w : w = w1 . . . wm ∈W∗, rw1...wm−1 > a ≥ rw}

which is a partition, see [15, Definition 1.5.6]. Notice that if w ∈ Λ(a) then

rmina < rw ≤ a.

For n ≥ 1 let Λn = Λ(2−n). Let Λ0 be the singleton containing the empty word; this is
also a partition.

Lemma 3.4. If n1 ≥ n2 ≥ 0 then Λn1
is a refinement of Λn2

.

Proof. Let w ∈ Λn1
, v ∈ Λn2

with Σw ∩ Σv 6= ∅. Then we must have either Σw ⊆ Σv
or Σv ⊆ Σw (or both). Suppose it is not the case that Σw ⊆ Σv. Then there exist
m2 > m1 ≥ 0 such that w ∈ Wm1

and v ∈ Wm2
, and wi = vi for all i ∈ {1, . . . ,m1}. In

particular v is not the empty word, so w is not the empty word (since n1 ≥ n2), so it
follows that m2 ≥ 2 and m1 ≥ 1. But then n1, n2 ≥ 1 so

2−n1 ≥ rw = rv1...vm1
≥ rv1...vm2−1

> 2−n2

which is a contradiction. So Σw ⊆ Σv.

The above result in particular implies that if n1 ≥ n2 ≥ 0 and v ∈ Λn1
then there

exists a w ∈ Λn2
such that Fv ⊆ Fw.

Definition 3.5. For n ≥ 0 let FnΛ =
⋃
w∈Λn

ψw(F 0). Obviously FnΛ ⊆ F∗ for all n. By
Lemma 3.4 and [15, Lemma 1.3.10], (FnΛ )n≥0 is an increasing sequence of subsets.

Lemma 3.6.
⋃
n≥0 F

n
Λ = F∗.

Proof. Let n ≥ 0 and x ∈ Fn. Recall the canonical continuous surjection π : W → F

and the post-critical set P . By assumption x ∈ Fn =
⋃
w∈Wn

ψw(F 0) =
⋃
w∈Wn

ψw(π(P )),
so there exists w ∈ Wn and v ∈ Σw such that vn+1vn+2 . . . ∈ P and π(v) = x. By the
definition of P it follows that for all integer i ≥ 0 we must have that vn+i+1vn+i+2 . . . ∈ P .
Now consider the sequence wi := v1 . . . vn+i ∈Wi for i ≥ 0. It follows that x ∈ ψwi(F 0)

for all i ≥ 0. Also some wi must be in some Λm for m ≥ 1, since limi→∞ rwi = 0.

Definition 3.7. For n ≥ 0 and x, y ∈ FnΛ let x ∼n y if there exists w ∈ Λn such that
x, y ∈ Fw. Then (FnΛ ,∼n) can be interpreted as a graph.

Lemma 3.8. Suppose that n ≥ 0, w ∈ Λn, v ∈ Λn+1 and Σv ∩ Σw 6= ∅. If w ∈Wm1
and

v ∈ Wm2
then 0 ≤ m2 − m1 <

log 2+log r−1
min

log r−1
max

. In particular if n∗ :=
⌈

log 2+log r−1
min

log r−1
max

⌉
then

ψv(F
0) ⊆ ψw(Fn∗).

Proof. By the refinement property (Lemma 3.4) we have that Σv ⊂ Σw and so there exist
m2 ≥ m1 ≥ 0 such that w ∈Wm1

and v ∈Wm2
, and vi = wi for all 1 ≤ i ≤ m1. Then by

the comment in Definition 3.3,

rv > 2−(n+1)rmin ≥
rmin

2
rw =

rmin

2
rv1...vm1

,

so
rmin

2
< rm2−m1

max .

Thus m2 −m1 <
log 2+log r−1

min

log r−1
max

.

Lemma 3.9. There exists a constant cg > 0 such that if n ≥ 0 and w ∈ Λn, then
(Fn+1

Λ ∩ Fw,∼n+1) is a connected graph and its graph diameter is at most cg.
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Proof. For z ∈ Fn+1
Λ ∩ Fw, take ω ∈ π−1(z) ∩ Σw and let v ∈ Λn+1 be such that ω ∈ Σv.

Then Σv ⊆ Σw by the refinement property. By [15, Proposition 1.3.5(2)], z ∈ ψv(F 0).
So then by Lemma 3.8 we have z ∈ ψw(Fn∗) for all z ∈ Fn+1

Λ ∩ Fw. Therefore the
graph-length of any non-self-intersecting path in the graph (Fn+1

Λ ∩ Fw,∼n+1) cannot be
greater than cg := |Fn∗ |. So if we can verify that (Fn+1

Λ ∩ Fw,∼n+1) is connected, we are
done.

Consider by the refinement property (Lemma 3.4) that we must have Fw =
⋃
v∈Λ′ Fv,

where
Λ′ = {v ∈ Λn+1 : Σv ⊆ Σw} = {wv : v ∈ Λ′′}

for some partition Λ′′. With [15, Proposition 1.3.5(2)] in mind, the required connected-
ness result is thus reduced to showing the following: if a graph structure ∼ is defined on
Λ′′ such that v ∼ v′ if and only if Fv ∩ Fv′ 6= ∅, then the graph (Λ′′,∼) is connected. This
is proven in exactly the same way as [15, Theorem 1.6.2, (3)⇒(1)].

Definition 3.10. Let n ≥ 0 and w ∈Wn. For x ∈ F let

D0
n(x) =

⋃
{Fw : w ∈ Λn, Fw 3 x}

be the n-neighbourhood of x. In addition, let

D1
n(x) =

⋃
{Fw : w ∈ Λn, Fw ∩D0

n(x) 6= ∅}.

By [15, Lemma 4.2.3] it must be the case that the quantities |{w ∈ Λn : Fw 3 x}| and
|{w ∈ Λn : Fw ∩D0

n(x) 6= ∅}| are bounded over all n ≥ 0 and all x ∈ F . Let

c4 = max
n,x
|{w ∈ Λn : Fw ∩D0

n(x) 6= ∅}|. (3.1)

In particular, observe that D0
n(x) ⊆ D1

n(x), and that if x, y ∈ FnΛ with x ∼n y then
y ∈ D0

n(x).

Definition 3.11. For x ∈ F and ε > 0 let B(x, ε) be the closed ball in (F,R) with centre
x and radius ε.

The next result shows that the resistance metric R is topologically well-behaved with
respect to the structure of the p.c.f.s.s. set F and the partitions Λn. Compare similar
results obtained in [11, Lemmas 3.2, 3.4].

Proposition 3.12 (Homogeneity of resistance metric). There exist constants c5, c6 > 0

such that
B(x, c52−n) ⊆ D1

n(x) ⊆ B(x, c62−n)

for all n ≥ 0 and all x ∈ F .

Proof. For the second inclusion, if y ∈ D1
n(x) then there exist w, v ∈ Λn such that x ∈ Fw,

y ∈ Fv and Fw ∩ Fv 6= ∅. Then the result is a direct consequence of [2, Proposition
7.18(b)] and the definition of Λn.

For the first inclusion, let Dh ⊆ D be the set of harmonic functions (see [15, Propo-
sition 3.2.1]) f ∈ D for which f(x) ∈ {0, 1} for all x ∈ F 0. A harmonic function is
completely characterised by the values it takes on F 0 so |Dh| = 2|F

0|. Let

c = max
f∈Dh

E(f, f) > 0.

We now take g to be the harmonic extension to H of the indicator function 1D0
n(x)|FnΛ :

FnΛ → R. Then by self-similarity, if w ∈ Λn then the function g ◦ ψw on F agrees exactly
with an element of Dh. Evidently g(x) = 1, and if y /∈ D1

n(x) then g(y) = 0. Therefore it
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follows by the definition of the resistance metric and the comment in Definition 3.3 that
if y /∈ D1

n(x) then

R(x, y) ≥ E(g, g)−1

=

( ∑
w∈Λn

r−1
w E(g ◦ ψw, g ◦ ψw)

)−1

> rmin (c42nc)
−1
,

where c4 is defined in (3.1), and this completes the proof.

The next result gives bounds on the growth of the cardinality of the sets Λn in terms
of the Hausdorff dimension dH .

Proposition 3.13 (Cardinality of Λn). For all n ≥ 0,

2dHn ≤ |Λn| < r−dHmin 2dHn.

Proof. For n ≥ 0 and v ∈ Λn, by the definition of the measure µ we have that

rdHmin2−dHn < µ(Fv) ≤ 2−dHn.

Then summing over all v ∈ Λn gives

rdHmin2−dHn|Λn| < 1 ≤ 2−dHn|Λn|.

3.2 The continuity theorems

Theorem 3.14 (First continuity theorem). Let (E,∆) be a complete separable metric
space. Let ξ = (ξx)x∈F be an E-valued process indexed by F and let C, β, γ > 0 such that

E
[
∆(ξx, ξy)β

]
≤ CR(x, y)dH+γ

for all x, y ∈ F . Then there exists a version of ξ which is almost surely essentially
γ
β -Hölder continuous with respect to R.

Proof. The set F is uncountable, but F∗ =
⋃∞
n=0 F

n
Λ is countable and dense in F . We

may therefore consider the countable set (ξx)x∈F∗ without issues of measurability. Let
δ ∈ (0, γβ ) and define the measurable event

Ωδ =

ξ′x := lim
y→x
y∈F∗

ξy exists ∀x ∈ F and x 7→ ξ′x is δ-Hölder w.r.t. (F,R)

 .

We then define the random variables ξ̂x for x ∈ F by

ξ̂x =

{
ξ′x if ξ ∈

⋂
{Ωδ : δ ∈ Q ∩ (0, γβ )},

x0 otherwise,

for some arbitrary fixed x0 ∈ E. Then ξ̂ := (ξ̂x)x∈F is measurable and essentially γ
β -

Hölder continuous. If P[Ωδ] = 1 for all δ ∈ Q ∩ (0, γβ ) then ξ̂ is also a version of ξ. This is

because ξ̂x is then the almost-sure limit of (ξy)y∈F∗ as y → x, so applying Fatou’s lemma
to the estimate in the statement of this theorem shows that ξ̂x = ξx almost surely. It
therefore suffices to show that P[Ωδ] = 1 for all δ ∈ (0, γβ ). We define the random variable

Hδ = sup
x,y∈F∗
x 6=y

∆(ξx, ξy)

R(x, y)δ
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to be the Hölder norm of ξ restricted to F∗, and we observe that Ωδ = {Hδ <∞} by the
completeness of E. For n ≥ 0 we also define the random variables

Kn = sup
x,y∈FnΛ
x∼ny

∆(ξx, ξy).

By Proposition 3.13,

|{(x, y) ∈ FnΛ × FnΛ : x ∼n y}| ≤ |F 0|2 · |Λn| ≤ |F 0|2r−dHmin 2dHn.

Then using the Markov inequality and Proposition 3.12,

P
[
Kn > 2−nδ

]
= P

[
Kβ
n > 2−nδβ

]
≤ 1

2

∑
x,y∈FnΛ
x∼ny

P
[
∆(ξx, ξy)β > 2−nδβ

]

≤ 2nδβ

2

∑
x,y∈FnΛ
x∼ny

E
[
∆(ξx, ξy)β

]

≤ C2nδβ

2

∑
x,y∈FnΛ
x∼ny

R(x, y)dH+γ

≤ C ′2dHn2−n(dH+γ−δβ)

= C ′2−n(γ−δβ)

for some constant C ′ > 0. Now δβ < γ so

∞∑
n=0

P
[
Kn > 2−nδ

]
<∞,

so by the Borel-Cantelli lemma we have that lim supn→∞(2nδKn) ≤ 1 almost surely.
In particular there exists an almost surely finite postive random variable J such that
Kn ≤ 2−nδJ for all n ≥ 0 almost surely.

Now recall the constant cg from Lemma 3.9. Let x, y ∈ F∗ be distinct points, and
let m0 be the greatest integer such that y ∈ D1

m0
(x) (which exists by Proposition 3.12).

Then there exists w, v ∈ Λm0 such that x ∈ Fw, y ∈ Fv and there exists some z ∈ Fw ∩ Fv.
In fact by [15, Proposition 1.3.5] and the definition of a partition, we can choose z to
be in ψw(F 0) ∩ ψv(F 0) so that in particular z ∈ Fm0

Λ . Now if x ∈ Fm0

Λ then it follows by
Lemma 3.9 that

∆(ξx, ξz) ≤ cgKm0+1.

Otherwise, there exists m > m0 such that x ∈ FmΛ and we construct a finite sequence
(xi)

m−m0
i=0 such that x0 = x, xi ∈ Fm−iΛ ∩D0

m−i(xi−1) ∩ Fw for i ≥ 1 and xm−m0
= z. This

can be done in the following way: assume that we already have xi−1 ∈ Fm−(i−1)
Λ ∩ Fw for

some i ∈ {1, . . . ,m−m0}. There exists wi−1 ∈ Σw such that π(wi−1) = xi−1. Since Λm−i
is a partition, there exists vi−1 ∈ Λm−i such that wi−1 ∈ Σvi−1 . Therefore Fvi−1 3 xi−1, so
we may pick xi to be some element of ψvi−1(F 0). By the refinement property Σvi−1 ⊆ Σw
so we have that xi ∈ Fm−iΛ ∩D0

m−i(xi−1)∩Fw. If i = m−m0 then necessarily vm−m0−1 = w

and we can specifically choose xm−m0
= z.
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We then have by Lemma 3.9 that

∆(ξx, ξz) ≤
m−m0∑
i=1

∆(ξxi , ξxi−1
)

≤ cg
m−m0∑
i=1

Km+1−i

≤ cg
∞∑

n=m0+1

Kn.

We can make the same estimate for y and z. Therefore we conclude that

∆(ξx, ξy) ≤ 2cg

∞∑
n=m0+1

Kn ≤ 2cgJ

∞∑
n=m0+1

2−nδ =
2cg2

−(m0+1)δ

1− 2−δ
J.

Now m0 was chosen such that y /∈ D1
m0+1(x), so we use Proposition 3.12 to conclude that

R(x, y) > c52−(m0+1). Thus we find that

∆(ξx, ξy)

R(x, y)δ
≤ C ′′J

for all x 6= y in F∗ almost surely, where C ′′ > 0 is a constant. So Hδ is almost surely finite.
So P[Ωδ] = 1.

Remark 3.15. Taking F = [0, 1] as in Example 1.1 and E to be the Hilbert space Rn we
obtain the original Kolmogorov continuity theorem.

We would like the solution to our SPDE to be a (random) map [0,∞)× F → R, so the
previous theorem is not quite enough. We now seek to prove a version of it for stochastic
processes indexed by [0, 1] × F . Let G be the set [0, 1] × F equipped with the natural
supremum metric on R× F given by

R∞((s, x), (t, y)) = max{|s− t|, R(x, y)}.

Proposition 3.16. Let (E,∆) be a complete separable metric space. Let ξ = (ξtx :

(t, x) ∈ [0, 1]× F ) be an E-valued process indexed by [0, 1]× F and let C, β, γ, γ′ > 0 be
such that

E
[
∆(ξtx, ξty)β

]
≤ CR(x, y)dH+1+γ ,

E
[
∆(ξsx, ξtx)β

]
≤ C|s− t|dH+1+γ′

for all s, t ∈ [0, 1] and all x, y ∈ F . Then there exists a version of ξ which is almost surely

essentially γ∧γ′
β -Hölder continuous with respect to G = ([0, 1]× F,R∞).

Proof. This proof proceeds in much the same way as in Theorem 3.14, so we only give
an outline.

For n ≥ 0 we let
Gn = {k2−n : k = 0, 1, . . . , 2n} × FnΛ

and

G∗ =

∞⋃
n=0

Gn,

then G∗ is countable and dense in G. Then for each n ≥ 0 we define a relation ∗n on Gn

by (s, x)∗n (t, y) if and only if either (|s− t| = 2−n and x = y) or (s = t and x ∼n y). Notice
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that this implies that if (s, x) ∗n (t, y) then R∞((s, x), (t, y)) ≤ (c6 ∨ 1)2−n, by Proposition
3.12. Then as before we can define

Kn = sup
p,q∈Gn
p∗nq

∆(ξp, ξq).

Since both [0, 1] and (F,R) are bounded, for δ ∈ (0, γ∧γ
′

β ) this satisfies

P
[
Kn > 2−nδ

]
= P

[
Kβ
n > 2−nδβ

]
≤ 1

2

∑
p,q∈Gn
p∗nq

P
[
∆(ξp, ξq)

β > 2−nδβ
]

≤ 2nδβ

2

∑
p,q∈Gn
p∗nq

E
[
∆(ξp, ξq)

β
]

≤ 2β−12nδβ
∑

(s,x),(t,y)∈Gn
(s,x)∗n(t,y)

E
[
∆(ξsx, ξtx)β + ∆(ξtx, ξty)β

]

≤ C2β−12nδβ
∑

(s,x),(t,y)∈Gn
(s,x)∗n(t,y)

(
|s− t|dH+1+γ′ +R(x, y)dH+1+γ

)

≤ C ′2nδβ
∑

(s,x),(t,y)∈Gn
(s,x)∗n(t,y)

R∞((s, x), (t, y))dH+1+γ∧γ′

≤ C ′′2dHn2n2−n(dH+1+γ∧γ′−δβ)

= C ′′2−n(γ∧γ′−δβ).

So as in Theorem 3.14, there exists an almost surely finite positive random variable J
such that Kn ≤ 2−nδJ for all n ≥ 0 almost surely. The sets analogous to D0

n(x) and D1
n(x)

in Theorem 3.14 are given by

D̂0
n(s, x) = ([s−, s

−] ∩ [0, 1])×D0
n(x)

and

D̂1
n(s, x) = ([s− − 2−n, s− + 2−n] ∩ [0, 1])×D1

n(x)

where s− = max{k2−n : k ∈ Z, k2−n < s}, s− = min{k2−n : k ∈ Z, k2−n > s}. Using
Proposition 3.12 it is simple to verify the analogous result that

B∞(p, (c5 ∧ 1)2−n) ⊆ D̂1
n(p) ⊆ B∞(p, (c6 ∨ 2)2−n)

for all n ≥ 0 and all p ∈ G, where B∞ denotes the closed R∞-balls of G. Now if
(s, x), (t, y) ∈ G∗ are distinct points, let m0 be the greatest integer such that (t, y) ∈
D̂1
m0

(s, x). Then there exists w, v ∈ Λm0
and τ1, τ2 ∈ {k2−m0 : k = 0, 1, . . . , 2m0 − 1} such

that

(s, x) ∈ [τ1, τ1 + 2−m0 ]× Fw,
(t, y) ∈ [τ2, τ2 + 2−m0 ]× Fv,

and there exists some

(τ, z) ∈ [τ1, τ1 + 2−m0 ]× Fw ∩ [τ2, τ2 + 2−m0 ]× Fv.
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In fact just as in the proof of Theorem 3.14 we may pick (τ, z) such that

(τ, z) ∈ {τ1, τ1 + 2−m0} × ψw(F 0) ∩ {τ2, τ2 + 2−m0} × ψv(F 0) ⊂ Gm0 .

We can then estimate ∆(ξsx, ξty) by constructing suitable finite sequences of points from
(s, x) to (τ, z) and from (t, y) to (τ, z), similar to the proof of Theorem 3.14.

The rest of the details of the proof are left up to the reader; it suffices to adapt the
proof of Theorem 3.14, using for example cg + 2 instead of cg.

We now extend the previous result to this section’s main theorem, which includes
spatial and temporal Hölder exponents.

Theorem 3.17 (Second continuity theorem). Let (E,∆) be a complete separable metric
space. Let ξ = (ξtx : (t, x) ∈ [0, 1]× F ) be an E-valued process indexed by [0, 1]× F and
let C, β, γ, γ′ > 0 be such that

E
[
∆(ξtx, ξty)β

]
≤ CR(x, y)dH+1+γ ,

E
[
∆(ξsx, ξtx)β

]
≤ C|s− t|dH+1+γ′

(3.2)

for all s, t ∈ [0, 1] and all x, y ∈ F . Then there exists a version ξ̂ = (ξ̂tx : (t, x) ∈ [0, 1]× F )

of ξ which satisfies the following:

(1). The map (t, x) 7→ ξ̂tx is almost surely essentially δ0-Hölder continuous with respect
to R∞ where

δ0 =
1

β
(γ ∧ γ′) .

(2). For every t ∈ [0, 1] the map x 7→ ξ̂tx is almost surely essentially δ1-Hölder continuous
with respect to R where

δ1 =
1

β
(1 + γ) .

(3). For every x ∈ F the map t 7→ ξ̂tx is almost surely essentially δ2-Hölder continuous
with respect to the Euclidean metric where

δ2 =
1

β
(dH + γ′) .

Proof. (1) is exactly Proposition 3.16. For (2) we fix t ∈ [0, 1]. We see that the space
increment estimate is equivalent to

E
[
∆(ξ̂tx, ξ̂ty)β

]
≤ CR(x, y)dH+βδ1 .

Then by Theorem 3.14 there exists a version (ξ̃x)x∈F of (ξ̂tx)x∈F which is almost surely
essentially δ1-Hölder continuous with respect to R. Now using (1), (ξ̃x)x∈F and (ξ̂tx)x∈F
are both almost surely continuous on the separable space F (see for example F∗ ⊆ F ) so
we must in fact have that (ξ̃x)x∈F = (ξ̂tx)x∈F almost surely. We conclude that (ξ̂tx)x∈F
is almost surely essentially δ1-Hölder continuous with respect to R. The proof of (3)
is conceptually identical — we use the standard Kolmogorov continuity theorem for
[0, 1].

Remark 3.18. This time by taking F = [0, 1] as in Example 1.1 the above theorem
reduces to the original Kolmogorov continuity theorem for [0, 1]2.

Corollary 3.19. Theorem 3.17 holds if the interval [0, 1] is replaced with [0, T ] for any
T > 0.
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Proof. We have that ξ = (ξtx : (t, x) ∈ [0, T ] × F ) is an E-valued process indexed by
[0, T ]× F . By taking a linear rescaling [0, T ]↔ [0, 1] of the time coordinate we transform
ξ into an E-valued process indexed by [0, 1]×F with the same exponents in the continuity
estimates (3.2). Then we use Theorem 3.17 to construct a Hölder continuous version of
the rescaled ξ. Finally we reverse the rescaling, which is linear so it preserves Hölder
exponents.

4 Pointwise regularity

Before we talk about Hölder continuity of the solution u to (1.1) we show that the
point evaluations u(t, x) for (t, x) ∈ [0,∞)× F are indeed well-defined random variables.
Recall from Proposition 2.7 and the subsequent discussion that

Sbt (1− Lb)−
α
2 f =

∞∑
k=1

fke
−λbkt(1 + λbk)−

α
2 ϕbk

for all f ∈ H = L2(F, µ), where fk = 〈ϕbk, f〉µ. Equivalently

Sbt (1− Lb)−
α
2 =

∞∑
k=1

e−λ
b
kt(1 + λbk)−

α
2 ϕbkϕ

b∗
k

where ϕb∗k ∈ H∗ is the bounded linear functional f 7→ 〈ϕbk, f〉µ. By Proposition 2.7 we
have that

∞∑
k=1

(1 + λbk)−α
∫ t

0

‖e−λ
b
k(t−s)ϕb∗k ‖2HSds =

∞∑
k=1

1− e−2λbkt

2λbk(1 + λbk)α
≤ C

∞∑
k=1

k−
2
ds <∞,

so it follows from Itō’s isometry for H-valued stochastic integrals that

W b
α(t) :=

∫ t

0

Sbt−s(1− Lb)−
α
2 dW (s)

=

∞∑
k=1

∫ t

0

e−λ
b
k(t−s)ϕb∗k dW (s)(1 + λbk)−

α
2 ϕbk.

For each k ≥ 1 define the real-valued stochastic process Xb,k = (Xb,k
t )t≥0 by

Xb,k
t =

∫ t

0

e−λ
b
k(t−s)ϕb∗k dW (s) (4.1)

so we have the series representation

W b
α(t) =

∞∑
k=1

(1 + λbk)−
α
2 Xb,k

t ϕbk. (4.2)

Evidently Xb,k is a centred real continuous Gaussian process. We compute its covariance
to be

E
[
Xb,k
t Xb,k

t+s

]
=
e−λ

b
ks

2λbk
(1− e−2λbkt)

if λbk > 0 and we identify Xb,k to be a centred Ornstein-Uhlenbeck process with unit
volatility and rate parameter λbk. If λbk = 0 then Xb,k is simply a standard Wiener process.
It is easy to check that the family (Xb,k)∞k=1 is independent.
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Remark 4.1. We give an alternative view on the series representation (4.2). Let u be the
solution to (1.1) in the case u0 = 0, so that u = W b

α. We take an eigenfunction expansion
of (1.1):

dû(t, k) = −λbkû(t, k)dt+ (1 + λbk)−
α
2 ϕb∗k dW (t),

û(0, k) = 0
(4.3)

for each k ∈ N, where û(·, k) := 〈ϕbk, u(·)〉µ is a real-valued process. This is analogous
to using Fourier methods to solve differential equations on Rn. Now using standard
theory we see that {ϕb∗k W}∞k=1 is a family of independent real-valued standard Wiener
processes. It follows that (4.3) is just a family of decoupled one-dimensional SDEs, and
the solution to the kth SDE can be found to be exactly (1 + λbk)−

α
2 Xb,k.

4.1 Resolvent density

Definition 4.2. If λ > 0 then D can be equipped with the inner product

〈f, g〉λ := E(f, g) + λ〈f, g〉µ.

Since E is a closed form, this turns D into a Hilbert space which we denote Dλ. Observe
that the evaluation maps {f 7→ f(x) : x ∈ F} are continuous linear functionals on
Dλ, by [2, Proposition 7.16(b)]. We have that D0 is the intersection of the kernels of
{f 7→ f(x) : x ∈ F 0} so it must be closed with respect to 〈·, ·〉λ.

Definition 4.3. For λ > 0 and b ∈ {N,D} let ρbλ : F × F → R be the resolvent density
associated with Lb. By [2, Theorem 7.20], ρNλ exists and satisfies the following:

(1). (Reproducing kernel property.) For x ∈ F , ρNλ (x, ·) is the unique element of D such
that

〈ρNλ (x, ·), f〉λ = f(x)

for all f ∈ D.

(2). (Resolvent kernel property.) For all continuous f ∈ H and all x ∈ F ,∫ ∞
0

e−λtSNt f(x)dt =

∫
F

ρNλ (x, y)f(y)µ(dy).

By a density argument it follows that for all f ∈ H,∫ ∞
0

e−λtSNt fdt =

∫
F

ρNλ (·, y)f(y)µ(dy).

(3). ρNλ is non-negative (easy to see from (2) and fact that SNt f(x) = Ex[f(XN
t )]), sym-

metric and bounded. We define (for now) c7(λ) > 0 such that

c7(λ) ≥ sup
x,y∈F

ρNλ (x, y).

(4). (Hölder continuity.) For this same constant c7(λ) we have that for all x, y, y′ ∈ F ,

|ρNλ (x, y)− ρNλ (x, y′)|2 ≤ c7(λ)R(y, y′).

Using symmetry this Hölder continuity result holds in the first argument as well.

By an identical argument to [2, Theorem 7.20], ρDλ exists and satisfies the analogous
results with (E ,D0) and SD. By the reproducing kernel property it follows that for every
x ∈ F , ρDλ (x, ·) must be the Dλ-orthogonal projection of ρNλ (x, ·) onto D0. We now choose
c7(λ) large enough that it does not depend on the value of b ∈ {N,D} for (3) and (4).
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The Hölder continuity property of the resolvent densities ρbλ described above is the
subject of this section. We seek to strengthen it into Lipschitz continuity.

Definition 4.4. Let B ⊆ F be closed. Let gB : F × F → R be the Green function on F

with boundary B, see [16, Chapter 4].

The properties of the Green function that we require are given in [16, Theorem 4.1].
Note in particular that every Green function is symmetric and uniformly Lipschitz in
(F,R); this is the main tool of our proof.

Proposition 4.5 (Lipschitz resolvent). For λ > 0 and b ∈ {N,D}, if x, y, y′ ∈ F then∣∣ρbλ(x, y)− ρbλ(x, y′)
∣∣ ≤ 2R(y, y′).

Proof. Let 1 ∈ H be the constant function taking the value 1. First of all, observe that
for all λ > 0, x ∈ F and b ∈ {N,D},

〈ρbλ(x, ·),1〉µ =

∫ ∞
0

e−λtSbt1(x)dt =

∫ ∞
0

e−λtPx[Xb
t ∈ F ]dt ≤ 1

λ
.

Fix λ > 0. We prove the result for b = D first. Let gD = gF 0 , the Green function
associated with Dirichlet boundary conditions. Then for x, y ∈ F ,

ρDλ (x, y) = E
(
ρDλ (x, ·), gD(y, ·)

)
= gD(y, x)− λ〈ρDλ (x, ·), gD(y, ·)〉µ.

So if x, y, y′ ∈ F then by [16, Theorem 4.1] and the non-negativity of the resolvent
density,

ρDλ (x, y)− ρDλ (x, y′) ≤ |gD(y, x)− gD(y′, x)|+ λ

∫
F

ρDλ (x, z)|gD(y, z)− gD(y′, z)|µ(dz)

≤ R(y, y′)

(
1 + λ

∫
F

ρDλ (x, z)1(z)µ(dz)

)
≤ 2R(y, y′).

Doing the same estimate with y, y′ interchanged gives the required result. Now for the
case b = N , fix x0 ∈ F an arbitrary point. We see that

ρNλ (x, y)− ρNλ (x, x0) = E
(
ρNλ (x, ·), g{x0}(y, ·)

)
= g{x0}(y, x)− λ〈ρNλ (x, ·), g{x0}(y, ·)〉µ,

and the rest of the proof is identical to the b = D case.

As before, by the symmetry of ρbλ the above Lipschitz continuity property in fact holds
in both of its arguments.

4.2 Pointwise regularity of solution

We return to the SPDE (1.1). The next lemma is based on an argument in [6, Section
7.2].

Lemma 4.6. Let u : [0,∞)→ H be the solution to (1.1) with initial condition u0 = 0. If
g ∈ H and t ∈ [0,∞) then

E
[
〈u(t), g〉2µ

]
≤ e2t

2

∫
F

∫
F

ρb1(x, y)g(x)g(y)µ(dx)µ(dy).

Proof. Let g∗ ∈ H∗ be the bounded linear functional f 7→ 〈f, g〉µ. We see by Itō’s isometry
that

E
[
〈u(t), g〉2µ

]
= E

[
g∗(u(t))2

]
=

∫ t

0

‖g∗(1− Lb)−
α
2 Sbs‖2HSds

=

∫ t

0

‖(1− Lb)−
α
2 Sbsg‖2µds
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where the last equality is a result of the self-adjointness of the operator (1− Lb)−
α
2 Sbs.

We know from the functional calculus for self-adjoint operators that ‖(1− Lb)−
α
2 ‖ ≤ 1 so

E
[
〈u(t), g〉2µ

]
≤
∫ t

0

‖Sbsg‖2µds

≤ e2t

∫ ∞
0

e−2s‖Sbsg‖2µds

= e2t

〈∫ ∞
0

e−2sSb2sgds, g

〉
µ

=
e2t

2

〈∫
F

ρb1(·, y)g(y)µ(dy), g

〉
µ

=
e2t

2

∫
F

∫
F

ρb1(x, y)g(x)g(y)µ(dx)µ(dy).

Definition 4.7. For x ∈ F and n ≥ 0, define

fxn = µ(D0
n(x))−11D0

n(x),

see [6, Section 7.2].

Evidently fxn ∈ H, ‖fxn‖2µ = µ(D0
n(x))−1 < r−dHmin 2dHn (by the definition of dH and the

comment in Definition 3.3) and if g ∈ H is continuous then

lim
n→∞

〈fxn , g〉µ = g(x),

by Proposition 3.12. We can now state and prove the main theorem of this section.

Theorem 4.8 (Pointwise regularity). Let u : [0,∞)→ H be the solution to the SPDE (1.1)
with initial value u0 = 0. Then for all (t, x) ∈ [0,∞)× F the expression

u(t, x) :=

∞∑
k=1

(1 + λbk)−
α
2 Xb,k

t ϕbk(x)

is a well-defined real-valued centred Gaussian random variable. There exists a constant
c8 > 0 such that for all x ∈ F , t ∈ [0,∞) and n ≥ 0 we have that

E
[
(〈u(t), fxn 〉µ − u(t, x))

2
]
≤ c8e2t2−n.

Proof. Note that ϕbk ∈ D(Lb) for each k, so ϕbk is continuous and so ϕbk(x) is well-defined.
By the definition of u(t, x) as a sum of real-valued centred Gaussian random variables we
need only prove that it is square-integrable and that the approximation estimate holds.
Let x ∈ F . The theorem is trivial for t = 0 so let t ∈ (0,∞). By Lemma 4.6 we have that

E
[
〈u(t), fxn − fxm〉2µ

]
≤ e2t

2

∫
F

∫
F

ρb1(z1, z2)(fxn (z1)− fxm(z1))(fxn (z2)− fxm(z2))µ(dz1)µ(dz2).

Then using the definition of fxn , Proposition 4.5 and Proposition 3.12 we have that

E
[
〈u(t), fxn − fxm〉2µ

]
≤ e2t

2

(
4c62−n + 4c62−m

)
= 2e2tc6

(
2−n + 2−m

)
.

(4.4)
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Writing u in its series representation (4.2) and using the independence of the Xb,k and

the fact that
∑∞
k=1E

[
(Xb,k

t )2
]
<∞, this is equivalent to

∞∑
k=1

(1 + λbk)−αE
[
(Xb,k

t )2
] (
〈ϕbk, fxn 〉µ − 〈ϕbk, fxm〉µ

)2 ≤ 2e2tc6
(
2−n + 2−m

)
.

It follows that the left-hand side tends to zero as m,n→∞. By Theorem 2.11 we know
that

∞∑
k=1

(1 + λbk)−αE
[
(Xb,k

t )2
]
〈ϕbk, fxn 〉2µ = E

[
〈u(t), fxn 〉2µ

]
<∞

for all x ∈ F , n ≥ 0 and t ∈ [0,∞), therefore by the completeness of the sequence space
`2 there must exist a unique sequence (yk)∞k=1 such that

∑∞
k=1 y

2
k <∞ and

lim
n→∞

∞∑
k=1

(
(1 + λbk)−

α
2 E
[
(Xb,k

t )2
] 1

2 〈ϕbk, fxn 〉µ − yk
)2

= 0.

Since ϕbk is continuous we have limn→∞〈ϕbk, fxn 〉µ = ϕbk(x). Thus by Fatou’s lemma we
can identify the sequence (yk). We must have

∞∑
k=1

(1 + λbk)−αE
[
(Xb,k

t )2
]
ϕbk(x)2 <∞ (4.5)

and

lim
n→∞

∞∑
k=1

(1 + λbk)−αE
[
(Xb,k

t )2
] (
〈ϕbk, fxn 〉µ − ϕbk(x)

)2
= 0.

Equivalently by (4.2),
E
[
u(t, x)2

]
<∞

(so we have proven square-integrability) and

lim
n→∞

E
[
(〈u(t), fxn 〉µ − u(t, x))

2
]

= 0.

In particular by taking m→∞ in (4.4) we have that

E
[
(〈u(t), fxn 〉µ − u(t, x))

2
]
≤ 2c6e

2t2−n.

By virtue of the previous theorem it is possible to interpret solutions u to the SPDE
(1.1) as random maps u : [0,∞) × F → R, where as usual we have suppressed the
dependence of u on the underlying probability space. It therefore makes sense to
consider issues of continuity of u on [0,∞)× F .

Remark 4.9. We note that [6, Example 7.4] gives a similar result for stochastic heat
equations where the operator L is the generator for a fractional diffusion in the sense of
[2, Section 3] under suitable conditions.

5 Hölder regularity

The aim of this section is to use our continuity theorems of Section 3 to prove Hölder
regularity results for a version of the family defined in Theorem 4.8, and then show that
this version can be identified with the original solution to (1.1). We wish to use Theorem
3.17 and Corollary 3.19, so we need estimates on the expected spatial and temporal
increments of the solution.
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5.1 Spatial estimate

Proposition 5.1. Let T > 0. Let u = (u(t, x))(t,x)∈[0,∞)×F be the family defined in
Theorem 4.8. Then there exists a constant C2 > 0 such that

E
[
(u(t, x)− u(t, y))2

]
≤ C2R(x, y)

for all t ∈ [0, T ] and all x, y ∈ F .

Proof. Recall from Theorem 4.8 that

lim
n→∞

E

[(
〈u(t), fxn 〉µ − u(t, x)

)2
]

= 0,

and an analogous result holds for y. Thus by Lemma 4.6,

E
[
(u(t, x)− u(t, y))2

]
= lim
n→∞

E
[
〈u(t), fxn − fyn〉

2
µ

]
≤ e2t

2
lim
n→∞

∫
F

∫
F

ρb1(z1, z2)(fxn (z1)− fyn(z1))(fxn (z2)− fyn(z2))µ(dz1)µ(dz2)

=
e2t

2

(
ρb1(x, x)− 2ρb1(x, y) + ρb1(y, y)

)
,

where we have used Proposition 4.5, Proposition 3.12 and the definition of fxn (similarly
to the proof of Theorem 4.8). Hence again by Proposition 4.5,

E
[
(u(t, x)− u(t, y))2

]
≤ e2T

2

(
ρb1(x, x)− ρb1(x, y) + ρb1(y, y)− ρb1(y, x)

)
≤ 2e2TR(x, y).

5.2 Temporal estimates

For the time estimates we can save ourselves some work by noticing that if Xb,k is an
Ornstein-Uhlenbeck process then

E
[
(Xb,k

s −X
b,k
s+t)

2
]

=
1

λbk
(1− e−λ

b
kt)− e−2λbks

2λbk
(1− e−λ

b
kt)2,

so that
1

2λbk
(1− e−λ

b
kt) ≤ E

[
(Xb,k

s −X
b,k
s+t)

2
]
≤ 1

λbk
(1− e−λ

b
kt)

for any s, t ∈ [0,∞). Therefore regardless of whether Xb,k is an Ornstein-Uhlenbeck or
Wiener process we have that

E
[
(Xb,k

s −X
b,k
s+t)

2
]
≤ 2E

[
(Xb,k

t )2
]
.

Now since (using the independence of the Xb,k)

E
[
(u(s, x)− u(s+ t, x))2

]
=

∞∑
k=1

(1 + λbk)−αE
[
(Xb,k

s −X
b,k
s+t)

2
]
ϕbk(x)2,

it follows that it suffices to find estimates of the above in the case s = 0.

We start with a method similar to the proof of [21, Proposition 3.7] which does not
quite cover all values of α. First, a lemma:
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Lemma 5.2. Consider the sum

σab(t) =

∞∑
k=1

(
ka−1 ∧ (kb−1t)

)
for t ∈ (0,∞), where a, b ∈ R are constants. Then the following hold:

(1). If a, b ≥ 0 then σab(t) diverges.

(2). If a ∈ R, b < 0 then there exists Ca,b > 0 such that σab(t) ≤ Ca,bt for all t.

(3). If a < 0, b ≥ 0 then there exists Ca,b > 0 such that σab(t) ≤ Ca,bt
−a
b−a for all t.

Proof. (1) is obvious. For (2) take Ca,b = ζ(1− b) the Riemann zeta function.

For (3) we must consider two cases depending on the value of b. First assume that
b ∈ [0, 1]. Then x 7→ (xa−1 ∧ (xb−1t)) is a decreasing function on (0,∞) so

σab(t) ≤
∫ ∞

0

(xa−1 ∧ (xb−1t))dx

= t

∫ t
−1
b−a

0

xb−1dx+

∫ ∞
t
−1
b−a

xa−1dx

= tb−1t
−b
b−a − a−1t

−a
b−a

= Ca,bt
−a
b−a

where we have Ca,b = b−1 − a−1. If b > 1 then x 7→ (xa−1 ∧ (xb−1t)) is increasing on

[0, t
−1
b−a ] where it is equal to xb−1t and decreasing on [t

−1
b−a ,∞) where it is equal to xa−1.

Thus

ka−1 ∧ (kb−1t) ≤ ka−1 ∧ (t−
b−1
b−a t) = ka−1 ∧ (k1−1t

1−a
b−a )

for all k ∈ N, and we are back to the case a < 0, b = 1. It follows that

σab(t) ≤ (1− a−1)
(
t

1−a
b−a

) −a
1−a

= (1− a−1)t
−a
b−a

so we have Ca,b = 1− a−1.

Proposition 5.3. Let T > 0. Let u = (u(t, x))(t,x)∈[0,∞)×F be the family defined in
Theorem 4.8. If α > ds − 1 then there exists a constant C3 > 0 such that

E
[
(u(s, x)− u(t, x))2

]
≤ C3|s− t|1∧(1−ds+α)

for all s, t ∈ [0, T ] and all x ∈ F .

Proof. We assume that λb1 > 0 to streamline our calculations. The case λb1 = 0 is left as
an exercise. By the discussion at the start of this section we may assume that s = 0. Fix
x ∈ F and t ∈ [0, T ]. Recall the constant c3 from Proposition 2.7. By independence of the
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Xb,k we have that

E
[
u(t, x)2

]
= E

( ∞∑
k=1

(1 + λbk)−
α
2 Xb,k

t ϕbk(x)

)2


≤
∞∑
k=1

ϕbk(x)2

(1 + λbk)α
1

λbk
(1− e−λ

b
kt)

≤ c23
∞∑
k=1

1− e−λbkt

(λbk)1− ds2 (1 + λbk)α

≤ c23
∞∑
k=1

1 ∧ (λbkt)

(λbk)1− ds2 (1 + λbk)α

≤ c′
∞∑
k=1

(
k1− 2+2α

ds ∧ (k1− 2α
ds t)

)
and we are within the scope of Lemma 5.2 (as long as t > 0, though the case t = 0 is
trivial). We find that if α > ds − 1 then the sum converges and there exists c′′ > 0 such
that

E
[
u(t, x)2

]
≤ c′′t1∧(1+α−ds)

for all x ∈ F , t ∈ [0, T ].

Remark 5.4. In the case of Example 1.1 with F = [0, 1] the above estimate can be made
to work for all α ≥ 0. This is because in this case ds = 1 and the eigenfunctions ϕbk satisfy
‖ϕbk‖∞ ≤ c for some c > 0 so we instead have that

E
[
u(t, x)2

]
≤ c′′′

∞∑
k=1

(
k−(2+2α) ∧ (k−2αt)

)
.

Therefore using Lemma 5.2, we have for all α ≥ 0 that

E
[
(u(s, x)− u(t, x))2

]
≤ C3|s− t|1∧( 1

2 +α).

This is the method used in [21].

We now prove an alternative estimate that is weaker for large α but holds for all
α ≥ 0.

Proposition 5.5. Let T > 0. Let u = (u(t, x))(t,x)∈[0,∞)×F be the family defined in
Theorem 4.8. Then there exists C4 > 0 such that

E
[
(u(s, x)− u(t, x))2

]
≤ C4|s− t|1−

ds
2

for all s, t ∈ [0, T ] and all x ∈ F .

Proof. By the discussion at the start of this section we may assume that s = 0. Set

c′8 = (c8e
2T ) ∨ TdH

rdHmin

where the constant c8 is from Theorem 4.8. By Theorem 4.8 and Itō’s isometry (see proof
of Lemma 4.6) we have that if n ≥ 0 is an integer then

E
[
u(t, x)2

]
≤ 2E

[
〈u(t), fxn 〉2µ

]
+ 2c8e

2t2−n

= 2

∫ t

0

‖(1− Lb)−
α
2 Sbsf

x
n‖2µds+ 2c8e

2t2−n

≤ 2

∫ t

0

‖(1− Lb)−
α
2 Sbsf

x
n‖2µds+ 2c′82−n.
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By the functional calculus for self-adjoint operators, ‖(1 − Lb)−
α
2 Sbs‖ ≤ 1 for all s ≥ 0.

Thus

E
[
u(t, x)2

]
≤ 2t‖fxn‖2µ + 2c′82−n

≤ 2r−dHmin t2dHn + 2c′82−n

for all (t, x) ∈ [0, T ]× F and all integer n ≥ 0. We assume now that t > 0, and our aim is
to choose n ≥ 0 to minimise the above expression. Fixing t ∈ (0, T ], define g : R→ [0,∞)

such that g(y) = r−dHmin t2dHy + c′82−y. The function g has a unique stationary point which
is a global minimum at

y0 =
1

(dH + 1) log 2
log

(
rdHminc

′
8

dHt

)
.

Since t ≤ T we have by the definition of c′8 that y0 ≥ 0. Since y0 is not necessarily an
integer we choose n = dy0e. Then g is increasing in [y0,∞) so we have that

E
[
u(t, x)2

]
≤ 2g(n) ≤ 2g(y0 + 1).

Setting c′′8 := c′8
r
dH
min

dH
and evaluating the right-hand side we see that

E
[
u(t, x)2

]
≤ 2tr−dHmin 2dH

(
c′′9
t

) dH
dH+1

+ 2c′82−1

(
c′′9
t

) −1
dH+1

≤ c′′′8 t
1

dH+1

= c′′′8 t
1− ds2

for all (t, x) ∈ (0, T ] × F , where the constant c′′′8 > 0 is independent of (t, x). This
inequality obviously also holds in the case t = 0.

5.3 Hölder regularity of solution

We are now ready to prove the Hölder regularity result. It will turn out that the
continuous version of u(t, x) can be interpreted as an H-valued process, and is a version
of the original H-valued solution to (1.1) found in Theorem 2.11. Recall R∞ the natural
supremum metric on R× F given by

R∞((s, x), (t, y)) = max{|s− t|, R(x, y)}.

Theorem 5.6 (Hölder regularity). Let u = (u(t, x))(t,x)∈[0,∞)×F be the family defined in
Theorem 4.8. Let

δα =


1
2 (1− ds

2 ), α ≤ ds
2 ,

1
2 (1− ds + α), ds

2 < α ≤ ds,
1
2 , α > ds.

Then there exists a version ũ = (ũ(t, x))(t,x)∈[0,∞)×F of u which satisfies the following:

(1). For each T > 0, ũ is almost surely essentially δα-Hölder continuous on [0, T ] × F
with respect to R∞.

(2). For each t ∈ [0,∞), ũ(t, ·) is almost surely essentially 1
2 -Hölder continuous on F with

respect to R.

Proof. Take T > 0 and consider uT , the restriction of u to [0, T ] × F . It is an easily
verifiable fact that for every p ∈ N there exists a constant C ′p > 0 such that if Z is any
centred real Gaussian random variable then

E[Z2p] = C ′pE[Z2]p.
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We also know that uT is a centred Gaussian process on [0, T ]× F by Theorem 4.8.
We will treat the case α ≤ ds

2 , which is precisely the region of values of α for which
Proposition 5.5 will give us a better temporal Hölder exponent than Proposition 5.3.
Propositions 5.1 and 5.5 then give us the estimates

E
[
(uT (t, x)− uT (t, y))2p

]
≤ C ′pC

p
2R(x, y)p,

E
[
(uT (s, x)− uT (t, x))2p

]
≤ C ′pC

p
4 |s− t|p(1−

ds
2 )

(5.1)

for all s, t ∈ [0, T ] and all x, y ∈ F . Taking p arbitrarily large and then using Corollary
3.19 we get a version ũT of uT (that is, ũT is a version of u on [0, T ]× F ) that satisfies
the Hölder regularity conditions of the theorem for the given value of T . This works
because any two almost surely continuous versions of uT must coincide almost surely
since [0, T ]× F is separable.

If now T ′ > T and we construct a version ũT ′ of u on [0, T ′] × F in the same way,
then ũT ′ must agree with ũT on [0, T ] × F almost surely since both are almost surely
continuous on [0, T ]× F which is separable. Therefore let T = n for n ∈ N and let Ω′ be
the almost sure event

Ω′ =
∞⋂
n=1

{ũn+1 agrees with ũn on [0, n]× F} .

Then for (t, x) ∈ [0,∞) × F define ũ(t, x) = ũdte+1(t, x) on Ω′ and ũ(t, x) = 0 otherwise,
and we are done.

Now if α > ds
2 then we use the temporal estimate of Proposition 5.3 rather than the

temporal estimate of Proposition 5.5 in (5.1).

Theorem 5.7 (Continuous version is version of original solution). The collection of random
variables ũ = (ũ(t, x))(t,x)∈[0,∞)×F constructed in Theorem 5.6 is such that (ũ(t, ·))t∈[0,∞)

is an H-valued process, and moreover (ũ(t, ·))t∈[0,∞) is an H-continuous version of the
H-valued solution to (1.1) found in Theorem 2.11 (with u0 = 0).

Proof. From Theorem 5.6, ũ is almost surely continuous in [0,∞) × F . Each ũ(t, x) is
a well-defined random variable so by [1, Lemma 4.51], ũ is jointly measurable. Using
continuity again, this implies that ũ(t, ·) ∈ H for all t ∈ [0,∞) almost surely. We also
have that t 7→ ũ(t, ·) is a continuous function from [0,∞) to H for each ω ∈ Ω and that
each ũ(t, ·) is a Borel measurable map from Ω to H; the latter follows from the joint
continuity of ũ and the fact that the Borel σ-algebra of H is generated by the bounded
linear functionals on H.

For each n ≥ 1 and (t, x) ∈ [0,∞)× F , define

u(n)(t, x) =

n∑
k=1

(1 + λbk)−
α
2 Xb,k

t ϕbk(x).

Then each u(n) is obviously jointly measurable, and by (4.5), u(n)(t, x)→ ũ(t, x) in L2(P)

for each (t, x) ∈ [0,∞)× F . In fact by joint measurability we also have that

E

[∫
F

(
u(n)(t, x)− ũ(t, x)

)2

µ(dx)

]
=

∫
F

E

[(
u(n)(t, x)− ũ(t, x)

)2
]
µ(dx)

=

∫
F

E

( ∞∑
k=n+1

(1 + λbk)−
α
2 Xb,k

t ϕbk(x)

)2
µ(dx)

=

∫
F

∞∑
k=n+1

(1 + λbk)−αE

[(
Xb,k
t

)2
]
ϕbk(x)2µ(dx)
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where in the last line we have used (4.5). Then by Tonelli’s theorem,

E

[∫
F

(
u(n)(t, x)− ũ(t, x)

)2

µ(dx)

]
=

∞∑
k=n+1

(1 + λbk)−αE

[(
Xb,k
t

)2
]

→ 0

as n → ∞, by the fact that
∑∞
k=1E[(Xb,k

t )2] < ∞. In particular, this implies that
〈u(n)(t, ·), ϕbk〉µ → 〈ũ(t, ·), ϕbk〉µ in L2(P) as n→∞, for every t ∈ [0,∞) and every k ≥ 1.

Recall that if u0 = 0 then the solution to (1.1) is simply given by the series

W b
α(t) =

∞∑
k=1

(1 + λbk)−
α
2 Xb,k

t ϕbk.

It follows that for all t ∈ [0,∞) and n ≥ k we have that

〈u(n)(t, ·), ϕbk〉µ = (1 + λbk)−
α
2 Xb,k

t = 〈W b
α(t), ϕbk〉µ

almost surely. Therefore ũ(t, ·) = W b
α(t) almost surely for all t ∈ [0,∞) and we are

done.

Remark 5.8. In [13] it is shown that under some mild conditions on the p.c.f.s.s. set
(F, (ψi)

M
i=1), it can be embedded into Euclidean space in such a way that its resistance

metric R is uniformly equivalent to some power of the Euclidean metric. Therefore
in this case the conclusion of Theorem 5.6 holds with respect to the spatial Euclidean
metric, albeit with a different Hölder exponent. An example given in [13, Section 3] is
the n-dimensional Sierpinski gasket for n ≥ 2, see Example 1.3(2) of the present paper.
This fractal has a natural embedding in Rn, and it is shown that in this case we have a
constant c > 0 such that

c−1|x− y|dw−df ≤ R(x, y) ≤ c|x− y|dw−df

for all x, y ∈ F ⊆ Rn, where dw = log(n+3)
log 2 is the walk dimension of the gasket and

df = log(n+1)
log 2 is its Euclidean Hausdorff dimension. These fractals all admit function-

valued solutions to their respective SHEs but their ambient spaces Rn do not.

Remark 5.9. From Theorem 5.6 we see that the operator (1− Lb)−
α
2 has a smoothing

effect on the solution to (1.1) as α increases. However the theorem suggests that this
does not change the Hö exponents of the solution until α reaches the value ds

2 . On the
other hand, recall from Remark 5.4 that if F = [0, 1] as in Example 1.1 then the temporal
Hölder exponent of the solution to (1.1), viewed as a function of α, is linearly strictly
increasing in some neighbourhood of α = 0. Intuitively this phenomenon should occur
for any F . We therefore conjecture that the Hö exponent in Theorem 5.6(1) is not sharp
when α ∈ (0, ds), and is in fact equal to the exponent obtained in Theorem 2.11 for the
solution interpreted as an H-valued process.

We have shown regularity properties of the solution to (1.1) in the case u0 = 0, and
henceforth we assume that we are dealing with the continuous version of this solution.
If we now take an arbitrary initial condition u0 = f ∈ H, then obviously the same results
may not hold since f may be very rough. We can however prove continuity in almost the
entire domain [0,∞)× F .

Theorem 5.10. Let u : [0,∞) × F → R be the solution to (1.1) with initial condition
u0 = f ∈ H. Then u (has a version which) is almost surely continuous in (0,∞)× F with
respect to R∞. Moreover, if either
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(1). b = N and f is continuous on F , or

(2). b = D and f is continuous on F with f |F 0 ≡ 0,

then u (has a version which) is almost surely continuous in [0,∞) × F with respect to
R∞.

Proof. Theorem 5.6 gives us that the map (t, x) 7→ W b
α(t)(x) (has a version which) is

almost surely continuous in [0,∞)×F . We know that if t > 0 then Sbt maps H into D, and
in particular into the space of continuous functions. Thus it makes sense to talk about
Sbt f(x) for x ∈ F . Define

u(t, x) := Sbt f(x) +W b
α(t)(x),

then it suffices to prove continuity of the map (t, x) 7→ Sbt f(x). This follows in the same
way as the proof of [15, Proposition 5.2.6]. The last two statements in the theorem are
immediate corollaries of [15, Proposition 5.2.6].

6 Invariant measure

We conclude with a brief description of the long-time behaviour of the solutions to
(1.1). In this section we allow the initial condition u0 to be an H-valued random variable
which is independent of W .

Definition 6.1. An invariant measure for the SPDE (1.1) is a probability measure ν∞ on
L2(F, µ) = H such that if u is the solution to (1.1) with random initial condition u0 ∼ ν∞
(independent of W ) then u(t) ∼ ν∞ for all t > 0.

In the following theorems, let (Zk)∞k=1 be a sequence of independent and identically
distributed one-dimensional standard Gaussian random variables.

Theorem 6.2. Let b = D. Then (1.1) has a unique invariant measure νD∞ and it is given
by

νD∞ = Law

( ∞∑
k=1

(1 + λDk )−
α
2 (2λDk )−

1
2Zkϕ

D
k

)
.

If u is a solution to (1.1) in the case b = D then u(t) converges weakly to νD∞ as t→∞
regardless of its initial distribution Law(u0).

Proof. We first show that the definition of νD∞ makes sense. We have that

E

[ ∞∑
k=1

∥∥∥(1 + λDk )−
α
2 (2λDk )−

1
2Zkϕ

D
k

∥∥∥2

µ

]
= E

[ ∞∑
k=1

(1 + λDk )−α(2λDk )−1Z2
k

]

≤
∞∑
k=1

(1 + λDk )−α(2λDk )−1

≤ c−1−α
1

2

∞∑
k=1

k−
2
ds

(1+α)

<∞,

so νD∞ is indeed a well-defined probability measure on H. Now suppose u has initial
distribution u0 ∼ νD∞. By Definition 2.1 and (2.1) we have that

u(t) =

∞∑
k=1

(1 + λDk )−
α
2

(
e−λ

D
k t(2λDk )−

1
2Zk +XD,k

t

)
ϕDk ,
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where (Zk)∞k=1 and (XD,k)∞k=1 are understood to be independent. Recall that λD1 > 0 by
Remark 2.9, so for every k, XD,k is a centred Ornstein-Uhlenbeck process with unit
volatility and rate parameter λDk . Moreover, t 7→ e−λ

D
k t(2λDk )−

1
2Zk +XD,k

t is an Ornstein-
Uhlenbeck process with unit volatility, rate parameter λDk and initial distribution given
by the law of (2λDk )−

1
2Zk, which turns out to be exactly its invariant measure (which we

leave as an exercise for the reader). Thus the law of u(t) is equal to νD∞ for all t > 0, so
νD∞ is an invariant measure. We also see that for all f ∈ H,

‖SDt f‖2µ =

∞∑
k=1

e−2λDk tf2
k ≤ e−2λD1 t

∞∑
k=1

f2
k = e−2λD1 t‖f‖2µ

where fk = 〈ϕDk , f〉µ, so limt→∞ ‖SDt ‖ = 0. Then the uniqueness and weak convergence
results are direct consequences of [4, Theorem 11.20] (or alternatively [10, Proposition
5.23]).

In the case b = N we do not have nearly as neat a result, but there exists a decomposi-
tion of u into two independent processes, one of which has similar invariance properties
to the b = D case and the other of which is simply a Brownian motion.

Definition 6.3. Let H1 ⊆ H be the space spanned by ϕN1 , which we recall from Remark
2.9 to be the constant function ϕN1 ≡ 1. Let H⊥1 be its orthogonal complement. Let
π1 : H → H1 be the orthogonal projection ontoH1 and let π⊥1 : H → H⊥1 be the orthogonal
projection onto H⊥1 .

Let ? denote convolution of measures. For a measure ν on H, let π∗1ν denote the
pushforward of ν with respect to π1, which is a measure on H1.

Theorem 6.4. Define the probability measure νN∞ on H⊥1 by

νN∞ = Law

( ∞∑
k=2

(1 + λNk )−
α
2 (2λNk )−

1
2Zkϕ

N
k

)
.

Let u be a solution to (1.1) with b = N . Then there exists a one-dimensional standard
Wiener process B = (B(t))t≥0 which is adapted to the filtration generated by W such
that B and u−B are independent processes, and if u has initial distribution u0 ∼ ν ? νN∞
for some probability measure ν on H1 then u(t)−B(t) ∼ ν ? νN∞ for all t > 0. Moreover,
if u has initial distribution u0 ∼ ν0 for some probability measure ν0 on H then u(t)−B(t)

converges weakly to (π∗1ν0) ? νN∞ as t→∞.

Proof. Recall that λN1 = 0 and that λNk > 0 for k ≥ 2. Just as in the b = D case we can
prove that νN∞ is a well-defined probability measure on H⊥1 , and indeed on H as well. We
define

B(t) := XN,1
t =

∫ t

0

ϕN∗1 dW (s).

From our discussion after (4.1) we know that XN,1 is a standard one-dimensional Wiener
process, and by Remark 2.9, ϕN1 ≡ 1. From the representation (4.2) of W b

α as a sum of
independent stochastic processes it is clear that u−B is independent of B.

Now suppose u has initial distribution u0 ∼ ν ? νN∞ for some probability measure ν on
H1. The space H1 is one-dimensional so let Z0 be a real-valued random variable such
that Z0ϕ

N
1 has law ν. By Definition 2.1 and (2.1) we can write

u(t) =
(
Z0 +XN,1

t

)
ϕN1 +

∞∑
k=2

(1 + λNk )−
α
2

(
e−λ

N
k t(2λNk )−

1
2Zk +XN,k

t

)
ϕNk ,
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where again Z0, (Zk)∞k=1 and (XN,k)∞k=1 are understood to be independent. Now we
observe that π⊥1 = 1(0,∞)(−LN ) using the functional calculus on self-adjoint operators,
and in particular π⊥1 commutes with functions of LN , including SNt . Then define

π⊥1 u(t) = u(t)−
(
Z0 +XN,1

t

)
=: u1(t),

where we have identified scalars c ∈ R with their associated constant functions cϕN1 ∈ H.
It is then easily verifiable that π⊥1 W is a cylindrical Wiener process on H⊥1 and that u1 is
the (mild) solution to the SPDE on H⊥1 given by

du(t) = LNu(t)dt+ (1− LN )−
α
2 π⊥1 dW (t),

u(0) = u0 ∈ H⊥1
(6.1)

with u0 ∼ νN∞. Note that all operators in (6.1) commute with π⊥1 and so can be identified
with their restriction to H⊥1 for the purposes of the above SPDE. By definition,

u1(t) =

∞∑
k=2

(1 + λNk )−
α
2

(
e−λ

N
k t(2λNk )−

1
2Zk +XN,k

t

)
ϕNk .

Now just as in the b = D case, using [4, Theorem 11.20] (or [10, Proposition 5.23])
we find that νN∞ is the unique invariant measure for (6.1) and that the solution to (6.1)
converges weakly to νN∞ for any initial distribution on H⊥1 . So we have that for all t > 0,

u(t)−B(t) = Z0 + u1(t) ∼ ν ? νN∞

as required.
We observe that if u has deterministic initial value u0 = f ∈ H then this is equivalent

to u0 being distributed according to the convolution of Dirac measures δf1
? δf2

for
f1 = π1(f) ∈ H1, f2 = π⊥1 (f) ∈ H⊥1 . By doing the usual eigenfunction expansion we have
that u(t) = f1 +XN,1 + u1(t) where u1 is now the solution to (6.1) with initial value f2.
Thus u(t) − B(t) = f1 + u1(t) which converges weakly to δf1

? νN∞. Now assume u has
an arbitrary initial probability distribution u0 ∼ ν0 in H. By conditioning first on the
value of π1(u0) ∈ H1, then on the value of π⊥1 (u0) ∈ H⊥1 and then using the dominated
convergence theorem we find that E[g(u(t)−B(t))] converges to ((π∗1ν0) ? νN∞)(g) for any
continuous and bounded function g on H. So we have weak convergence of u(t)−B(t)

to (π∗1ν0) ? νN∞.
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