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Noise stability and correlation with half spaces

Elchanan Mossel* Joe Neeman†

Abstract

Benjamini, Kalai and Schramm showed that a monotone function f : {−1, 1}n →
{−1, 1} is noise stable if and only if it is correlated with a half-space (a set of the form
{x : 〈x, a〉 ≤ b}).

We study noise stability in terms of correlation with half-spaces for general (not
necessarily monotone) functions. We show that a function f : {−1, 1}n → {−1, 1} is
noise stable if and only if it becomes correlated with a half-space when we modify f

by randomly restricting a constant fraction of its coordinates.
Looking at random restrictions is necessary: we construct noise stable functions

whose correlation with any half-space is o(1). The examples further satisfy that
different restrictions are correlated with different half-spaces: for any fixed half-space,
the probability that a random restriction is correlated with it goes to zero.

We also provide quantitative versions of the above statements, and versions that
apply for the Gaussian measure on Rn instead of the discrete cube. Our work
is motivated by questions in learning theory and a recent question of Khot and
Moshkovitz.
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1 Introduction

In a seminal paper, Benjamini, Kalai and Schramm [2] related noise stability to
correlation with half-spaces by showing that a monotone boolean function is noise stable
if and only if it is correlated with a half-space. Our interest in this paper is relating noise
stability with correlation with half-spaces for general boolean functions. Our results are
motivated by recent work of Khot and Moshkovitz whose goal is to construct a Lasserre
integrality gap for the Unique Games problems as well as by natural problems in learning
theory.

In the following subsections we introduce the setup and results in the boolean and
Gaussian cases and discuss the motivation for our work.
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Noise stability and correlation with half spaces

1.1 The boolean setting

Let µn denote the uniform measure on {−1, 1}n. For t ≥ 0, let Pt denote the Bonami-
Beckner semigroup, defined by

(Ptf)(x) = (Pt,1f)(x) = Ef + e−t(f(x)− Ef)

in the case n = 1 and Pt,n = P⊗nt,1 otherwise. The boolean noise stability of a set
A ⊂ {−1, 1}n is

NSt(A) = E[1APt1A],

where the expectation is taken with respect to µn. There is a natural probabilistic
interpretation of the noise stability: let X be a uniformly random element of {−1, 1}n
and let Y be a “noisy” copy of X defined by (independently for every i) setting Yi = Xi

with probability e−t and resampling Yi uniformly from {−1, 1} otherwise. Then NSt(A) =

Pr(X ∈ A and Y ∈ A). In this setting, the operator Pt can be understood as a conditional
expectation: (Ptf)(x) = E[f(Y ) | X = x].

Since Pt = Pt/2Pt/2 and Pt is self-adjoint, we may also write NSt(A) = E[(Pt/21A)2].
Then

NSt(A)− µn(A)2 = NSt(A)− (EPt/21A)2 = Var(Pt/21A) ≥ 0;

the quantity Var(Pt1A) turns out to be a useful re-parametrization of the usual boolean
noise sensitivity.

We say that a sequence Ai ⊂ {−1, 1}ni of sets is noise sensitive if for every t > 0,
Var(Pt1Ai

)→ 0 as i→∞. Otherwise, we say that the sequence Ai is noise stable.
A half-space is a set of the form {x ∈ {−1, 1}n : 〈x, a〉 ≤ b}; write Hn for the set of all

half-spaces in {−1, 1}n. Define

M(A) = sup
B∈Hn

Cov(1A, 1B).

Clearly 0 ≤M(A) ≤ 1
4 for all A.

The set A ⊂ {−1, 1}n is monotone if whenever x ∈ A and y ≥ x coordinatewise then
y ∈ A. Benjamini, Kalai, and Schramm [2] proved that a sequence Ai of monotone sets is
noise sensitive if and only ifM(Ai)→ 0. In this article, we explore removing the condition
of monotonicity. First, we show that one direction of Benjamini et al.’s equivalence fails
when the Ai are allowed to be non-monotone. In particular, we construct a sequence of
sets Bi ⊂ {−1, 1}ni such that M(Bi)→ 0 but NSt(Bi) 6→ 0; in other words, noise-stable
sets are not necessarily correlated with any half-spaces.

Although noise-stable sets may not be correlated with half-spaces, there is a char-
acterization of noise stability in terms of half-spaces; this characterization requires the
notion of a restriction. For z ∈ {−1, 0, 1} and y ∈ {−1, 1}, define Πzy ∈ {−1, 1} by

Πzy =

{
y if z = 0

z otherwise.

For z ∈ {−1, 0, 1}n and y ∈ {−1, 1}n, define Πzy ∈ {−1, 1}n coordinatewise: (Πzy)i =

Πziyi. We use the notation Π because this operation may be interpreted as the projection
of y onto the subcube

Ωz = {x ∈ {−1, 1}n : xi = zi whenever zi 6= 0}.

For a set B ⊂ {−1, 1}n, define the restriction of B by z to be

Bz = {x ∈ {−1, 1}n : Πzx ∈ B};
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Noise stability and correlation with half spaces

for a function f : {−1, 1}n → R, define the restriction of f by z to be

fz(y) = f(Πzy).

Observe that our two notions of restriction are compatible in the sense that (1B)z = 1Bz
.

The term “restriction” comes from the fact that fz is essentially the same as f |Ωz
, in the

sense that all properties that we care about (e.g. correlation with half-spaces) are the
same for fz and f |Ωz

.
Write µt for the measure on {−1, 0, 1}n under which each coordinate is independent,

equal to zero with probability e−t, and chosen uniformly from {−1, 1} otherwise. We
remark that the notion of a random restriction is closely related to the notion of noise
stability: if Z ∼ µt and X is uniformly random in {−1, 1}n (and independent of Z)
then ΠZX is a “noisy” copy of X in the sense above. In particular, NSt(A) = Pr(X ∈
A and ΠZX ∈ A). Similarly, note that if Zs ∼ µs then Psf = EfZs

Our main theorem, in its qualitative form (its analogous quantitative versions are
Theorem 3.1 and Theorem 3.10), says that a set is noise stable if and only if we can
make it correlated with a half-space by randomly restricting a constant fraction of its
coordinates.

Theorem 1.1. The sequence B(i) ⊂ {−1, 1}ni is noise stable if and only if there are some

t, ε > 0 such that for all sufficiently large i, M(B
(i)
Z ) ≥ ε with probability at least ε, where

Z ∼ µt.
The proof of Theorem 1.1 is not very complicated. In one direction, it is well-known

(Theorem 3.11) that every half-space is noise-stable, and it then follows that if a set
is correlated with a half-space then it is noise-stable (Proposition 3.12). Finally, if a
random restriction of a set is noise-stable then the original set must also be noise-stable.
This proves that if a random restriction is correlated with a half-space then the set is
noise-stable.

For the other direction, the main idea is to involve the “first-level Fourier weight” of
a set, defined by

w1(B) =

n∑
i=1

E[Xi1B(X)]2.

We then proceed in two steps: first (in Proposition 3.2), we prove that if w1(B) is large
then B is correlated with a half-space. For this step, note that if w1(B) is large then B is
correlated with a linear function, and we can use that linear function to find a correlated
half-space. For the second step (in Proposition 3.3), we prove that for a noise-stable
function, random restrictions have large first-level Fourier weight.

Since the notion of taking restrictions may seem artificial, it is natural to ask whether
taking restrictions in Theorem 1.1 is really necessary. That is, could it be that B(i) noise
stable already implies that M(B(i)) 6→ 0? In fact, this is not the case. As an example,
take nm = n2 and consider the sets B(m) ⊂ {−1, 1}nm defined by

B(m) =

{
x :

m∑
i=1

(
1√
m

im∑
j=(i−1)m+1

xj

)2

≤ m
}
.

Proposition 1.2. The sets B(m) are noise stable, but M(B(m)) ≤ Cm−1/200 for a univer-
sal constant C.

1.2 The Gaussian setting

The preceding results also make sense in a Gaussian setting: Let γn denote the
standard Gaussian measure on Rn and write Pt for the Ornstein-Uhlenbeck semigroup,
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defined by

Ptf(x) = Ef(e−tx+
√

1− e−2tX), X ∼ γn.

(Here and elsewhere we will reuse symbols that we also used in the boolean setting;
however, the meaning should always be clear from the context.) The Gaussian noise
stability of a set A ⊂ Rn is

NSt(A) = E[1APt1A].

For a probabilistic definition of noise stability, suppose that X ∼ γn and Y ∼ γn are
jointly Gaussian with correlation e−t. Then NSt(A) = Pr(X ∈ A and Y ∈ A). As in the
boolean case, we have NSt(A) − γn(A)2 = Var(Pt/21A); we say that a sequence Ai of
sets is noise sensitive if Var(Pt1Ai)→ 0 for all t > 0, and we say that Ai is noise stable
otherwise. A half-space is a set of the form {x ∈ Rn : 〈x, a〉 ≤ b}; write Hn for the set of
all half-spaces in Rn and define

M(A) = sup
B∈Hn

Cov(1A, 1B).

In the setting above, we prove that a sequence of sets is noise stable if and only if by
scaling and randomly shifting it, we make them correlated with half-spaces. Specifically,
given B ⊂ Rn, t ≥ 0, and y ∈ Rn, define

Bt,y = {x ∈ Rn :
√

1− e−2tc+ e−ty ∈ B}.

Theorem 1.3. The sequence B(i) ⊂ Rn is noise stable if and only if there are some
t, ε > 0 such that for all sufficiently large i, M(B

(i)
t,Y ) ≥ ε with probability at least ε, where

Y ∼ γn.

The proof of Theorem 1.3 follows the same general outline as the proof of Theorem 1.1.
In fact, Theorem 1.3 is a little bit nicer to prove, because the Gaussian measure is
particularly easy to work with; therefore, we will prove Theorem 1.3 first.

As in the boolean case, one can find examples showing that Theorem 1.3 would be
false if we didn’t introduce the scaling and random shifting. In this case, the example is
very easy: let B(n) ⊂ Rn be the Euclidean ball of radius

√
n.

Proposition 1.4. The sets B(n) are noise stable, but M(B(n)) ≤ n−1/2.

One can learn a little more from this example. First, note that any restrictions of B(n)

are also Euclidean balls. In the Gaussian setting, therefore, unlike in the boolean one,
noise stability does not imply that random restrictions are correlated with half-spaces.
Another observation (since B(n) is rotationally invariant) is that noise stable sets do not
necessarily “encode” directions. We make this more precise in Proposition 2.4, which
says that even though random shifts and scalings of B(n) are correlated with half-spaces,
the directions in which those half-spaces point are unpredictable.

1.3 Motivation

Our work is motivated by extending the results of [2] to non-monotone functions, as
well by the following motivations:

• In a recent work Khot and Moshkovitz [4], proposed a Lasserre integrality gap for
the Unique Games problem. The proposed construction is based on the assumption
that in a certain family of functions, the most stable functions are half-spaces. More
specifically [4] considers f : Rn → {−1,+1} which satisfy

f(−x) = f(x+ ei) = −f(x),
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for all x and for the standard basis vectors ei; they asked whether the most stable
functions in this family are of the form sgn(

∑
i σixi) where σi ∈ {−1, 1}n, and also

whether every function that is almost as noise stable as possible must be correlated
with a function of this form.

In this context, it is natural to ask whether every noise stable function is correlated
with a half-space. This is the question we address in this paper. However, since our
functions are not required to satisfy f(x+ ei) = −f(x), our results and examples
do not have direct implications for the proposed Lasserre integrality gap instances.

• It is well known that the class of functions having a constant fraction (resp. most)
of their Fourier mass on “low” coefficients can be weakly (resp. strongly) learned
under the uniform distribution [7, 5]. In particular, noise stable functions can
be weakly learned. On the other hand, the most classical learning algorithms
involve learning half-spaces. Thus it is natural to ask if there is more direct relation
between the weak learnability of noise stable functions and the learnability of
half-spaces. Our examples seem to provide a negative answer to this question.

Remark 1.5. It is natural to ask whether the theorem of [2] can be recovered from our
results. For example, by combining Theorem 1.1 with [2] it follows that a monotone set
is correlated with a half-space if and only if its random restrictions are correlated with
half-spaces. But is this fact obvious from first principles? If it were, it would combine
with Theorem 1.1 to give a different proof of [2].

2 The Gaussian case

For this section, let X ∼ γn. Recall that the Ornstein-Uhlenbeck semi-group is defined
by

Ptf(x) = Ef(e−tx+
√

1− e−2tX).

For t ∈ R and y ∈ Rn, define ft,y by ft,y(x) = f(
√

1− e−2tx+ e−ty).

Theorem 2.1. There is a universal constant c > 0 such that for any measurable f : Rn →
[0, 1] and any t > 0,

E

[
M2(ft,Y ) log

1

M(ft,Y )

]
≥ c(e2t − 1) Var(Ptf),

where the expectation is with respect to Y ∼ γn.

2.1 An example

As discussed in the introduction, a simple example shows that f itself may not be
correlated with a half-space: let Bn ⊂ Rn be the Euclidean ball of radius

√
n. First, we

note that for sufficiently small t, Var(Pt1Bn
) is bounded away from zero as n→∞. (This

is already well-known [3], since Bn is obtained by thresholding a quadratic function, but
the computation in our special case is quite easy.)

Proposition 2.2. For any n and any t > 0,

Var(Pt1Bn) ≥ 1

4
− arccos(e−2t)√

2π
− on(1).

In particular Bn is noise stable.

Proof. For a set of B of smooth boundary, we may define the Gaussian perimeter of B as∫
∂B

dγn
dλ

(x) dHn−1(x),
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where Hn−1 denotes the (n − 1)-dimensional Hausdorff measure and dγn
dλ denotes the

Gaussian density with respect to the Lebesgue measure. Since the Gaussian density
restricted to ∂Bn takes the constant value (2πe)−n/2 and the Euclidean surface area of
Bn is

√
n
n−1 · 2πn/2/Γ(n/2), it follows that the Gaussian perimeter of Bn is

2nn/2−1/2

(2e)n/2Γ(n/2)
∼ 1√

π
,

where the approximation follows from Stirling’s formula.
On the other hand, Ledoux [6] proved that if P is the Gaussian perimeter of B then

E[1B(1B − Pt1B)] ≤ arccos(e−t)P√
2π

.

Plugging in our asymptotics for the Gaussian perimeter of Bn, we have

E[1Bn(1Bn − Pt1Bn)] ≤ (1 + on(1))
arccos(e−t)√

2π
.

Since Pt = Pt/2Pt/2 and Pt/2 is self-adjoint, this may be rearranged into

E[(Pt/21Bn
)2] ≥ Pr(Bn)− (1 + on(1))

arccos(e−t)√
2π

.

Since Pr(Bn) = 1
2 + on(1), this proves the claim.

Next, we observe that Bn is not correlated with any half-space:

Proposition 2.3.M(Bn) ≤ n−1/2.

In particular, Propositions 2.2 and 2.3 together imply that Theorem 2.1 would no
longer be true if ft,y were replaced by f .

Proof. Since Bn is rotationally invariant, it suffices to consider half-spaces of the form
Ai := {x : xi ≤ b}. Since Pr(Ai) = Φ(b),

Cov(1Bn
, 1Ai

) = E[1Bn
(1Ai

− Φ(b))].

Now let fi = 1Ai
− Φ(b). Then the fi are orthogonal and satisfy ‖fi‖2 ≤ 1. Hence,

1 ≥ ‖1Bn
‖22 ≥

n∑
i=1

E[1Bn
fi]

2 = nE[1Bn
f1]2,

and so E[1Bnf1] ≤ n−1/2.

A very similar argument shows that even though shifts of An may be correlated with
half-spaces, the half-spaces are pointed in unpredictable directions.

Proposition 2.4. Let g = 1Bn and let gt,y(x) = g(
√

1− e−2tx+ e−ty). For any half-space
A,

EY [Cov(gt,Y , 1A)2] ≤ 1

n
.

In particular, Chebyshev’s inequality implies that for any u > 0, with probability at least
1− u−2 over Y ∼ N (0, In)

|Cov(gt,Y , 1A)| ≤ u

n
.

Proof. Let Ai = {x : xi ≤ b} and fi = 1Ai
− Φ(b). As in the proof of the previous

proposition, for any Y and t,

1 ≥
n∑
i=1

E[gt,Y fi]
2 = nE[gt,Y f1]2 = nCov(gt,Y , f1)2.

Taking the expectation over Y completes the proof.

EJP 23 (2018), paper 16.
Page 6/17

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP145
http://www.imstat.org/ejp/


Noise stability and correlation with half spaces

2.2 Proof of Theorem 2.1

For f ∈ L2(γn), define w1(f) =
∑
iE[Xif(X)]2. Using the integration by parts formula

E[Xif(X)] = E[ ∂f∂xi
(X)], we may also write w1(f) = |E∇f |2. The proof of Theorem 2.1

goes in two steps: first, we show that if w1(f) is non-negligible then there exists a
half-space correlated with f . Then, we show that for a random Y ∼ γn, w1(ft,Y ) is
non-negligible in expectation.

For the first step, we will make use of the following simple identity:

Lemma 2.5. Let ν be a probability measure on R that has a finite mean and is symmetric,
in the sense that if Y ∼ ν then −Y ∼ ν. Then for any x ∈ R,

x =

∫ ∞
−∞

1{x≥t} − ν[t,∞) dt.

Proof. Note that the convergence of the integral follows from the finiteness of the mean.
Moreover, if we define ψ(x) =

∫∞
−∞ 1{x≥t} − ν[t,∞) dt then we may write

ψ(x) =

∫ x

−∞
1− ν[t,∞) dt−

∫ ∞
x

ν[t,∞) dt

=

∫ x

−∞
ν(−∞, t) dt−

∫ ∞
x

ν[t,∞) dt.

It follows that ψ is continuous and Lebesgue-a.e. differentiable, and ψ′(x) = ν(−∞, x) +

ν[x,∞) = 1 a.e. Then we must have ψ(x) = x + C, but the symmetry of ν implies that
ψ(0) = 0; hence C = 0 and so ψ(x) = x.

Proposition 2.6. There is a universal constant c > 0 such that for any f : Rn → [0, 1],

M2(f) log
1

M(f)
≥ cw1(f).

Proof. Let ai = E[Xif(X)], and note that

√
w1(f) =

(∑
i

a2
i

)1/2

= max
|v|=1
〈a, v〉 = max

|v|=1
E [〈v,X〉f(X)] ,

where | · | denotes the Euclidean norm. Choose v to maximize the right hand side above.
Since the distribution of 〈v,X〉 is symmetric, Lemma 2.5 implies that

√
w1(f) = E[〈v,X〉f(X)] =

∫ ∞
−∞

Cov(f, 1{〈v,·〉≥t}) dt. (2.1)

Next, we will show that the tails of the above integral decay rapidly, and it will follow
that there exists some t ∈ R for which Cov(f, 1{〈v,·〉≥t}) is large.

Since f takes values in [0, 1], we have Var(f) ≤ 1
4 . Then the Cauchy-Schwarz inequality

implies that

Cov(f, 1{〈v,·〉≥t}) ≤
√

Var(f) Var(1{〈v,·〉≥t}) ≤
1

2

√
Pr(〈v,X〉 ≥ t) Pr(〈v,X〉 < t).

Now, 〈v,X〉 has a standard Gaussian distribution and so at least one out of Pr(〈v,X〉 ≥ t)
and Pr(〈v,X〉 < t) is bounded by exp(−t2/2). Hence,

Cov(f, 1{〈v,·〉≥t}) ≤
1

2
exp(−t2/4).
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For any s ≥ 1, it follows that∫
R\[−s,s]

Cov(f, 1{〈v,·〉≥t}) dt ≤
∫ ∞
s

exp(−t2/4) dt ≤ 2 exp(−s2/4),

where the second inequality follows from bounding exp(−t2/4) by t exp(−t2/4) and then
integrating by parts. Going back to (2.1), we have (for any s ≥ 1)∫ s

−s
Cov(f, 1{〈v,·〉≥t}) dt ≥

√
w1(f)− 2 exp(−s2/4).

Choosing s =
√

2 log(16/w1(f)) (which is at least 1 because w1(f) ≤ 1), we have
2 exp(−s2/4) = 1

2

√
w1(f) and so∫ s

−s
Cov(f, 1{〈v,·〉≥t}) dt ≥

1

2

√
w1(f).

In particular, there is some t ∈ [−s, s] such that

Cov(f, 1{〈v,·〉≥t}) ≥
1

4s

√
w1(f).

Plugging in our value for s proves that

M(f) ≥ 1

4
√

2 log(16/w1(f))

√
w1(f),

which (after some rearrangement) implies the claim.

Remark 2.7. We remark that the proof of Proposition 2.6 does not use the Gaussian
setting in a particularly strong way. In particular, the proof is valid whenever X has a
symmetric sub-Gaussian distribution, where “sub-Gaussian” means that

Pr(〈X, v〉 ≥ t) ≤ exp(−t2/2)

for any unit vector v and any t ≥ 0.

The second step in the proof of Theorem 2.1 is to show that if a function f is noise
stable then it has some shifts ft,y with non-negligible w1(ft,y). In order to do this, recall
the Gaussian Poincaré inequality (see, e.g. [1]), which states that Var(f) ≤ E|∇f |2 for
any f with continuous derivatives.

Proposition 2.8. For any f and any t > 0, if Y ∼ N (0, In) then

Ew1(ft,Y ) ≥ (e2t − 1) Var(Ptf).

Proof. Since smooth functions are dense in L2(γn), and since both w1(f) and Var(Ptf)

are preserved under L2(γn) convergence, we may assume that f is smooth. Then
∇ft,y =

√
1− e−2t(∇f)t,y. Hence,

w1(ft,y) = |E∇ft,y|2 = (1− e−2t)|E∇f(
√

1− e−2tX + e−ty)|2.

Now set Y to be a standard Gaussian vector in Rn, independent of X. Then

Ew1(ft,Y ) = (1− e−2t)EY |EX∇f(
√

1− e−2tX + e−tY )|2

= (1− e−2t)EY |(Pt∇f)(Y )|2

= (e2t − 1)EY |(∇Ptf)(Y )|2,

where the last line follows because Pt∇f = et∇Ptf . Finally, the Poincaré inequality
applied to Ptf yields

Ew1(ft,Y ) = (e2t − 1)E|∇Ptf |2 ≥ (e2t − 1) Var(Ptf).

Proof of Theorem 2.1. By Proposition 2.8, there exists some y ∈ Rn such that w1(ft,y) ≥
Var(Ptf). Applying Proposition 2.6 to ft,y completes the proof.
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2.3 The converse of Theorem 2.1

The following result is a (qualitative) converse of Theorem 2.1. For example, it
implies that if M(fs,Y ) is non-negligible with constant probability then f is noise stable.
In particular, together with Theorem 2.1 it implies Theorem 1.3.

Theorem 2.9. For any 0 < r < s and any f : Rn → [0, 1],

(1− e−2(s−r)) Var(Prf) ≥ 4EYM
2(fs,Y )− C

(
1− e−2r

1− e−2s

)1/4

.

Lemma 2.10. For any half-space A and any t > 0,

E[(1A − Pt1A)2] ≤ 1

π
arccos(e−t).

Proof. Ledoux’s bound gives

E[(1− 1A)Pt1A] ≤ arccos(e−t)

2π
.

Rearranging this,

E[1APt1A] ≥ γn(A)− arccos(e−t)

2π
. (2.2)

On the other hand,

E[(1A − Pt1A)2] = γn(A)− 2E[1APt1A] + E[(Pt1A)2] ≤ 2γn(A)− 2E[1APt1A].

Applying (2.2) completes the proof.

Next, we show that any set which is correlated with a half-space must be noise stable
(indeed, almost as noise stable as the half-space itself).

Proposition 2.11. Suppose that A ⊂ Rn is a half-space. Then for any f : Rn → [0, 1]

and any t > 0,

Var(Ptf) ≥ Cov(A, f)2(
γn(A)(1− γn(A))

)2 Var(Pt1A)−
√

arccos(e−2t)√
π

≥ 4 Cov(A, f)2 − Ct1/4

for a universal constant C.

Proof. Let g = 1A − γn(A) and h = f − Ef , so that g and h both have mean zero and
E[gh] = Cov(1A, f). Write h = cg + h⊥, where E[gh⊥] = 0; then c = E[gh]/E[g2] =

Cov(1A, f)/Var(1A). Since Ptf − Ef = Pth, we have

Var(Ptf) = E[(Pth)2] = E[c2(Ptg)2 + (Pth
⊥)2 + 2cPtgPth

⊥]. (2.3)

Now, E[(Ptg)2] = Var(Pt1A) and E[(Pth
⊥)2] ≥ 0. For the last term, since E[gh⊥] = 0, the

Cauchy-Schwarz inequality implies

E[PtgPth
⊥] = E[h⊥P2tg] = E[h⊥(P2tg − g)] ≥ −

√
E[(h⊥)2]E[(P2tg − g)2].

Since P2tg − g = P2t1A − 1A, Lemma 2.10 implies that

E[PthPtg] ≥ −
√
E[(h⊥)2] arccos(e−2t)√

π
.
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Noise stability and correlation with half spaces

Going back to (2.3) and using the bound E[(h⊥)2] ≤ E[h2] ≤ 1,

Var(Ptf) ≥ c2 Var(Pt1A)−
√

arccos(e−2t)√
π

.

Recalling that c = Cov(A, f)/Var(1A), this proves the first claimed inequality.
For the second inequality, note that Lemma 2.10 implies that

Var(Pt1A)

Var(A)
≥ 1− arccos(e−2t)

2πVar(A)
.

Combining this with the first claimed inequality,

Var(Ptf) ≥ Cov(A, f)2

Var(A)

(
1− C arccos(e−2t)

Var(A)

)
− Ct1/4

≥ 4 Cov(A, f)2 − CCov(A, f)2

Var(A)
arccos(e−2t)− Ct1/4.

Finally, Cov(A, f)2 ≤ Var(A) and arccos(e−2t) ≤ Ct1/4, thus proving the second inequality.

In order to relate the noise stability of f to half-spaces correlated with ft,y, note that

EY E[fs,Y P2tfs,Y ] = E[fP2rf ]

when e−2r = e−2s + e−2t − e−2s−2t. Hence,

Var(Prf) = EY Var(Ptfs,Y ) + Var(Psf).

Now, the Poincaré inequality implies that Var(Psf) ≤ e−2(s−r) Var(Prf); hence,

(1− e−2(s−r)) Var(Prf) ≥ EY Var(Ptfs,Y ).

By Proposition 2.11 applied to fs,Y ,

(1− e−2(s−r)) Var(Prf) ≥ 4EYM
2(fs,Y )− Ct1/4.

To prove Theorem 2.9, note that if we fix r and s and solve for t the we obtain e−2t =

1− 1−e−2r

1−e−2s . For small t, this gives t = Θ( 1−e−2r

1−e−2s ) (while for large t the Theorem is vacuous
anyway).

3 Boolean functions

For this section, Pt denotes the Bonami-Beckner semigroup defined in Section 1.1.
Recall also the definition of fz for z ∈ {−1, 0, 1}n from that section. Let µs be the
probability distribution e−sδ0 + 1

2 (1 − e−s)(δ1 + δ−1) on {−1, 0, 1} and take Zs ∼ µ⊗ns .
Then we have the following relationship between Ps and Zs:

(Psf)(x) = EfZs
(x).

Theorem 3.1. There is a universal constant c > 0 such that for any f : {−1, 1}n → [0, 1]

and any t > 0,

E

[
M2(fZs

) log
1

M(fZs
)

]
≥ c(e2t − 1) Var(Ptf),

where s is defined by e−s + e−t = 1, and the expectation is with respect to Zs ∼ µs.
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Noise stability and correlation with half spaces

Before proceeding with the proof of Theorem 3.1, let us make some remarks about
how sharp it is. First of all, it is no longer true if we replace fZt

by f ; that is, noise stable
functions are not necessarily correlated with half-spaces. We demonstrate this using a
boolean version of the earlier Gaussian example; details are in Section 3.2.

Next, Theorem 3.1 has a qualitative converse, which we will state later as Theo-
rem 3.10. That is, if M(fZs

) is non-negligible on average then f is noise stable. In
particular, Theorem 3.1 and Theorem 3.10 imply Theorem 1.1.

Finally, Theorem 3.1 implies that M(fZt
) is large with constant probability over Zt. It

turns out that this probability estimate cannot be substantially improved. As an example,
consider the function

f(x) =

{
x2 if x1 = 1∏n
i=3 xi if x1 = −1.

Then f is noise-stable, but if z1 = −1 then fz is noise sensitive and uncorrelated with
any half-space. In other words, fZt

has probability 1
2e
−t of failing to be correlated with

any half-space.

3.1 Proof of Theorem 3.1

The proof of Theorem 3.1 follows the same lines as the proof of Theorem 2.1, but
it requires a little background on Fourier analysis of boolean functions: for a set S ⊂
{1, . . . , n}, define χS : {−1, 1}n → {−1, 1} by

χS(x) =
∏
i∈S

xi.

It is well-known (see e.g. [9]) that {χS : S ⊂ {1, . . . , n}} is an orthonormal basis of
L2({−1, 1}n); in particular, every f : {−1, 1}n → [0, 1] may be expanded in this basis:
define f̂(S) as the coefficients of this expansion:

f(x) =
∑

S⊂{−1,1}n
f̂(S)χS(x).

Also, we abbreviate f̂({i}) by f̂(i), and we define

w1(f) =

n∑
i=1

f̂(i)2.

Since f̂(i) = E[Xif(X)], we may also write

w1(f) =

n∑
i=1

E[Xif(X)]2,

as in the Gaussian case.
We will prove Theorem 3.1 in two steps. First, we will show that if w1(f) is non-

negligible then there is a half-space correlated with f . Then we will show that Ew1(fZt)

is non-negligible. Actually, the first step is already done, thanks to Remark 2.7. Indeed,
Hoeffding’s inequality implies that the uniform measure on {−1, 1}n is sub-Gaussian in
the sense of Remark 2.7, and so the proof of Proposition 2.6 applies with no changes to
the boolean setting:

Proposition 3.2. There is a universal constant c > 0 such that for every f : {−1, 1} →
[0, 1],

M2(f) log
1

M(f)
≥ cw1(f).
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Next, we show that E[w1(fZ)] is substantial if f is noise-stable.

Proposition 3.3. For any t > 0, if e−s = 1− e−t then

E[w1(fZs)] = (1− e−t)
∑
S

|S|f̂2(S)e−2t(|S|−1) ≥ (e2t − et) Var(Ptf).

Proof. Fix t and set Z = Zs. Recalling the definition of w1, we have

E[w1(fZ)] =

n∑
i=1

E[f̂2
Z(i))].

Note that f̂Z(i) = 0 if Zi = ±1, which happens with probability 1− e−s = e−t. Otherwise
f̂Z(i) is given by

f̂Z(i) =
∑
S:i∈S

f̂(S)
∏

j∈S\{i}

Zj . (3.1)

Therefore

E[f̂Z(i)2] = (1− e−t)
∑

S,T :i∈S,i∈T
f̂(S)f̂(T )E[

∏
j∈S\{i}

Zj
∏

k∈T\{i}

Zk]

= (1− e−t)
∑
S:i∈S

f̂2(S)e−2t(|S|−1).

Summing over i proves the first claim; the second follows from the fact that

Var(Ptf) =
∑
|S|≥1

e−2t|S|f̂2(S) ≤
∑
S

|S|e−2t|S|f̂2(S).

Proof of Theorem 3.1. Taking s so that e−s = 1− e−t and applying Proposition 3.3 gives
Ew1(fZs) ≥ (e2t − et) Var(Ptf). By Proposition 3.2,

E

[
M2(fZs) log

1

M(fZs)

]
≥ cEw1(fZs) ≥ c(e2t − et) Var(Ptf).

Finally, e2t − et = et(et − 1) ≥ 1
2 (et + 1)(et − 1) = 1

2 (e2t − 1).

3.2 An example

Let n = m2, and let Ji = {(i− 1)m, . . . , im− 1}. Let Bn ⊂ {−1, 1}n be the setx :

m∑
i=1

 1√
m

∑
j∈Ji

xj

2

≤ m

 .

From the central limit theorem, one sees immediately that Bn is noise stable, with
the same estimate as its Gaussian analogue in Section 2.1.

Proposition 3.4. For any n and any t > 0,

Var(Pt1Bn
) ≥ 1

4
− arccos(e−2t)√

2π
− on(1).

In particular Bn is noise stable.

Finally, we show that Bn is not correlated with any half-space. This essentially follows
from the invariance principle, which says that nice boolean functions have almost the
same distribution when their arguments are replaced by Gaussian variables.
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Proposition 3.5.M(Bn) ≤ Cm−1/200

For the rest of this section, fix x ∈ Rn and b ∈ R, and suppose that A = {x ∈ {−1, 1}n :∑
i aixi ≤ b}. Let J∗ ⊂ {1, . . . , n} be the set containing the indices of the bm1/3c largest

|ai|. Define a+ by a+
i = 1{i∈J∗}ai and set a− = a− a+.

We split our proof of Proposition 3.5 into two parts, depending on the decay properties
of a. If a− is unbalanced, it follows that a+ must contain only large coordinates. We apply
the Littlewood-Offord theorem to argue that a− is essentially irrelevant and A depends
only on a few coordinates. Since Bn doesn’t depend on any small set of coordinates,
this implies that A and Bn are uncorrelated. If a− is fairly balanced then we condition
on {Xi : i ∈ J∗} and apply an invariance principle to {Xi : i 6∈ J∗}, replacing boolean
variables with Gaussian variables and applying Proposition 2.3.

First, we recall the Littlewood-Offord inequality:

Theorem 3.6. If X is uniformly distributed in {−1, 1}n then

sup
c∈R

Pr

(∣∣∑
i

Xiai − c
∣∣ ≤ tmin

i
|ai|

)
≤ Ctn−1/2.

Lemma 3.7. If ‖a−‖∞ ≥ m−1/24‖a−‖2 then Cov(1A, 1Bn) ≤ Cm−1/12.

Proof. By Theorem 3.6 and since |ai| ≥ ‖a−‖∞ for all i ∈ J∗,

Pr

∣∣∣ ∑
j∈J∗

ajXj − b
∣∣∣ ≤ m1/24‖a−‖2

 ≤ Cm1/12|J∗|−1/2 ≤ Cm−1/12.

On the other hand, Chebyshev’s inequality implies that

Pr

∣∣∣ ∑
j 6∈J∗

ajXj

∣∣∣ ≥ m1/24‖a−‖2

 ≤ m−1/12.

Putting these two inequalities together, we see that with probability at least 1−Cm−1/12

over {Xj : j ∈ J∗} we have

Pr(X ∈ A | Xj : j ∈ J∗) ∈ [0,m−1/12] ∪ [1−m−1/12, 1]. (3.2)

On the other hand, conditioning on {Xj : j ∈ J∗} has little effect on the event Bn: each

random variable Zi :=
(∑

j∈Ji Xj

)2
has conditional expectation m ± O(|Ji ∩ J∗|2) and

conditional variance O(m); moreover, E[|Zi − EZi|3] = O(m3/2). Then

m∑
i=1

(∑
j∈Ji

Xj

)2

has conditional expectation m2±O(|J∗|2) = m2±O(m2/3). By the Berry-Esseen theorem,

Pr(X ∈ Bn | Xj : j ∈ J∗) =
1

2
±O(m−1/2).

Combined with (3.2), this implies that

E[(1Bn − Pr(Bn))1A | Xj : j ∈ J∗] ≤ Cm−1/12

with probability at least 1 − Cm−1/12. Integrating over {Xj : j ∈ J∗}, this implies the
claim.
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Since Lemma 3.7 implies Proposition 3.5 in the case ‖a−‖∞ ≥ m−1/24‖a−‖2, we may
assume from now on that ‖a−‖∞ ≤ m−1/24‖a−‖2. We will prove the remaining case of
Proposition 3.5 in two steps: for the rest of the section, let X be uniform on {−1, 1}n and
take Y ∼ γn; note that A and Bn can be canonically extended to subsets of Rn.

For any c ∈ R, let hc : R→ [0, 1] be the function hc(x) = 1{x≤c}. For ε > 0, let hc,ε be
a function satisfying

• hc,ε takes values in [0, 1],

• hc,ε(x) = hc(x) for all x such that |x− c| ≥ ε, and

• for k = 1, 2, 3, h(k)
c,ε is uniformly bounded by Cε−k for some universal constant C

(where h(k) denotes the kth derivative of h).

For z ∈ {−1, 1}J∗ and let Ωz be the event {Xi = zi ∀i ∈ J∗}. Set J ′i = Ji \ J∗ and
si =

∑
j∈Ji∩J∗ zi. Next, define the polynomials

p(x) =
1

m2

∑
i

(∑
j∈Ji

xj

)2

pz(x) =
1

m2

∑
i

(∑
j∈J′i

xj + si

)2

qz(x) =
1

‖a−‖

( ∑
j 6∈J∗

ajxj +
∑
j∈J∗

ajzj

)
.

Recalling (from the Berry-Esseen theorem) that Pr(X ∈ Bn) = 1
2 +O(m−1/2), our goal is

to show that

E
[
1A(X)

(
1Bn(X)− 1

2

)]
≤ Cm−1/12.

We will achieve this by conditioning on Ωz: for an arbitrary z, we claim that

E
[
1A(X)

(
1Bn

(X)− 1

2

) ∣∣∣ Ωz

]
≤ Cm−1/12.

Going back to the definitions of pz and qz, this is equivalent to

E
[
hb′(qz(X))

(
h1(pz(X))− 1

2

)]
≤ Cm−1/12, (3.3)

We divide the proof of (3.3) into several steps: for any ε > 0,

E|h1(pz(X))− h1(p(X))| ≤ Cm−1/6 (3.4)

E|h1,ε(p(X))− h1(p(X))| ≤ C max{ε,m−1/2} (3.5)

E|hb′,ε(qz(X))− hb′(qz(X))| ≤ C max{ε,m−1/24} (3.6)

|E[hb′,ε(qz(X))h1,ε(p(X))]− E[hb′,ε(qz(Y ))h1,ε(p(Y ))]| ≤ Cε−3m−1/48 (3.7)

E|h1,ε(p(Y ))− h1(p(Y ))| ≤ C max{ε,m−1/2} (3.8)

E|hb′,ε(qz(Y ))− hb′(qz(Y ))| ≤ C max{ε,m−1/2} (3.9)

Cov(hb′(qz(Y )), h1(p(Y ))) ≤ Cm−1/2. (3.10)

Taking ε = m−1/200 and combining (3.4) through (3.10) using the triangle inequality
yields (3.3).

Fortunately, most of the pieces above are easy: (3.5) follows from the Berry-Esseen
theorem, since h1,ε and h1 are both bounded by one, and agree except on an interval of
length 2ε. Inequalities (3.6), (3.8), and (3.9) follow by the same argument (the reason for
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the worse bound in (3.6) is because the error term in the Berry-Esseen theorem depends
on ‖a−‖∞/‖a−‖2, which we only know to be bounded by m−1/24).

It remains to check (3.4), (3.7), and (3.10); for these, it helps to introduce the notion
of influences: for function f : {−1, 1}n → R, we define the influence of the ith coordinate
to be

Infi(f) = VarE[f(X) | X1, . . . , Xi−1, Xi+1, . . . , Xn].

If the range of f is {−1, 1} then Infi(f) is just the probability that negating Xi will change
the value of f(X).

For (3.4), note that the Berry-Esseen theorem applied to Sk :=
(∑

j∈Jk Xj

)
implies

that with probability at least 1−Cm−1/6, h1(p(X)) falls outside the interval [1−6m−2/3, 1+

6m−2/3]. Hence, in order to change the value of h1(p(X)), one would need to change
the value of

∑
k S

2
k by at least 6m4/3. On the other hand, Hoeffding’s inequality implies

that with probability at least 1 − Cm−1/6, maxk |Sk| ≤ 2m. On this event, in order to
change the value of

∑
k S

2
k by 6m4/3, one would need to change at least 2m1/3 of the

Xj . Since pz(X) is obtained from p(X) by changing at most m1/3 of the Xj , we see that
h1(p(X)) = h1(pz(X)) unless one of the two events above fails. This proves (3.4).

Recognizing that h1(p(Y )) = 1Bn
(Y ) and hb′(qz(Y )) is the indicator function of some

half-space, the following Lemma proves (3.10).

Lemma 3.8. For any half-space A, Cov(1A(Y ), 1Bn(Y )) ≤ m−1/2

Proof. The covariance in question can be written in terms of covariances between half-
spaces and m-dimensional balls, which we may then bound using Proposition 2.3. To
do this, we break each block of m variables in terms of its contribution in the (1, . . . , 1)

direction and the contribution in the orthogonal direction: for each block J ofm variables,
define

xJ = m−1/2
∑
j∈J

xj , aJ = E
[
XJ

∑
j∈J

ajxj
]

= m−1/2
∑
j∈J

aj

and

rJ =

√∑
j∈J

a2
j − a2

J , r =

√∑
J

r2
J .

Now define A′, B′ ⊂ Rm+1 by

A′ =

{
x ∈ Rm+1 :

m∑
i=1

aJixi + rxm+1 ≤ b

}

B′ =

{
x ∈ Rm+1 :

m∑
i=1

x2
i ≤ m

}
.

Note that A′ and B′ are the push-forwards of Ãn and B̃ under a map that preserves the
standard Gaussian measure: if Πm : Rn → Rm is defined by Πmx = (xJ1 , . . . , xJm) and Π

is defined by
Πx = (Πmx, r

−1(〈a, x〉 − 〈Πma,Πmx〉)

then x ∈ A (resp. B) if and only if Πx ∈ A′ (resp. B′). Since Π pushes forward γn onto
γm+1, we have

Cov(1Ã, 1B̃n
) = Cov(1A′ , 1B′).

On the other hand, Cov(1A′ , 1B′) ≤ m−1/2 by Proposition 2.3.

Finally, (3.7) follows from the following multivariate invariance principle that was
proved by the first author in [8]:
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Theorem 3.9. Suppose p(x) and q(x) are polynomials of degree at most d such that
Infi(p) ≤ τ and Infi(q) ≤ τ for all i. For any Ψ : R2 → R with third partial derivatives
uniformly bounded by B,

|EΨ(p(X), q(X))− EΨ(p(Y ), q(Y ))| ≤ CddB
√
τ ,

where Y ∼ γn, X is uniform on {−1, 1}n, and C is a universal constant.

Taking d = 2, τ = m−1/24 and Ψ(x, y) = h1,ε(x)hb′,ε(y) (which has third derivatives
bounded by Cε−3) proves (3.7).

3.3 The converse of Theorem 3.1

Here, we state and prove the boolean analogue of Theorem 2.9 (or, the qualitative
converse of Theorem 3.1). That is, we show that if M(fs,Y ) is non-negligible with
constant probability then f is noise stable.

Theorem 3.10. For any 0 < r < s and any f : {−1, 1}n → [−1, 1],

(1− e−2(s−r)) Var(Prf) ≥ 4EM2(fZs)− C
(

1− e−2r

1− e−2s

)1/4

,

where Zs ∼ µs and C is a universal constant.

The proof of Theorem 3.10 is very much like the proof of Theorem 2.9, so we give
only a sketch. As in the proof of Theorem 2.9, the first step is a bound on the noise
stability of half-spaces. However, the bound that we used to prove Lemma 2.10 is not
known for boolean functions (it would be equivalent to a weak version of the “majority is
least stable” conjecture). Instead, we use a weaker (by a constant factor) bound due to
Peres [10]:

Theorem 3.11. For any half-space A and any t > 0, E[(1A − Pt1A)2] ≤ C
√
t, where C is

a universal constant.

Next, we show that any set which is correlated with a half-space must be noise stable
(indeed, almost as noise stable as the half-space itself).

Proposition 3.12. Suppose that A ⊂ {−1, 1}n is a half-space. Then for any function
f : {−1, 1}n → [0, 1] and any t > 0,

Var(Ptf) ≥ 4 Cov(A, f)2 − Ct1/4

for a universal constant C.

The proof of Proposition 3.12 is essentially identical to the proof of Proposition 2.11,
so we omit it. The only difference is that we use Theorem 3.11 instead of Lemma 2.10.

Finally, the argument to go from Proposition 3.12 to Theorem 3.10 is also essentially
identical to the Gaussian case: the only property of Gaussians that we used in that
argument was the Poincaré inequality, which takes the same form in the boolean case.
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