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Abstract

Consider a finite number of balls initially placed in L bins. At each time step a ball is
taken from each non-empty bin. Then all the balls are uniformly reassigned into bins.
This finite Markov chain is called Repeated Balls-into-Bins process and is a discrete
time interacting particle system with parallel updating. We prove that, starting from a
suitable (chaotic) set of initial states, as L → +∞, the numbers of balls in each bin
become independent from the rest of the system i.e. we have propagation of chaos.
We furthermore study some equilibrium properties of the limiting nonlinear process.
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1 Introduction

We consider N balls and L bins. Initially the balls are placed into bins in an arbitrary
way. At each time step a ball is taken from each non-empty bin. Then all the balls are
uniformly reassigned into bins.

The random evolution of the number of balls in each bin is an ergodic finite state
Markov chain called the Repeated Balls-into-Bins (RBB) process [2]. This system is a
conservative interacting particles system in discrete time with parallel updates. We
can think to the RBB process as a zero-range process [10] on the complete graph with
constant jump rates and parallel updates but, because of the parallel updating, it is
not reversible. For this reason its invariant measure is difficult to compute and, to our
knowledge, unknown.

The RBB process appears naturally in different applicative contexts. For example we
can think to balls in every bin as customers in a queue. Customers are served at discrete
times and each served customer is reassigned to a random queue. In this setting the
RBB process is a discrete time closed Jackson network [5, 7]. The parallel updating is
justified [2] by thinking to customers as tasks (or tokens) in a network of parallel CPU
which are reassigned at every round.

In this paper we are interested in the behavior of the RBB process for large L. We
prove that starting from a symmetric initial distribution where the number of balls in
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each bin becomes independent from the rest of the system as L→ +∞, these properties
are preserved for any finite time. This phenomenon is called propagation of chaos [6, 11].
The limiting evolution of the system is described by a nonlinear Markov process. The
interesting fact, citing [11], is that “the study of every individual gives information on
the behavior of the group”. The price to pay for this simplification is that the limiting
process evolves accordingly to a nonlinear equation.

Propagation of chaos is a largely studied topic in literature, see for example [11] and
references therein for an introduction. In recent years, motivated by several applications,
the interest focused on models with parallel jumps updating, see for example [1] and
references therein. Propagation of chaos for these models is not obvious, as parallel
jumps may interfere with asymptotic independence. In particular in [1] the authors prove
propagation of chaos for a wide class of models with simultaneous jumps. However, due
to a different simultaneous jump mechanism, the RBB is not contained in this class and
a different approach is needed.

The paper is organized as follows. In Section 2 we define the RBB process and the
nonlinear process. Furthermore we study some of the equilibrium properties of the
nonlinear process. In Section 3 we prove propagation of chaos for the RBB process.

2 Construction and basic properties

In this section we first introduce the RBB process next we define the nonlinear
process and the M/D/1 queue process. The nonlinear process is involved in the proof of
propagation chaos for the RBB process while the M/D/1 queue process in the study of
the equilibrium properties of the nonlinear process.

2.1 The repeated balls-into-bins process

Consider a finite numbers of balls initially placed in an arbitrary way in L ∈ N bins.
At each time step t = 1, 2, . . . a ball is taken from each non-empty bin. Then each ball is
uniformly reassigned into bins. The total number of balls is thus conserved.

More precisely for any η ∈ ZL+ define w(η) := (1(η1 > 0), . . . ,1(ηL > 0)) and Lw̄L :=∑
j 1(ηj > 0). The RBB process ηL = (ηL(t))t≥0 has state space ZL+ and transition matrix

PL given on functions f : ZL+ → C by

(PLf)(η) :=
1

LLw̄L

∑
σ∈ZL+

(
Lw̄L
σ

)
f(η − w + σ).

So if ηL(t) = η, then

ηL(t+ 1) := η − w(η) +B(η), (2.1)

where B(η) is an L-dimensional multinomial random variable of parameters Lw̄L(η) and
(1/L, . . . , 1/L).

As the RBB process preserves the number of particles it is clear that it is a finite state
Markov chain aperiodic and irreducible so it is ergodic. Observe that while the transition
(1, . . . , 1) 7→ (L, 0, . . . , 0) is allowed the reverse is not. This implies that the RBB process
is not reversible. As far as we know an explicit formula for the invariant measure is
unknown, as usually happens for non-reversible Markov chains. Irreversibility comes
from the parallel updating mechanism. For the same model with sequential updating the
invariant measure is the uniform (Bose-Einstein) distribution. For the RBB process this
is not the case. For example if N = L = 3 the invariant measure puts a mass of 4/21 on
the configuration with one particle in each site, 1/21 on the 3 configurations with three
particles on a single site and 1/9 on the remaining 6 configurations.
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2.2 The nonlinear and the M/D/1 queue processes

The nonlinear process (η(t))t∈Z+ takes values in Z+ and can be defined in the follow-
ing way. Let η(0) an initial random state, ρ(0) := P(η(0) > 0) and N1 an independent
Poisson random variable with expected value ρ(0) (a Poisson random variable with ex-
pected value 0 being defined as the 0 random variable). Then define the new state η(1)

as:
η(1) := η(0)− 1(η(0) > 0) +N1.

Now iterate the above construction so that, if η(t) is the state at time t > 0, define
ρ(t) := P(η(t) > 0) and Nt+1 an independent Poisson random variable with expected
value ρ(t). Then the new state η(t+ 1) is:

η(t+ 1) := η(t)− 1(η(t) > 0) +Nt+1. (2.2)

The nonlinear process can be started from any distribution. However if the initial
distribution has finite expectation this property is conserved.

Lemma 2.1. Assume E(η(0)) = r ∈ [0,+∞]. Then E(η(t)) = r, ∀t ≥ 0.

Proof. The proof is obtained by induction. Assume first that r < +∞. By equation (2.2):

E (η(t+ 1)|η(t)) = η(t)− 1(η(t) > 0) + ρ(t).

Then
E (η(t+ 1)) = E [E (η(t+ 1)|η(t))] = E(η(t))− P(η(t) > 0) + ρ(t) = r.

When r = +∞, again by (2.2), we have that η(t+ 1) is obtained by adding a finite mean
random variable to a infinite mean one.

The M/D/1 queue with arrival rate ρ ≥ 0 [8, 9] is a Markov chain related to the
nonlinear process. It can be defined as follows. Fix an initial state ζ0 ∈ Z+ and consider
a sequence (Mt)t∈N of i.i.d. Poisson random variables with expected value ρ. Then
(ζ(t))t∈Z+ is recursively defined for t ≥ 0:

ζ(t+ 1) := ζ(t)− 1(ζ(t) > 0) +Mt+1. (2.3)

Some of the main properties of this chain are given in the next result.

Theorem 2.2. The M/D/1 queue with arrival rate ρ ≥ 0 is an irreducible aperiodic
Markov chain. It is transient for ρ > 1, is null persistent for ρ = 1 and is positive
persistent for ρ < 1. In the latter case its invariant measure πρ has characteristic
function

π̂ρ(x) =
(1− ρ)(eix − 1) exp

{
ρ(eix − 1)

}
eix − exp {ρ(eix − 1)}

, x ∈ R. (2.4)

Furthermore if ρr := 1 + r −
√

1 + r2, r ≥ 0, then
∑
k kπρr ({k}) = r.

Proof. Equation (2.4) is equation (2.3) obtained in [9]. The others properties follow by
standard Markov chains considerations.

The invariant measure of the M/D/1 queue (see equation (2.4) in [9] for an explicit
formula) can be used as a starting distribution of the nonlinear process. In this case the
nonlinear process becomes the M/D/1 queue at equilibrium. More precisely we have the
following lemma.

Lemma 2.3. The nonlinear process starting from πρ is the M/D/1 queue with arrival rate
ρ. Furthermore it is stationary if and only if η(0) ∼ πρ.
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Proof. Assume that η(0) ∼ πρ. For t = 0 (2.2) holds with a Poisson random variable
Nt+1 with expected value ρ. Then equation (2.2) defines the one step evolution of the
M/D/1 queue with arrival rate ρ. As πρ is its stationary distribution η(1) ∼ πρ and
ρ(1) = P(η(1) > 0) = ρ. Iterating this argument we obtain that ρ(t) = P(η(t) > 0) = ρ for
any t ≥ 0 and the nonlinear process is the M/D/1 queue with arrival rate ρ. This proves
also that the nonlinear process starting from πρ is stationary.

Conversely if the nonlinear process is stationary ρ(t) = P(η(t) > 0) = ρ(0) for any
t ≥ 0. In this case equation (2.2) becomes (2.3) which, defines the M/D/1 queue with
arrival rate ρ(0). As the M/D/1 queue is a Markov chain it is stationary if and only if it is
started from equilibrium.

Next lemma assures a uniform bound on exponential moments of the M/D/1 queue
chain and will be used in the proof of Theorem 2.5.

Lemma 2.4. Let (ζ(t))t∈Z+
be the M/D/1 queue with arrival rate ρ < 1. Then there exist

positive constants λρ and Cρ, depending only on ρ, such that for any λ ∈ (0, λρ]

Eζ(e
λζ(t)) ≤ Cρeλζ ,

for any ζ ∈ Z+.

Proof. Let f(ζ) := eλζ and P the transition matrix of (ζ(t))t∈Z+ . We claim that there
exist γ ∈ (0, 1) and C > 0, constants depending only on ρ, such that

Pf(ζ)− f(ζ) ≤ −γf(ζ) + C. (2.5)

Iterating we obtain

P tf(ζ) ≤ (1− γ)tf(ζ) +
C

γ
t ∈ Z+,

and the result follows. To prove (2.5) observe that

Pf(ζ) = Eζ(e
λζ(1)) = exp{λ(ζ − 1(ζ > 0)) + ρ(eλ − 1)}.

Thus

Pf(ζ)− f(ζ) =

{
exp{ρ(eλ − 1)} − 1 if ζ = 0,

eλζ
(

exp{ρ(eλ − 1)− λ} − 1
)

if ζ > 0.

For any ρ we can find λρ such that ρ(eλ − 1) < λ for any λ ≤ λρ. Then choosing
C = exp{ρ(eλρ − 1)} and γ = 1− exp{ρ(eλρ − 1)− λρ} equation (2.5) follows.

The following result gives the long time behavior of the distribution of the nonlinear
process. We think that the hypothesis r < 1 is technical. It is needed as we prove uniform
integrability of the nonlinear process by coupling it with a M/D/1 queue with arrival rate
ρ = r.

Theorem 2.5. Assume that E(η(0)) = r ∈ [0, 1) and E(eλη(0)) < +∞ for some λ > 0, then
η(t)⇒ πρr as t→ +∞, where ρr has been defined in Theorem 2.2.

Proof. We first observe that by Lemma 2.1 we have E(η(t)) = r for any t ≥ 0 and this,
via Markov inequality, implies the tightness of the sequence of distributions of (η(t))t∈Z+

.
Furthermore, by equation (2.2) we have, for any x ∈ R,

E
(
eixη(t+1)

)
= E

[
E
(
eixη(t+1)|η(t)

)]
= E

[
eix(η(t)−1(η(t)>0))E

(
eixNt+1 |η(t)

)]
= exp

{
ρ(t)(eix − 1)

}
E
(
eix(η(t)−1(η(t)>0))

)
.
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By tightness we can choose a subsequence (η(t̄))t̄∈Z+
of (η(t))t∈Z+

with weak limit point
η̄. Taking the limit, for t̄→ +∞, in the previous equation we get:

E
(
eixη̄

)
= exp

{
ρ̄(eix − 1)

}
E
(
eix(η̄−1(η̄>0))

)
, (2.6)

where ρ̄ = limt̄→+∞ ρ(t). Observe that

E
(
eix(η̄−1(η̄>0))

)
= E

(
eixη̄, η̄ = 0

)
+ e−ixE

(
eixη̄, η̄ > 0

)
= 1− ρ̄+ e−ix

[
E
(
eixη̄

)
− (1− ρ̄)

]
.

Plugging this expression in the right hand side of equation (2.6) and solving it we get

E
(
eixη̄

)
=

(1− ρ̄)(eix − 1) exp
{
ρ̄(eix − 1)

}
eix − exp {ρ̄(eix − 1)}

.

Thus, by Theorem 2.2, η̄ ∼ πρ̄ and the limit points of the distributions of (η(t))t∈Z+
belong

to {πρ : ρ ∈ [0, 1)}. To identify a unique limit point we will show that

E(η̄) = lim
t̄→+∞

E(η(t̄)) = r, (2.7)

by proving uniform integrability of the sequence (η(t))t∈Z+ (see for example Theorem
25.11 of [3]). In fact the nonlinear process (η(t))t∈Z+ can be coupled with a M/D/1
queue (ζ(t))t∈Z+ with arrival rate r, so that P(η(t) ≤ ζ(t)) = 1 for any t ≥ 0, and uniform
integrability of (η(t))t∈Z+ will follow by uniform integrability of (ζ(t))t∈Z+ .

First observe that

ρ(t) = P(η(t) > 0) ≤ E(η(t)) = r

and take ζ(0) = η(0). For any t > 0 take a sequence of i.i.d. Bernoulli random variables
Y1 t, Y2 t, . . . with parameter ρ(t)/r such that sequences with different t are independent
and independent from Mt+1 in (2.3). Now choose Nt+1 in (2.2) as a thinning of Mt+1:

Nt+1 :=

Mt+1∑
k=1

Yk t.

This implies Nt+1 ≤ Mt+1 a.s. for any t ≥ 0 so that η(t) ≤ ζ(t) a.s. for any t > 0. To
obtain uniform integrability of the nonlinear process observe that by Lemma 2.4, taking
λ > 0 small enough,

E(eλη(t)) ≤
∑
η

P(η(0) = η)Eη(eλζ(t)) ≤ Cr E(eλη(0)) < +∞.

3 Propagation of chaos for the RBB process

We present here the main result of this paper. Consider a chaotic initial state for the
RBB process, i.e. an initial state sequence ηL(0) with symmetric distribution such that
the components become independent as L→ +∞. We will show that the RBB process
preserves this property at each time t and if we look at the time evolution of ηL(t) for
t ∈ [0, T ], in the limit L→ +∞, it behaves as the product of independent copies of the
nonlinear process defined in Section 2.2. This property is known as propagation of chaos
for the distribution of ηL [11]. More precisely
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Theorem 3.1. Assume that for any L ∈ N the initial state sequence ηL(0) is finitely
exchangeable and that for some probability measure µ on Z+

lim
L→+∞

P(ηL1 (0) = ξ1, . . . , η
L
n (0) = ξn) =

n∏
k=1

µ({ξk}),

for any n ∈ N and ξ1, ξ2, . . . , ξn ∈ Z+.
Then

(
ηL(t)

)
t∈Z+

is finitely exchangeable and for any T ∈ N and for all bounded path

functionals Φk T

Φk T (ηL) := Φk T (ηLk (0), ηLk (1), . . . , ηLk (T )), k = 1, . . . , n

we have

lim
L→+∞

E

[
n∏
k=1

Φk T (ηL)

]
=

n∏
k=1

E [Φk T (η)] , (3.1)

where η = (η(t))t∈Z+
is the nonlinear process defined in Section 2.2 with initial state

η(0) ∼ µ.

Proof. The exchangeability property follows from the fact that the evolution of the RBB
process preserves symmetry at each time step, see equation (2.1).

To prove equation (3.1), using characteristic functions properties (see for example
[3] §26), it is sufficient to show that

lim
L→+∞

E

[
exp

{
i

t∑
s=0

n∑
k=1

xk(s)ηLk (s)

}]
=

n∏
k=1

E

[
exp

{
i

t∑
s=0

xk(s)η(s)

}]
, (3.2)

for any t ∈ Z+ and any xk(s) ∈ R, k = 1, . . . , n, s = 0, . . . , t. We proceed inductively.
For t = 0 (3.2) holds because by hypotesis η(0) ∼ µ. We assume (3.2) for some t and

we prove it holds for t+ 1. Using conditional expectation we have:

E

[
exp

{
i

t+1∑
s=0

n∑
k=1

xk(s)ηLk (s)
}]

= E

[
exp

{
i

t∑
s=0

n∑
k=1

xk(s)ηLk (s)
}
E
(
ei

∑n
k=1 xk(t+1)ηLk (t+1)

∣∣∣ ηL(s) : s ≤ t
)]

.

Define

w̄L(t) :=
1

L

L∑
k=1

1(ηLk (t) > 0).

Using Markov property, equation (2.1) and the expression of the characteristic function
of multinomial distribution we obtain

E
(
ei

∑n
k=1 xk(t+1)ηLk (t+1)

∣∣∣ ηL(s) : s ≤ t
)

= ei
∑n
k=1 xk(t+1)(ηLk (t)−1(ηLk (t)>0))

(
1− 1

L

n∑
k=1

(1− eixk(t+1))
)Lw̄L(t)

(3.3)

Define

Ψt(η
L) := exp

{
i

t∑
s=0

n∑
k=1

xk(s)ηLk (s) + i

n∑
k=1

xk(t+ 1)(ηLk (t)− 1(ηLk (t) > 0))
}
, (3.4)
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aL :=
(

1− 1

L

n∑
k=1

(1− eixk(t+1))
)L
,

and ρL(t) := E(w̄L(t)). We observe that, from exchangeability and inductive hypothesis
at time t

lim
L→+∞

ρL(t) = ρ(t) = P(η(t) > 0).

Furthermore

lim
L→+∞

aL = exp
{ n∑
k=1

(eixk(t+1) − 1)
}

:= a.

Then

E

[
exp

{
i

t+1∑
s=0

n∑
k=1

xk(s)ηLk (s)
}]

= E
[
Ψt(η

L)a
w̄L(t)
L

]
= E

[
Ψt(η

L)(a
w̄L(t)
L − aρ

L(t))
]

+ E
[
Ψt(η

L)
]

(aρ
L(t) − aρ(t)) + E

[
Ψt(η

L)
]
aρ(t).

The second term above goes to zero as L→ +∞. By the inductive hypothesis applied to
Ψt we obtain for the third term

lim
L→+∞

E
[
Ψt(η

L)
]
aρ(t)

=

n∏
k=1

E
[

exp
{
i

t∑
s=0

xk(s)η(s) + ixk(t+ 1)(η(t)− 1(η(t) > 0))
}]
eρ(t)(e

ixk(t+1)−1).

So the result follows showing that the first term goes to zero as L→ +∞. Observe that∣∣∣E [Ψt(η
L)(a

w̄L(t)
L − aρ

L(t))
] ∣∣∣ ≤ E [∣∣aw̄L(t)

L − aρ
L(t)
L

∣∣]+
∣∣aρL(t)
L − aρ

L(t)
∣∣.

The second term above goes to zero as L→ +∞, while for the first one fix δ > 0 we have

E
[∣∣aw̄L(t)

L − aρ
L(t)
L

∣∣] ≤ E [∣∣aw̄L(t)
L − aρ

L(t)
L

∣∣, ∣∣w̄L(t)− ρL(t)
∣∣ ≤ δ]

+ E
[∣∣aw̄L(t)

L − aρ
L(t)
L

∣∣, ∣∣w̄L(t)− ρL(t)
∣∣ > δ

]
.

By Taylor expansion the first term above can be bounded by a constant, depending only
on xk(t+ 1), k = 1, . . . , n, times δ; the second term can be bounded by

E
[∣∣aw̄L(t)

L − aρ
L(t)
L

∣∣, ∣∣w̄L(t)− ρL(t)
∣∣ > δ

]
≤ C P(|w̄L(t)− ρL(t)| > δ),

where C is a positive constant depending only on xk(t + 1), k = 1, . . . , n. By using
Chebyshev inequality we have that

P(|w̄L(t)− ρL(t)| > δ) ≤ 1

δ2

( 1

4L
+ P(ηL1 (t) > 0, ηL2 (t) > 0)− ρL(t)2

)
. (3.5)

Observe that by inductive hypothesis

lim
L→+∞

[
P(ηL1 (t) > 0, ηL2 (t) > 0)− ρL(t)2

]
= P(η(t) > 0)2 − ρ(t)2 = 0.

Then, fixed ε > 0 we can choose δ > 0 small enough so that the first term is smaller than
ε/2 for any L and choosing L large enough the result follows.
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Remark 3.2. The previous result describes the propagation of chaos for the RBB process
in finite time intervals. Unfortunately this is not enough to prove that, as naturally
expected, the same behavior holds in the infinite time limit. However consider the RBB
process with L bins and N := rL particles and let νNL be its stationary measure. We can
show that if νNL is chaotic then it is πρr -chaotic. In fact, using (3.3) and stationarity we
have

E
[
ei

∑n
k=1 xkη

L
k

]
= E

[
ei

∑n
k=1 xk(ηLk−wk(ηL))

(
1− 1

L

n∑
k=1

(1− eixk
)Lw̄L]

(3.6)

for any x1, . . . , xn ∈ R. Let η̃ be a weak limit point of ηL and, passing to a subsequence, as-
sume that ηL ⇒ η̃. By chaoticity we can follow the same lines of the proof of Theorem 3.1,
take the limit as L→ +∞ in (3.6) and

E
[
ei

∑n
k=1 xkη̃k

]
= E

[
ei

∑n
k=1 xk(η̃k−wk(η̃))

]
exp

{
ρ̃

n∑
k=1

(eixk − 1)
}
,

where ρ̃ = P(η̃1 > 0). This means that the distribution of η̃ is invariant under the
evolution of a product of infinite independent copies of the M/D/1 queue with intensity ρ̃
and η̃ ∼ π⊗∞ρ̃ . To conclude we have to show that ρ̃ = ρr.

Differentiating twice (3.6) and using the fact that ηL1 + · · · + ηLL = rL, an explicit
computation yields

Cov(w1(ηL), w2(ηL)) = −E(w1(ηL))2 + 2E(w1(ηL))
(r + 1)L− 1

L− 1
− 2r

L

L− 1
.

Taking the limit as L→ +∞ in this equation we obtain

0 = Cov(w1(η̃), w2(η̃)) = −ρ̃2 + 2ρ̃(r + 1)− 2r,

which, by Theorem 2.2, implies ρ̃ = ρr.
Observe that the same lines can be followed if in (3.5) chaoticity of νNL is replaced by

the negative association property P(ηL1 > 0|ηL2 > 0) ≤ P(ηL1 > 0).
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