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Abstract

We show that the Sineβ point process, defined as the scaling limit of the Circular Beta
Ensemble when the dimension goes to infinity, and generalizing the determinantal
sine-kernel process, is rigid in the sense of Ghosh and Peres: the number of points in
a given bounded Borel set B is almost surely equal to a measurable function of the
position of the points outside B.
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1 Introduction

If E is a complete separable metric space, we can define a point process on E as a
random purely atomic Radon measure X on E, which can be viewed as a random locally
finite collection of points in M , with possible repetitions, the order of the points being
irrelevant. Classical results on the theory of point processes are for example given in the
book by Daley and Vere-Jones [DVJ03]. If X is a point process on E, and if B is a Borel
set of E, we can consider the random variable X(B), corresponding to the number of
points lying in B. Of course, this random variable does not tell about the exact position of
the X(B) points of X inside B. This information is given by the σ-algebra ΣB, generated
by all the variables X(A) for Borel sets A included in B.

It has been observed that some point processes satisfy the unusual property that the
number of points in any Borel set is uniquely determined by the points in the complement
of this set. For example, deterministic point processes, or periodic point processes for
E = R, obviously satisfy this property, whereas Poisson point processes with non-zero
intensity do not. The following definition has been introduced by Ghosh [Gho15] (see
also Ghosh and Peres [GP17]):

Definition 1.1. A point process X on a complete separable metric space E is rigid if
and only if for all bounded Borel subsets B of E, the number of points X(B) in B is
measurable with respect to the σ-algebra ΣE\B.
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Rigidity of Sineβ

This notion has been previously studied, with a different name, by Holroyd and Soo
[HS13]. In [Gho15], Ghosh shows that the determinantal sine-kernel process is rigid:
it is the first non-trivial example of such process. The determinantal sine-kernel is a
real-valued point process (E = R), defined as follows: it has no multiple points and its
m-point correlation function at x1, . . . , xm is equal to det((S(xj , xk))1≤j,k≤m), where the
sine-kernel S is defined by

S(x, y) =
sin(π(x− y))

π(x− y)
.

As proven by Dyson (see [Dys62a], [Dys62b], [Dys62c]), the determinantal sine-kernel
process can be obtained as the limit, when n goes to infinity, of the point process of
the eigenangles of a Haar-distributed unitary matrix (the Circular Unitary Ensemble)
multiplied by n/2π. The sine-kernel process is also a scaling limit for many other matrix
ensembles, including the Gaussian Unitary Ensemble, for which the matrix is Hermitian,
invariant by unitary conjugation, and has complex Gaussian entries. It is also conjectured
that the sine-kernel process is related to the distribution of the zeros of the Riemann
zeta function (see Montgomery [Mon73], Rudnick and Sarnak [RS94]).

Many determinantal processes have been studied in the literature, in particular in
relation with random matrix theory: a general presentation of these processes is for
example given by Soshnikov in [Sos00]. Besides the sine-kernel process, other deter-
minantal processes have been proven to be rigid: it is the case for the determinantal
processes with Airy kernel and with Bessel kernel (see Bufetov [Buf16]), and for determi-
nantal processes associated to de Branges spaces of holomorphic functions (see Bufetov
and Shirai [BS17]). Some two-dimensional point processes are also proven to be rigid,
including the infinite Ginibre ensemble and the set of zeros of some Gaussian analytic
functions (see Ghosh and Peres [GP17]). Rigidity of other two-dimensional determinantal
processes has been studied in papers by Bufetov and Qiu (see [BQ15], [BQ17a] and
[BQ17b]).

The Circular Beta Ensemble is a probability distribution for n points on the unit circle.
Its probability density is given by

(CβEn)
1

Zn,β

∏
1≤k<l≤n

∣∣eiθk − eiθl ∣∣β dθ =
1

Zn,β
|∆(θ)|β dθ ,

where β > 0 is a parameter and Zn,β is the normalization constant. The particular
value β = 2 is the only determinantal case, which corresponds to the spectrum of Haar
distributed unitary matrices of rank n. In fact, the Circular Beta Ensemble is also
the spectrum of random matrix ensembles constructed by Killip and Nenciu [KN04].
Using these random matrices, Killip and Stoiciu [KS09] prove that the arguments of
the Circular Beta Ensemble, multiplied by the dimension and divided by 2π, tend to a
limiting point process, called Sineβ process, which corresponds to the determinantal
sine-kernel process for β = 2.

In [VV09], Válko and Virág show that the Sineβ process is also the scaling limit
of the Gaussian Beta Ensemble, generalizing the Gaussian Unitary Ensemble, and
corresponding to a model of random tridiagonal matrices introduced by Trotter [Tro84],
and by Dumitriu and Edelman [DE02]. A description of the Sineβ in terms of the
hyperbolic Brownian motion is given in [VV09]. In [VV17], Válko and Virág construct a
Hermitian operator whose spectrum forms a Sineβ process.

Since the determinantal sine-kernel process is rigid, it is natural to expect that it is
also the case for the Sineβ process. In this paper, we give a proof of this result, which
gives, to our knowledge, the first example of a rigid process for which no explicit formula
is known for the correlation functions.
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Rigidity of Sineβ

Theorem 1.2 (Main theorem). The Sineβ point process, defined as the weak limit, when
n goes to infinity, of the point process of the eigenangles of the n-dimensional Circular
Beta Ensemble, multiplied by n/2π, is rigid in the sense of Definition 1.1.

The global strategy of the proof is similar to what has been done for the rigid process
considered before: we find functions f which are arbitrarily close to 1 in an interval
I, and whose corresponding linear statistics have arbitrarily small variance when they
are applied to the Sineβ point process X. This gives an approximation of the number of
points in I in terms of the sum of f at points of X outside I.

The variance of the linear statistics are estimated by using bounds on the variance of
Tr(Mk), where M is a matrix corresponding to the Circular Beta Ensembles and k is not
too large, and by letting the dimension of the CβE tending to infinity.

The details of the proof are given in the next section. We use the following notation:
A�β B means that there exists C(β) > 0 depending only on β, such that |A| ≤ C(β)B.

2 Proof of the main theorem

In all this section β > 0 is a fixed parameter. The main estimate on the CβE which is
used in our proof comes from a paper by Jiang and Matsumoto [JM15]. Corollary 2, (a)
of this paper (applied to the partition with unique element k) gives the following:

Lemma 2.1. Let M be a unitary matrix whose spectrum corresponds to the CβE of
dimension n. Then, for 0 < k ≤ n/2,

E[|Tr(Mk)|2]�β k.

From this lemma, we can prove the following:

Proposition 2.2. Let Xn be the set of points following the CβE of dimension n and let
f be a smooth function from the unit circle U to C, whose Fourier transform vanishes at
zero and outside the interval [−n/2, n/2]. Then

E

∣∣∣∣∣ ∑
z∈Xn

f(z)

∣∣∣∣∣
2
�β

∑
k∈Z

|k|
∣∣∣f̂(k)

∣∣∣2 ,
uniformly on n. Here, the Fourier transform f̂ is defined by the expansion:

f(z) =
∑
k∈Z

f̂(k)zk.

Proof. We have

E

∣∣∣∣∣ ∑
z∈Xn

f(z)

∣∣∣∣∣
2
 = E

 ∑
z,z′∈Xn

∑
k∈Z

f̂(k)zk
∑
k′∈Z

f̂(k′)(z′)k′

 .
Everything is integrable since f̂ has finite support, so we can apply Fubini’s theorem:

E

∣∣∣∣∣ ∑
z∈Xn

f(z)

∣∣∣∣∣
2
 =

∑
k,k′∈Z

f̂(k)f̂(k′)E

 ∑
z,z′∈Xn

zk(z′)k′

 .
If k 6= k′, the last expectation is multiplied by uk−k

′
if we multiply all the points of Xn

by u ∈ U. On the other hand, it should be conserved since the law of Xn is rotationally
invariant. Hence, the expectation is zero:

E

∣∣∣∣∣ ∑
z∈Xn

f(z)

∣∣∣∣∣
2
 =

∑
k∈Z

|f̂(k)|2E

 ∑
z,z′∈Xn

zk(z′)k


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Rigidity of Sineβ

Now, ∑
z,z′∈Xn

zk(z′)k =

∣∣∣∣∣ ∑
z∈Xn

zk

∣∣∣∣∣
2

= |Tr(Mk)|2

where M is a matrix whose eigenvalues form the set Xn. We conclude by using the
previous lemma.

In order to take a limit when n goes to infinity, it is useful to translate the result
above in terms of the renormalized arguments of the points of Xn. For a function f from
R to C in the Schwartz space, we introduce its Fourier transform:

f̂(λ) =

∫ ∞
−∞

f(t)e−2iπλtdt.

which should not be confused with the Fourier transform of a function from U to C, even
if the two notions of Fourier transform are denoted in the same way in this paper.

Proposition 2.3. Let f be a function from R to C in the Schwartz space, such that
its Fourier transform vanishes outside the interval [− 1

2 ,
1
2 ]. Let Xn be the set of points

following the CβE of dimension n. For n ≥ 1, let En be the set of all possible determi-
nations of the arguments of the points of Xn, multiplied by n/2π (in particular En is a
n-periodic set of points). Then,

E

∣∣∣∣∣ ∑
x∈En

f(x)−
∫ ∞
−∞

f(t)dt

∣∣∣∣∣
2
�β

∫
R

|[x]n||f̂([x]n)|2dx,

where [x]n is 1/n times the integer part of nx (the quantity just above is then a Riemann
sum).

Proof. We have ∑
x∈En

f(x)−
∫ ∞
−∞

f(t)dt =
∑
z∈Xn

g(z),

where X follows the CβE of dimension n and

g(e2iπθ) =
∑
m∈Z

f(n(θ +m))− 1

n

∫ ∞
−∞

f(t)dt.

Since f is in the Schwartz space, g is smooth by dominated convergence. Moreover,
since

g(z) =
∑
k∈Z

ĝ(k)zk,

we have

ĝ(k) =

∫ 1

0

g(e2iπθ)e−2iπkθdθ

=

∫ 1

0

dθ e−2iπkθ
∑
m∈Z

f(n(θ +m))−
∫ 1

0

dθ e−2iπkθ
1

n

∫ ∞
−∞

f(t)dt.

=

∫ ∞
−∞

e−2iπkθf(nθ)dθ − 1k=0

n

∫ ∞
−∞

f(t)dt

=
1

n
(f̂(k/n)− 1k=0f̂(0)) =

1k 6=0

n
f̂(k/n).
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Rigidity of Sineβ

In particular, the Fourier transform of g is equal to zero at zero and outside [−n/2, n/2],
and then we can apply the previous proposition. We get

E

∣∣∣∣∣ ∑
x∈En

f(x)−
∫ ∞
∞

f(t)dt

∣∣∣∣∣
2
�β

∑
k∈Z

|k||ĝ(k)|2 =
∑
k∈Z

|k||f̂(k/n)/n|2

=
1

n

∑
k∈Z

|k/n||f̂(k/n)|2,

which gives the desired Riemann sum.

Passing to the limit when n goes to infinity, we deduce a bound on the variance of the
linear statistics of the Sineβ process in terms of the H1/2 norm of the test function f , as
soon as the Fourier transform of f is supported in [− 1

2 ,
1
2 ].

Proposition 2.4. Let f be a function from R to R in the Schwartz space, whose Fourier
transform is supported in [− 1

2 ,
1
2 ]. Let E be the set of points of a Sineβ process. We have

E

∣∣∣∣∣∑
x∈E

f(x)−
∫ ∞
−∞

f(t)dt

∣∣∣∣∣
2
�β

∫
R

|x||f̂(x)|2dx.

Proof. Let f = f1 + f2, where f1 is smooth with compact support. By the convergence in
law of the renormalized CβE towards the Sineβ (see Definition 1.6 in [KS09]), we have
the convergence in law: ∑

x∈En

f1(x) −→
n→∞

∑
x∈E

f1(x),

i.e. for λ ∈ R,

E

[
exp

(
iλ
∑
x∈En

f1(x)

)]
−→
n→∞

E

[
exp

(
iλ
∑
x∈E

f1(x)

)]
.

We make the decomposition f = f1 + f2 because weak convergence of point processes
concerns compact windows and thus requires compactly supported test functions. Using
the Lipschitz property of the complex exponential and the triangle inequality, we deduce

lim sup
n→∞

∣∣∣∣∣E
[

exp

(
iλ
∑
x∈En

f(x)

)]
− E

[
exp

(
iλ
∑
x∈E

f(x)

)]∣∣∣∣∣
≤ |λ| lim sup

n→∞
E

[ ∑
x∈En

|f2(x)|+
∑
x∈E
|f2(x)|

]

= 2|λ|
∫ ∞
−∞
|f2(t)|dt,

the last equality coming from the fact that the one-point correlation function of the point
processes En and E is equal to one. Since the integral of |f2| can be arbitrarily small
(take for f1 a smooth truncation of f , equal to f in a sufficiently large bounded interval),
the upper limit is zero and we have the convergence in law:∑

x∈En

f(x) −→
n→∞

∑
x∈E

f(x),

which implies the convergence in law∣∣∣∣∣ ∑
x∈En

f(x)−
∫ ∞
−∞

f(t)dt

∣∣∣∣∣
2

−→
n→∞

∣∣∣∣∣∑
x∈E

f(x)−
∫ ∞
−∞

f(t)dt

∣∣∣∣∣
2

.
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Rigidity of Sineβ

If A > 0, we deduce

E

∣∣∣∣∣ ∑
x∈En

f(x)−
∫ ∞
−∞

f(t)dt

∣∣∣∣∣
2

∧A

 −→
n→∞

E

∣∣∣∣∣∑
x∈E

f(x)−
∫ ∞
−∞

f(t)dt

∣∣∣∣∣
2

∧A

 ,
lim inf
n→∞

E

∣∣∣∣∣ ∑
x∈En

f(x)−
∫ ∞
−∞

f(t)dt

∣∣∣∣∣
2
 ≥ E

∣∣∣∣∣∑
x∈E

f(x)−
∫ ∞
−∞

f(t)dt

∣∣∣∣∣
2

∧A

 ,
and by letting A→∞,

E

∣∣∣∣∣∑
x∈E

f(x)−
∫ ∞
−∞

f(t)dt

∣∣∣∣∣
2
 ≤ lim inf

n→∞
E

∣∣∣∣∣ ∑
x∈En

f(x)−
∫ ∞
−∞

f(t)dt

∣∣∣∣∣
2
 .

By the previous proposition, it is enough to show that∫
R

|[x]n||f̂([x]n)|2dx −→
n→∞

∫
R

|x||f̂(x)|2dx.

Since f̂ is smooth (f is in the Schwartz space) with support included in [− 1
2 ,

1
2 ], this last

convergence is just the convergence of the Riemann sums of an integral.

The next proposition shows that we can apply the result just above to functions which
enjoy suitable properties for the proof of the rigidity of the point process E:

Proposition 2.5. Let R > 0. There exists f in the Schwartz space, with Fourier trans-
form supported on [− 1

2 ,
1
2 ], such that

||f ||H1/2 :=

(∫
R

|x||f̂(x)|2dx
)1/2

and
sup

t∈[−R,R]

|f(t)− 1|

are arbitrarily small.

Proof. Let f be the inverse Fourier transform of a nonnegative smooth function sup-
ported on [− 1

2 ,
1
2 ], normalized in such a way that f(0) = 1. Then, f is in the Schwartz

space, with Fourier transform supported on [− 1
2 ,

1
2 ]. For L > 1, we define

fL(t) :=
1

2
(f(t) + f(t/L)).

This function is still in the Schwartz space, with Fourier transform supported on [− 1
2 ,

1
2 ],

and fL(0) = 1. We have

4||fL||2H1/2 =

∫
R

|x||f̂(x)|2dx+

∫
R

|x||Lf̂(Lx)|2dx+ 2

∫
R

|x|<
(
f̂(x)Lf̂(Lx)

)
dx.

The first integral is ||f ||2
H1/2 , the second has the same value by a change of variable. For

the last integral, because the Fourier transform is supported on [− 1
2 ,

1
2 ]:∣∣∣∣∫

R

|x|<
(
f̂(x)Lf̂(Lx)

)
dx

∣∣∣∣ =

∣∣∣∣ 1L
∫
R

|x|<
(
f̂(x/L)f̂(x)

)
dx

∣∣∣∣ ≤ supx∈R |f̂(x)|2

2L
,

and therefore: ∫
R

|x|<
(
f̂(x)Lf̂(Lx)

)
dx −→

L→∞
0.
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Rigidity of Sineβ

We deduce that for L large enough (depending on f ),

||fL||2H1/2 ≤ 0.51||f ||2H1/2 .

Iterating this process gives an arbitrarily small value of ||f ||2
H1/2 . Since f is smooth and

equal to 1 at zero, we can do a final replacement of f by f
( ·
L

)
for L large compared to

R: the support of the Fourier transform is still included in [− 1
2 ,

1
2 ] and the H1/2 norm is

not changed. As such, we obtain a uniformly small value of |f − 1| on [−R,R].

We have now all the ingredients needed to finish the proof of the main theorem.
Proof of the main theorem, Theorem 1.2: Let E be the set of points in a Sineβ process.

Let B be a bounded Borel set of R, included in an interval [−R,R], R > 0. Let (fp)p≥1
be a sequence of functions in the Schwartz space, with Fourier transform supported on
[− 1

2 ,
1
2 ], such that

||fp||H1/2 ≤ 2−p, sup
t∈[−R,R]

|fp(t)− 1| ≤ 2−p.

If NC denotes the number of points of E in the subset C of R, we have

N[−R,R] =

(∑
x∈E

fp(x)−
∫ ∞
−∞

fp(t)dt

)
−

∑
x∈E,|x|≤R

[fp(x)−1]+

∫ ∞
−∞

fp(t)dt−
∑

x∈E,|x|>R

fp(x).

The L2(Ω) norm of the term between parentheses is dominated by ||fp||H1/2 ≤ 2−p. The
L1(Ω) norm of the sum involving fp − 1 is (because of the one-point correlation function),
at most 2R · 2−p. Hence, these two terms almost surely tend to zero when p goes to
infinity. We deduce that almost surely,

N[−R,R] = lim
p→∞

∫ ∞
−∞

fp(t)dt−
∑

x∈E,|x|>R

fp(x)

 ,

and then

NB = lim
p→∞

∫ ∞
−∞

fp(t)dt−
∑

x∈E,|x|>R

fp(x)

−N[−R,R]\B .

The right-hand side of the last expression is clearly in the σ-algebra ΣE\B.
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