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Abstract

We consider a one dimensional random walk in random environment that is uniformly
biased to one direction. In addition to the transition probability, the jump rate of the
random walk is assumed to be spatially inhomogeneous and random. We study the
probability that the random walk travels slower than its typical speed and determine
its decay rate asymptotic.
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1 Introduction

1.1 Setting and preliminaries

Let (ω = {ω(x)}x∈Z,P) be indepnedent and identically distributed random variables
taking values in (0, 1). For a given ω, the random walk in random environment {Xn}∞n=0

is the Markov chain with transition probability

ω(x) = Pω(Xn+1 = x+ 1|Xn = x)

= 1− Pω(Xn+1 = x− 1|Xn = x).
(1.1)

It is said to be uniformly biased (to the right) if P-essinfω(0) > 1/2. In this case, the law
of large numbers is known to hold with a positive speed (see [19]):

lim
n→∞

1

n
Xn = vP > 0. (1.2)

In this paper, we consider a variant of this process whose jump rate is spatially inho-
mogeneous and random. Specifically, as in [5], let (µ = {µ(x)}x∈Z,P) be independent
and identically distributed strictly positive random variables of mean one. For a given µ,
we consider a continuous time random walk (X = {Xt}t≥0, {Pω,µz }z∈Z) on Z whose jump
rates from x to x+ 1 and x− 1 are given by ω(x)/µ(x) and (1− ω(x))/µ(x), respectively.
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Slowdown estimates for RWRE with holding times

This type of random walk (usually with ω ≡ 1/2) is sometimes called a random hopping
time dynamics. If in addition the mean of µ(0) is infinite, it is also called Bouchaud’s trap
model. Since we assumed finite mean, there is no trapping effect and it is easy to check
that the law of large numbers holds:

Pω,µ0

(
lim
t→∞

1

t
Xt = vP

)
= 1 P⊗ P-almost surely. (1.3)

The large deviation principle of rate t also holds for the law of {t−1Xt}t>0 as a special
case of the results of [5]. However, when µ is unbounded, it is easily seen that the
slowdown probability

Pω,µ0 (Xt < vt) for v ∈ (0, vP) (1.4)

exhibits sub-exponential decay. The aim of this work is to establish the precise sub-
exponential rate of the slowdown probability decay and relate it to the tail of the law
of µ(x). While our methods apply for quite general distributions of µ, we consider
three representative classes (Pareto, Intermediate and Weibull) to make the statements
concise. To be precise, suppose

P(µ(0) > r) = exp{−g(r)} (1.5)

and g has either of the following forms:

(P) eg(r) is regularly varying at∞ with index α > 1;

(I) g is slowly varying at∞ satisfying limr→∞ g(r)/ log r =∞;

(W) g is regularly varying with index α > 0 at∞.

Furthermore, when g satisfies (W) with α = 1, we assume in addition that the so-called
Cramér condition holds:

(C) there exists C > 0 such that E[eCµ(0)] <∞.

In the quenched slowdown estimate, the extreme value of µ plays an important role.
Let us recall two results from extreme value theory. Let g−1 denote the left-continuous

inverse of g. The first result gives us a condition under which the running maxima of
{µ(x)}x∈Z can be approximated by a deterministic sequence up to multiplicative constant.

Lemma 1.1. Suppose that

l = sup{λ ≥ 1: E [exp{g(λµ(0))}] <∞} <∞. (1.6)

Then

l−1 ≤ lim inf
t→∞

max0≤x≤t{µ(x)}
g−1(log t)

≤ lim sup
t→∞

max0≤x≤t{µ(x)}
g−1(log t)

≤ l. (1.7)

This can be found in [16, Corollary 1]. Any distribution in the class (W) satisfies (1.6)
with l = 1. For the class (I), it is satisfied for g(r) = (log r)β1{r≥1} (β > 1) with l = 1

and g(r) = log r log log r1{r≥e} with l = e, but not for g(r) = log r log log log r1{r≥ee}.
No distribution in (P) satisfies (1.6): indeed, the regular variation assumption implies
limx→∞ g(x) − g(δx) = −α log δ, and then we know from [22, Lemma 2.2-(i)] that (1.6)
fails to hold for any l ≥ 1.

In order to cover the cases where (1.6) fails to hold, we state another lemma which
readily follows from [7, Theorems 3.5.1 and 3.5.2]:

Lemma 1.2. For any ε > 0, P-a.s., for all sufficiently large t,

g−1((1− ε) log t) ≤ max
0≤x≤t

{µ(x)} ≤ g−1((1 + ε) log t). (1.8)
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Slowdown estimates for RWRE with holding times

This lemma aims at giving an easily computable asymptotic bound and is not sharp.
Once an explicit form of the distribution is given, one can often obtain a finer asymptotics
from [7, Theorems 3.5.1 and 3.5.2]. For example, if g(r) = α log r1{r≥e}, then it is shown
in [23, Lemma 3.3] that

P

(
vc(t) ≤ max

0≤x≤t
{µ(x)} ≤ uρ(t) eventually

)
=

{
1, if ρ > 0 and c ∈ (0, 1),

0, if ρ ≤ 0 or c ≥ 1,
(1.9)

where

uρ(t) = (t log t log log t)1/α(log log log t)1/α+ρ, (1.10)

vc(t) = c(t/ log log t)1/α. (1.11)

1.2 Results

To simplify the presentation, we introduce the following notation:

Definition 1.3. For two functions f, g : (0,∞) → (0,∞), we write f(t) �log g(t) when
there exists a c ∈ (0,∞) such that for all sufficiently large t,

c−1 log g(t) ≤ log f(t) ≤ c log g(t). (1.12)

When only the left inequality holds, we write f(t) .log g(t).

Our first result is the following quenched slowdown estimate.

Theorem 1.4. Let P be a uniformly biased environment: P-essinfω(0) > 1/2. For any
v ∈ (0, vP), P⊗ P-almost surely,

exp

{
− t

g−1((1− ε) log t)

}
.log P

ω,µ
0 (Xt < vt) .log exp

{
− t

g−1((1 + ε) log t)

}
. (1.13)

Moreover, if µ satisfies the assumption of Lemma 1.1, then

Pω,µ0 (Xt < vt) �log exp

{
− t

g−1(log t)

}
. (1.14)

Our second result is the corresponding annealed slowdown estimate. To this end, for
each t, let h(t) be the largest h > 0 satisfying

t

h
≥ g(h)− log t. (1.15)

Such h exists for all large t. Indeed, when t is large, the inequality (1.15) holds for
h = log t and fails for h = t, whereas per fixed t > 0 the left hand side of (1.15) is
decreasing in h and its right hand side eventually increasing in h.

Remark 1.5. In general, both h(t) and g(h(t)) grow sub-linearly in t. Furthermore, it is
straightforward to check that

h(t) ∼


t

(α−1) log t for (P),

t
1

α+1 `(t) for (W),
(1.16)

where the function `(t) is slowly varying at∞. There is no such simple formula in the
case (I) but for a representative example g(r) = (log r)β (β > 1), we have

h(t) ∼ t

(log t)β
. (1.17)
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Slowdown estimates for RWRE with holding times

Theorem 1.6. Let P be a uniformly biased environment: P-essinfω(0) > 1/2. Suppose
v ∈ (0, vP). Then for h(·) of (1.15),

P⊗ P [Pω,µ0 (Xt < vt)] �log exp

{
− t

h(t)

}
, (1.18)

where P⊗ P[ · ] denotes the expectation with respect to P⊗ P.

1.3 Related works

Sub-exponential tail estimates are established in [6] for the annealed slowdown
probability of the random walk in random environment (Xn)n≥0 governed by (1.1).
When the environment assumes both positive and negative drift, that is, P-essinfω(0) <
1/2 < P-esssupω(0), the annealed slowdown probability exhibits a polynomial decay.
In the case of positive and zero drift, that is, P-essinfω(0) = 1/2, under an additional
assumption that P(ω(0) = 1/2) > 0, the slowdown probability is shown to decay stretched
exponentially with exponent 1/3. The rate of decay of the corresponding quenched
slowdown probability is determined in [8], based on the annealed result and the block
argument. In the case of positive and zero drift, both annealed and quenched results are
refined to the precision of the usual large deviation principle in [15] and [14], respectively.
On the other hand, in the case of positive and negative drift, it has recently been shown
in [1] that the leading order of the quenched slowdown probability oscillates and hence
does not satisfy a large deviation principle. For more details, we refer the reader to a
survey article [9] as well as the introduction of [1].

We focus here on the uniformly biased situation with (inhomogeneous) holding times.
Indeed, for uniformly biased environments, the result of [10] shows that without holding
times the slowdown probability decays exponentially. Thus, the sub-exponential decay of
the slowdown probability is caused in this setting solely by the inhomogeneity of holding
times. Note that in case of positive and negative drift, since the annealed slowdown
probability decays polynomially without holding times, the holding time can cause a
visible effect only if µ has a power law tail. Similarly, in the case of positive and zero
drift, the most natural choice of µ would be the Weibull distribution. We leave the latter
two cases for future research.

Finally, [20, 21, 2] provide estimates for the decay rate of the slowdown probability
for random walk in random environment in higher dimensions. While it is interesting to
see how the holding times affect such slowdown probabilities, our method relies on a
certain renewal structure which is limited to the one dimensional setting.

1.4 Outline

Section 2 provide the relatively easy proofs of our lower bounds, where in both
quenched and annealed settings, we simply let the random walk stay until time t at the
site of the highest µ-value within [0, vt− 1]. In the quenched case, the highest µ-value
behaves as in Lemmas 1.1 and 1.2, while in the annealed setting, we can make it larger
at a suitable cost in logP-probability, so we optimize the sum of the corresponding cost
and gain.

The derivation of the upper bounds is more involved. Since a sub-exponential slow-
down decay for a uniformly biased random walk can only be caused by the inhomogeneity
of the holding times µ, we introduce in Section 3 a suitable time change and thereby
reduce such upper bounds on the slowdown decay to a tail bound for certain additive
functionals. Section 4 provides our main technical contribution, showing that condition-
ing on some good events with respect to ω and µ yields the stated upper bounds. Finally,
in Section 5, we show that
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Slowdown estimates for RWRE with holding times

(i) in the quenched setting, the good event has probability one;

(ii) in the annealed setting, the good event has probability comparable to the upper
bound in Theorem 1.6.

2 Lower bounds

Proof of the lower bound in Theorem 1.4. Let us define a regularly varying function

M(t) =

{
g−1((1− ε) log t), or

g−1(log t), when (1.6) holds.
(2.1)

Then due to Lemmas 1.1 and 1.2, the following holds P-almost surely: for all sufficiently
large t, there exist a point x ∈ [0, vt− 1] and cv > 0 (which is independent of x) such that
µ(x) ≥ cvM(t). It follows that

Pω,µ0 (Xt < vt) ≥ Pω,µ0 (τ1(x) ≥ t) ≥ exp

{
− t

cvM(t)

}
, (2.2)

where τ1(x) is the first holding time at x, which is distributed as Exp(1/µ(x)).

Proof of the lower bound in Theorem 1.6. As in the quenched case, if there is a point
x ∈ [0, vt− 1] such that µ(x) ≥ h(t), then we can slow the random walk by using the first
holding time at x. Therefore, by the definition of h(t), we have

P⊗ P [Pω,µ0 (Xt < vt)] ≥ exp

{
− t

h(t)

}
P

(
max

x∈[0,vt−1]
µ(x) ≥ h(t)

)
�log exp

{
− t

h(t)
+ log t− g(h(t))

}
≥ exp

{
− 2t

h(t)

}
,

(2.3)

which is the desired lower bound.

3 Preliminaries for upper bounds

3.1 Reduction to tail estimate for additive functional

Let us first translate the problem in terms of the hitting time H(x) of x by our process.
For any u > v, on the slowdown event {Xt < vt}, either the walk hit ut before time t and
thereafter go back to (−∞, vt] or it does not reach ut before time t. Hence,

Pω,µ0 (Xt < vt) ≤ Pω,µ0 (H(ut) < t,Xt < vt) + Pω,µ0 (H(ut) ≥ t). (3.1)

The first term on the right hand side is exponentially small in t. Indeed, since the random
walk then must backtrack for length (u− v)t, it follows that

Pω,µ0 (H(ut) < t,Xt < vt) ≤ Pω,µut (H(vt) <∞)

= Pωut(H(vt) <∞) ≤ exp{−c(u− v)t}
(3.2)

(see Lemma 3.1 for the last inequality). To handle the other term on the right side of
(3.1) we utilize the following time change description of Pω,µ. Let ({St}t≥0, {Pωx }x∈Z) be
the continuous time random walk in random environment, that is, it jumps after Exp(1)

time regardless of its position and where it moves obeys the rule (1.1). Then, define the
strictly increasing positive continuous additive functional

Aµ(t) =

∫ t

0

µ(Sr)dr (3.3)
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Slowdown estimates for RWRE with holding times

and denote by A−1µ its inverse. Since the process {SA−1
µ (t)}t≥0 has under Pω0 the same

law as {Xt}t≥0 has under Pω,µ0 , the second term in (3.1) is precisely

Pω0 (H(ut) ≥ A−1µ (t)) = Pω0 (Aµ(H(ut)) ≥ t). (3.4)

3.2 Green function estimates

The Green function for {St}t≥0 is defined for −∞ ≤ a < x < b ≤ ∞ as

Gω(a,b)(x, y) = Eωx

[∫ H(a)∧H(b)

0

1{y}(Sr)dr

]
. (3.5)

Since our random walk is transient, this quantity is finite P-almost surely.

Lemma 3.1. There exist positive constants c1, c2 and a function η(ε)→ 0 as ε→ 0 that
depend only on P-essinf ω(0) > 1/2 such that the following hold P-almost surely:

(i) for any z ∈ Z, Eωz−1[exp{εH(z)}] ≤ 1 + η(ε),

(ii) for all x ≥ y, both Pωx (H(y) <∞) and Gω(−∞,∞)(x, y) are bounded
by c1 exp{−c2(x− y)}.

Proof. Let ({St}t≥0, {P
ω
x }x∈Z) be the biased random walk corresponding to the deter-

ministic environment ω ≡ P-essinf ω(0) > 1/2. It is standard to construct a coupling
(St, St) so that the two walks jump at the same time and St ≤ St for all t ≥ 0. The first
assertion (i) readily follows from this coupling since for any ε > 0,

sup
z∈Z

Eωz−1[exp{εH(z)}] ≤ Eω0 [exp{εH(1)}] =: 1 + η(ε). (3.6)

Next, turning to the proof of (ii), by our coupling Pωz (H(z − 1) = ∞) ≥ η, uniformly in
ω and z ∈ Zd, where η := P

ω
z (H(z − 1) = ∞) is positive. Hence, by the strong Markov

property,

Pωx (H(y) <∞) =

y−1∏
z=x

Pωz (H(z − 1) <∞) ≤ (1− η)y−x (3.7)

as claimed. Another application of the strong Markov property yields the identity

Gω(−∞,∞)(x, y) = Pωx (H(y) <∞)Gω(−∞,∞)(y, y). (3.8)

Further, by our coupling with {Pωx }x∈Z, the return probability of the process (St)t≥0 is
bounded away from one, uniformly in its starting point S0 = y and the environment ω.
This implies same uniform boundedness of Gω(−∞,∞)(y, y), which in view of (3.7) and (3.8)
completes the proof.

4 Upper bound on a good event

Let us fix u ∈ (v, vP) and a regularly varying and increasing function M with
limt→∞M(t) = ∞. Throughout this section, we will fix ω and µ and assume that they
satisfy the following conditions:

1

M(ut)
max

−εt≤z≤ut
{µ(z)} ≤ 1, (4.1)

and there exists δ ∈ (0, 1) such that∑
y∈(−εt,ut)

cω−εt(y)µ(y) ≤ (1− δ)t (4.2)
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Slowdown estimates for RWRE with holding times

holds for
cω−εt(y) :=

∑
x∈(y,ut]

Gω(−εt,x)(x− 1, y) (4.3)

and all sufficiently small ε > 0. Let us introduce

fε,t(x, y) = Eωx

[
exp

{
ε

M(ut)

∫ H(y)∧H(−εt)

0

µ(Sr)dr

}]
(4.4)

for 0 ≤ x < y ≤ ut. By the strong Markov property and the fact fε,t(x, y) ≥ 1, this can be
shown to be sub-multiplicative in the following sense: for any 0 ≤ x < y < z ≤ ut,

fε,t(x, z) ≤ fε,t(x, y)fε,t(y, z). (4.5)

The assumption (4.1) and Lemma 3.1 imply

fε,t(x, y) ≤ Eωx [exp {εH(y)}] =
y∏

z=x+1

Eωz−1 [exp {εH(z)}] ≤ (1 + η(ε))y−x. (4.6)

By the Feynman–Kac formula (Theorem 6.7 in [4]), we have

fε,t(x− 1, x) = 1 +
ε

M(ut)

∑
y∈(−εt,x)

Gω(−εt,x)(x− 1, y)µ(y)fε,t(y, x)

≤ 1 +
ε

M(ut)

∑
y∈(−εt,x)

Gω(−εt,x)(x− 1, y)µ(y)(1 + η(ε))x−y.
(4.7)

Now using log(1 + x) ≤ x for x ≥ 0, we obtain from (4.5) and (4.7) that

log fε,t(0, ut) ≤
∑

1≤x≤ut

log fε,t(x− 1, x)

≤
∑

1≤x≤ut

ε

M(ut)

∑
y∈(−εt,x)

Gω(−εt,x)(x− 1, y)µ(y)(1 + η(ε))x−y

≤ ε

M(ut)

∑
y∈(−εt,ut)

µ(y)
∑

x∈(y,ut]

Gω(−εt,x)(x− 1, y)(1 + η(ε))x−y.

(4.8)

Next, by Lemma 3.1(ii) we have that uniformly in ω, t and y, as ε→ 0,

0 ≤
∑

x∈(y,ut]

Gω(−εt,x)(x− 1, y)(1 + η(ε))x−y − cω−εt(y)

≤
∑

x∈(y,∞)

c1e
−c2(x−y)((1 + η(ε))x−y − 1)→ 0.

(4.9)

Further, cω−εt(y) ≥ Gω(−εt,y+1)(y, y) ≥ 1 (the latter being the expected first jump time of
{St}t≥0 out of y). Consequently, it follows from (4.9) that∑

x∈(y,ut]

Gω(−εt,x)(x− 1, y)(1 + η(ε))x−y ≤ (1 + δ)cω−εt(y) (4.10)

for all sufficiently small ε > 0, uniformly in y. Substituting this to (4.8), we deduce thanks
to (4.2) that

log fε,t(0, ut) ≤
ε(1 + δ)

M(ut)

∑
y∈(−εt,ut)

µ(y)cω−εt(y) ≤
ε(1− δ2)t
M(ut)

. (4.11)
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Slowdown estimates for RWRE with holding times

Thus, using Chebyshev’s inequality and recalling (3.3) and (4.4), we obtain that

Pω0 (Aµ(H(ut) ∧H(−εt)) ≥ t) ≤ exp

{
− εt

M(ut)

}
fε,t(0, ut)

≤ exp

{
− εδ2t

M(ut)

}
.

(4.12)

Recall Lemma 3.1(ii) that Pω0 (H(−εt) <∞) decays exponentially in t, so we can choose
ε > 0 such that for all sufficiently large t,

Pω0 (Aµ(H(ut)) ≥ t) ≤ Pω0 (Aµ(H(ut) ∧H(−εt)) ≥ t) + exp{−cεt}

≤ 2 exp

{
− εδ2t

M(ut)

}
.

(4.13)

Referring to Subsection 3.1, this leads us to an upper bound

Pω,µ0 (Xt < vt) .log exp

{
− t

M(t)

}
(4.14)

under the assumptions (4.1) and (4.2) (where we also used the fact that t 7→ M(t) is
regularly varying at infinity).

5 Proofs of upper bounds

Proof of the upper bound in Theorem 1.4. In view of (4.14), we have only to show that
(4.1) and (4.2) are satisfied for a suitable M and u ∈ (v, vP). Thanks to Lemmas 1.1
and 1.2, if we choose

M(t) =

{
g−1((1 + ε) log t), or

uρ(t), when (1.6) holds,
(5.1)

with ε > 0, then (4.1) holds P-almost surely for all sufficiently large t.
Let us turn to verify the second condition (4.2). Replacing µ(y) by their mean value

E[µ(y)] = 1, on the left side of (4.2), yields∑
y∈(−εt,ut)

cω−εt(y) ≤
∑

x∈(−εt,ut]

∑
y∈(−∞,x)

Gω(−∞,x)(x− 1, y)

= Eω−εt[H(ut)].

(5.2)

The last expression is P-almost surely of size u+ε
vP

(t+ o(t)) as t→∞. This can be seen

as follows: in the same way as in [19, (1.16)], we find that for P-a.e. ω, t−1H(ut) →
(u+ ε)/vP in Pω−εt-probability as t → ∞. On the other hand, by the same coupling as
in the proof of Lemma 3.1, it follows that supt,ω E

ω
−εt[(H(ut)/t)2] <∞. This implies the

uniformly integrablity of {H(ut)/t}n∈N with respect to Pω−εt for every ω, and hence the
above in probability convergence can be upgraded to the convergence in L1.

For any fixed u < vP, we can choose δ > 0 such that u+ε
vP

< 1 − δ for all sufficiently
small ε, so it remains to control the discrepancy on the left-side of (4.2) due to replacing
µ(y) by E[µ(y)] = 1. To this end, note that from Lemma 3.1-(ii) we have that the weights
cω−εt(y) are uniformly bounded. Thus, applying the strong law of large numbers for the
weighted sum of zero mean i.i.d. variables {µ(y)− 1}, with such weights {cω−εt(y)} yields
that P⊗P-almost surely, ∑

y∈(−εt,ut)

cω−εt(y)(µ(y)− 1) = o(t) (5.3)

as t→∞ and we are done.
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In order to prove the upper bound in Theorem 1.6, we need the following lemma,
which states that (1.15) is not too far from an equality.

Lemma 5.1. Let h(t) be as in (1.15). Then for sufficiently large t,

t

h(t)
≤ 2(g(h(t))− log t). (5.4)

Proof. We claim that for some c <∞ and all t large enough h(t) ≤ ct/ log t. Indeed, for
h(t) > ct/ log t the left side of (1.15) is smaller than c−1 log t. On the other hand, since
eventually g(h) ≥ β log h for some β > 1 in all three cases (P), (I) and (W), the right hand
side of (1.15) must then be at least 1

2 (β − 1) log t for all large t. Thus, by (1.15) we must
have h(t) ≤ ct/ log t for c = 2/(β − 1) and all t large enough.

Now by the definition of h(t), it follows that for any λ > 1,

λh(t)(g(λh(t))− log t) > t, (5.5)

which implies

h(t)(g(h(t))− log t) >
g(h(t))

g(λh(t))

t

λ
+ h(t) log t

(
g(h(t))

g(λh(t))
− 1

)
≥ g(h(t))

g(λh(t))

t

λ
+ ct

(
g(h(t))

g(λh(t))
− 1

)
,

(5.6)

where in the second line, we have used that g(·) is increasing and h(t) ≤ ct/ log t. The
stated conclusion (5.4) thus holds whenever

lim
λ↓1

g(h(t))

g(λh(t))
>
c+ 1

2

c+ 1
. (5.7)

To complete the proof, recall that for increasing and regularly varying g(·) the left hand
side gets arbitrarily close to one as h(t)→∞.

Proof of the upper bound in Theorem 1.6. Again in view of (4.14) and (5.4), it remains
to show that for any fixed u ∈ (v, vP) and small δ, ε > 0 such that u+ε

vP
< 1− 2δ, one has

P

(
max

−εt≤z≤ut
{µ(z)} > h(t)

)
.log exp{−g(h(t)) + log t}, (5.8)

P⊗P

 ∑
y∈(−εt,ut)

cω−εt(y)µ(y) > (1− δ)t

 .log exp{−g(h(t)) + log t}. (5.9)

The bound (5.8) follows by the definition of g(·) and the union bound. Turning to (5.9),
recall (5.2) that the event on its left-side is contained in the union of:

Eω−εt[H(ut)] > (1− 2δ)t, (5.10)∑
y∈(−εt,ut)

cω−εt(y)(µ(y)− 1) > δt. (5.11)

To bound the probability of (5.10) we use Jensen’s inequality to find that

P
(
Eω−εt[H(ut)] > (1− 2δ)t

)
≤ inf

λ
e−λ(1−2δ)tE

[
exp

{
λEω−εt[H(ut)]

}]
≤ inf

λ
e−λ(1−2δ)tE

[
Eω−εt[exp{λH(ut)}]

]
.

(5.12)

The last expression is precisely the large deviation upper bound for the hitting time,
which is shown in [3] to decay exponentially in t whenever 1− 2δ > (u+ ε)/vP. Recall
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Remark 1.5 that t 7→ g(h(t)) grows sub-linearly, hence any event having exponential
decay in t is negligible for the purpose of verifying (5.9). Turning to similarly control the
probability of the event in (5.11) recall that the positive cω−εt(y) are bounded away from
zero and infinity, uniformly in ω, t and y. Thus, standard large deviation estimates for
such weighted sums yield that

P

 ∑
y∈(−εt,ut)

cω−εt(y)(µ(y)− 1) > δt

 .log exp{−g(h(t)) + log t} (5.13)

as claimed. Indeed, if µ(y) has a finite exponential moment (which we have for (W), when
α ≥ 1, see (C) in case α = 1), then the Chernoff bound yields an exponential decay in t
of the probability on the left-side, whereas appealing to Remark 1.5 for the sub-linear
growth of t 7→ h(t), in case µ(y) has no finite exponential moments, we get (5.13) as a
special case of Lemma 5.2 below.

Lemma 5.2. Let ({µk}k∈N,P) be a family of i.i.d. mean-one random variables obeying
either (P), (I) or (W) with α < 1. Then, for any sequence {wk}k∈N ⊂ [0, κ] and δ > 0, there
exists c < ∞ depending only on δ, κ < ∞ and α (which appears in conditions (P) and
(W)), such that

P

(
n∑
k=1

wk(µk − 1) > δn

)
≤

cn
1−α, for (P),

exp
{
−c−1g(δn)

}
, for (I) and (W) with α < 1.

Such behavior of the large deviation estimates for sums of independent random
variables is well-known in the literature. However, we were not able to find results in
this specific form, hence for reader’s convenience include its proof in the appendix.

A Proof of Lemma 5.2

For case (P), suppose that the independent νk = wk(µk − 1) are such that

A+
t =

n∑
k=1

E[νtk : νk ≥ 0] <∞ (A.1)

for some t ∈ [1, 2]. Then, by [13, Corollary 1.6] we have that for any y ∈ [(4A+
t )

1/t, x),

P

(
n∑
k=1

νk > x

)
≤

n∑
k=1

P(νk > y) +

(
e2A+

t

xyt−1

)x/2y
. (A.2)

With c := E[µtk] <∞ for t = min{2, (α+ 1)/2} > 1, it follows that A+
t ≤ cκtn. Thus, fixing

0 < ε < δ, from (A.2) with x = δn and y = εn, we obtain that

P

(
n∑
k=1

νk > δn

)
≤ nP

(
µ1 − 1 ≥ εn

κ

)
+

(
e2cκt

δεt−1nt−1

)δ/2ε
(A.3)

as soon as n1−1/t ≥ ε−1(4cκt)1/t. The first term on the right hand side of (A.3) has the
desired form while the second term there is negligible when δ(t− 1) > 2ε(α− 1).

The case (W) with α < 1 and (I) are studied in [11, 12] and [17], respectively, for the
i.i.d. setting. Utilizing a standard truncation argument, we extend their results to our
weighted case in the large deviation regime. Specifically, note first that for any 0 < ε < δ,

P
( n∑
k=1

νk > δn
)
≤ P

(
max

1≤k≤n
{µk} > εn

)
+ P

( n∑
k=1

νk > δn, max
1≤k≤n

{µk} ≤ εn
)

≤ ne−g(εn) + e−δg(n)
n∏
k=1

E

[
exp

{
g(n)

n
νk

}
: µk ≤ εn

]
.

(A.4)
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The first term has the desired form since g(·) is regularly varying and grows faster than
the logarithm. It thus suffices to show that the product term on the right of (A.4) is
bounded by exp{εg(n)}. To this end, recalling that ex ≤ 1 + x+ x2eκ for x ≤ κ, whereas
E[νk : µk ≤ n/g(n)] ≤ 0 and g(n)

n νk ≤ κ when µk ≤ n/g(n), we deduce that

E

[
exp

{
g(n)

n
νk

}
: µk ≤

n

g(n)

]
≤ 1 + eκ

(
g(n)

n

)2

E[ν2k ] = 1 + o

(
g(n)

n

)
(A.5)

as n → ∞ (since g(n)/n → 0 and supk E[ν
2
k ] < ∞). Next, νk ≤ κµk, hence using

integration by parts and the definition of g(·),

E

[
exp

{
g(n)

n
νk

}
:

n

g(n)
≤ µk ≤ εn

]
(A.6)

≤ E
[
exp

{
κg(n)

n
µ1

}
:

n

g(n)
≤ µ1 ≤ εn

]
≤ eκ−g(n/g(n)) + g(n)κ

n

∫ εn

n/g(n)

exp

{
g(n)κ

n
r

}
e−g(r)dr . (A.7)

The first term in (A.7) is o(g(n)/n) thanks to our assumption that g(·) grows faster
than the logarithm. Furthermore, from the representation formula for slowly varying
functions [18, Theorem 1.2], it follows that for all n ≥ n0(κ, ε),

g(n)

n
κr ≤ g(r)

2
∀r ∈ [n/g(n), εn] . (A.8)

The integral in (A.7) is thus at most
∫∞
n/g(n)

e−g(r)/2dr = o(1) when n→∞. Collecting the
preceding estimates, we conclude that for all sufficiently large n,

n∏
k=1

E

[
exp

{
g(n)

n
νk

}
: µk ≤ εn

]
≤
(
1 +

εg(n)

n

)n
≤ exp {εg(n)} , (A.9)

and the proof is complete.
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