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Abstract

Let Xn(k) be the number of vertices at level k in a random recursive tree with n+ 1

vertices. We prove a functional limit theorem for the vector-valued process
(X[nt](1), . . . , X[nt](k))t≥0, for each k ∈ N. We show that after proper centering and
normalization, this process converges weakly to a vector-valued Gaussian process
whose components are integrated Brownian motions. This result is deduced from a
functional limit theorem for Crump-Mode-Jagers branching processes generated by
increasing random walks with increments that have finite second moment. Let Yk(t)

be the number of the kth generation individuals born at times≤ t in this process. Then,
it is shown that the appropriately centered and normalized vector-valued process
(Y1(st), . . . , Yk(st))t≥0 converges weakly, as s → ∞, to the same limiting Gaussian
process as above.
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1 Introduction and main results

1.1 Functional limit theorem for random recursive trees

An increasing Cayley tree with n vertices is a rooted tree with vertices labeled
with 1, 2 . . . , n that satisfies the following property: the root is labeled with 1, and the
labels of the vertices on the unique path from the root to any other vertex (labeled with
m ∈ {2, . . . , n}) form an increasing sequence. We consider non-plane trees meaning
that trees differing only by the order of subtrees stemming from the same node are
considered equal. There are (n−1)! different recursive trees with n vertices; see Example
II.18 in [9]. A random object Tn is called random recursive tree with n vertices if it is
sampled uniformly from the collection of all increasing Cayley trees with n vertices.

A simple way to generate a random recursive tree is as follows. At time 0 start with
a tree consisting of a single vertex (the root) labeled with 1. At each time n, given a
recursive tree with n + 1 vertices, choose one vertex uniformly at random and add to
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Profiles of random recursive trees

this vertex an offspring labeled with n+ 2. The random tree obtained at time n has the
same distribution as Tn+1. We refer the reader to Chapter 6 of [7] for more information.

For k ∈ N, let Xn(k) denote the number of vertices at level k in a random recursive
trees on n+1 vertices. The level of a vertex is, by definition, its distance to the root. The
root is at level 0. The function k 7→ Xn(k) is usually referred to as the profile of the tree.
In Theorem 3 of [10] it was shown by using analytic tools that for any fixed k ∈ N,

(k − 1)!
√
2k − 1

(
Xn(k)− (log n)k/k!

)
(log n)k−1/2

d−→
n→∞

normal(0, 1). (1.1)

Furthermore, (1.1) continues to hold if k = k(n) depends on n in such a way that
k(n) = o(log n) as n → ∞, and an estimate on the rate of convergence in the uniform
metric was obtained in Theorem 3 of [10]. It is known (see Theorem 1 in [19] and [6])
that

max{k ∈ N : Xn(k) 6= 0}
log n

−→
n→∞

e a.s.

The profiles of random recursive trees (along with closely related binary search trees)
have been much studied at the central limit regime levels k(n) = log n + c

√
log n +

o(
√
log n), c ∈ R, and at the large deviation regime levels of the form k(n) ∼ α log n,

0 < α < e; see [4, 5, 8, 17, 18]. Apart from [10], we are aware of only one work studying
vertices of random recursive trees at a fixed level. It is shown in [1] that the proportion
of vertices at level k ∈ N having more than t log n descendants converges to (1− t)k a.s.
Also, a Poisson limit theorem is proved in [1] for the number of vertices at fixed level k
that have a fixed number of descendants.

In this paper we are interested in weak convergence of the random process(
X[nt](1), . . . , X[nt](k)

)
t≥0 for each k ∈ N, properly normalized and centered, as n→∞.

The latter vector might be called the low levels profile.

Theorem 1.1. The following functional limit theorem holds for the low levels profile of
a random recursive tree:(

(k − 1)!
(
X[n(·)](k)− ((log n)·)k/k!

)
(log n)k−1/2

)
k∈N

⇒
n→∞

(∫
[0, ·]

(· − y)k−1dB(y)

)
k∈N

(1.2)

in the product J1-topology on DN, where (B(u))u≥0 is a standard Brownian motion and
D = D[0,∞) is the Skorokhod space.

Remark 1.2. While the stochastic integral R1(s) :=
∫
[0, s]

dB(y) on the right-hand side of

(1.2) is interpreted as B(s), the other stochastic integrals can be defined via integration
by parts which yields

Rk(s) :=

∫
[0, s]

(s− y)k−1dB(y) = (k − 1)!

∫ s1

0

∫ s2

0

. . .

∫ sk−1

0

B(y)dydsk−1 . . . ds2

for integer k ≥ 2 and s ≥ 0, where s1 = s. Depending on whether the left- or right-hand
representation is used the latter process is known in the literature as a Riemann-Liouville
process or an integrated Brownian motion. It can be checked (details can be found in
Section 2 of [13]) that Rk(s) has the same distribution as

√
s2k−1/(2k − 1)B(1) for each

s ≥ 0 and k ∈ N. In particular, ER2
k(s) = s2k−1/(2k − 1). Along similar lines one can also

show that

ERk(s)Rl(u) =

∫ u∧s

0

(s− y)k−1(u− y)l−1dy

=

{∑l−1
j=0

(
l−1
j

)
1
k+j s

k+j(u− s)l−1−j , if u ≥ s ≥ 0,∑k−1
j=0

(
k−1
j

)
1
l+ju

l+j(s− u)k−1−j , if 0 ≤ u < s
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Profiles of random recursive trees

for k, l ∈ N. Observe that the aforementioned distributional equality shows that taking
in (1.2) (·) = 1 and any fixed k we obtain (1.1). Moreover, taking (·) = 1 and k = 1, 2, . . .,
we obtain the following multivariate central limit theorem for the low levels profile:(

(k − 1)!
(
Xn(k)− (log n)k/k!

)
(log n)k−1/2

)
k∈N

d−→
n→∞

(Rk(1))k∈N

weakly on RN endowed with the product topology, where the limit is a centered Gaussian
process with covariance function

ERk(1)Rl(1) =
1

k + l − 1
, k, l ∈ N .

Given the aforementioned results on random recursive trees it is natural to ask
whether similar methods could be applied to study binary search trees. The answer is
‘NO’ because in binary search trees the number of descendants of any node is bounded
by 2, which means that these trees become saturated at low levels with probability
converging to 1.

1.2 Functional limit theorem for Crump-Mode-Jagers processes

We shall deduce Theorem 1.1 from a general functional limit theorem for Crump-
Mode-Jagers processes. In order to state this result, we need more notation. Let
(ξk)k∈N be a sequence of i.i.d. positive random variables with generic copy ξ. Denote by
S := (Sn)n∈N the ordinary random walk with jumps ξn for n ∈ N, that is, Sn = ξ1+. . .+ξn,
n ∈ N. Further, we define the renewal process (N(t))t∈R by

N(t) :=
∑
k≥1

1{Sk≤t}, t ∈ R .

Set U(t) := EN(t) for t ∈ R, so that, with a slight abuse of terminology, U is the renewal
function. For t < 0, we clearly have N(t) = 0 a.s. and U(t) = 0.

Next, we recall the construction of a Crump-Mode-Jagers branching process in the
special case when it is generated by the random walk S. At time τ0 = 0 there is one
individual, the ancestor. The ancestor produces offspring (the first generation) with
birth times given by a point process Z =

∑
n≥1 δSn on R+ := [0,∞). The first generation

produces the second generation. The shifts of birth times of the second generation
individuals with respect to their mothers’ birth times are distributed according to
independent copies of the same point process Z. The second generation produces the
third one, and so on. All individuals act independently of each other. Equivalently, one
may consider a branching random walk. In this case, the points of Z are interpreted as
the positions of the first generation individuals. Each individual in the first generation
produces individuals from the second generation whose displacements with respect to
the position of their respective mother are given by an independent copy of Z, and so on.

For k ∈ N, denote by Yk(t) the number of the kth generation individuals with birth
times ≤ t. Plainly, Y1(t) = N(t) for t ≥ 0. Theorem 1.3 given next is our main technical
tool for proving Theorem 1.1, but it is also of independent interest. We recall that 0! = 1.

Theorem 1.3. Suppose that σ2 := Var ξ ∈ (0,∞). Then(
(k − 1)!

(
Yk(t·)− (t·)k/(k!µk)

)√
σ2µ−2k−1t2k−1

)
k∈N

⇒
t→∞

(Rk(·))k∈N (1.3)

in the product J1-topology on DN, where µ := E ξ <∞.
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Profiles of random recursive trees

2 Strategy of proofs

2.1 Strategy of proof of Theorem 1.1

For n ∈ N, denote by τn the birth time of the nth individual of the Crump-Mode-Jagers
process (in the chronological order of birth times, excluding the ancestor). The basic
observation for the proof of Theorem 1.1 is as follows: if ξ has an exponential distribution
of unit mean, then the following distributional equality of stochastic processes holds
true:

(X[ns](k))s≥0,k∈N
d
= (Yk(τ[ns]))s≥0,k∈N. (2.1)

In the sequel, we shall simply identify these processes. Formula (2.1) follows from the
fact observed by B. Pittel, see p. 339 in [19], that the tree formed by the individuals in
combination with their family relations at time τn is a version of a random recursive tree
with n+ 1 vertices. To give a short explanation, imagine that a random recursive tree is
generated in continuous time as follows. Start at time 0 with one vertex, the root. At any
time, any vertex in the tree generates with intensity 1 a single offspring, and all vertices
act independently. Then, the birth times of the vertices at the first level form a Poisson
point process with intensity 1. More generally, if some vertex was born at time t, then the
birth times of its offspring minus t form an independent copy of the Poisson point process.
This system can be identified with the Crump-Mode-Jagers process generated by an
ordinary random walk with jumps having the exponential distribution of unit mean. If τn
is the birth time of the nth vertex, then the genealogical tree of the vertices with birth
times in the interval [0, τn] is a random recursive tree. The embedding into a continuous
time process just described was used in [5, 18, 19].

We stress that in Theorem 1.3, the distribution of ξ is not assumed exponential, so
that Theorem 1.3 is far more general than what is needed to treat random recursive
trees.

2.2 Strategy of proof of Theorem 1.3.

For i ∈ N, consider the 1st generation individual born at time Si and denote by Y (i)
j (t)

for j ∈ N the number of her successors in the (j + 1)st generation with birth times

≤ t+ Si. By the branching property (Y
(1)
j (t))t≥0, (Y (2)

j (t))t≥0, . . . are independent copies
of (Yj(t))t≥0 which are independent of S. With this at hand we are ready to write the
basic representation

Yk(t) =
∑
i≥1

Y
(i)
k−1(t− Si), t ≥ 0, k ≥ 2.

Note that, for k ≥ 2, (Yk(t))t≥0 is a particular instance of a random process with
immigration at the epochs of a renewal process. In other words, (Yk(t))t≥0 is a renewal
shot noise process with random and independent response functions (the term was
introduced in [16]; see also [14] for a review).

For t ≥ 0 and k ∈ N, set Uk(t) := EYk(t) and observe that, U1(t) = U(t) and

Uk(t) =

∫
[0, t]

Uk−1(t− y)dU(y) =

∫
[0, t]

U(t− y)dUk−1(y).
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Profiles of random recursive trees

Our strategy of the proof of Theorem 1.3 is the following. Using a decomposition

Yk(t)−
tk

k!µk
=

∑
j≥1

(
Y

(j)
k−1(t− Sj)− Uk−1(t− Sj)1{Sj≤t}

)
+

(∑
j≥1

Uk−1(t− Sj)1{Sj≤t}−µ
−1
∫ t

0

Uk−1(y)dy

)

+

(
µ−1

∫ t

0

Uk−1(y)dy −
tk

k!µk

)
=: Yk,1(t) + Yk,2(t) + Yk,3(t)

for k ≥ 2, we shall prove three statements: for all T > 0,

sup0≤s≤T |Yk,1(st)|
tk−1/2

P→
t→∞

0; (2.2)

lim
t→∞

t−(k−1/2) sup
0≤s≤T

|Yk,3(st)| = 0, (2.3)

and (
Y1(t·)− µ−1(t·)√

σ2µ−3t
,

(k − 1)!Yk,2(t·)√
σ2µ−2k−1t2k−1

)
k≥2

⇒
t→∞

(Rk(·))k∈N (2.4)

in the product J1-topology on DN. Plainly, (2.2), (2.3) and (2.4) entail (1.3). Weak
convergence of each individual coordinate in (2.4) is known: see Theorem 3.1 on p. 162
in [12] for the first coordinate and Theorem 1.1 in [13] for the others, but the joint
convergence is new.

3 Proof of Theorem 1.1

Applying Theorem 1.3 to exponentially distributed ξ of unit mean (so that µ = σ2 = 1)
we obtain (

(k − 1)!
(
Yk((log n)·)− ((log n)·)k/k!

)
(log n)k−1/2

)
k∈N

⇒
n→∞

(
Rk(·)

)
k∈N (3.1)

in the product J1-topology on DN.
It is a classical fact that τn is the sum of n independent exponentially distributed

random variables of means 1, 1/2, . . . , 1/n. Therefore,
(
τn − (1 + 1/2+ . . .+1/n)

)
n∈N is a

square-integrable martingale with respect to the natural filtration. This entails that the
a.s. limit limn→∞(τn − log n) exists and is a.s. finite, whence, for each T > 0,

lim
n→∞

sup
0≤s≤T

|τ[ns] − log ns| = sup
j≥1
|τj − log j| <∞ a.s. (3.2)

As a consequence of (3.2), for each T > 0,

lim
n→∞

sup
0≤s≤T

|τ[ns]/ log n− ψ(s)| = 0 a.s., (3.3)

where ψ(s) = s for s ≥ 0. This in combination with (3.1) gives((
(k − 1)!

(
Yk(log n·)− ((log n)·)k/k!

)
(log n)k−1/2

)
k∈N

,
τ[n(·)]

log n

)
⇒

n→∞

((
Rk(·)

)
k∈N, ψ(·)

)
in the product J1-topology on DN ×D.

It is well-known (see, for instance, Lemma 2.3 on p. 159 in [12]) that, for fixed j ∈ N,
the composition mapping ((x1, . . . , xj), ϕ) 7→ (x1 ◦ ϕ, . . . , xj ◦ ϕ) is continuous at vectors
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Profiles of random recursive trees

(x1, . . . , xj) : Rj+ → Rj with continuous coordinates and nondecreasing continuous
ϕ : R+ → R+. Since Rk is a.s. continuous and ψ is nonnegative, nondecreasing and
continuous, we can invoke the continuous mapping theorem to infer(

(k − 1)!
(
Yk(τ[n(·)])− (τ[n(·)])

k/k!
)

(log n)k−1/2

)
k∈N

⇒
n→∞

(
Rk(·)

)
k∈N

in the product J1-topology on DN. For each T > 0 and each k ∈ N,

sup0≤s≤T |(τ[ns])k − (log ns)k]|
(log n)k−1/2

≤
sup0≤s≤T |τ[ns] − log ns|

(log n)1/2

sup0≤s≤T
(∑k−1

j=0

(
k−1
j

)
(τ[ns])

j(log ns)k−1−j
)

(log n)k−1
P→

n→∞
0.

Indeed, the first and the second factors on the right-hand side converge in probability to
zero and (2T )k−1 by (3.2) and (3.3), respectively.

Thus, relation (1.2) holds with Yk(τ[n(·)]) replacing X[n(·)](k). In view of (2.1) this
completes the proof of Theorem 1.1.

4 Proof of Theorem 1.3

It is well known that

− 1 ≤ U(t)− t/µ ≤ c0, t ≥ 0 (4.1)

for appropriate constant c0 > 0 whenever E ξ2 < ∞. While the left-hand inequality
follows from Wald’s identity t ≤ ESN(t)+1 = µ(U(t) + 1), the right-hand inequality is
Lorden’s inequality (see [3] for a short probabilistic proof in the situation where ξ has a
nonlattice distribution). If the distribution of ξ is nonlattice, one can take c0 = Var ξ/E ξ2,
whereas if the distribution of ξ is δ-lattice, (4.1) holds with c0 = 2δ/µ+Var ξ/E ξ2. We
shall need the following consequence of (4.1):

|U(t)− t/µ| ≤ c, t ≥ 0 (4.2)

where c = max(c0, 1).

Lemma 4.1. Under the assumption E ξ2 <∞

∣∣∣∣Uk(t)− tk

k!µk

∣∣∣∣ ≤ k−1∑
i=0

(
k

i

)
tick−i

i!µi
, k ∈ N, t ≥ 0. (4.3)

Proof. By using the mathematical induction we first show that∣∣∣∣ ∫
[0, t]

(t− z)mdU(z)− tm+1

(m+ 1)µ

∣∣∣∣ ≤ ctm, m ∈ N0 . (4.4)

When m = 0, (4.4) is a consequence of (4.2). Assuming that (4.4) holds for m = j − 1 we
obtain∣∣∣∣ ∫

[0, t]

(t−z)jdU(z)− tj+1

(j + 1)µ

∣∣∣∣ = ∣∣∣∣j ∫ t

0

(∫
[0, s]

(s−z)j−1dU(z)− s
j

jµ

)
ds

∣∣∣∣ ≤ j ∫ t

0

csj−1ds = ctj

which completes the proof of (4.4).
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To prove (4.3) we once again use the mathematical induction. When k = 1, (4.3)
coincides with (4.2). Assuming that (4.3) holds for k ≤ j and appealing to (4.4) we infer∣∣∣∣Uj+1(t)−

tj+1

(j + 1)!µj+1

∣∣∣∣
≤

∫
[0, t]

∣∣∣∣Uj(t− z)− (t− z)j

j!µj

∣∣∣∣dU(z) +
1

j!µj

∣∣∣∣ ∫
[0, t]

(t− z)jdU(z)− tj+1

(j + 1)µ

∣∣∣∣
≤

∫
[0, t]

j−1∑
i=0

(
j

i

)
cj−i

i!µi
(t− z)idU(z) +

ctj

j!µj

≤
j−1∑
i=0

(
j

i

)
cj+1−iti

i!µi
+

j−1∑
i=0

(
j

i

)
cj−iti+1

(i+ 1)!µi+1
+

ctj

j!µj

≤ cj+1 +

j−1∑
i=1

((
j

i

)
+

(
j

i− 1

))
cj+1−iti

i!µi
+

(j + 1)ctj

j!µj
=

j∑
i=0

(
j + 1

i

)
cj+1−iti

i!µi

Lemma 4.2. Under the assumption E ξ2 <∞, for k ∈ N,

Dk(t) := VarYk(t) = O(t2k−1), t→∞ (4.5)

and, for k ≥ 2,
E[(Yk,1(t))

2] = O(t2k−2), t→∞. (4.6)

Proof. Using a decomposition

Yk(t)− Uk(t) =
∑
j≥1

(
Y

(j)
k−1(t− Sj)− Uk−1(t− Sj)

)
1{Sj≤t}

+

(∑
j≥1

Uk−1(t− Sj)1{Sj≤t}−Uk(t)
)

=: Yk,1(t) + Y ∗k,2(t)

we infer
Dk(t) = E[(Yk,1(t))

2] + E[(Y ∗k,2(t))
2]. (4.7)

We start by proving the asymptotic relation

E[(Y ∗k,2(t))
2] = Var

(∑
i≥1

Uk−1(t− Si)1{Si≤t}
)

= E

(∑
i≥1

Uk−1(t− Si)1{Si≤t}
)2

− U2
k (t) = O(t2k−1), t→∞ (4.8)

for k ≥ 2. To this end, we need the following formula

E

(∑
i≥1

Uk−1(t− Si)1{Si≤t}
)2

= 2

∫
[0, t]

Uk−1(t− y)Uk(t− y)dU(y)

+

∫
[0, t]

U2
k−1(t− y)dU(y). (4.9)

Proof of (4.9). Write

E

(∑
i≥1

Uk−1(t− Si)1{Si≤t}
)2

= 2E
∑

1≤i<j

Uk−1(t− Si)Uk−1(t− Sj)1{Sj≤t}

+ E
∑
i≥1

U2
k−1(t− Si)1{Si≤t} .
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It is clear that the second expectation is equal to the second summand on the right-hand
side of (4.9). Thus, it remains to show that the first expectation is equal to the first
summand on the right-hand side of (4.9):

E
∑

1≤i<j

Uk−1(t− Si)Uk−1(t− Sj)1{Sj≤t}

= E
∑
i≥1

Uk−1(t− Si)
(
Uk−1(t− Si+1)1{Si+1≤t}+Uk−1(t− Si+2)1{Si+2≤t}+ . . .

)
= E

∑
i≥1

Uk−1(t− Si)1{Si≤t}E
(
Uk−1(t− Si − ξi+1)1{ξi+1≤t−Si}

+ Uk−1(t− Si − ξi+1 − ξi+2)1{ξi+1+ξi+2≤t−Si}+ . . . |Si
)

= E
∑
i≥1

Uk−1(t− Si)
∫
[0, t−Si]

Uk−1(t− Si − y)dU(y)1{Si≤t}

= E
∑
i≥1

Uk−1(t− Si)Uk(t− Si)1{Si≤t}

=

∫
[0, t]

Uk−1(t− y)Uk(t− y)dU(y).

Before we proceed let us note that (4.4) implies that, for integer m ≤ 2k − 3,∫
[0, t]

(t− y)mdU(y) = o(t2k−1), t→∞,

that ∫
[0, t]

(t− y)2k−2dU(y) = O(t2k−1), t→∞

and that ∫
[0, t]

(t− y)2k−1dU(y) ≤ t2k

2kµ
+ ct2k−1, t ≥ 0.

Using these relations in combination with (4.3) yields

E
(∑
i≥1

Uk−1(t− Si)1{Si≤t}
)2

≤ 2

(k − 1)!k!µ2k−1

∫
[0, t]

(t− y)2k−1dU(y) +O(t2k−1)

≤ t2k

(k!)2µ2k
+O(t2k−1)

as t→∞. Further,

U2
k (t) =

t2k

(k!)2µ2k
+

2tk

k!µk

(
Uk(t)−

tk

k!µk

)
+

(
Uk(t)−

tk

k!µk

)2

=
t2k

(k!)2µ2k
+O(t2k−1)

as t→∞ having utilized (4.3). The last two asymptotic relations entail

E[(Y ∗k,2(t))
2] = E

(∑
i≥1

Uk−1(t− Si)1{Si≤t}
)2
− U2

k (t) = O(t2k−1), t→∞.

The proof of (4.8) is complete.

To prove (4.5) we shall use the mathematical induction. If k = 1, (4.5) holds true in
view of VarY1(t) = E(N(t) − U(t))2, which is O(t) as t → ∞ by Lemma 5.1 with p = 2.
Assume that (4.5) holds for k = m− 1 ≥ 2. Then given δ > 0 there exist t0 > 0 and cm > 0
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such that Dm−1(t) ≤ cmt2m−3 whenever t ≥ t0. Consequently,

E[(Ym,1(t))
2] = E

∑
i≥1

Dm−1(t− Si)1{Si≤t} =
∫
[0, t−t0]

Dm−1(t− x)dU(x)

+

∫
(t−t0, t]

Dm−1(t− x)dU(x) ≤ cm
∫
[0, t−t0]

(t− x)2m−3dU(x)

+ sup
0≤y≤t0

Dm−1(y)(U(t)− U(t− t0))

≤ cmt
2m−3U(t) + sup

0≤y≤t0
Dm−1(y)(U(t0) + 1) = O(t2m−2) (4.10)

as t→∞ having utilized subadditivity of U(t) + 1 and the elementary renewal theorem
which states that U(t) ∼ t/µ as t → ∞. Using (4.7) and (4.8) we conclude that (4.5)
holds for k = m. Relation (4.6) is now an immediate consequence of (4.10).

Now we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. Proof of (2.3). In view of (4.3) we infer

µ sup
0≤s≤T

|Yk,3(st)| ≤ sup
0≤s≤T

∫ st

0

∣∣∣∣Uk−1(y)− yk−1

(k − 1)!µk−1

∣∣∣∣dy
≤ sup

0≤s≤T

∫ st

0

k−2∑
i=0

(
k − 1

i

)
yick−1−i

i!µi
dy

≤
k−2∑
i=0

(
k − 1

i

)
(Tt)i+1ck−1−i

(i+ 1)!µi
= O(tk−1)

for all T > 0. This proves (2.3).

Proof of (2.2). It suffices to check that, for integer k ≥ 2,

lim
t→∞

t−(k−1/2)Yk,1(t) = 0 a.s. (4.11)

To this end, we pick δ ∈ (1, 2) and note that for each t ≥ 0, there exists m ∈ N0 such that
t ∈ [mδ, (m+ 1)δ) and

t−(k−1/2)Yk,1(t)

≤ m−δ(k−1/2)
∑
i≥1

(
Y

(i)
k−1((m+ 1)δ − Si)− Uk−1((m+ 1)δ − Si)1{Si≤(m+1)δ}

)
+ m−δ(k−1/2)

∑
i≥1

(
Uk−1((m+ 1)δ − Si)− Uk−1(mδ − Si)

)
1{Si≤mδ}

+ m−δ(k−1/2)
∑
i≥1

Uk−1((m+ 1)δ − Si)1{mδ<Si≤(m+1)δ}

≤ m−δ(k−1/2)Yk,1((m+ 1)δ)

+ m−δ(k−1/2)((U((m+ 1)δ −mδ) + 1)Uk−2((m+ 1)δ)N(mδ)

+ Uk−1((m+ 1)δ −mδ)N((m+ 1)δ)))

where U0(t) := 1 for t ≥ 0. For the last inequality we have used monotonicity of the
functions Ui, i ∈ N and the following estimate which is essentially based on subadditivity
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and monotonicity of U + 1:

Ui(t+ s)− Ui(t)

=

∫
[0, t]

(U(t+ s− z)− U(t− z))dUi−1(z) +
∫
(t, t+s]

U(t+ s− z)dUi−1(z)

≤ (U(s) + 1)Ui−1(t) + U(s)(Ui−1(t+ s)− Ui−1(t))
≤ (U(s) + 1)Ui−1(t+ s)

for t, s ≥ 0 and i ≥ 2.
Similarly,

t−(k−1/2)Yk,1(t) ≥ (m+ 1)−δ(k−1/2)Yk,1(m)

− (m+ 1)−δ(k−1/2)((U((m+ 1)δ −mδ) + 1)Uk−2((m+ 1)δ)N(mδ)

+ Uk−1((m+ 1)δ −mδ)N((m+ 1)δ)).

By the strong law of large numbers for the renewal processes and Lemma 4.1 N(m) ∼
µ−1m a.s. and, for j ∈ N, Uj(m) ∼ µ−j(j!)−1mj as m → ∞, respectively, whence, as
m→∞,

m−δ(k−1/2)((U((m+ 1)δ −mδ) + 1)Uk−2((m+ 1)δ)N(mδ) ∼ δ

(k − 2)!µk
1

m1−δ/2 a.s.

and

m−δ(k−1/2)Uk−1((m+ 1)δ −mδ)N((m+ 1)δ) ∼ δk−1

(k − 1)!µk
1

mk−(1+δ/2) a.s.

Since δ < 2 and k ≥ 2, the right-hand sides of the last two relations converge to zero a.s.
Hence, (4.11) is a consequence of

lim
N3m→∞

m−δ(k−1/2)Yk,1(m
δ) = 0 a.s. (4.12)

By Markov’s inequality in combination with (4.6) P{|Yk,1(mδ)| > mδ(k−1/2)γ} =

O(m−δ) as m→∞ for all γ > 0 which entails (4.12) by the Borel-Cantelli lemma.
Proof of (2.4). We already know that the distributions of the coordinates in (2.4) are
tight. Thus, it remains to check weak convergence of finite-dimensional distributions,
that is, for all n ∈ N, all 0 ≤ s1 < s2 < . . . < sn <∞ and all integer j ≥ 2(

Y ∗1 (sit)

a1(t)
,
Yk,2(sit)

ak(t)

)
2≤k≤j, 1≤i≤n

d−→
t→∞

(Rk(si))1≤k≤j, 1≤i≤n, (4.13)

where Y ∗1 (t) := Y1(t)− µ−1t and ak(t) :=
√
σ2µ−2k−1t2k−1/(k − 1)! for k ∈ N (recall that

0! = 1). If s1 = 0 we have Y ∗1 (s1t) = Yk,2(s1t) = Ri(s1) = 0 a.s. for k ≥ 2 and i ∈ N.
Hence, in what follows we assume that s1 > 0.

By Theorem 3.1 on p. 162 in [12]

N(t·)− µ−1(·)√
σ2µ−3t

⇒
t→∞

B

in the J1-topology on D. By Skorokhod’s representation theorem there exist versions N̂
and B̂ such that

lim
t→∞

sup
0≤y≤T

∣∣∣∣N̂(ty)− µ−1ty√
σ2µ−3t

− B̂(y)

∣∣∣∣ = 0 a.s. (4.14)
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for all T > 0. This implies that (4.13) is equivalent to(
(k − 1)!µk−1V̂k(t, si)

tk−1

)
1≤k≤j, 1≤i≤n

d−→
t→∞

(Rk(si))1≤k≤j, 1≤i≤n, (4.15)

where, for t, y ≥ 0, V̂1(t, y) := B̂(y) and V̂k(t, y) :=
∫
(0, y]

B̂(x)dx(−Uk−1(t(y − x)), k ≥ 2.

As far as the coordinates involving V̂1 are concerned the equivalence is an immediate
consequence of (4.14). As for the other coordinates, integration by parts yields, for s > 0

fixed and k ≥ 2, ∫
[0, st]

Uk−1(st− x)
tk−1

dx
N̂(x)− µ−1x√

σ2µ−3t

=

∫
(0, s]

(
N̂(tx)− µ−1tx√

σ2µ−3t
− B̂(x)

)
dx
−Uk−1(t(s− x))

tk−1

+

∫
(0, s]

B̂(x)dx
−Uk−1(t(s− x))

tk−1
.

Denoting by J(t) the first term on the right-hand side, we infer

|J(t)| ≤ sup
0≤y≤s

∣∣∣∣N̂(ty)− µ−1ty√
σ2µ−3t

− B̂(y)

∣∣∣∣(t−(k−1)Uk−1(st))
which tends to zero a.s. as t→∞ in view of (4.14) and Lemma 4.1 which implies that
limt→∞ t−(k−1)Uk−1(st) = sk−1/((k − 1)!µk−1).

For t, y ≥ 0, set V1(t, y) := B(y) and Vk(t, y) :=
∫
(0, y]

B(x)dx(−Uk−1(t(y − x)), k ≥ 2.
We note that (4.15) is equivalent to(

(k − 1)!µk−1Vk(t, si)

tk−1

)
1≤k≤j, 1≤i≤n

d−→
t→∞

(Rk(si))1≤k≤j, 1≤i≤n (4.16)

because the left-hand sides of (4.15) and (4.16) have the same distribution. Both the
limit and the converging vectors in (4.16) are Gaussian. Hence, it suffices to prove that

lim
t→∞

t−(k+l−2)EVk(t, s)Vl(t, u) =
1

(k − 1)!(l − 1)!µk+l−2
ERk(s)Rl(u) (4.17)

=
1

(k − 1)!(l − 1)!µk+l−2

∫ s∧u

0

(s− y)k−1(u− y)l−1dy

for k, l ∈ N and s, u > 0. We only consider the cases where 0 < s ≤ u and k, l ≥ 2, the
case s > u being similar and the cases where k or/and l is/are equal to 1 being simpler.

We start by writing

EVk(t, s)Vl(t, u) =

∫ s

0

Uk−1(t(s− y))Ul−1(t(u− y))dy

=

∫ s

0

(
Uk−1(t(s− y))−

tk−1(s− y)k−1

(k − 1)!µk−1

)
Ul−1(t(u− y))dy

+
tk−1

(k − 1)!µk−1

∫ s

0

(s− y)k−1
(
Ul−1(t(u− y))−

tl−1(u− y)l−1

(l − 1)!µl−1

)
dy

+
tk+l−2

(k − 1)!(l − 1)!µk+l−2

∫ s

0

(s− y)k−1(u− y)l−1dy.
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Denoting by J1(t) and J2(t) the first and the second summand on the right-hand side,
respectively, we infer with the help of Lemma 4.1:

J1(t) ≤
∫ s

0

k−2∑
i=0

(
k − 1

i

)
ti(s− y)i

i!µi
Ul−1(t(u− y))dy

≤ Ul−1(tu)

k−2∑
i=0

(
k − 1

i

)
tisi+1

(i+ 1)!µi
= O(tk+l−3)

as t → ∞ because the sum is O(tk−2) and Ul−1(tu) = O(tl−1). Arguing similarly we
obtain J2(t) = O(tk+l−3) as t → ∞, and (4.17) follows. The proof of Theorem 1.3 is
complete.

5 Appendix

Lemma 5.1 is stated in a greater generality than we need in the present paper
because we believe that this result is of some importance for the renewal theory.

Lemma 5.1. Assume that the distribution of ξ is nondegenerate and E ξp <∞ for some
p ≥ 2. Then E |N(t) − U(t)|p ∼ E |Z|ptp/2 as t → ∞, where Z is a normally distributed
random variable with mean zero and variance σ2µ−3, µ = E ξ and σ2 = Var ξ.

Proof. Theorem 8.4 on p. 98 in [12] states the result holds with µ−1t replacing U(t).
Using the inequality (see p. 282 in [11]) (a + b)p ≤ ap + p2p−1(abp−1 + ap−1b) + bp for
a, b ≥ 0 together with E |X| ≤ (E |X|p)1/p yields

E |N(t)− U(t)|p ≤ E |N(t)− µ−1t|p + p2p−1(E |N(t)− µ−1t|p)1/p(U(t)− µ−1t)p−1

+ p2p−1E |N(t)− µ−1t|p−1(U(t)− µ−1t) + (U(t)− µ−1t)p.

Recalling (4.1) we arrive at lim supt→∞ t−p/2E |N(t) − µ−1t|p ≤ E |Z|p. The converse
inequality for the lower limit follows from the central limit theorem for N(t), formula
(4.1) and Fatou’s lemma.

Remark 5.2. It is worth stating explicitly that when p > 2 the assumption E ξp < ∞
in Lemma 5.1 cannot be dispensed with. According to Remark 1.2 in [15], there exist
distributions of ξ such that E ξ2 < ∞ and limt→∞ t−p/2E |N(t) − U(t)|p = ∞ for every
p > 2.
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