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Abstract

We consider sequences of large sparse random graphs whose degree distribution
approaches a limit with finite mean. This model includes both the random regular
graphs and the Erdös-Renyi graphs of constant average degree. We prove that the
maximum bisection ratio of such a graph sequence converges almost surely to a
deterministic limit. We extend this result to so-called 2-spin spin glasses in the
paramagnetic to ferromagnetic regime. Our work generalizes the graph interpolation
method to some non-additive graph parameters.
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1 Introduction

The interpolation method is used in a remarkable paper by Guerra and Toninelli [5]
to prove the existence of an infinite volume limit of thermodynamic quantities. In this
method, a system of size n is compared, by a sequence of interpolating systems, to a
pair of independent systems of size n1 and n2, where n1 + n2 = n. If, at each step of the
interpolation, the parameter of interest increases, then the parameter is subadditive in
n, and therefore converges when divided by n.

Bayati, Gamarnik, and Tetali [1] adapted this technique in a combinatorial setting
as graph interpolation. Using graph interpolation, [1] proved that in both the sparse
Erdös-Renyi and d-regular random graph models, several graph parameters, including
independence number and maxcut size, converge when divided by n. Gamarnik [4]
showed an analogous result for log-partition functions in the context of right-convergence
of graphs, and found that the subadditivity required for graph interpolation follows from
a concavity property of the graph parameter.

In a recent synthesis, Salez [8] further generalized these results by identifying the
properties of these parameters that permit interpolation; Salez proved that an interpo-
lation argument succeeds whenever the graph parameter satisfies additivity, Lipschitz,
and concavity conditions. Moreover, [8] generalized the d-regular random graph model
of [1] to graphs with arbitrary degree distribution generated by a configuration model.

The interpolation arguments in the literature all depend on an additivity property of
the graph parameter – that if G is the vertex-disjoint union of graphs G1, G2, the graph
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Convergence of maximum bisection ratio

parameter f satisfies f(G) = f(G1) + f(G2). While many graph parameters of interest,
such as independence number, maxcut, K-SAT, and log-partition functions all have this
property, other graph parameters, such as maximum bisection, do not.

In this paper, we show that the maximum bisection parameter in the arbitrary degree
sequence model converges when divided by n. The random regular graph case of our
result resolves an open problem on spin glasses [6, Problem 2.3]. The analogue of
this problem for Erdös-Renyi random graphs was resolved in an unpublished result of
Gamarnik and Tetali; this result is also implied by our result.

We then consider a type of p-hybrid bisections for p ∈ [0, 1], interpolating between
the maximum and minimum bisections. These are the maximum bisections of the “2-spin
spin glass" model studied by Franz and Leone in [2], where the parameter p determines
the ferromagnetism of the system. We show that for p ≥ 1

2 , the p-hybrid bisection in the
arbitrary degree sequence model also converges when divided by n. In other words, the
maximum bisection of the 2-spin spin glass model has a scaling limit in the paramagnetic
to ferromagnetic regime.

The key idea allowing us to extend the results in [1] and [8] to maximum bisection
and maximum p-hybrid bisection, which are not additive, is to consider (A,B)-bisections,
bisections that also bisect two given sets A,B that partition V (G). This added constraint
allows us to decompose a system into two parts, an operation that previously depended
on additivity. By showing a form of subadditivity on maximum (A,B)-bisections, we can
show subadditivity on maximum bisection and establish the existence of a scaling limit.

2 Preliminaries

2.1 Random graphs with given degree sequence

Throughout this paper, we will work with finite, undirected graphs, where loops and
multiple edges are allowed.

We will work with the following random graph model. Consider nodes [n] = {1, . . . , n},
and a degree function d : [n] → N. Create a multiset Hd of nodes, where each i ∈ [n]

appears d(i) times. Each (possibly partial) matching m of Hd induces a graph G[m],
which contains an edge (i, j) for every pair {i, j} ∈ m. Note that if m is not a complete
matching, some vertex i in G[m] will have degree less than d(i).
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Figure 1: A matching of Hd, where d(1) = d(2) = 2 and d(3) = d(4) = 1.

We let Gd denote the distribution of G[m], where m is a uniformly random complete
matching on Hd. Note that when d is a constant function with value r, Gd is the random
r-regular graph model, and when d is sampled from the degree distribution of an Erdös-
Renyi random graph, the doubly-random Gd is the corresponding Erdös-Renyi random
graph model.

We say a sequence {dn : [n] → N}n≥1 converges in distribution to a probability
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Convergence of maximum bisection ratio

measure µ : N→ [0, 1] with finite mean µ if for all k ∈ N,

1

n

∑
i∈[n]

1dn(i)=k → µ(k) (2.1)

and
1

n

∑
i∈[n]

dn(i) → µ (2.2)

as n → ∞.

The results in this paper are concerned with families of random graphs {Gdn}n≥1,
where each Gdn

is sampled independently, and where the degree functions dn converge
in distribution to a measure µ with finite mean.

2.2 Graph parameters

A graph parameter is a real-valued, isomorphism-invariant function on graphs. Given
a graph parameter f and a graph G, define ∆G,f as the matrix given by

∆G,f
ij = f(G+ ij)− f(G) (2.3)

for i, j ∈ V (G).

We say a graph parameter f is additive if

f(G) = f(G1) + f(G2) (2.4)

when G is the disjoint union of G1 and G2. We say f is 1-Lipschitz if for all G, and all
i, j ∈ V (G),

|∆G,f
ij | ≤ 1. (2.5)

Finally we say f is concave if

x · 1 = 0 ⇒ xT∆G,fx ≤ 0, (2.6)

where 1 is the all-1 vector on V (G).

The most general result on graph parameters is due to Salez.

Theorem 2.1. [8] Let f be an additive, κ-Lipschitz, concave graph parameter, and let
{dn}n≥1 converge in distribution to a measure µ with finite mean. Then, the sequence of
independent samples

1

n
f (Gdn

) (2.7)

converges almost surely to a limit Ψ(µ) as n → ∞. Moreover, the scaling limit

lim
n → ∞

1

n
E [f (Gdn)] (2.8)

exists and equals Ψ(µ).

Bayati, Gamarnik, and Tetali [1] showed, before Salez, that the scaling limit (2.8)
exists for the max-cut, independence number, K-SAT, and not-all-equal K-SAT parame-
ters, in the random r-regular graph and Erdös-Renyi random graph models. As these
parameters all satisfy the hypothesis of Theorem 2.1, and the random regular graph and
Erdös-Renyi random graph models are special cases of the arbitrary degree sequence
model, this result is a consequence of Theorem 2.1.
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3 Results

3.1 Graph bisections

Define the maximum bisection of a graph G by

MB(G) = max
{
e(V1, V2)|V1, V2 partition V (G),

∣∣∣|V1| − |V2|
∣∣∣ ≤ 1

}
, (3.1)

where e(V1, V2) is the number of edges between V1 and V2 in G. Observe that the
maximum bisection is not additive, and therefore Theorem 2.1 does not apply.

The first result of this paper is:

Theorem 3.1. Let {dn}n≥1 converge in distribution to a measure µ with finite mean.
Then,

1

n
MB (Gdn

) , (3.2)

where eachGdn is sampled independently, converges almost surely as n → ∞. Moreover,
the scaling limit

lim
n → ∞

1

n
E [MB (Gdn)] (3.3)

exists.

Whether the same result holds for the minimum bisection graph parameter is an
open problem. In fact, the random regular graph case of this problem is implied by the
following stronger conjecture.

Conjecture 3.2. [9] LetMC andmB denote, respectively, the max-cut and min-bisection
parameters, and let G(n, r) be a random r-regular graph on n vertices. Then,

MC(G(n, r)) +mB(G(n, r)) = |E|+ o(n), (3.4)

where |E| = 1
2nr is the number of edges in G(n, r).

3.2 Hybrid bisections

We define the p-hybrid bisection HBp of a graph G as follows. Let Ω be a labeling of
the edges of G, with each edge independently labeled +1 with probability p, and −1 with
probability 1− p, and let G(Ω) denote G with the labeling Ω. In the statistical physics
literature (cf. [2], [3], [7]), the graph G(Ω) is a 2-spin spin glass, with the parameter p
determining the system’s magnetism: the system is ferromagnetic at p = 1, paramagnetic
at p = 1

2 , and antiferromagnetic at p = 0.
We define

HBp(G) = E [MB(G(Ω))] , (3.5)

where the expectation is over the randomness of Ω.
Note that when p = 1, a p-hybrid bisection is a max bisection, and when p = 0, a

p-hybrid bisection is a min bisection. Our main result is:

Theorem 3.3. Fix p ≥ 1
2 , and let {dn}n≥1 converge in distribution to a measure µ with

finite mean. Then,
1

n
HBp (Gdn

) , (3.6)

where eachGdn is sampled independently, converges almost surely as n → ∞. Moreover,
the scaling limit

lim
n → ∞

1

n
E [HBp (Gdn)] (3.7)

exists.
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As Theorem 3.1 is a special case of Theorem 3.3, the rest of this paper will be devoted
to proving Theorem 3.3.

Remark 3.4. Let α ∈ (0, 1). We can define an α-cut of G as a cut that partitions V (G)

into the ratio α : (1 − α). In particular, a bisection is a 1
2 -cut. Theorems 3.1 and 3.3

remain true when “bisection" is replaced by “α-cut," and their proofs are analogous.

4 Graph pseudo-parameters

4.1 Constrained max-bisections

Define a graph pseudo-parameter as a real-valued, not necessarily isomorphism-
invariant function on graphs.

The main idea that allows us to consider the non-additive parameterHBp is as follows.
Let A,B be a partition of the vertices of a graph G. Say an (A,B)-bisection is a bisection
of the vertices of G that also bisects the sets A,B. Let MBA,B denote the maximum
(A,B)-bisection of G. Analogously, define

HBA,B
p (G) = E

[
MBA,B(G(Ω))

]
, (4.1)

where Ω is defined as before. Note that both MBA,B and HBA,B
p are graph pseudo-

parameters, and that they are additive in the following sense. When there are no edges
from A and B,

MBA,B(G) =MB(G[A]) +MB(G[B]) (4.2)

and
HBA,B

p (G) = HBp(G[A]) +HBp(G[B]) (4.3)

where G[A] and G[B] are the induced subgraphs of G on A and B.
We will prove the following result, which, in light of the bound

HBA,B
p (G) ≤ HBp(G), (4.4)

will imply that HBp is subadditive.

Proposition 4.1. Let A,B be a partition of [n]. Let d : [n] → N be a function, and let
d ↑ A, d ↑ B denote its restrictions to A and B. Then,

E [HBp(Gd↑A)] + E [HBp(Gd↑B)] ≤ E
[
HBA,B

p (Gd)
]
+ ψ (|E(Gd)|) , (4.5)

where ψ(x) = 7
√
x log(1 + x).

4.2 Graph interpolation

Fix a partition A,B of [n] and a function d : [n] → N. Say that an edge in a matching
m ∈ Hd is an A-edge if both of its endpoints are in A; define a B-edge analogously. Say
an edge is a cross-edge if it has an endpoint in each of A and B.

For α, β, γ ∈ N, defineM(α, β, γ) to be the set of matchings m ∈ Hd with α A-edges, β
B-edges, and γ cross-edges; say (α, β, γ) is feasible if at least one such matching exists.

For a graph pseudo-parameter g and feasible (α, β, γ), define

Fg(α, β, γ) = Em∈M(α,β,γ)g (G[m]) . (4.6)

Let
d(A) :=

∑
i∈A

d(i), d(B) :=
∑
i∈B

d(i) (4.7)

be the total degree of the sets A and B. The following result is the proof of Theorem
3 of [8]; while this was proved for graph parameters, its proof extends directly to
pseudo-parameters.
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Proposition 4.2. [8] Let g be a graph pseudo-parameter obeying the following condi-
tions.

• (Lipschitz Continuity) For any feasible (α, β, γ) and (α′, β′, γ′):

|Fg(α, β, γ)− Fg(α
′, β′, γ′)| ≤ |α− α′|+ |β − β′|+ |γ − γ′|. (4.8)

• (Local Super-Additivity) If δ ≥ 2 and (α, β, γ + δ) is feasible, then

1

2
(Fg(α+ 1, β, γ) + Fg(α, β + 1, γ)) ≤ Fg(α, β, γ + 1) +

2

δ
. (4.9)

Then, for any γ ≤ min(d(A), d(B)),

Fg

(⌊
d(A)

2

⌋
,

⌊
d(B)

2

⌋
, 0

)
≤ Fg

(⌊
d(A)− γ

2

⌋
,

⌊
d(B)− γ

2

⌋
, γ

)
+ ψ(γ). (4.10)

A complete matching of Hd with γ cross-edges must have d(A)−γ
2 A-edges and d(B)−γ

2

B-edges, respectively. Moreover, a uniformly random complete matching of Hd, condi-

tioned on having γ cross-edges, is uniformly distributed in M
(

d(A)−γ
2 , d(B)−γ

2 , γ
)
. Thus,

Fg

(
d(A)−γ

2 , d(B)−γ
2 , γ

)
is the expected value of g(G) for G sampled from Gd, conditioned

on G having γ cross-edges.
Thus, by taking a weighted average of (4.10) over γ of the correct parity, we get the

following result.

Corollary 4.3. Let g be a graph pseudo-parameter obeying (4.8) and (4.9). Then,

Fg

(⌊
d(A)

2

⌋
,

⌊
d(B)

2

⌋
, 0

)
≤ E [g(Gd)] + ψ (|E(Gd)|) . (4.11)

5 Proof of Proposition 4.1

Observe that every matching in M(α+ 1, β, γ) arises from adding an A-edge to some
matching in M(α, β, γ) in α + 1 ways. Thus, adding a uniformly random A-edge to a
matching sampled uniformly from M(α, β, γ) generates the distribution M(α+ 1, β, γ).
Analogously, adding a uniformly random B edge or cross-edge generates the distributions
M(α, β + 1, γ) and M(α, β, γ + 1), respectively.

We will first show that for any p ≥ 1
2 , HB

A,B
p satisfies the hypotheses of Corollary 4.3.

Lemma 5.1. For any feasible (α, β, γ) and (α′, β′, γ′),

|FHBA,B
p

(α, β, γ)− FHBA,B
p

(α′, β′, γ′)| ≤ |α− α′|+ |β − β′|+ |γ − γ′|. (5.1)

Proof. It suffices to prove this for the case when (α, β, γ) and (α′, β′, γ′) differ by 1 in
exactly one coordinate.

Let m be uniformly sampled from M(α, β, γ), and m′ be obtained from m by adding
a uniformly random A-edge. Conditioned on any labeling Ω of the edges of G[m], the
value ofMBA,B(G[m](Ω)) changes by most 1 when we add a uniformly random A-edge
to m. Thus, |HBA,B

p (G[m]) − HBA,B
p (G[m′])| ≤ 1. But, m′ is uniformly distributed in

M(α+ 1, β, γ), so the result follows.
The argument for B-edges and cross-edges is analogous.

Lemma 5.2. If (α, β, γ + δ) is feasible, then

1

2

(
FHBA,B

p
(α+ 1, β, γ) + FHBA,B

p
(α, β + 1, γ)

)
≤ FHBA,B

p
(α, β, γ + 1) +

2

δ
. (5.2)
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Proof. We will prove a stronger claim: for any m ∈ M(α, β, γ), and any labeling Ω of
G[m],

1

2
E
[
MBA,B(G[m](Ω) + ea)

]
+

1

2
E
[
MBA,B(G[m](Ω) + eb)

]
≤ E

[
MBA,B(G[m](Ω) + ec)

]
+

2

δ
,

(5.3)

where ea, eb, ec are uniformly random A-, B-, and cross-edges not in m, labeled +1 with
probability p and −1 with probability 1− p. From this, the desired result follows from
averaging over all m ∈ M(α, β, γ) and all labelings Ω of G[m].

Let C∗ be the collection of maximal (A,B)-bisections of G[m](Ω). We introduce the
equivalence relation ∼ on the half-edges in Hd not paired by m, where x ∼ y if the
vertices corresponding to x, y are on the same side of all bisections in C∗. Moreover, we
say two equivalence classes are opposing if their members appear on the opposite side
of all bisections of C∗.

Let the equivalence classes of ∼ be O1, P1, O2, P2, . . . , Ok, Pk, where Oi and Pi are
opposing.

If we add a (+1)-labeled edge e+ to G[m](Ω), its maxcut increases if and only if e+

crosses some cut in C∗; equivalently, the endpoints of e+ must be in different equivalence
classes.

If we add a (−1)-labeled edge e− to G[m](Ω), its maxcut decreases if and only if e−

crosses all cuts in C∗; equivalently, the endpoints of e− must be in opposite equivalence
classes.

Define oAi = |Oi ∩A|, and define oBi , p
A
i , p

B
i analogously. Define

a =

k∑
i=1

(oAi + pAi ), b =

k∑
i=1

(oBi + pBi ). (5.4)

It follows that:

E
[
MBA,B(G[m](Ω) + ea)

]
−MBA,B(G[m](Ω))

= p

[
1−

k∑
i=1

(
oAi (o

A
i − 1)

a(a− 1)
+
pAi (p

A
i − 1)

a(a− 1)

)]
+ (1− p)

[
−

k∑
i=1

2oAi p
A
i

a2

]

= p

[
1−

k∑
i=1

(
(oAi )

2

a2
+

(pAi )
2

a2
− oAi (a− oAi )

a2(a− 1)
− pAi (a− pAi )

a2(a− 1)

)]

+ (1− p)

[
−

k∑
i=1

2oAi p
A
i

a2

]
.

(5.5)

Analogously,

E
[
MBA,B(G[m](Ω) + eb)

]
−MBA,B(G[m](Ω))

= p

[
1−

k∑
i=1

[
(oBi )

2

b2
+

(pBi )
2

b2
− oBi (b− oBi )

b2(b− 1)
− pBi (b− pBi )

b2(b− 1)

]]

+ (1− p)

[
−

k∑
i=1

2oBi p
B
i

b2

]
.

(5.6)
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and

E
[
MBA,B(G[m](Ω) + ec)

]
−MBA,B(G[m](Ω))

= p

[
1−

k∑
i=1

[
oAi o

B
i

ab
+
pAi p

B
i

ab

]]
+ (1− p)

[
−

k∑
i=1

[
oAi p

B
i

ab
+
pAi o

B
i

ab

]]
.

(5.7)

Equations (5.5), (5.6), (5.7) imply:

1

2
E
[
MBA,B(G[m](Ω) + ea)

]
+

1

2
E
[
MBA,B(G[m](Ω) + eb)

]
− E

[
MBA,B(G[m](Ω) + ec)

]
= −1

2
p

k∑
i=1

[
(oAi )

2

a2
+

(pAi )
2

a2
+

(oBi )
2

b2
+

(pBi )
2

b2
− 2oAi o

B
i

ab
− 2pAi p

B
i

ab

]

− 1

2
(1− p)

k∑
i=1

[
2oAi p

A
i

a2
+

2oBi p
B
i

b2
− 2oAi p

B
i

ab
− 2pAi o

B
i

ab

]

+
1

2
p

k∑
i=1

[
oAi (a− oAi )

a2(a− 1)
+
pAi (a− pAi )

a2(a− 1)
+
oBi (b− oBi )

b2(b− 1)
+
pBi (b− pBi )

b2(b− 1)

]
.

(5.8)

The first main observation is that

k∑
i=1

[
oAi (a− oAi )

a2(a− 1)
+
pAi (a− pAi )

a2(a− 1)

]
≤

k∑
i=1

[
oAi

a(a− 1)
+

pAi
a(a− 1)

]
=

1

a− 1
≤ 2

δ
, (5.9)

and analogously
k∑

i=1

[
oBi (b− oBi )

b2(b− 1)
+
pBi (b− pBi )

b2(b− 1)

]
≤ 2

δ
. (5.10)

So,

1

2
p

k∑
i=1

[
oAi (a− oAi )

a2(a− 1)
+
pAi (a− pAi )

a2(a− 1)
+
oBi (b− oBi )

b2(b− 1)
+
pBi (b− pBi )

b2(b− 1)

]
≤ 2p

δ
≤ 2

δ
. (5.11)

So, it remains to show

− 1

2
p

k∑
i=1

[
(oAi )

2

a2
+

(pAi )
2

a2
+

(oBi )
2

b2
+

(pBi )
2

b2
− 2oAi o

B
i

ab
− 2pAi p

B
i

ab

]

− 1

2
(1− p)

k∑
i=1

[
2oAi p

A
i

a2
+

2oBi p
B
i

b2
− 2oAi p

B
i

ab
− 2pAi o

B
i

ab

]
≤ 0.

(5.12)

The second main observation is that the left-hand side is a linear function of p, so
verifying (5.12) at p = 1 and p = 1

2 is sufficient. At p = 1, (5.12) follows from:

− 1

2

k∑
i=1

[(
oAi
a

− oBi
b

)2

+

(
pAi
a

− pBi
b

)2
]
≤ 0. (5.13)

At p = 1
2 , (5.12) follows from:

− 1

4

k∑
i=1

[
oAi
a

+
pAi
a

− oBi
b

− pBi
b

]2
≤ 0. (5.14)
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We are now ready to prove Proposition 4.1.

Proof of Proposition 4.1. By Propositions 5.1 and 5.2, HBA,B
p satisfies the hypotheses of

Corollary 4.3. Thus,

FHBA,B
p

(⌊
d(A)

2

⌋
,

⌊
d(B)

2

⌋
, 0

)
≤ E

[
HBA,B

p (Gd)
]
+ ψ (|E(Gd)|) . (5.15)

The graphs arising from M
(⌊

d(A)
2

⌋
,
⌊
d(B)
2

⌋
, 0
)
have no cross-edges. So, an optimal

(A,B)-bisection of these graphs is the sum of an optimal bisection of A and an optimal
bisection of B. Thus,

FHBA,B
p

(⌊
d(A)

2

⌋
,

⌊
d(B)

2

⌋
, 0

)
= E [HBp(Gd↑A)] + E [HBp(Gd↑B)] , (5.16)

as desired.

6 Proof of Theorem 3.3

On the space of probability measures on N with finite mean, define the Wasserstein
distance

W(µ, µ′) =

∞∑
i=1

∣∣∣∣∣
∞∑
k=i

(µ(k)− µ′(k)

∣∣∣∣∣ . (6.1)

We will use the following result from [8].

Proposition 6.1. Let f be a 1-Lipschitz graph parameter. For any d, d′ : [n] → N,∣∣∣∣ 1nE [f(Gd)]−
1

n
E [f(Gd′)]

∣∣∣∣ ≤ 2W

(
1

n

n∑
i=1

δd(i),
1

n

n∑
i=1

δd′(i)

)
. (6.2)

Throughout this proof, let GIID
µ,n denote the random graph on n vertices, where each

vertex’s degree is sampled i.i.d. from the distribution µ.

Proof of Theorem 3.3. Proposition 4.1 immediately implies the subadditivity of HBp: for
all partitions A,B of [n], and all d : [n] → N,

E [HBp(Gd↑A)] + E [HBp(Gd↑B)] ≤ E [HBp(Gd)] + ψ (|E(Gd)|) . (6.3)

Fix a distribution µ on N with finite mean. By averaging the above inequality over d
whose values are sampled i.i.d. from µ, we have

E
[
HBp(G

IID
µ,|A|)

]
+ E

[
HBp(G

IID
µ,|B|)

]
≤ E

[
HBp(G

IID
µ,n )

]
+ ψ

(
1

2
µn

)
, (6.4)

where we have used Jensen’s Inequality on the concavity of ψ.
Note that ψ( 12µn) = o

(
n2/3

)
. By Fekete’s Subadditivity Lemma, this implies that the

scaling limit

lim
n → ∞

1

n
E
[
HBp(G

IID
µ,n )

]
(6.5)

exists. Let this limit equal Ψ(µ).
Since HBp is Lipschitz, Proposition 6.1 applies. By setting d = dn, sampling each

d′(1), . . . , d′(n) uniformly from µ, and taking the limit as n → ∞, we get∣∣∣∣ 1nE [f(Gdn
)]− 1

n
E
[
f(GIID

µ,n )
]∣∣∣∣ → 0. (6.6)
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Therefore,

lim
n → ∞

1

n
E [f(Gdn)] = Ψ(µ) (6.7)

as well. Moreover, as HBp is Lipschitz, Azuma-Hoeffding’s inequality implies the con-
centration inequality

P [|HBp(Gd)− E [HBp(Gd)]| ≥ ε] ≤ exp

(
− ε2

4
∑n

i=1 d(i)

)
. (6.8)

Since d converges in distribution to µ, the Borel-Cantelli Lemma implies the almost-sure
convergence ∣∣∣∣ 1nHBp(Gdn

)− 1

n
E [HBp(Gdn

)]

∣∣∣∣ → 0. (6.9)

The result follows.
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