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In [4], the authors prove the convergence of the two-overlap distribution at low
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1 Introduction

Following recent conjectures of [14] and [13] about the limiting law of the Gibbs
measure and the limiting law of the maximum for the Riemann zeta function on bounded
random intervals of the critical line, progress have been made in the mathematics
literature. If τ is sampled uniformly in [T, 2T ] for some large T , then it is expected
that the limiting law of the Gibbs measure (see (2.6)) at low temperature for the field
(log |ζ( 12 + i(τ +h))|, h ∈ [0, 1]) is a one-level Ruelle probability cascade (see e.g. [26]) and
the law of the maximum is asymptotic to log log T− 3

4 log log log T+MT where (MT , T ≥ 2)

is a sequence of random variables converging in distribution. For a randomized version
of the Riemann zeta function (see (2.1)), the first order of the maximum was proved in
[16], the second order of the maximum was proved in [2], and the limiting two-overlap
distribution was found in [4] (see Theorem 3.1 below). The tightness of the recentered
maximum is still open (see [3]). In this short paper, we complete the analysis of [4] by
proving the Ghirlanda-Guerra (GG) identities in the limit T → ∞ (see Theorem 5.8). As
is well known in the spin glass literature (see e.g. Chapter 2 in [24]), the limiting law of
the two-overlap distribution, with a finite support, together with the GG identities allow
a complete description of the limiting law of the Gibbs measure as a Ruelle probability
cascade with finitely many levels (a random measure with a tree structure and Poisson-
Dirichlet weights at each level). Our main result (Theorem 3.3) describes the joint law
of the overlaps under the limiting mean Gibbs measure in terms of Poisson-Dirichlet
weights. It is expected that the approach presented here, which mostly stems from the
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Randomized Riemann zeta function

work of [5], [8] and [24] on other models, can be adapted to prove the same result for
the (true) Riemann zeta function on bounded random intervals of the critical line. At
present, for the (true) Riemann zeta function, the first order of the maximum is proved
conditionally on the Riemann hypothesis in [19] and unconditionally in [1].

The paper is organised as follows. In Section 2, we give a few definitions. In Section
3, the main result is stated and shown to be a consequence of the GG identities and the
main result from [4] about the limiting two-overlap distribution. In Section 4, we state
known results from [4] that we will use to prove the GG identities. The GG identities
are proven in Section 5 along with other preliminary results, see the structure of the
proof in Figure 5.1. For an explanation of the consequences of the GG identities and
their conjectured universality for mean field spin glass models, we refer the reader to
[18], [24] and [28].

2 Some definitions

Let (Up, p primes) be an i.i.d. sequence of uniform random variables on the unit circle
in C. The random field of interest is

Xh $
∑
p≤T

Wp(h) $
∑
p≤T

Re(Up p
−ih)

p1/2
, h ∈ [0, 1]. (2.1)

This is a good model for the large values of (log |ζ( 12+i(τ+h))|, h ∈ [0, 1]) for the following
reason. Proposition 1 in [16] proves that, assuming the Riemann hypothesis, and for T
large enough, there exists a set B ⊆ [T, T + 1], of Lebesgue measure at least 0.99, such
that

log |ζ(1
2
+ it)| = Re

∑
p≤T

1

p1/2+it

log(T/p)

log T

+O(1), t ∈ B. (2.2)

If we ignore the smoothing term log(T/p)/ log T and note that the process (p−iτ, p primes),
where τ is sampled uniformly in [T, 2T ], converges (in the sense of convergence of its
finite-dimensional distributions), as T → ∞, to a sequence of independent random
variables distributed uniformly on the unit circle (by computing the moments), then the
model (2.1) follows. For more information, see Section 1.1 in [2].

For simplicity, the dependence in T will be implicit everywhere for X. Summations
over p’s and q’s always mean that we sum over primes. For α ∈ [0, 1], we denote truncated
sums of X as follows:

Xh(α) $
∑

p≤exp((log T )α)

Wp(h), h ∈ [0, 1], (2.3)

where
∑

∅ $ 0. Define the overlap between two points of the field by

ρ(h, h′) $
E[XhXh′ ]√
E[X2

h]E[X
2
h′ ]
, h, h′ ∈ [0, 1]. (2.4)

For any α ∈ [0, 1] and any β > 0, define the (normalized) free energy of the perturbed
model by

fα,β,T (u) $
1

log log T
log

∫ 1

0

eβ(uXh(α)+Xh)dh, u > −1. (2.5)

The parameter u is there to allow perturbations in the correlation structure of the model.
When u = 0, we recover the free energy. Finally, for any Borel set A ∈ B([0, 1]), define
the Gibbs measure by

Gβ,T (A) =

∫
A

eβXh∫
[0,1]

eβXh′dh′
dh. (2.6)

The parameter β is called the inverse temperature in statistical mechanics.
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Randomized Riemann zeta function

3 Main result

The main result of this article is to present a complete description of the joint law of
the overlaps for the model (2.1), under the limiting mean Gibbs measure

lim
T→∞

EGβ,T . (3.1)

We will show that, when β > βc $ 2, this measure is the expectation E of a random
measure µβ sampling orthonormal vectors in an infinite-dimensional separable Hilbert
space, where the probability weights follow a

Poisson-Dirichlet distribution of parameter βc/β.

This is done through what is called the Ghirlanda-Guerra identities. These identities
first appeared in [15] and, 15 years later, it was proved in a celebrated work of Panchenko
[23] (a simple proof is given in [22] when Eµβ has a finite support) that if a random
measure on the unit ball of a separable Hilbert space satisfies an extended version of
the Ghirlanda-Guerra identities, then we must have ultrametricity (a tree-like structure)
of the overlaps under the mean of this random measure. This was an important step
because it was well-known following the publication of [15] that the Ghirlanda-Guerra
identities and ultrametricity together completely determine the joint law of the overlaps,
up to the distribution of one overlap. See e.g., Theorem 6.1 in [7], Section 1.2 in [27] (in
the context of the REM model from [10]) and Theorem 1.13 in [8] (in the context of the
GREM model from [11]).

Thus, from the work of Panchenko, proving the (extended) Ghirlanda-Guerra identities
under (3.1) implies ultrametricity and, consequently, determines the joint law of the
overlaps, up to the limiting two-overlap distribution

lim
T→∞

EGβ,T [1{ρ(h,h′)∈ · }], (3.2)

which [4] already determined for the model (2.1).

Theorem 3.1 (Theorem 1 in [4]). For any β > βc $ 2 and any Borel set A ∈ B([0, 1]),

lim
T→∞

EG×2
β,T

[
1{ρ(h,h′)∈A}

]
=

2

β
1A(0) +

(
1− 2

β

)
1A(1). (3.3)

Remark 3.2. The limiting two-overlap distribution in (3.3) can be interpreted as a
measure of relative distance between the extremes of the model.

To state our main result, recall the definition of a Poisson-Dirichlet variable. For
0 < θ < 1, let η = (ηi)i∈N∗ be the atoms of a Poisson random measure on (0,∞) with
intensity measure θx−θ−1dx. A Poisson-Dirichlet variable ξ of parameter θ is a random
variable on the space of decreasing weights{

(x1, x2, . . .) ∈ [0, 1]N
∗
:

1 ≥ x1 ≥ x2 ≥ . . . ≥ 0

and
∑∞

i=1 xi = 1

}
(3.4)

which has the same law as

ξ
law
=

(
ηi∑∞
j=1 ηj

, i ∈ N∗

)
↓

, (3.5)

where ↓ stands for the decreasing rearrangement.
Here is the main result.
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Theorem 3.3 (Main result). Let β > βc $ 2 and let ξ = (ξk)k∈N∗ be a Poisson-Dirichlet
variable of parameter βc/β. Denote by E the expectation with respect to ξ. For any
continuous function φ : [0, 1]s(s−1)/2 → R of the overlaps of s points,

lim
T→∞

EG×s
β,T

[
φ
((
ρ(hl, hl′)

)
1≤l,l′≤s

)]
= E

 ∑
k1,...,ks∈N

ξk1 · · · ξksφ
((

1{kl=kl′}
)
1≤l,l′≤s

) . (3.6)

Remark 3.4. The domain of φ is [0, 1]s(s−1)/2 here because the matrix (ρ(hl, hl′))1≤l,l′≤s

is symmetric and has 1’s on the diagonal.

Remark 3.5. The proof of Theorem 3.3 is given in Section 6. As mentioned earlier, it
is a consequence of Theorem 3.1, Theorem 5.8 and the ultrametric structure of the
overlaps under the limiting mean Gibbs measure. To prove the extended Ghirlanda-
Guerra identities in Section 5, we will use the strategy developed in [8, 9] and used in [5]
and [4] (see Remark 3.6). For an alternative strategy (which requires a stronger control
on the path of the maximal particle in the tree structure), see [17].

Remark 3.6. In this paper, we state most of our results above the critical inverse
temperature (i.e. at low temperature), namely when β > βc $ 2, because that’s the only
interesting case. The description of the joint law of the overlaps under the limiting mean
Gibbs measure turns out to be trivial when β < βc. Here’s why.

When β > βc, the Gibbs measure gives a lot of weight to the “particles” h that are
near the maximum’s height in the tree structure underlying the model (2.1). The result
of Theorem 3.1 simply says that if you sample two particles under the Gibbs measure,
then, in the limit and on average, either the particles branched off “at the last moment”
in the tree structure (there are clusters of points reaching near the level of the maximum)
or they branched off in the beginning. They cannot branch at intermediate scales.

When β < βc, the weights in the Gibbs measure are more spread out so that most
contributions to the free energy actually come from particles reaching heights that are
well below the level of the maximum in the tree structure. Hence, when two particles
are selected from this larger pool of contributors that are not clustering, it can be shown
that, in the limit and on average, the particles necessarily branched off in the beginning
of the tree. The proof would follow the exact same strategy used in [4]:

• find the free energy of the perturbed model as a function of the perturbation
parameter u,

• link the expectation of the derivative of the perturbed free energy at u = 0 with the
two-overlap distribution by using an approximate integration by parts argument
and the convexity of the free energy.

(We refer to this strategy as the Bovier-Kurkova technique since it is adapted from the
strategy introduced in [8, 9] for the GREM model.) The computations would actually be
easier in this case. One would find that

lim
T→∞

EG×2
β,T

[
1{ρ(h,h′)∈A}

]
= 1A(0). (3.7)

In other words, when β < βc, the limiting mean Gibbs measure only samples points that
are uncorrelated (and thus far from each other) in the limiting tree structure. More
generally, our main result (Theorem 3.3), which describes the joint law of the overlaps
under the limiting mean Gibbs measure, would say that for any continuous function
φ : [0, 1]s

2 → R of the overlaps of s points,

lim
T→∞

EG×s
β,T

[
φ
((
ρ(hl, hl′)

)
1≤l,l′≤s

)]
= φ(Is), (3.8)
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where Is denotes the identity matrix of order s. In the critical case β = βc, we obtain
(3.7) and (3.8) with the same techniques.

4 Known results

In this section, we gather the results from [4] that we will use in Section 5 to prove
the extended Ghirlanda-Guerra identities. The two propositions below are known con-
vergence results for fα,β,T and its derivative (with respect to u). We slightly reformulate
them for later use.

Proposition 4.1 (Proposition 3 in [4]). Let β > βc $ 2 and 0 < α < 1. Then,

2

β2
· E
[
f ′α,β,T (0)

]
=

∫ α

0

EG×2
β,T [1{ρ(h,h′)≤y}]dy + oT (1). (4.1)

Since f ′α,β,T (0) = β(log log T )−1Gβ,T [Xh(α)], we can also write (4.1) as

1

β
· EGβ,T [Xh(α)]

1
2 log log T

= α− EG×2
β,T [

∫ α

0

1{y<ρ(h,h′)}dy] + oT (1). (4.2)

Proposition 4.2 (Equation 13, Proposition 4 and Lemma 14 in [4]). Let β > βc $ 2,
0 ≤ α ≤ 1 and u > −1. Then,

lim
T→∞

fα,β,T (u) = fα,β(u) $


β2

4 Vα,u, if u < 0, 2 < β ≤ 2/
√
Vα,u,

β
√
Vα,u − 1, if u < 0, β > 2/

√
Vα,u,

β(αu+ 1)− 1, if u ≥ 0, β > 2,

(4.3)

where the limit holds in L1, and where Vα,u $ (1 + u)2α+ (1− α).

5 Proof of the extended Ghirlanda-Guerra identities

This section is dedicated to the proof of the extended Ghirlanda-Guerra identities
(Theorem 5.8). We adopt a “bottom-up” style of presentation, where Theorem 5.8 is the
end goal. Here is the structure of the proof:

Prime number
theorem

Lemma 5.2
Approximate
integration
by parts

Lemma 5.3
Bovier-Kurkova
technique (preliminary)

Lemma 5.1
Overlaps of the
truncated field Prop. 5.4

Bovier-Kurkova
technique

Arguin-Tai

Prop. 4.1
Prop. 4.2

Prop. 5.6
Concentration

Lemma 5.5
f ′
α,β(0) = . . .

Thm. 5.7
Approximate
extended
GG identities

Dovbysh-Sudakov
representation theorem

Thm. 5.8
Extended
GG identities
in the limit

Figure 5.1: Structure of the proof
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We start by relating the overlaps of the field X to the overlaps of the truncated field
X(α).

Lemma 5.1 (Overlaps of the truncated field). Let 0 ≤ α ≤ 1. Then, for all h, h′ ∈ [0, 1],

E[Xh(α)Xh′(α)]
1
2 log log T

=

{
ρ(h, h′) +O

(
(log log T )−1

)
, if ρ(h, h′) ≤ α,

α+O
(
(log log T )−1

)
, if ρ(h, h′) > α.

(5.1)

In both cases, the O
(
(log log T )−1

)
term is uniform in α.

Proof. Since Re(z) = (z + z)/2, E[U2
p ] = E[(Up)

2] = 0 and E[UpUp] = 1, it is easily shown
from (2.1) that, for any prime p,

E[Wp(h)Wp(h
′)] =

1

2p
cos(|h− h′| log p), h, h′ ∈ [0, 1]. (5.2)

Thus, from the independence of the Up’s and (2.3),

E[Xh(α)Xh′(α)] =
∑

p≤exp((log T )α)

1

2p
cos(|h− h′| log p), h, h′ ∈ [0, 1]. (5.3)

Sums like the one on the right-hand side of (5.3) were estimated on page 20 of Appendix
A in [16] by using the prime number theorem. In particular,

ρ(h, h′) =
1
2 log

(
(log T ) ∧ |h− h′|−1

)
1
2 log log T

+O
(
(log log T )−1

)
, (5.4)

and

E[Xh(α)Xh′(α)]
1
2 log log T

=

{
log |h−h′|−1

log log T +O
(
(log log T )−1

)
, if 1 ≤ |h− h′|−1 < (log T )α,

α+O
(
(log log T )−1

)
, if |h− h′|−1 ≥ (log T )α,

(5.5)
where the O

(
(log log T )−1

)
terms are all uniform in α. By comparing (5.4) and (5.5), we

get

E[Xh(α)Xh′(α)]
1
2 log log T

=

{
ρ(h, h′) +O

(
(log log T )−1

)
, if ρ(h, h′)−O

(
(log log T )−1

)
< α,

α+O
(
(log log T )−1

)
, if ρ(h, h′)−O

(
(log log T )−1

)
≥ α,

=

{
ρ(h, h′) +O

(
(log log T )−1

)
, if ρ(h, h′) ≤ α,

α+O
(
(log log T )−1

)
, if ρ(h, h′) > α.

(5.6)

This ends the proof.

The next lemma is an approximate integration by parts result. It is a straightforward
generalization of Lemma 9 in [4].

Lemma 5.2 (Approximate integration by parts). Let s ∈ N∗ and let ξ $ (ξ1, ξ2, . . . , ξs)

be a random vector taking values in Cs, such that E[|ξj |3] < ∞ and E[ξj ] = 0 for all
j ∈ {1, . . . , s}, and such that E[ξlξj ] = 0 for all l, j ∈ {1, . . . , s}. Let F : Cs → C be a twice
continuously differentiable function such that, for someM > 0,

max
1≤j≤s

{
‖∂2zjF‖∞ ∨ ‖∂2zjF‖∞

}
≤M,

where ‖f‖∞ $ supz∈Cs |f(z, z)|. Then, for any k ∈ {1, . . . , s},∣∣∣E[ξkF (ξ, ξ)]− s∑
j=1

E[ξkξj ] E[∂zjF (ξ, ξ)]
∣∣∣� s2M max

1≤j≤s
E[|ξj |3], (5.7)

∣∣∣E[ξkF (ξ, ξ)]− s∑
j=1

E[ξkξj ] E[∂zjF (ξ, ξ)]
∣∣∣� s2M max

1≤j≤s
E[|ξj |3], (5.8)
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where f(·) � g(·) means that |f(·)| ≤ Cg(·) for some universal constant C > 0 (the
Vinogradov notation).

Proof. Fix k ∈ {1, . . . , s}. We only prove (5.7) because the proof of (5.8) is almost
identical. Since E[ξk] = 0 and E[ξkξj ] = 0 for all j ∈ {1, . . . , s}, the left-hand side of (5.7)
can be written as

E
[
ξk

(
F (ξ, ξ)− F (0,0)−

s∑
j=1

ξj∂zjF (0,0)−
s∑

j=1

ξj∂zjF (0,0)
)]

−
s∑

j=1

E
[
ξkξj

]
E
[
∂zjF (ξ, ξ)− ∂zjF (0,0)

]
.

(5.9)

By Taylor’s theorem in several variables and the assumptions, the following estimates
hold ∣∣∣F (ξ, ξ)− F (0,0)−

s∑
j=1

ξj∂zjF (0,0)−
s∑

j=1

ξj∂zjF (0,0)
∣∣∣

�M

(
s∑

l=1

|ξl|

)2

≤M s

s∑
l=1

|ξl|2, (5.10)

∣∣∣∂zjF (ξ, ξ)− ∂zjF (0,0)
∣∣∣�M

s∑
l=1

|ξl| for all j ∈ {1, . . . , s}. (5.11)

Therefore,

|(5.9)| �M

s∑
l=1

(
sE
[
|ξk| · |ξl|2

]
+

s∑
j=1

E
[
|ξk| · |ξj |

]
E
[
|ξl|
])

≤M

s∑
l=1

(
sE
[
|ξk|3

]1/3
E
[
(|ξl|2)3/2

]2/3
+

s∑
j=1

E
[
|ξk|3

]1/3
E
[
|ξj |3

]1/3
E
[
|ξl|3

]1/3)
≤ 2s2M max

1≤j≤s
E[|ξj |3], (5.12)

where we used Holder’s inequality to obtain the second inequality.

Here is a generalization of Proposition 10 in [4]. It could be seen as a generalization
of (4.2) if (4.2) was applied to (Wp(h), h ∈ [0, 1]) instead of (Xh(α), h ∈ [0, 1]).

Lemma 5.3 (Bovier-Kurkova technique - preliminary version). Let β > 0 and p ≤ T . For
any s ∈ N∗, any k ∈ {1, . . . , s}, and any bounded mesurable function φ : [0, 1]s → R, we
have ∣∣∣EG×s

β,T [Wp(hk)φ(h)]

− β ·

{∑s
l=1EG

×s
β,T

[
E[Wp(hk)Wp(hl)]φ(h)

]
−sEG×(s+1)

β,T

[
E[Wp(hk)Wp(hs+1)]φ(h)

]}∣∣∣∣∣ ≤ Kp−3/2,
(5.13)

where h $ (h1, h2, . . . , hs), K $ s2Cβ2‖φ‖∞, and C > 0 is a universal constant.

Proof. Write for short

ωp(h) $
1

2
p−ih−1/2 and Yp(h) $ β

∑
q≤T
q 6=p

Wq(h). (5.14)

Define
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Fp(z, z) $

∫
[0,1]s

ωp(hk)φ(h)
∏s

l=1 exp
(
β(zlωp(hl) + zlωp(hl)) + Yp(hl)

)
dh∫

[0,1]s

∏s
l=1 exp

(
β(zlωp(hl) + zlωp(hl)) + Yp(hl)

)
dh

. (5.15)

Then,

EG×s
β,T [Wp(hk)φ(h)] = E[Up · Fp(Up,Up)] + E[Up · Fp(Up,Up)], (5.16)

where Up $ (Up, Up, . . . , Up). Since the Up’s are i.i.d. uniform random variables on the
unit circle in C, we have E[|Up|3] < ∞, E[UpUp] = 1 and E[U2

p ] = E[Up] = 0. If we apply

(5.7) with F = Fp and ξ = Up, and (5.8) with F = Fp and ξ = Up, we get, as T → ∞,

EG×s
β,T [Wp(hk)φ(h)] =

s∑
j=1

{
E
[
∂zjFp(Up,Up)

]
+ E

[
∂zjFp(Up,Up)

]}
+ s2O

(
max
1≤j≤s

{
‖∂2zjFp‖∞ ∨ ‖∂2zjFp‖∞

})
.

(5.17)

For any bounded mesurable function H : [0, 1] → C, define

〈H〉(z,z) $ 〈H(h)〉(z,z) $

∫
[0,1]

H(h) exp
(
β(zωp(h) + zωp(h)) + Yp(h)

)
dh∫

[0,1]
exp

(
β(zωp(h) + zωp(h)) + Yp(h)

)
dh

, (5.18)

and for any bounded mesurable function H : [0, 1]s → C, define

〈H〉φ(z,z) $ 〈H(h)〉φ(z,z) $

∫
[0,1]s

H(h)φ(h)
∏s

l=1 exp
(
β(zlωp(hl) + zlωp(hl)) + Yp(hl)

)
dh∫

[0,1]s

∏s
l=1 exp

(
β(zlωp(hl) + zlωp(hl)) + Yp(hl)

)
dh

.

(5.19)
Differentiation of the above yields

∂zj 〈H〉φ(z,z) = β
{
〈Hω(hj)〉φ(z,z) − 〈H〉φ(z,z)〈ωp(hs+1)〉(zj ,zj)

}
,

∂zj 〈H〉φ(z,z) = β
{
〈Hω(hj)〉φ(z,z) − 〈H〉φ(z,z)〈ωp(hs+1)〉(zj ,zj)

}
.

(5.20)

The partial derivatives in (5.20) can be used to expand the summands on the right-hand
side of (5.17). Indeed, by using the relation Fp(z, z) = 〈ωp(hk)〉φ(z,z) with z = Up,

E
[
∂zjFp(Up,Up)

]
+ E

[
∂zjFp(Up,Up)

]
= E

[
∂zj 〈ωp(hk)〉φ(Up,Up)

]
+ E

[
∂zj
〈
ωp(hk)

〉φ
(Up,Up)

]
(5.20)
= βE

[〈
ωp(hk)ωp(hj)

〉φ
(Up,Up)

− 〈ωp(hk)〉φ(Up,Up)
〈ωp(hs+1)〉(Up,Up)

]
+ βE

[〈
ωp(hk)ωp(hj)

〉φ
(Up,Up)

− 〈ωp(hk)〉φ(Up,Up)
〈ωp(hs+1)〉(Up,Up)

]

= β ·


E
[〈
2Re

(
ωp(hk)ωp(hj)

)〉φ
(Up,Up)

]
−E
[
2Re

(
〈ωp(hk)〉φ(Up,Up)

〈ωp(hs+1)〉(Up,Up)

)]
 . (5.21)

Since, by definition,

〈 · 〉φ
(Up,Up)

= G×s
β,T [ · φ(h)], (5.22)
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and

2Re
(
〈ωp(hk)〉φ(Up,Up)

〈ωp(hs+1)〉(Up,Up)

)
= 2Re

∫[0,1] ∫[0,1]s ωp(hk)ωp(hs+1)φ(h)
∏s+1

l=1 exp
(
β
∑

p≤T Wp(hl)
)
dh dhs+1∫

[0,1]

∫
[0,1]s

∏s+1
l=1 exp

(
β
∑

p≤T Wp(hl)
)
dh dhs+1


= G

×(s+1)
β,T

[
2Re

(
ωp(hk)ωp(hs+1)

)
φ(h)

]
, (5.23)

and

2Re(ωp(h)ωp(h′)) =
1

2p
cos(|h− h′| log p) (5.2)

= E[Wp(h)Wp(h
′)], (5.24)

we can rewrite (5.21) as

E
[
∂zjFp(Up,Up)

]
+ E

[
∂zjFp(Up,Up)

]
= β ·

{
EG×s

β,T

[
E[Wp(hk)Wp(hj)]φ(h)

]
−EG×(s+1)

β,T

[
E[Wp(hk)Wp(hs+1)]φ(h)

] } . (5.25)

From (5.17) and (5.25), we conclude (5.13), as long as, for all j ∈ {1, . . . , s},

‖∂2zjF‖∞ ∨ ‖∂2zjF‖∞ ≤ C̃β2‖φ‖∞p−3/2, (5.26)

where C̃ > 0 is a universal constant. To verify this last point, note that, by differentiating
in (5.20),

∂2zj 〈H〉φ(z,z) = β

{
∂zj 〈Hω(hj)〉

φ
(z,z) − (∂zj 〈H〉φ(z,z))〈ωp(hs+1)〉(zj ,zj)

−〈H〉φ(z,z)(∂zj 〈ωp(hs+1)〉(zj ,zj))

}

= β2


〈Hω2(hj)〉φ(z,z) − 〈Hω(hj)〉φ(z,z)〈ωp(hs+1)〉(zj ,zj)

−
(
〈Hω(hj)〉φ(z,z) − 〈H〉φ(z,z)〈ωp(hs+1)〉(zj ,zj)

)
〈ωp(hs+1)〉(zj ,zj)

−〈H〉φ(z,z)
(
〈ω2

p(hs+1)〉(zj ,zj) − 〈ωp(hs+1)〉2(zj ,zj)
)

 . (5.27)

Using the relation Fp(z, z) = 〈ωp(hk)〉φ(z,z), (5.27), and the triangle inequality, we obtain

|∂2zjFp(z, z)| = β2

∣∣∣∣∣∣∣∣∣∣∣∣

〈ωp(hk)ω
2(hj)〉φ(z,z)

−2〈ωp(hk)ω(hj)〉φ(z,z)〈ωp(hs+1)〉(zj ,zj)

+2〈ωp(hk)〉φ(z,z)〈ωp(hs+1)〉2(zj ,zj)
−〈ωp(hk)〉φ(z,z)〈ω

2
p(hs+1)〉(zj ,zj)

∣∣∣∣∣∣∣∣∣∣∣∣

≤ β2



〈|ωp(hk)| · |ω(hj)|2〉|φ|(z,z)

+2〈|ωp(hk)| · |ω(hj)|〉|φ|(z,z)〈|ωp(hs+1)|〉(zj ,zj)

+2〈|ωp(hk)|〉|φ|(z,z)〈|ωp(hs+1)|〉2(zj ,zj)
+〈|ωp(hk)|〉|φ|(z,z)〈|ωp(hs+1)|2〉(zj ,zj)


. (5.28)

Since |ωp(h)| = 1
2p

−1/2, 〈1〉(zj ,zj) = 1 and 〈1〉|φ|(z,z) ≤ ‖φ‖∞, we deduce from (5.28) that

|∂2zjFp(z, z)| ≤
6

8
β2‖φ‖∞p−3/2. (5.29)

We obtain the bound on ‖∂2zjFp‖∞ in the same manner.
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The next proposition is a consequence of the two previous lemmas. It generalizes
(4.2), which corresponds to the special case (k = 1, s = 1, φ ≡ 1). The idea for the
statement originates from [8], and the idea behind the proof generalizes the special-case
application in [5]. See [6, 20] for an application in the context of the Gaussian free field.

Proposition 5.4 (Bovier-Kurkova technique). Let β > 0 and 0 ≤ α ≤ 1. For any s ∈ N∗,
any k ∈ {1, . . . , s}, and any bounded mesurable function φ : [0, 1]s → R, we have∣∣∣∣∣ 1β ·

EG×s
β,T

[
Xhk

(α)φ(h)
]

1
2 log log T

−

{∑s
l=1EG

×s
β,T

[ ∫ α

0
1{y<ρ(hk,hl)}dy φ(h)

]
−sEG×(s+1)

β,T

[ ∫ α

0
1{y<ρ(hk,hs+1)}dy φ(h)

]}∣∣∣∣∣ = O
(
(log log T )−1

)
,

(5.30)

where h $ (h1, h2, . . . , hs).

Proof. For any l ∈ {1, . . . , s+ 1},

EG
×(s+1)
β,T

[ ∫ α

0

1{y<ρ(hk,hl)}dy φ(h)
]
= EG

×(s+1)
β,T

[
ρ(hk, hl)1{ρ(hk,hl)≤α} φ(h)

]
+ EG

×(s+1)
β,T

[
α1{ρ(hk,hl)>α} φ(h)

]
.

(5.31)

On the other hand, if we sum (5.13) over the set {p prime : p ≤ exp((log T )α)} and divide
by β

2 log log T , we obtain∣∣∣∣∣ 1β ·
EG×s

β,T [Xhk
(α)φ(h)]

1
2 log log T

−


∑s

l=1EG
×s
β,T

[
E[Xhk

(α)Xhl
(α)]

1
2 log log T

φ(h)
]

−sEG×(s+1)
β,T

[
E[Xhk

(α)Xhs+1
(α)]

1
2 log log T

φ(h)
]

∣∣∣∣∣∣ = O

(
(log log T )−1

)
.

(5.32)

Now, one by one, take the difference in absolute value between each of the s + 1

expectations inside the braces in (5.32) and the corresponding expectation on the left-
hand side of (5.31). We obtain the bound (5.30) by using Lemma 5.1.

Our goal now is to combine Proposition 5.4 with a concentration result (Proposition
5.6) in order to prove an approximate version of the GG identities (Theorem 5.7). We
will then show that the identities must hold exactly in the limit T → ∞ (Theorem 5.8).
Before stating and proving the concentration result, we show that fα,β(·), the limiting
perturbed free energy, is differentiable in an open interval around 0.

Lemma 5.5. Let β > βc $ 2 and 0 ≤ α ≤ 1. There exists δ = δ(α, β) > 0 small enough
that fα,β(·) from Proposition 4.2 is differentiable on (−δ, δ). Also, we have f ′α,β(0) = βα.

Proof. Since β > 2 and limu→0 Vα,u = 1, there exists δ = δ(α, β) > 0 small enough that,
for all u ∈ (−δ, δ),

fα,β(u) =

{
β
√
Vα,u − 1, if u < 0,

β(αu+ 1)− 1, if u ≥ 0.
(5.33)

The differentiability of fα,β(·) on (−δ, δ)\{0} is obvious. Also,

fα,β(u)− fα,β(0)

u
=

{
β

√
Vα,u−1

u , if u < 0,

βα, if u ≥ 0.
(5.34)

Take both the left and right limits at 0 to conclude.
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Here is the concentration result. It is analogous to Theorem 3.8 in [24], which was
proved for the mixed p-spin model. We give the proof for completeness.

Proposition 5.6 (Concentration). Let β > βc $ 2 and 0 < α < 1. For any s ∈ N∗, any
k ∈ {1, . . . , s}, and any bounded mesurable function φ : [0, 1]s → R, we have∣∣∣∣∣EG

×s
β,T [Xhk

(α)φ(h)]

log log T
− EGβ,T [Xhk

(α)]

log log T
EG×s

β,T [φ(h)]

∣∣∣∣∣ = oT (1), (5.35)

where h $ (h1, h2, . . . , hs).

Proof. By applying Jensen’s inequality to the expectation EG×s
β,T [ · ], followed by the

triangle inequality,∣∣EG×s
β,T [Xhk

(α)φ(h)]− EGβ,T [Xhk
(α)]EG×s

β,T [φ(h)]
∣∣

≤ EGβ,T

∣∣Xhk
(α)− EGβ,T [Xhk

(α)]
∣∣ · ‖φ‖∞

≤

{
EGβ,T

∣∣Xhk
(α)−Gβ,T [Xhk

(α)]
∣∣

+E
∣∣Gβ,T [Xhk

(α)]− EGβ,T [Xhk
(α)]

∣∣
}

· ‖φ‖∞

$
{
(a) + (b)

}
· ‖φ‖∞.

Below, we show that (a) and (b) are o(log log T ) in Step 1 and Step 2, respectively.

Step 1. Note that

(a) = EGβ,T

∣∣∣ ∫ 1

0

(Xh1
(α)−Xh2

(α))
eβXh2∫ 1

0
eβXz2dz2

dh2

∣∣∣
≤ EG×2

β,T

∣∣Xh1(α)−Xh2(α)
∣∣. (5.36)

For u ≥ 0, we define a perturbed version of the last quantity, where the Gibbs measure
Gβ,T,u is now defined with respect to the field (uXh(α) +Xh, h ∈ [0, 1]):

Dα,β,T (u) $ EG
×2
β,T,u

∣∣Xh1
(α)−Xh2

(α)
∣∣. (5.37)

We can easily verify that

D′
α,β,T (y) = β EG×3

β,T,y

[∣∣Xh1
(α)−Xh2

(α)
∣∣ · (Xh1

(α) +Xh2
(α)− 2Xh3

(α)
)]
. (5.38)

If we separate the expectation in (5.38) in two parts and apply the Cauchy-Schwarz
inequality to each one of them, followed by an application of the elementary inequality
(c+ d)2 ≤ 2c2 + 2d2, we find, for y ≥ 0,∣∣D′

α,β,T (y)
∣∣ ≤ β ·

{
EG×3

β,T,y

∣∣Xh1
(α)−Xh2

(α)
∣∣∣∣Xh1

(α)−Xh3
(α)
∣∣

+EG×3
β,T,y

∣∣Xh1(α)−Xh2(α)
∣∣∣∣Xh2(α)−Xh3(α)

∣∣
}

≤ β · 2EG×2
β,T,y[(Xh1(α)−Xh2(α))

2]

≤ β · 8EGβ,T,y[
(
Xh(α)−Gβ,T,y[Xh(α)]

)2
]. (5.39)

Note that β−2(log log T )f ′′α,β,T (y) = Gβ,T,y[
(
Xh(α)−Gβ,T,y[Xh(α)]

)2
] and apply inequality

(5.39) in the identity uDα,β,T (0) =
∫ u

0
Dα,β,T (y)dy −

∫ u

0

∫ x

0
D′

α,β,T (y)dydx. We obtain, for
u > 0,

Dα,β,T (0) ≤
1

u

∫ u

0

Dα,β,T (y)dy +

∫ u

0

∣∣D′
α,β,T (y)

∣∣ dy
≤ 2

(
1

u

∫ u

0

β−2(log log T )E[f ′′α,β,T (y)]dy

)1/2

+ 8β

∫ u

0

β−2(log log T )E[f ′′α,β,T (y)]dy. (5.40)
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In order to bound 1
u

∫ u

0
Dα,β,T (y)dy, we separated Dα,β,T (y) in two parts (with the tri-

angle inequality) and we applied the Cauchy-Schwarz inequality to the two resulting
expectations 1

u

∫ u

0
EGβ,T,y[ · ] dy. Now, on the right-hand side of (5.40), use the convexity

of fα,β,T (·) and the mean convergence of fα,β,T (z), z > −1, from Proposition 4.2. We get,
for all u > 0 and all y ∈ (0, 1),

lim sup
T→∞

(a)

log log T

(5.36)
≤ lim sup

T→∞

Dα,β,T (0)

log log T

(5.40)
≤ 8

β
·
(
fα,β(u+ y)− fα,β(u)

y
− fα,β(0)− fα,β(−y)

y

)
. (5.41)

From Lemma 5.5, there exists δ = δ(α, β) > 0 such that fα,β(·) is differentiable on (−δ, δ).
Therefore, take u→ 0+ and then y → 0+ in the above equation to conclude Step 1.

Step 2. For all u ∈ (0, 1), let

ηα,β,T (u) $
∣∣fα,β,T (−u)− E[fα,β,T (−u)]∣∣+ ∣∣fα,β,T (0)− E[fα,β,T (0)]∣∣
+
∣∣fα,β,T (u)− E[fα,β,T (u)]∣∣. (5.42)

Differentiation of the free energy gives f ′α,β,T (0) = β(log log T )−1Gβ,T [Xhk
(α)]. Then,

from the convexity of fα,β,T (·),

β · (b)

log log T
= E

∣∣f ′α,β,T (0)− E[f ′α,β,T (0)]∣∣
≤
∣∣∣∣E[fα,β,T (u)]− E[fα,β,T (0)]u

− E[f ′α,β,T (0)]
∣∣∣∣

+

∣∣∣∣E[fα,β,T (0)]− E[fα,β,T (−u)]u
− E[f ′α,β,T (0)]

∣∣∣∣+ E[ηα,β,T (u)]

u
. (5.43)

Using the L1 convergence of fα,β,T (z), z > −1, from Proposition 4.2, and the mean
convergence of f ′α,β,T (0) from Proposition 4.1 (the limit is f ′α,β(0) by Lemma 5.5, the
convexity of E[fα,β,T (·)] and fα,β(·), and by Theorem 25.7 in [25]), we deduce that for all
u ∈ (0, 1),

lim sup
T→∞

(b)

log log T
≤ 1

β
·


∣∣∣ fα,β(u)−fα,β(0)

u − f ′α,β(0)
∣∣∣

+
∣∣∣ fα,β(0)−fα,β(−u)

u − f ′α,β(0)
∣∣∣
 ,

Take u → 0+ in the last equation, the differentiability of fα,β(·) at 0 (from Lemma 5.5)
concludes Step 2.

Theorem 5.7 (Approximate extended Ghirlanda-Guerra identities). Let β > βc $ 2 and
0 < α < 1. For any s ∈ N∗, any k ∈ {1, . . . , s}, and any bounded mesurable function
φ : [0, 1]s → R, we have∣∣∣∣EG(s+1)

β,T

[ ∫ α

0

1{y<ρ(hk,hs+1)}dy φ(h)
]

−

{
1
sEG

×2
β,T

[ ∫ α

0
1{y<ρ(h1,h2)}dy

]
EG×s

β,T [φ(h)]

+ 1
s

∑s
l 6=k EG

×s
β,T

[ ∫ α

0
1{y<ρ(hk,hl)}dy φ(h)

] }∣∣∣∣∣ = oT (1),

(5.44)

where h $ (h1, h2, . . . , hs).
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Proof. From Proposition 5.4, Proposition 5.6 and the triangle inequality, we get∣∣∣∣ 1β · EGβ,T [Xhk
(α)]

1
2 log log T

EG×s
β,T [φ(h)]

−

{∑s
l=1EG

×s
β,T

[ ∫ α

0
1{y<ρ(hk,hl)}dy φ(h)

]
−sEG×(s+1)

β,T

[ ∫ α

0
1{y<ρ(hk,hs+1)}dy φ(h)

]}∣∣∣∣∣ = oT (1).

(5.45)

Furthermore, from Proposition 5.4 in the special case (s = 1, k = 1, φ ≡ 1),∣∣∣∣ 1β · EGβ,T [Xhk
(α)]

1
2 log log T

−

{
EG×s

β,T

[ ∫ α

0
1{y<ρ(hk,hk)}dy

]
−EG×(s+1)

β,T

[ ∫ α

0
1{y<ρ(h1,h2)}dy

]}∣∣∣∣∣ = O
(
(log log T )−1

)
.

(5.46)

By combining (5.45) and (5.46), we get the conclusion.

By the representation theorem of Dovbysh and Sudakov [12] (for an accessible proof,
see [21]), we can show (see e.g. the reasoning on page 1459 of [5] or page 101 of [24])
that there exists a subsequence {Tm}m∈N∗ converging to +∞ such that for any s ∈ N∗

and any continuous function φ : [0, 1]s(s−1)/2 → R, we have

lim
m→∞

EG×∞
β,Tm

[
φ((ρ(hl, hl′))1≤l,l′≤s)

]
= Eµ×∞

β

[
φ((Rl,l′)1≤l,l′≤s)

]
, (5.47)

where R is a random element of some probability space with measure P (and expectation
E), generated by the random matrix of scalar products

(Rl,l′)l,l′∈N∗ =
(
(ρl, ρl′)H

)
l,l′∈N∗ , (5.48)

where (ρl)l∈N∗ is an i.i.d. sample from some random measure µβ concentrated a.s. on
the unit sphere of a separable Hilbert space H. In particular, from Theorem 3.1, we have

Eµ×2
β

[
1{R1,2∈A}

]
=

2

β
1A(0) +

(
1− 2

β

)
1A(1), A ∈ B([0, 1]). (5.49)

Next, we show the consequence of taking the limit (5.47) in the statement of Theorem
5.7. Note that a function φ : {0, 1}s(s−1)/2 → R can always be embedded in a continuous
function defined on [0, 1]s(s−1)/2. Here is the main result of this section.

Theorem 5.8 (Extended Ghirlanda-Guerra identities in the limit). Let β > βc $ 2 and
0 < α < 1. Also, let µβ be a subsequential limit of {Gβ,T }T≥2 in the sense of (5.47). For
any s ∈ N∗, any k ∈ {1, . . . , s}, and any functions ψ : {0, 1} → R and φ : {0, 1}s(s−1)/2 → R,
we have

Eµ
(s+1)
β

[
ψ(Rk,s+1)φ((Ri,i′)1≤i,i′≤s)

]
=

1

s
Eµ×2

β

[
ψ(R1,2)

]
Eµ×s

β

[
φ((Ri,i′)1≤i,i′≤s)

]
+

1

s

s∑
l 6=k

Eµ×s
β

[
ψ(Rk,l)φ((Ri,i′)1≤i,i′≤s)

]
.

(5.50)

Remark 5.9. The functions ψ and φ have {0, 1} and {0, 1}s(s−1)/2 as their domain, respec-
tively, because Rl,l′ ∈ {0, 1} Eµ×2

β -almost-surely by (5.49) and the matrix (Rl,l′)1≤l,l′≤s is

symmetric and its diagonal elements are equal to 1 Eµ×s
β -almost-surely by (5.48).
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Proof of Theorem 5.8. From (5.47) and Theorem 5.7 (in the particular case where φ is a
function of the overlaps), we deduce

Eµ
(s+1)
β

[ ∫ α

0

1{y<Rk,s+1}dy φ((Ri,i′)1≤i,i′≤s)
]

=
1

s
Eµ×2

β

[ ∫ α

0

1{y<R1,2}dy
]
Eµ×s

β

[
φ((Ri,i′)1≤i,i′≤s)

]
+

1

s

s∑
l 6=k

Eµ×s
β

[ ∫ α

0

1{y<Rk,l}dy φ((Ri,i′)1≤i,i′≤s)
]
.

(5.51)

From (5.49), we know that 1{y<Ri,i′} is Eµ×2
β -a.s. constant in y on [−1, 0) and [0, 1)

respectively. Therefore, for any x ∈ {−1, 0},

Eµ
(s+1)
β

[
1{x<Rk,s+1}φ((Ri,i′)1≤i,i′≤s)

]
=

1

s
Eµ×2

β

[
1{x<R1,2}

]
Eµ×s

β

[
φ((Ri,i′)1≤i,i′≤s)

]
+

1

s

s∑
l 6=k

Eµ×s
β

[
1{x<Rk,l}φ((Ri,i′)1≤i,i′≤s)

]
.

(5.52)

But, any function ψ : {0, 1} → R can be written as a linear combination of the indicator
functions 1{0< · } and 1{−1< · }, so we get the conclusion by the linearity of (5.52).

6 Proof of Theorem 3.3

Once we have Theorem 3.1 and the Ghirlanda-Guerra identities from Theorem 5.8,
the proof follows exactly the same steps as in the proof of Theorem 1.5 in [5]. We can
show that any subsequential limit µβ of {Gβ,T }T≥2 in the sense of (5.47) must satisfy

µβ =
∑
k∈N∗

ξkδek , P − a.s., (6.1)

where δ is the Dirac measure, (ek)k∈N∗ is a sequence of orthonormal vectors inH and ξ is
a Poisson-Dirichlet variable of parameter βc/β. Since the space of probability measures
on [0, 1]N

∗×N∗
(the space of overlap matrices) is a metric space under the weak topology,

the limit in (5.47) must hold for the original sequence. Then, (3.6) is a direct consequence
of (6.1).
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