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Abstract

We obtain almost optimal convergence rate in the central limit theorem for (appropri-
ately normalized) “nonconventional" sums of the form SN =

∑N
n=1(F (ξn, ξ2n, ..., ξ`n)−

F̄ ). Here {ξn : n ≥ 0} is a sufficiently fast mixing vector process with some stationarity
conditions, F is bounded Hölder continuous function and F̄ is a certain centralizing
constant. Extensions to more general functions F will be discusses, as well. Our
approach here is based on the so called Stein’s method, and the rates obtained in this
paper significantly improve the rates in [7]. Our results hold true, for instance, when
ξn = (Tnfi)

℘
i=1 where T is a topologically mixing subshift of finite type, a hyperbolic

diffeomorphism or an expanding transformation taken with a Gibbs invariant measure,
as well as in the case when {ξn : n ≥ 0} forms a stationary and exponentially fast
φ-mixing sequence, which, for instance, holds true when ξn = (fi(Υn))

℘
i=1 where Υn

is a Markov chain satisfying the Doeblin condition considered as a stationary process
with respect to its invariant measure.
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1 Introduction

Let Φ be the standard normal distribution function and let X1, X2, X3... be a sequence
of independent and identically distributed random variables such that EX1 = 0 and 0 <

EX2
1 = σ2 < ∞. The classical Berry-Esseen theorem provides a uniform approximation

of the error term in the central limit theorem (CLT) for the sums Ŝn = 1√
nσ

∑n
k=1 Xk,

stating that for any n ∈ N,

sup
x∈R

|Fn(x)− Φ(x)| ≤ CE|X1|3√
n

(1.1)

where Fn is the distribution function of Ŝn (see Section 6 of Ch. III in [17]) and C > 0 is
an absolute constant which by efforts of many researchers was optimized by now to a
number a bit less than 1/2.

During the last 50 years there were several extensions of the CLT for sums of weakly
dependent random variables and for martingales, including many estimates of error
terms. Among the most used methods in the case of weak dependence are Gordin’s
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Stein’s method for nonconventional sums

method for martingale approximation (see [5], [12] and [6]) and Stein’s method (see
[15]). While Stein’s method can yield close to optimal convergence rate (see [15] and
[13]), the martingale approximation method can not, since Berry-Esseen type estimates
for martingales do not yield (in general) optimal convergence rates even for sums of
independent random variables (see, for instance [6] and [1]).

Partially motivated by the research on nonconventional ergodic theorems (the term
"nonconventional" comes from [4]), probabilistic limit theorems for sums of the form
SN =

∑N
n=1 F (ξq1(n), ξq2(n), ..., ξq`(n)) have become a well studied topic. Here {ξn, n ≥ 0}

is a sufficiently fast mixing processes with some stationarity properties and F is a
function satisfying some regularity conditions. The summands here are nonstationary
and long range dependent which makes it difficult to apply standard methods. This
line of research started in [9], where a functional CLT was proved for the normalized
sums N− 1

2S[Nt] using characteristic function estimates. In [11] a functional CLT was
established for more general qi’s than in [9], where one of the main parts of the proof
was showing that the martingale approximation approach is applicable. These results
included the case when qi(n) = in, which was the original motivation for the study of
nonconventional averages (see [4]). In [7] the authors estimated the convergence rate
of ZN = N− 1

2SN in the Kolmogorov (uniform) metric towards its weak limit under the
assumptions of [11]. The proof relied on Berry-Esseen type results for martingales,
which led to estimates of order N− 1

10 ln(N + 1), which is far from optimal. In the special
case when ξn’s are independent the authors provided optimal rate of order N− 1

2 relying
on Stein’s method for sums of locally dependent random variables (see [3]).

The goal of this paper is to show that Stein’s method is applicable for nonconventional
sums when ξn’s are weakly dependent, and to significantly improve the rates obtained
in [7]. We first consider the case when F is a bounded Hölder continuous function and
qi(n) = in for any 1 ≤ i ≤ ` and n ∈ N, and (in the self normalized case) provide almost
optimal upper bound of the form

sup
x∈R

|P (SN ≤ x
√
ES2

N )− Φ(x)| ≤ CN− 1
2 ln2(N + 1) (1.2)

assuming that D2 > 0, where D2 = limN→∞ N−1ES2
N . We also obtain rates of the form

sup
x∈R

|P (N− 1
2SN ≤ x)− Φ(xD−1)| ≤ CεN

− 1
2+ε (1.3)

where ε > 0 is an arbitrary positive constant and Cε is a constant which in general
depends on ε. When {ξn : n ≥ 0} forms a stationary and exponentially fast φ-mixing
sequence then, in fact, we show that (1.2) and (1.3) hold true for any bounded function
F which is not necessarily continuous. Convergence rates for more general functions
and more general indexes qi(n)’s will be discussed, as well.

As in [7], our results hold true when, for instance, ξn = Tnf where f = (f1, ..., fd),
T is a topologically mixing subshift of finite type, a hyperbolic diffeomorphism or an
expanding transformation taken with a Gibbs invariant measure, as well as in the case
when ξn = f(Υn), f = (f1, ..., fd) where Υn is a Markov chain satisfying the Doeblin
condition considered as a stationary process with respect to its invariant measure.
In fact, any stationary and exponentially fast φ-mixing sequence {ξn, n ≥ 0} can be
considered. In the dynamical systems case each fi should be either Hölder continuous
or piecewise constant on elements of Markov partitions. As an application we can
consider ξn = ((ξn)1, ..., (ξn)`), (ξn)j = IAj

(Tnx) in the dynamical systems case and
(ξn)j = IAj (Υn) in the Markov chain case, where IA is the indicator of an appropriate

set A. Let F = F (x1, ..., x`), xj = (x
(1)
j , ..., x

(`)
j ) be a bounded Hölder continuous function

which identifies with the function G(x1, ..., x`) = x
(1)
1 · x(2)

2 · · ·x(`)
` on the cube ([0, 1]℘)`.
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Let N(n) be the number of l’s between 0 and n for which T qj(l)x ∈ Aj for j = 0, 1, ..., `

(or Υqj(l) ∈ Aj in the Markov chains case), where we set q0 = 0, namely the number of

`−tuples of return times to Aj ’s (either by T qj(l) or by Υqj(l)). Then our results yield a
central limit theorem with almost optimal convergence rate for the numbers N(n).

2 Preliminaries and main results

Our setup consists of a ℘-dimensional stochastic process {ξn, n ≥ 0} on a probability
space (Ω,F , P ) and a family of sub-σ−algebras Fk,l, −∞ ≤ k ≤ l ≤ ∞ such that
Fk,l ⊂ Fk′,l′ ⊂ F if k′ ≤ k and l′ ≥ l. We will impose restrictions of the mixing coefficients

φ(n) = sup{φ(F−∞,k,Fk+n,∞) : k ∈ Z} (2.1)

where we recall that for any two sub-σ−algebras G,H ⊂ F ,

φ(G,H) = sup
{∣∣P (A ∩B)

P (A)
− P (B)

∣∣ : A ∈ G, B ∈ H, P (A) > 0}.

In order to ensure some applications, in particular, to dynamical systems we will not
assume that ξn is measurable with respect to Fn,n but instead impose conditions on the
approximation rates

β∞(r) = sup
k≥0

‖ξk − E[ξk|Fk−r,k+r]‖L∞ (2.2)

where ‖X‖L∞ denotes the essential supremum of the absolute value of a random variable
X.

We do not require stationarity of the process {ξn, n ≥ 0}, assuming only that the
distribution of ξn does not depend on n and that the joint distribution of (ξn, ξm) depends
only on n−m, which we write for further reference by

ξn ∼ µ and
(
ξn, ξm

)
∼ µm−n (2.3)

where Y ∼ µ means that Y has µ for its distribution.

Let F = F (x1, ..., x`) : (R
℘)` → R, ` ≥ 1 be a bounded Hölder function and let M > 0

and κ ∈ (0, 1] be such that

|F (x)| ≤ M and (2.4)

|F (x)− F (y)| ≤ M
∑̀
i=1

|xi − yi|κ (2.5)

for any x = (x1, ..., x`) and y = (y1, ..., y`) in (R℘)`. To simplify formulas we assume the
centering condition

F̄ =

∫
F (x1, x2, ..., x`)dµ(x1)dµ(x2)...dµ(x`) = 0 (2.6)

which is not really a restriction since we can always replace F by F − F̄ . The main goal
of this paper is to prove a central limit theorem with convergence rate for the normalized
sums (cN )−1SN , where

SN =

N∑
n=1

F (ξn, ξ2n, ..., ξ`n)

and either cN = N− 1
2 or cN =

√
ES2

N . Our results will rely on
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Assumption 2.1. There exist d > 0 and c ∈ (0, 1) such that

φ(n) + (β∞(n))κ ≤ dcn (2.7)

for any n ∈ N.
Before formulating our main results we will first state the following

Theorem 2.2. Suppose that Assumption (2.1) is satisfied. Then the limit D2 =

limN→∞ N−1ES2
N exists and there exists C1 > 0 which depends only on `, c and d

such that
|ES2

N −D2N | ≤ C1M
2N

1
2 (2.8)

for any N ∈ N. Moreover, D2 > 0 if and only if there exists no stationary in the wide
sense process {Vn : n ≥ 1} such that

F (ξ(1)n , ξ
(n)
2n , ..., ξ

(`)
`n ) = Vn+1 − Vn, P-almost surely

for any n ∈ N, where ξ(i), i = 1, ..., ` are independent copies of ξ = {ξn : n ≥ 1}.
This theorem is a consequence of the arguments in [11], [10] and [7] and is formulated

here for readers’ convenience.
Next, recall that the Kolmogorov (uniform) metric is defined for each pairs of distri-

butions L1 and L2 on R with distribution functions G1 and G2 by

dK(L1,L2) = sup
x∈R

|G1(x)−G2(x)|.

For any random variable X we denote its law by L(X). Our main result is the following

Theorem 2.3. Suppose that Assumption (2.1) holds true and that D2 > 0. Set sN =√
ES2

N and ZN = (sN )−1SN when sN > 0, while when sN = 0 we set ZN = N− 1
2SN .

Let N (0, 1) be the zero mean normal distribution with variance 1. Then there exists a
constant C > 0 which depends only on `, d and c such that

dK(L(ZN ),N (0, 1)) ≤ Cmax(1, ρ3)N− 1
2 ln2(N + 1) (2.9)

for any N ∈ N, where ρ = MD−1. Moreover, for any ε > 0 there exists a constant cε > 0

which depends only on ε, c, d and ` so that for any N ≥ 1,

dK(L(N− 1
2SN ),N (0, D2)) ≤ cε max(1, ρ3)N− 1

2+ε (2.10)

where N (0, D2) is the zero mean normal distribution with variance D2. When β∞(r0) = 0

for some r0 then (2.9) and (2.10) hold true with constants C and cε which depend also on
r0, assuming only that F is a bounded function satisfying (2.4).

Note that β∞(0) = 0 when Fm,n = σ{ξmax(0,m), ..., ξmax(0,n)} and therefore when the
processes {ξn : n ≥ 0} itself is exponentially fast φ-mixing (i.e. when (2.7) holds true
with these σ−algebras) we obtain (2.9) for any bounded function F .

The outline of the proof is as follows. Relying on [13], Stein’s method becomes
effective for the sum SN when {Fn : 1 ≤ n ≤ N}, Fn = F (ξn, ξ2n, ..., ξ`n) are locally
weak dependent in the sense that there exist sets An and nonnegative integers dn,m,
1 ≤ n,m ≤ N so that n ∈ An, an = |An| and bn(k) = |{1 ≤ m ≤ N : dn,m = k}|, k ≥ 0

are small relatively to N , Fn and {Fs : s 6∈ An} are weakly dependent and the random
vectors Fn = {Fk : k ∈ An} and Fm = {Fs : s ∈ Am} are weakly dependent when dn,m is
sufficiently large. We first reduce the problem of approximation of the left hand side of
(2.9) to the case when ξ = {ξn : n ≥ 0} forms a sufficiently fast φ-mixing process. Then
we consider the sets

An = An,N,l = {1 ≤ m ≤ N : min
1≤i,j≤`

|in− jm| ≤ l}
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and the numbers dn,m = min{|ia − jb| : a ∈ An, b ∈ Am, 1 ≤ i, j ≤ `} and show that an
and bn(k) defined above are of order l. In Section 3 we provide estimates which will
show that the required type of the above weak dependence is satisfied, and then we take
l of the form l = A ln(N + 1) to complete the proof. In fact, existing estimates on the left
hand side of (2.9) using Stein’s method become effective only after using the expectation
estimates obtained in Section 3 even for “conventional" sums of φ-mixing sequences (i.e.
in the case ` = 1), which is a particular case of our setup, and so, in particular, we show
that Stein’s method is effective for such sums and yields almost optimal convergence
rate.

3 Auxiliary results

Lemma 3.1. Let X and Y be two random variables defined on the same probability
space. Let Z be a random variable with density ρ bounded from above by some constant
c > 0. Then,

dK(L(Y ),L(Z)) ≤ 3dK(L(X),L(Z)) + 4c‖X − Y ‖L∞ and for any b ≥ 1,

dK(L(Y ),L(Z)) ≤ 3dK(L(X),L(Z)) + (1 + 4c)‖X − Y ‖1−
1

b+1

Lb .

The second inequality is proved in Lemma 3.3 in [8], while the proof of the first
inequality goes in the same way as the proof of that Lemma 3.3, taking in (3.2) from
there δ = ‖X − Y ‖L∞ .

Next, we recall that (see [2], Ch. 4) for any two sub-σ−algebras G,H ⊂ F ,

2φ(G,H) = sup{‖E[g|G]− Eg‖L∞ : g ∈ L∞(Ω,H, P ), ‖g‖L∞ ≤ 1}. (3.1)

The following lemma does not seem to be new but for readers’ convenience and com-
pleteness we will sketch its proof here.

Lemma 3.2. Let G1,G2 ⊂ F be two sub-σ−algebras of F and for i = 1, 2 let Vi be a
Rdi -valued random Gi-measurable vector with distribution µi. Set d = d1+d2, µ = µ1×µ2,
denote by κ the distribution of the random vector (V1, V2) and consider the measure
ν = 1

2 (κ + µ). Let B be the Borel σ−algebra on Rd and H ∈ L∞(Rd,B, ν). Then
E[H(V1, V2)|G1] and EH(v, V2) exist for µ1-almost any v ∈ Rd1 and

|E[H(V1, V2)|G1]− h(V1)| ≤ 2‖H‖L∞(Rd,B,ν)φ(G1,G2), P − a.s. (3.2)

where h(v) = EH(v, V2) and a.s. stands for almost surely.

Proof. Clearly H is bounded µ and κ a.s.. Thus E[H(V1, V2)|G1] exists and existence of
EH(v, V2) (µ1-a.s.) follows from the Fubini theorem. Relying on (3.1), inequality (3.2)
follows easily for functions of the form G(v1, v2) =

∑
i I(v1 ∈ Ai)gi(v2) where {Ai} is

a measurable partition of the support of µ1. Any uniformly continuous function H is
a uniform limit of functions of the above form, which implies that (3.2) holds true for
uniformly continuous functions. Finally, by Lusin’s theorem (see [14]), any function
H ∈ L∞(Rd,B, ν) is an L1 (and a.s.) limit of a sequence {Hn} of continuous functions
with compact support satisfying ‖Hn‖L∞(Rd,B,ν) ≤ ‖H‖L∞(Rd,B,ν) and (3.2) follows for
any H ∈ L∞(Rd,B, ν).

Corollary 3.3. Let Ui be a di-dimensional random vector, i = 1, ..., k defined on the
probability space (Ω,F , P ) from Section 2. Suppose that each Ui is Fmi,ni

-measurable,
where ni−1 < mi ≤ ni < mi+1, i = 1, ..., k, n0 = −∞ and mk+1 = ∞. Let {Ci : 1 ≤ i ≤ s}
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be a partition of {1, 2, ..., k}. Denote by µi the distribution of the random vector U(Ci) =
{Uj : j ∈ Ci}, i = 1, ..., s. Then, for any bounded Borel function H : Rd1+d2+...+dk → R,

∣∣EH(U1, U2, ..., Uk)−
∫

H(u1, u2, ..., uk)dµ1(u
(C1))dµ2(u

(C2))...dµs(u
(Cs))

∣∣ (3.3)

≤ 4‖H‖∞
k∑

i=2

φ(mi − ni−1)

where u(Ci) = {uj : j ∈ Ci}, i = 1, ..., s and ‖H‖∞ stands for the supremum of |H|. Namely,
let U (i)(Ci) be independent copies of the processes U(Ci), i = 1, ..., s. Then∣∣EH(U1, U2, ..., Uk)− EH(U

(j1)
1 , U

(j2)
2 , ..., U

(jk)
k )

∣∣ ≤ 4‖H‖∞
∑k

i=2 φ(mi − ni−1)

where ji satisfies that i ∈ Cji , for any 1 ≤ i ≤ k.

Proof. Denote by νi the distribution of Ui, i = 1, .., k. We first prove by induction on k

that for any choice of H and Ui’s with the required properties,

|EH(U1, U2, ..., Uk)−
∫

H(u1, u2, ..., uk)dν1(u1)dν2(u2)...dνk(uk)| (3.4)

≤ 2‖H‖∞
v∑

i=2

φ(mi − ni−1).

Indeed, suppose that k = 2 and set V1 = U1, V2 = U2, h(u1) = E[H(u1, U2)], G1 = F−∞,n1

and G2 = Fm2,∞. Taking expectation in (3.2) yields

|EH(U1, U2)− Eh(U1)| ≤ 2‖H‖∞φ(m2 − n1)

which means that (3.4) holds true when k = 2. Now, suppose that (3.4) holds true for
any k ≤ j − 1, U1, ..., Uk with the required properties and any bounded Borel function
H : Re1+...+ek−1 → R, where e1, ..., ek−1 ∈ N. In order to deduce (3.4) for k = j, set
V1 = (U1, ..., Uj−1), V2 = Uj , h(v1) = EH(v1, Uj), v1 = (u1, ..., uj−1), G1 = F−∞,nj−1

and
G2 = Fmj ,∞. Taking expectation in (3.2) yields

|EH(U1, U2, ..., Uj)− Eh(U1, U2, ..., Uj−1)| ≤ 2‖H‖∞φ(mj − nj−1).

Applying the induction hypothesis with the function h completes the proof of (3.4), since
‖h‖∞ ≤ ‖H‖∞. Next, we prove by induction on s that for any choice of k, H, Ui’s with
the required properties and C1, ..., Cs,∣∣ ∫ H(u1, u2, ..., uk)dµ1(u

(C1))dµ2(u
(C2))...dµs(u

(Cs))− (3.5)∫
H(u1, u2, ..., uk)dν1(u1)dν2(u2)...dνk(uk)

∣∣ ≤ 2‖H‖∞
∑k

i=2 φ(mi − ni−1).

For s = 1 this is just (3.4). Now suppose that (3.5) holds true for any s ≤ j − 1, and any
real valued bounded Borel function H defined on Rd1+...+dk , where k and d1, ..., dk are
some natural numbers. In order to prove (3.5) for s = j, set u(I) = (u(C1), u(C2), ..., u(Cs−1))

and let the function I be defined by

I(u(I)) =
∫
H(u1, u2, ...., uk)

∏
j∈Cs

dνj(uj). (3.6)

Then ∫
H(u1, u2, ..., uk)dν1(u1)dν2(u2)...dνk(uk) =

∫
I(u(I))

∏
j 6∈Cs

dνj(uj). (3.7)
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Let the function J be defined by

J(u(I)) =
∫
H(u1, u2, ...., uk)dµs(u

(Cs)). (3.8)

Then by (3.4), for any u(C1), ..., u(Cs−1),

|I(u(I))− J(u(I))| ≤ 2‖H‖∞
∑

i∈Cs
φ(mi − ni−1). (3.9)

It is clear that ‖J‖∞ ≤ ‖H‖∞. Applying the induction hypothesis with the function J

(considered as a function of the variable u) and taking into account (3.7) and (3.9) we
obtain (3.5) with s = j. We have completed the induction. Inequality (3.3) follows by
(3.4) and (3.5), and the proof of Corollary 3.3 is complete.

Remark 3.4. In the notations of Corollary 3.3, let Zi, i = 1, ..., s be a bounded σ{U(Ci)}-
measurable random variable. Then each Zi has the form Zi = Hi

(
U(Ci)

)
for some

function Hi which satisfies ‖Hi‖∞ ≤ ‖Zi‖L∞ . By considering the function H(u) =∏s
i=1 Hi(u

(Ci)), we obtain from (3.3) that,∣∣E[∏s
i=1 Zi]−

∏s
i=1EZi

∣∣ ≤ 4
(∏s

i=1 ‖Zi‖L∞
)∑k

j=2 φ(mj − nj−1). (3.10)

In general we can replace ‖H‖∞ appearing in the right hand side of (3.3) by some
essential supremum norm of H with respect to some measure which has a similar but
more complicated form as κ defined in Lemma 3.2.

4 Nonconventional CLT with almost optimal convergence rate via
Stein’s method

First, the proof of Theorem 2.2 follows from arguments in [11], [10], and [7]. Indeed,
relying on (2.25) in [11], the conditions of [7] and [10] hold true in our circumstances.
Existence of D2 follows from Theorem 2.2 in [11], inequality (2.8) follows from the
arguments in [10] (first by considering the case when M = 1) and the condition for
positivity follows from Theorem 2.3 in [7].

Before proving Theorem 2.3 we introduce the following notations. For any a, b ∈ R
set

d`(a, b) = min
1≤i,j≤`

|ia− jb|

and for any A,B ⊂ R set

dist(A,B) = inf{|a− b| : a ∈ A, b ∈ B} and d`(A,B) = inf{d`(a, b) : a ∈ A, b ∈ B}.

Finally, for any A1, A2, ..., AL ⊂ R, we will write A1 < A2 < ... < AL if a1 < a2 < ... < aL
for any ai ∈ Ai, i = 1, 2, ..., L.

Proof of Theorem 2.3

Suppose that D2 > 0. We consider first the self normalized case. Clearly, in the proof
of (2.9) we can assume that M = 1. For any N ≥ 1 set sN =

√
E(SN )2. Then by (2.8),

(sN )2 ≥ D2N −N
1
2C1. (4.1)

Let N be so that D2N > N
1
2C1. Then sN > 0 and we set ZN = SN

sN
. Let l be of the form

l = 4A ln(N + 1) where A ≥ 1 is a positive constant considered here as a parameter
which will be chosen later. Set r = [ l4 ] and

SN,r =

N∑
n=1

F (ξn,r, ξ2n,r, ..., ξ`n,r)
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where ξm,r = E[ξm|Fm−r,m+r] for any m ∈ N. Then by (2.5) and (2.7),

‖SN − SN,r‖L∞ ≤ `N(β∞(r))κ ≤ d`c−1Nc
l
4 = d`c−1NcA ln(N+1) ≤ c0(N + 1)1+A ln c (4.2)

where c0 = d`c−1 and we also used our assumption that M = 1. Next, let n > l, consider
the random vectors Ui = ξin,r and set mi = in− r and ni = in+ r, i = 1, ..., `. Then each
Ui is Fin−r,in+r-measurable and mi − ni−1 = n− 2r ≥ l − 2r ≥ l

2 . Applying Corollary 3.3
with the sets Ci = {in}, i = 1, ..., ` we obtain∣∣EF (ξn,r, ξ2n,r..., ξ`n,r)− EF (ξ(1)n,r, ξ

(2)
2n,r, ..., ξ

(`)
`n,r)

∣∣
≤ 4`φ(

l

2
) ≤ 4`dc

l
2 = c1(N + 1)2A ln c

where c1 = 4`d and ξ
(i)
in,r’s are independent copies of ξin,r’s. Considering the product

measure of the laws of the vectors (ξin,r, ξin), i = 1, ..., `, we can always assume that

there (on a larger probability space) exist independent copies ξ(i)in of the ξin’s such that

‖ξ(i)in − ξ
(i)
in,r‖L∞ ≤ β∞(r) for any i = 1, 2, ..., `. Thus by (2.5) and (2.7),

|EF (ξ(1)n,r, ξ
(2)
2n,r, ..., ξ

(`)
`n,r)− EF (ξ(1)n , ξ

(2)
2n , ..., ξ

(`)
`n )|

≤ `
(
β∞(r)

)κ ≤ `dc−1c
l
4 = c0(N + 1)A ln c

and notice that EF (ξ
(1)
n , ξ

(2)
2n , ..., ξ

(`)
`n ) = F̄ = 0. We conclude from (2.4) and the above

estimates that

|ESN,r| ≤ |ESl,r|+N(4`dc
l
2 + d`c−1c

l
4 ) (4.3)

≤ 2l + 5N`dc−1c
l
4 ≤ 8A ln(N + 1) + 5c0(N + 1)1+A ln c.

We assume henceforth that −A ln c = A| ln c| > 2 and set S̄N,r = SN,r − ESN,r. For
any two random variables X and Y defined on the same probability space we have
|EX2 − EY 2| ≤ ‖X + Y ‖L2‖X − Y ‖L2 and therefore by (4.2) and (2.8),

|ES2
N − ES2

N,r| ≤ (2‖SN‖2 + c0(N + 1)1+A ln c)c0(N + 1)1+A ln c

≤ 3c0(2 + c0 + C1 +D)(N + 1)
3
2+A ln c

where we also used that A| ln c| > 1. Next, by (4.3),

|ES2
N,r − ES̄2

N,r| = |ES2
N,r − VarSN,r| = |ESN,r|2

≤ 32A2 ln2(N + 1) + 25c20(N + 1)2+2A ln c

and together with the previous inequality and our assumption that A ln c < −2 we obtain
that

|ES2
N − ES̄2

N,r| ≤ c2 ln
2(N + 1) (4.4)

where c2 = 32A2 + 25c20 + 3c0(2 + c0 + C1 +D). Combining this wih (4.1), it follows that

ES̄2
N,r ≥ D2N −N

1
2C1 − c2 ln

2(N + 1). (4.5)

Let N be so large such that the right hand side in the previous inequality is positive.
Then ES̄2

N,r > 0. Let s̄N,r be its positive square root and set

Z̄N,r =
S̄N,r

s̄N,r
=

N∑
n=1

Yn
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Stein’s method for nonconventional sums

where for each n,

Yn = Yn,N,r =
F (ξn,r, ξ2n,r, ..., ξ`n,r)− EF (ξn,r, ξ2n,r, ..., ξ`n,r)

s̄N,r
.

Observe now that

‖ZN − Z̄N,r‖L∞ ≤ ‖(sN )−1SN − (s̄N,r)
−1SN,r‖L∞ + |(s̄N,r)

−1ESN,r|
≤ (sN )−1‖SN − SN,r‖L∞ + |(sN )−1 − (s̄N,r)

−1|‖SN,r‖L∞ + |(s̄N,r)
−1ESN,r|.

The inequality |x−1 − y−1| = |x2 − y2|(x2y + y2x)−1 holds true for any x, y > 0 yielding
that

|(sN )−1 − (s̄N,r)
−1| ≤ c2 ln

2(N + 1)

(sN + s̄N,r)sN s̄N,r
:= e1

where we used (4.4), and we conclude from (4.2), (4.3) and the above estimates that

‖ZN − Z̄N,r‖L∞ ≤ (sN )−1c0(N + 1)1+A ln c + 2Ne1 (4.6)

+(s̄N,r)
−1(8A ln(N + 1) + 5c0(N + 1)1+A ln c)

where we used that ‖SN,r‖L∞ ≤ 2N (recall our assumption that M = 1). Next, using
(4.1), (4.5) and that ln(N + 1) ≤ N

1
2 for any N ≥ 1 we derive that min(s2N , s̄2N,r) ≥ 1

4D
2N

when 3N
1
2D2 ≥ 8(C1 + c2) and in this case

‖ZN − Z̄N,r‖L∞ ≤ c4 max(D−1, D−3)N− 1
2 ln2(N + 1) (4.7)

where c4 = C4(1 + c0 + c2 +A), C4 > 1 is some absolute constant and we also used that
N1+A ln c < 1.

Next, let N be sufficiently large so that 3N
1
2D2 ≥ 8(C1 + c2). Then by (2.4) and the

above lower bound of s̄2N,r,

‖Yn‖L∞ ≤ 2(s̄N,r)
−1 ≤ 4D−1N− 1

2 . (4.8)

For any n = 1, 2, ..., N set

An = An,l,N = {1 ≤ m ≤ N : min
1≤i,j≤`

|in− jm| ≤ l} = {1 ≤ m ≤ N : d`(n,m) ≤ l}

and for any k ≥ 0 set

An(k) = {1 ≤ m ≤ N : d`(An, Am) = k}.

We claim that there exist constants K1 and K2 which depend only on ` such that for any
n = 1, 2, ..., N and k ≥ 0,

|An| ≤ K1l and |An(k)| ≤ K2l. (4.9)

Indeed, since An is contained in a union of at most `2 intervals whose lengths do not
exceed 2l + 1 we have |An| ≤ `2(2l + 1) and since l ≥ 1 we can take K1 = 3`2. To prove
the second inequality, let n and m be such that d`(An, Am) = k ≥ 0. Then there exist
1 ≤ is, js ≤ `, s = 1, 2, 3 and 1 ≤ u, v ≤ N such that |i3u − j3v| = k, |i1n − j1u| ≤ l and
|i2m− j2v| ≤ l. When j3v − i3u3 = k, we deduce from the last two inequalities that∣∣m− j2i3i1

i2j3j1
n− j2

j3i2
k
∣∣ ≤ l

( 1
i2

+
j2i3
i2j3j1

)
and similar inequality holds when j3v − i3u3 = −k. Thus, when n and k are fixed the set
An(k) is contained in a union of 2`6 intervals whose lengths do not exceed 2(`2 +1)l, and
the choice of K2 = 4`6 · (`2 + 2) is sufficient.
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Stein’s method for nonconventional sums

Now, set δ = δl,N =
∑N

n=1

∑
m∈An

EYnYm. Then

1 = VarZ̄N,r = E
( N∑
n=1

Yn

)2
= δ + γ (4.10)

where γ = γl,N =
∑N

n=1

∑
m∈{1,...,N}\An

EYnYm. Let 1 ≤ n,m ≤ N be such that m 6∈ An.
Consider the sets of indexes Γk = {jn : 1 ≤ j ≤ `} where k = n,m and set Γn,m = Γn∪Γm.
By the definition of the set An we have dist(Γn,Γm) = d`(n,m) > l. Therefore, the set
Γn,m can be represented in the form

Γn,m =

L⋃
t=1

Bt, B1 < B2 < ... < BL

where L ≤ 2`, each Bt is either a subset of Γn or of Γm and dist(Bt, Bt−1) > l. Set

Ut = {ξs,r : s ∈ Bt}, t = 1, ..., L.

Since r ≤ l
4 , there exist numbers nt and mt, t = 1, ..., L such that nt−1 < mt ≤ nt <

mt+1+
l
2 , where n0 = −∞,mL+1 := ∞, and each Ut is measurable with respect to Fmt,nt .

Set C1 = {1 ≤ t ≤ L : Bt ⊂ Γn} and C2 = {1 ≤ t ≤ L : Bt ⊂ Γm}. Then {C1, C2} is
a partition of {1, 2, ..., L}, Yn is measurable with respect to σ{Ut : t ∈ C1} and Ym is
measurable with respect to σ{Ut : t ∈ C2}. Therefore, by (3.10) and (4.8) and since
EYn = 0,

|EYnYm| ≤ 64`N−1D−2φ(
l

2
) ≤ 64d`D−2N−1c

l
2 ≤ 64d`D−2N2A ln c−1

implying that
|γ| = |δ − 1| = |δ − VarZ̄N,r| ≤ 64d`D−2N1+2A ln c. (4.11)

We assume now, in addition to the previous restriction on N , that 64d`D−2N− 1
2 < 1

2 .

Then δ > 1
2 and so we can set σ =

√
δ and W =

Z̄N,r

σ . Then σ2 ≥ 1
2 and using (4.11) we

obtain

‖W − Z̄N,r‖L∞ ≤ ‖Z̄N,r‖L∞ |1− 1

σ
| ≤ 4‖Z̄N,r‖L∞ |δ − 1| ≤ 16D−3N

3
2+2A ln c (4.12)

where we also used that s̄N,r ≥ 1
2DN

1
2 . Since A| ln c| > 1 the above right hand side does

not exceed 16D−3N− 1
2 which together with (4.7) and Lemma 3.1 yields that

dK(L(ZN ),N (0, 1)) ≤ 3dK(L(W ),N (0, 1)) + c5 max(D−1, D−3)N− 1
2 ln2(N + 1) (4.13)

where c5 = 16c4.
In order to approximate dK(L(W ),N (0, 1)), set Xn = σ−1Yn, n = 1, 2, ..., N . Then

W =
∑N

n=1 Xn and by (4.8) we have ‖Xn‖L∞ ≤ R, whereR = 4N− 1
2D−1σ−1 ≤ 8N− 1

2D−1.
Applying Theorem 2.1 in [13], using the equality (15) from there and taking into account
(4.9) we obtain that

dK(L(W ),N (0, 1)) ≤ R1 +R2 +R3 +K1lR+ 2K2
1 l

2NR3

where

R1 = 4‖
∑N

n=1

∑
m∈An

(XnXm − EXnXm)‖2,

R2 =
√
2π

∑N
n=1E

∣∣E[Xn|Xm : m /∈ An]
∣∣,

R3 = 2‖
∑N

n=1 Xn

(∑
m∈An

Xm

)2‖2(‖W‖2 + 5
)
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Stein’s method for nonconventional sums

and ‖X‖qq = E|X|q = ‖X‖qLq for any random variable X. Now we estimate R1, R2 and R3.
Set Tn =

∑
m∈An

(XnXm − EXnXm), n = 1, ..., N . Then

R2
1 = 16

N∑
n1,n2=1

ETn1
Tn2

.

Let n1 and n2 be such that d`(An1 , An2) = k > 2r. Consider the sets Γs = {jm : m ∈
Ans , 1 ≤ j ≤ `}, s = 1, 2. Then dist(Γ1,Γ2) = d`(An1 , An2) = k. Set Γ = Γ1 ∪ Γ2. Both Γi’s
are unions of at most `3 integer intervals (over the integers), and therefore there exist
sets B1, B2, ..., BL, L ≤ 2`3 such that

Γ =

L⋃
t=1

Bt, B1 < B2 < ... < BL

where each Bt is either a subset of Γ1 or a subset of Γ2 and dist(Bt, Bt−1) ≥ k, t = 2, ..., L.
Set

Ut = {ξa,r : a ∈ Bt}, t = 1, ..., L.

Then there exist numbers mt, nt, t = 1, 2, ..., L such that nt−1 < mt ≤ nt ≤ mt+1 + k − 2r,
n0 = −∞,mL+1 := ∞ and each Ut is Fmt,nt

-measurable. Set Cs = {1 ≤ t ≤ L : Bt ⊂ Γs},
s = 1, 2. Then {C1, C2} is a partition of {1, 2, ..., L} and Tns

, s = 1, 2 is measurable with
respect to σ{Ut : t ∈ Cs}. Since ‖Xn‖L∞ ≤ R we have ‖Tn‖L∞ ≤ 2K1lR

2 (recall (4.9))
and thus by (3.10),

|ETn1
Tn2

| ≤ 16K2
1 l

2R4L2φ(k − 2r) ≤ 64`6K2
1 l

2R4dck−2r

where we used that ETn = 0. Given n1 and k > 2r, the number of n2’s satisfying
d`(An1 , An2) = k is at most K2l (recall (4.9)), while for any other n2 and k we can use
the trivial upper bound |ETn1Tn2 | ≤ ‖Tn1‖L∞‖Tn2‖L∞ ≤ 4K2

1 l
2R4. Therefore, by the

definitions of R and r,

R2
1 ≤ 64`4K2

1 l
2R4N

(
K2ld

N∑
k=2r+1

ck−2r + (2r + 1)K2l
)
≤ C0l

4N−1D−4

where C0 is a constant which depends only on c and d and `. In order to approximate R2,
let 1 ≤ n ≤ N and set Xn = {Xm : m /∈ An}. Then,

‖E[Xn|Xn]‖21 ≤ ‖E[Xn|Xn]‖22 = EXnE[Xn|Xn]. (4.14)

Consider the sets τ1 = {n, 2n, ..., `n} and τ2 = {jm : m 6∈ An, 1 ≤ j ≤ `}. Then by
the definition of An we have dist(τ1, τ2) > l. Thus, the union τ1 ∪ τ2 can be written
as a union of at most 2` + 1 disjoint sets B1, B2, ..., BL such that B1 < B2 < ... < BL,
dist(Bt, Bt+1) > l and each Bt is either a subset of τ1 of a subset of τ2. Consider the
random vectors

Ut = {ξs,r : s ∈ Bt}, t = 1, ..., L

and the partition of {1, 2, ..., L} into the sets {C1, C2}, where Cs = {1 ≤ t ≤ L : Bt ⊂ τs},
s = 1, 2. Then Xn is measurable with respect to σ{Ut : t ∈ C1} and E[Xn|Xn] is
measurable with respect to σ{Ut : t ∈ C2}. Therefore by (3.10) and (2.7),

|E[XnE[Xn|Xn]]| ≤ 4(2`+ 1)R2dc
l
2 (4.15)

where we used that r ≤ l
4 , EXn = 0 and that ‖E[Xn|Xn]‖L∞ ≤ ‖Xn‖L∞ ≤ R. We

conclude from (4.14) and (4.15) that there exists a constant C ′
0 which depends only on `

such that

R2 ≤ C ′
0N

1
2D−1d

1
2 c

l
4 . (4.16)
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Stein’s method for nonconventional sums

To estimate R3, first observe that by the definition of W and by (4.10) we have ‖W‖22 =

δ−1‖Z̄N,r‖22 = 1 + δ−1γ and therefore ‖W‖2 ≤ 2, since |γ| < 1
2 and δ > 1

2 . The first factor
in the definition of R3 is clearly bounded from above by 2NK2

1 l
2R3 and we conclude that

R3 ≤ C4l
2D−3N− 1

2

for some constant C4 which depends only on `. The estimate (2.9) in Theorem 2.3
follows now by taking any A > max(1, 2| ln c|−1), using (4.13) and the above estimates of
Ri’s. Note that all the approximations in this section hold true only for N ’s satisfying
3N ≥ 8D−2(C1 + c2) and 64d`D−2N− 1

2 < 1
2 , but inequality (2.9) follows for all other N ’s

from the basic estimate dK(L(ZN ),N (0, 1)) ≤ 1. We also remark that when β∞(r0) = 0

for some r0 then taking r ≥ r0 we get SN,r = SN and so there is no need for (2.5) to hold
true.

Now we derive (2.10) where again it is sufficient to consider the case when M = 1.
Let 0 < ε < 1

4 . First for any b > 1,

‖D−1N− 1
2SN − ZN‖Lb = ‖SN‖Lb |N− 1

2D−1 − (sN )−1|

= ‖SN‖Lb

∣∣∣ ES2
N −D2N

D2NsN +D(sN )2N
1
2

∣∣∣
where in the second equality we used that |x−1 − y−1| = |x2 − y2|(xy2 + yx2)−1 for any
x, y > 0. By Lemma 5.2 in [7] for any b > 1 there exits a constant Mb which depends only
on c, d, b and ` so that ‖SN‖Lb ≤ MbN

1
2 . Using the previous estimates, for any N so that

3N
1
2D2 ≥ 8(C1 + c2) and 64d`D−2N− 1

2 < 1
2 we have sN ≥ 1

2D. Therefore,

‖D−1N− 1
2SN − ZN‖Lb ≤ 8D−3C1MbN

− 1
2

where and we also used (2.8). Applying the second statement of Lemma 3.1 with b = 1
2ε−1

and using (2.9) completes the proof of (2.10).

4.1 Extensions and remarks

Unbounded functions

Let M, ι > 0, κ ∈ (0, 1] and F : (R℘)` → R be a function satisfying

|F (x)| ≤ M(1 +
∑`

i=1 |xi|ι) and (4.17)

|F (x)− F (y)| ≤ M(1 +
∑`

i=1 |xi|ι + |yi|ι)
∑`

i=1 |xi − yi|κ

for any x = (x1, ..., x`) and y = (y1, ..., y`) in (R℘)`. For any R > 0 set FR(x) =

F (x)I(|F (x)| ≤ R). Then, assuming that for some p > ι+ 1,

γp = ‖ξ1‖Lιp < ∞

we can first approximate F (ξn, ξ2n, ..., ξ`n) by FR(ξn,r, ξ2n,r..., ξ`n,r) in the Lp-norm and
then use Lemma 3.3 3.1. Applying Theorem 2.3 with the function FR and taking R with
an appropriate dependence on N we obtain convergence rate of the form CN− 1

2+εp ,
where εp depends on p and satisfies limp→∞ εp = 0. In fact, similar type of rates can be
obtained assuming only that φ(n)+ βq(n) ≤ dn−θ for some q, d, θ > 0, where βq is defined
similarly to β∞, but with the Lq norm.

Nonlinear indexes

Let qi, i = 1, ..., ` be strictly increasing functions satisfying qi(N) ⊂ N which are ordered
so that

q1(n) < q2(n) < ... < q`(n) for any sufficiently large n.
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Consider the sums

SN =
∑N

n=1 F (ξq1(n), ξq2(n), ..., ξq`(n)).

The proof of Theorem 2.3 proceeds essentially in the same way when all qi’s are linear.
For more general qi’s, set

An = {1 ≤ m ≤ N : min
1≤i,j≤`

|qi(n)− qj(m)| ≤ l}.

The proof of Theorem 2.3 will proceed similarly for the sums SN if we show that the limit
D2 = limN→∞ N− 1

2ES2
N exists, obtain convergence rate towards it and upper bounds

similar to the ones in (4.9). Suppose that q1, ..., qk are linear, for some k < ` and that
qj , j ≥ k are not. When all qi’s are polynomials, existence of D2 is proved in [8]. Though
the limit D2 does not exist in general, if qj+1 grows faster then qj for j > k in the sense of
(2.11) in [11], then existence of D2 follows from Theorem 2.3 in [11]. Convergence rate
towards D2 when qi’s are polynomials can be obtained by proceeding similarly to the
proof of Proposition 5.3 in [8]. If, instead, qj+1(n

α)− qj(n) converges to ∞ as n → ∞ for
some 0 < α < 1 and all j ≥ k, then convergence rate towards D2 with some dependence
on α follows from the arguments in [11].

Each qi(n) grows at least as fast as linearly which implies that |An| is of order l. When
all qi’s are polynomials of the same degree then the limit limn→∞ q−1

i (qj(n))/n exists for
any 1 ≤ i, j ≤ ` and therefore the proof of the second upper bound in (4.9) proceeds in a
similar way but with d̃`(a, b) = min1≤i,j≤` |qi(a)− qj(b)| in place of d`(a, b). When qi’s do
not necessarily have the same degree then beginning the summation in the definition
of SN from cNγ for appropriate γ < 1 and c > 0, guarantees that |qi(n)− qj(m)| > CN

when deg qi 6= deg qj and cNγ ≤ n,m ≤ N . Similar to the latter inequality is satisfied
when max(i, j) > k and qs grows faster than qs−1 for s = k+1, ..., ` and so an appropriate
version of (4.9) follows in this situation, as well.

Remark 4.1. Using arguments similar to the ones in [3], we can obtain (2.9) with
N− 1

2SN in place of ZN when F satisfies (4.17), and in particular when F is a bounded
Hölder continuous function. In fact, Stein’s method also yields (under appropriate condi-
tions) the nonconventional functional CLT, which was proved in [11] using martingale
approximation. These results require a relatively long presentation and their proofs are
not short, so they will appear elsewhere.
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