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Abstract

Coalescing random walk on a unimodular random rooted graph for which the root
has finite expected degree visits each site infinitely often almost surely. A corollary
is that an opinion in the voter model on such graphs has infinite expected lifetime.
Additionally, we deduce an adaptation of our main theorem that holds uniformly for
coalescing random walk on finite random unimodular graphs with degree distribution
stochastically dominated by a probability measure with finite mean.
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1 Introduction

Coalescing random walk (CRW) starts with one particle at each vertex of a locally
finite, connected and undirected graph. Each particle then performs a continuous time
edge-driven random walk, jumping along each edge adjacent to its present location
according to a unit intensity Poisson process. Call the process site recurrent if every
site is visited infinitely often almost surely.

Griffeath proved that CRW is site recurrent on Zd [Gri78]. Benjamini et. al. recently
showed CRW is site recurrent on any bounded degree graph [BFGG+16]. As for un-
bounded degree graphs, [BFGG+16, Theorem 2 (ii)] shows the process is site recurrent
on any Galton-Watson tree whose offspring distribution has an exponential tail.

Our goal is to show that CRW is site recurrent on any unimodular random rooted
graph for which the root has finite expected degree. This is a general class of random
graphs that arises frequently in applications. A quick corollary is that opinions in the
voter model on such graphs have infinite expected lifetime. Previous works relating
to CRW and the voter model on random graphs include [BPS12, HP15]. In particular,
[HP15] establishes that every pair of particles eventually coalesce a.s. in any recurrent
unimodular random rooted graph.

Before we give the definition, we start with a few interesting examples of transient
unimodular random graphs with unbounded, but finite expected degree.
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Coalescing random walk on unimodular graphs

(i) The unimodular version of a Galton-Watson tree, which is obtained from a stan-
dard Galton-Watson tree by first adding an extra child at the root to obtain an
augmented Galton-Watson tree, and then biasing the law of the resulting random
graph by the reciprocal of the degree of the root [AL07, Example 1.1.]. Unimodular
Galton-Watson trees always have finite expected degree regardless of whether the
offspring distribution has finite mean. Note this is much more general than the
exponential tail requirement needed in [BFGG+16, Theorem 2 (ii)].

(ii) Various random graphs obtained from Zd or Rd for d ≥ 3, including: Random
geometric graphs defined in terms of point processes in Rd [Pen03, Rou15]; Su-
percritical long-range percolation clusters in Zd; Graphs obtained from Zd by
replacing each edge with a random number of parallel edges with finite mean in
some translation-invariant way.

(iii) Curien’s planar stochastic hyperbolic triangulations, which are transient versions of
the uniform infinite planar triangulation [Cur16]; Various random graphs obtained
from hyperbolic space Hd for d ≥ 2, such as hyperbolic random geometric graphs
built from point processes in Hd [BPP14].

Furthermore, combining our result with a simple compactness argument also yields
that, whenever G is a finite graph whose degree distribution is stochastically dominated
by some integrable reference distribution µ, CRW “looks recurrent" on G from the
perspective of most vertices, in a quantitative way that depends only on the reference
distribution µ. See Corollary 1.4 for a precise statement.

Definitions and theorem statement

To state our theorem we develop the framework and definitions more carefully. As
in [BC12], a rooted graph is a pair (G, ρ) with G = (V,E) and ρ ∈ V . An isomorphism
between two rooted graphs is a graph isomorphism that maps the roots of the graphs
to each other. Let G• denote the set of isomorphism classes of locally finite, connected
rooted graphs with no loops or multiple edges. Similarly we have G••, the set of
isomorphism classes of bi-rooted graphs (G, x, y). When there is no cause for confusion,
we use (G, ρ) to refer interchangeably to an element of G•, or to a representative of its
class, and similarly for G••.

Coalescing random walk is well-defined on isomorphism classes of rooted graphs,
since its distribution does not depend on the choice of representative. The same is
true for random walk, with the understanding that the starting point of the walk may
depend on the isomorphism class, and is mapped to an isomorphic location when passing
between representatives. These two technicalities can be surmounted by choosing a
root as the starting point of the walk.

A random rooted graph (G, ρ) is a random variable with values in G•. Following
[BC12] we use P and E to denote probability and expectation for a random rooted graph.
We use PG

ρ and EG
ρ to denote the quenched probability and expectation of a process

taking place on (G, ρ), that is, the conditional law of the process given (G, ρ). We use P
and E to denote probabilities and expectations with respect to annealed measure, that
is, the joint distribution of (G, ρ) and the process on (G, ρ):

P =

∫
PG
ρ dP(G, ρ).

Before stating our theorem we give two definitions from [BC12]. Let (G, ρ) denote a
random rooted graph and let (Xn)n≥0 denote random walk on (G, ρ) with X0 = ρ. Then
(G, ρ) is stationary if

(G,X0) = (G,X1) in distribution.
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Coalescing random walk on unimodular graphs

To introduce unimodularity we require something called the mass-transport principle or
MTP for short. A random rooted graph (G, ρ) satisfies the MTP if for every Borel positive
function F : G•• → R+ we have

E

[∑
x∈V

F (G, ρ, x)

]
= E

[∑
x∈V

F (G, x, ρ)

]
. (1.1)

A random rooted graph (G, ρ) is unimodular if it satisfies (1.1). We think of F (G, ρ, x) as
an amount of mass sent from ρ to x. The above says that the average mass sent from ρ

to other vertices is the same as the average mass received by ρ. Note that every finite
graph can be made into a unimodular random rooted graph by rooting it at a uniformly
random vertex. Unimodular random rooted graphs were introduced by Benjamini and
Schramm [BS01] and developed systematically by Aldous and Lyons [AL07].

With this notation we can state our theorem.

Theorem 1.1. CRW is site recurrent P-almost surely on any unimodular random rooted
graph (G, ρ) for which E[deg(ρ)] < ∞.

It is quite easy to construct counterexamples to show that the assumption E[deg(ρ)] <

∞ is necessary, for example by taking a canopy tree and replacing each edge at height n
with a large number of parallel edges, see Example 3.1.

The proof of Theorem 1.1 uses the well-known duality between CRW and the voter
model. The voter model is a process on (G, ρ) in which each site has a unique opinion
which it spreads to neighbors at rate 1 (along each edge). Let ζρt be the set of vertices at
time t with the opinion started at ρ. The voter model is dual to CRW in the sense that ζρt
is equal in distribution to the set of particles in CRW that have coalesced and occupy site
ρ at time t. We obtain Theorem 1.1 by proving a linear bound on the annealed second
moment of |ζρt |.
Proposition 1.2. Let (G, ρ) be a unimodular random rooted graph. Then E|ζρt |2 ≤
1 + 2tE[deg(ρ)] for every t ≥ 0.

To prove Proposition 1.2 we start by defining the voter model and some important
duality relationships in Section 2.1. We then use the MTP in Lemma 2.1 to show that the
size of the voter model cluster currently occupying ρ, denoted |ζ(ρ)t |, has the size-biased
distribution of |ζρt |. A different duality relation at (2.2) relates the size of the voter model
cluster occupying ρ to the total number of CRW particles coalesced with the one started
at ρ. We use this in Proposition 2.4 to show that the expected number of other particles
coalesced to a given particle is bounded by two times the integral of the vertex degrees
along the particle’s random walk path. This is accomplished with a coupling that gives
priority to the path followed by the particle started from ρ and ignores certain collisions.
Using the stationarity and reversibility observed in Lemma 2.3, we obtain the bound
E|ζ(ρ)t | ≤ 1 + 2tE[deg(ρ)] for all t ≥ 0. The size-biasing relationship observed in Lemma

2.1 implies that E|ζ(ρ)t | = E[ |ζρt |2 ], which gives the desired second moment bound.
Theorem 1.1 follows in an elementary way from duality and Proposition 1.2, so we

give the proof now.

Proof of Theorem 1.1. To compress our notation we let E denote EG
ρ , P denote PG

ρ , and
ζt denote ζρt . Let c = 1 + 2E[deg(ρ)]. Fix m > c and let ε = c/m. Applying Markov’s
inequality to the random variable E|ζt|2 = E[ |ζt|2 | (G, ρ)], we obtain that

P(E|ζt|2 ≤ mt) ≥ 1− ε > 0

for every t ≥ 1. For integer k ≥ 1 let Ak = {E|ζk|2 ≤ mk} so that P(Ak) ≥ 1− ε for all k.
By the reverse Fatou’s lemma applied to 1(Ak), lim supk P(Ak) ≤ P(lim supk Ak), and thus

1− ε ≤ P(Ak occurs infinitely often).
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Coalescing random walk on unimodular graphs

So, with P-probability at least 1− ε, E|ζti |2 ≤ mti for some sequence of integers ti ↑ ∞.
By Lemma 2.2, we have that E|ζt| = 1. The Cauchy-Schwarz inequality then yields

P (|ζti | > 0) ≥ (E|ζti |)2

E|ζti |2
≥ 1

mti
(1.2)

for each ti. Let i0 = 0 and for each k ≥ 1 let ik be minimal such that tik ≥ 2tik−1
. Let sk =

tik . Since 0 is an absorbing state, t 7→ P (|ζt| > 0) is non-increasing and we deduce that∫ ∞

0

P (|ζt| > 0)dt ≥ 1

m

∞∑
k=1

sk+1 − sk
sk+1

≥ 1

m

∞∑
k=1

1

2
= ∞ (1.3)

with P-probability at least 1− ε. Let Bt be the event that in CRW there is a particle at
ρ at time t. By the duality relationship described in (2.1), P (Bt) = P (|ζt| > 0) and so

P

(∫ ∞

0

P (Bt)dt = ∞
)

≥ 1− ε.

Since ε can be made small by choosing m large, the above has P-probability 1. Moreover,
on a fixed graph G, it is known (see for example [BFGG+16]) that

∫∞
0

P (Bt)dt = ∞ im-
plies ρ is recurrent (i.e., is occupied infinitely often as t → ∞) almost surely. Combining
these observations, it follows that ρ is recurrent P-a.s. Since any property that holds
a.s. for the root of a unimodular graph holds for all vertices a.s. [AL07, Lemma 2.3], it
follows that all vertices are recurrent P-a.s.

We now give two corollaries of our theorem. The expression at (1.3) is the expected
survival time of the opinion started at ρ in the voter model on G. From it we obtain the
following corollary.

Corollary 1.3. Let (G, ρ) be a unimodular random rooted graph with E[deg(ρ)] < ∞.
Then the quenched expected survival time of the opinion started at ρ is infinite a.s.

As remarked previously, we can use compactness arguments to derive “uniform”
versions of Theorem 1.1 that are already interesting in the context of finite graphs. We
denote by σt(v) the first time after t that v is visited by a particle in CRW.

Corollary 1.4. Let µ be a probability measure on N with finite mean. Then there exists
a function fµ(t, u) : [0,∞)× [0,∞) → [0, 1] with

lim
u→∞

fµ(t, u) = 0 ∀t ≥ 0

such that whenever (G, ρ) is a unimodular random rooted graph such that the law of
deg(ρ) is stochastically dominated by µ, we have that

P
(
σt(ρ) ≥ t+ u

)
≤ fµ(t, u)

for every t, u ≥ 0.

Proof. Let M be the set of laws of unimodular random rooted graphs with root degree
stochastically dominated by µ. Then M is compact with respect to the weak topology
[Cur, Section 3.2.1], and since G• is a Polish space when equipped with the local topology
[Cur, Theorem 2], M is sequentially compact also.

Let σ
(r)
t (ρ) be the first time after t that ρ is visited by a particle in the modified

coalescing random walk in which particles are killed upon leaving the ball of radius r

around ρ. Then for each t, u ≥ 0, the function

ν 7→ ν
[
PG
ρ

(
σ
(r)
t (ρ) ≥ t+ u

)]
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is clearly continuous with respect to the weak topology on measures on G•. Since
PG
ρ (σt(ρ) ≥ t+ u) = infr≥1 P

G
ρ (σ

(r)
t (ρ) ≥ t+ u) it follows that the function

ν 7→ ν
[
PG
ρ (σt(ρ) ≥ t+ u)

]
is an infimum of continuous functions and is therefore upper semi-continuous with
respect to the weak topology on the space of probability measures on G•. Thus, it
obtains its maximum on M , and we denote this maximum by fµ(t, u). Clearly fµ(t, u) is
decreasing in u.

Suppose for contradiction that infu≥0 fµ(t, u) ≥ ε for some ε > 0 and t ∈ [0,∞). Then
for each n ≥ 1 there exists νn ∈ M such that

νn
[
PG
ρ (σt(ρ) ≥ t+m)

]
≥ ε for all 1 ≤ m ≤ n.

By compactness of M , the measures νn have a subsequential limit ν ∈ M , and by upper
semi-continuity we have that

ν
[
PG
ρ (σt(ρ) ≥ t+m)

]
≥ ε for all m ≥ 1.

This contradicts Theorem 1.1.

2 Establishing Proposition 1.2

We follow the outline described in the introduction just proceeding the statement of
Proposition 1.2.

2.1 Voter model duality

We describe the graphical representation that allows us to construct and analyze
coalescing random walk as well as a related voter model. We do this on a fixed graph; to
obtain a reasonable joint measure P of the random graph and CRW, it suffices to define
the elements of the graphical representation (i.e., the processes U(v,w) given below)
recursively over finite rooted graphs.

Let G = (V,E) be an undirected, locally finite graph on which the continuous time
edge-driven walk is non-explosive, i.e. makes at most finitely many jumps in any finite
time interval a.s. This property always holds a.s. on unimodular random rooted graphs
with finite expected degree [AL07, Corollary 4.4], and can therefore be safely assumed
throughout our analysis. Double the edge set of G to form the set of directed edges
F = {(v, w) : v, w ∈ E}. Define a family {U(v,w) : (v, w) ∈ F} of independent unit intensity
Poisson point processes. Then a particle dropped at a spacetime location (v, s) follows
a unique path Θt(v, s) : [s,∞) → V defined by updating to Θt(v, s) = u, any time that
Θt−(v, s) = w and t ∈ U(w,u); local finiteness and non-explosivity ensures that the jump
times are a discrete subset of [0,∞), and hence that Θt(v, s) is well-defined for every
v ∈ V , s ∈ [0,∞) and t ≥ s a.s. Coalescing random walk, labelled by ξvt for the location
of the particle that began at v, is defined by

ξvt = Θt(v, 0).

We let ξt = {w ∈ V : ∃v such that ξvt = w} be the collection of all occupied sites at time t.
The related voter model ζt, initialized at any time T > 0, is defined on the time

interval [0, T ] by letting
ζvt = {w : ΘT (w, T − t) = v}.

In particular, ζv0 = {v}, and for t > 0, ζvt and ζwt are disjoint if w 6= v. The non-explosivity
assumption ensures that V =

⋃
v ζ

v
t for t > 0. Therefore {ζvt : v ∈ V } is a partition of V ,
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so we can think of the sets ζvt as clusters vying for control of the territory V , with ζvt
being the cluster that started as {v}. Labelling clusters by their starting vertex, we could
also define the voter model by ζt(v) = ΘT (v, T − t), with ζt(v) equal to the label of the
cluster that contains v at time t.

From the graphical representation, looking backwards in time we see that the voter
model is Markov with the following transition rule: for each (v, w) ∈ F , at rate 1,
ζt(v) = ζt−(w), or equivalently, the cluster containing w swallows v. There are various
connections between ξt and ζt. The most basic is that

ζvT = {w : ξwT = v}. (2.1)

If we define ζ
(v)
t = ζ

ζt(v)
t to be the cluster containing v, we note also that

ζ
(v)
T = {w : ξwT = ξvT }, (2.2)

and that v ∈ ζ
ξvT
T . If we think of the voter model as being constructed separately from

CRW, these equalities are in distribution and hold for any fixed value of T ≥ 0.

2.2 Proof of Proposition 1.2

Say that (Xt)t≥0 is a continuous-time edge-driven random walk on a graph G if Xt

moves along each edge at rate one.

We start by using the mass-transport principle to deduce a size-biasing property for
the voter model.

Lemma 2.1. Let (G, ρ) be a unimodular random graph on which the continuous time

edge-driven random walk is non-explosive. Then |ζ(ρ)t | has the size-biased distribution of
|ζρt |. That is, for every t ≥ 0 and every integer n ≥ 0,

P( |ζ(ρ)t | = n ) = nP( |ζρt | = n ).

Proof. The duality relation at (2.2) ensures that for any (G, ρ) we have ρ ∈ ζ
ξρt
t when the

voter model is initialized at time t. So, for n ≥ 1 we have the disjoint union

{|ζ(ρ)t | = n} =
⋃

x∈V (G)

{|ζxt | = n, ρ ∈ ζxt }. (2.3)

Define F : G•• → R+ by

F (G, ρ, x) = Eρ
G[1(|ζ

x
t | = n, ρ ∈ ζxt )].

Using the MTP as formulated at (1.1) and (2.3),

P(|ζ(ρ)t | = n) = E

 ∑
x∈V (G)

F (G, ρ, x)

 = E

 ∑
x∈V (G)

F (G, x, ρ)

 . (2.4)

On the event |ζρt | = n,
∑

x∈V (G) 1(x ∈ ζρt ) = n. Writing the indicator as a product and
using Fubini’s theorem,∑

x∈V (G)

F (G, x, ρ) =
∑

x∈V (G)

EG
ρ [1(|ζ

ρ
t | = n, x ∈ ζρt )]

= EG
ρ

 ∑
x∈V (G)

1(|ζρt | = n)1(x ∈ ζρt )


= nEG

ρ [1(|ζρt | = n)] .
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Combining with (2.4),

P(|ζ(ρ)t | = n) = E[nEG
ρ [(1(|ζ

ρ
t | = n)]] = nP(|ζρt | = n),

as desired.

On bounded degree graphs |ζρt | is a martingale. Indeed, it transitions as a nearest-
neighbor simple random walk whose jump rate is equal to 2 times the number of
(undirected) boundary edges of the cluster ζρt . A concern on unbounded degree graphs
is that a lack of integrability might cause the size of the cluster to instead be a strict
local martingale. The next lemma shows this is not the case in our setting.

Lemma 2.2. Let (G, ρ) be a unimodular random rooted graph on which the continuous
time edge-driven random walk is non-explosive. Then EG

ρ |ζρt | = 1 for all t ≥ 0 a.s.

Proof. It follows from Lemma 2.1 that E|ζρt | =
∑∞

n=0P(|ζ
(ρ)
t | = n) = 1. Thus, it suffices to

show that, conditional on (G, ρ), the process |ζρt | is a supermartingale a.s., since then we
have that EG

ρ |ζρt | ≤ 1 a.s., and since this random variable must integrate to 1 the claim
follows.

Every non-negative local martingale is a supermartingale by Fatou’s lemma, and so
it suffices to check that |ζρt | is a local martingale. This follows easily after noting that
the jump chain corresponding to the process |ζρt | is a symmetric simple random walk
absorbed at 0.

Lemma 2.3. Let (G, ρ) be a unimodular random rooted graph with E[deg(ρ)] < ∞ and let
(Xt)t≥0 be a continuous-time edge-driven random walk with X0 = ρ. Then, the measure
of (G, ρ) is stationary and reversible for the random walk (G,Xt)t≥0 on G•.

Proof. This follows from [AL07, Corollaries 4.3 and 4.4].

The next result allows us to estimate the size of ζ(ρ)t in terms of the average degree
of ξρt over time.

Proposition 2.4. Let (G, ρ) be a fixed (nonrandom) element of G• on which the continu-
ous time edge-driven random walk is non-explosive, and let (Xt)t≥0 be a continuous time
edge-driven random walk on (G, ρ) with X0 = ρ. Then

EG
ρ [ |ζ

(ρ)
t | ] ≤ 1 + 2

∫ t

0

EG
ρ [ deg(Xs) ]ds. (2.5)

Proof. Since the graph is fixed, use P and E to denote probability and expectation with
respect to the process on (G, ρ). First double up the edge set to F = {(x, y) : xy ∈ E}.
Independently of (Xt) let {Ue : e ∈ F} be a family of independent Poisson point processes
with unit intensity on R+, one for each directed edge. We think of the points

{(e, t) : t ∈ Ue, e ∈ F}

as arrows on the spacetime set G×R+.
Define a version of coalescing random walk ξt on G using (Xt) and {Ue} as follows.

Recall that for y ∈ V , ξyt is the position at time t of the particle that began at y. First, set
ξxt = Xt for t ≥ 0. Then, for y 6= x, let ξy0 = y and follow these rules to determine ξyt for
t > 0.

1. If ξyt = Xt, then ξys = Xs for s > t.

2. If ξyt− = v 6= Xt and t ∈ U(v,w), then ξyt = w.
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In other words, particles remain stuck to (Xt) once they hit it, and otherwise follow the
arrows given by the {Ue}. For t ≥ 0 and v ∈ V define the particle count Nt by

Nt(v) = |{w : ξwt = v}|.

First, condition on γ = {Xt : t ≥ 0}. For v ∈ V let Sv(γ) = {t ≥ 0: Xt = v}. Then, for
t > 0 let

Uγ(t) = {((v, w), s) : (v, w) ∈ F, s ∈ U(v,w) ∩ Sw(γ) ∩ [0, t]},

and let Uγ =
⋃

t>0 Uγ(t). The set Uγ consists of all arrows pointing towards the space-
time path γ. Modify ξt so that it ignores Uγ , denoting the modified process by ξt(γ), with
particle count Nγ

t . Note that Nt(v) ≤ Nγ
t (v) if v 6= Xt, and that conditional on γ, ξt(γ) is

independent of Uγ .

Since particles do not escape from Xt, it follows that

Nt(Xt) = 1 +
∑

((v,w),s)∈Uγ(t)

Ns(v) +
∑

s≤t : Xs 6=Xs−

Ns−(Xs).

Using the above inequality we deduce the upper bound

Nt(Xt) ≤ 1 +
∑

((v,w),s)∈Uγ(t)

Nγ
s (v) +

∑
s≤t : Xs 6=Xs−

Nγ
s−(Xs).

Almost surely, Uγ(t) and {s ≤ t : Xs 6= Xs−} are finite, and the above is a sum of
finitely many terms. Conditioning, then noting that ξt(γ) and thus Nγ

t are conditionally
independent of Uγ given γ, we obtain

E[Nt(Xt) | γ, Uγ ] ≤ 1 +
∑

((v,w),s)∈Uγ(t)

E[Nγ
s (v) | γ ] (2.6)

+
∑

s≤t : Xs 6=Xs−

E[Nγ
s−(Xs) | γ ].

First we estimate E[Nγ
s (v) | γ ] for v 6= Xs. Note that, conditioned on γ, Nγ

s (v) = |ζs|
where {ζr : r ∈ [0, s]} is a voter model with ζ0 = {v}. Looking backwards in time, this
voter model has the transitions:

1. If w ∈ ζr− and r ∈ U(w,z) with z 6= Xs−r then ζr = ζr− \ {w}.

2. If w ∈ ζr− and r ∈ U(z,w) with z 6= Xs−r then ζr = ζr− ∪ {z}.

3. If w ∈ ζr− and w = Xs−r then ζr = ζr− \ {w}.

Transitions 1. and 2. respectively increase and decrease |ζr| by 1 at the same rate, while
transition 3. decreases |ζr|, so |ζr| is a supermartingale. Therefore,

E[Nγ
s (v) | γ ] = E[ |ζs| ] ≤ E[ |ζ0| ] = 1.

Next we estimate Nγ
s−(Xs). However, N

γ
s−(Xs) = |ζs| for the same process, except with

ζ0 = {X0}. Therefore E[Nγ
s−(Xs) | γ ] ≤ 1 as well. Plugging into (2.6),

E[Nt(Xt) | γ, Uγ ] ≤ 1 + |Uγ(t)|+ |{s ≤ t : Xs 6= Xs−}|. (2.7)

Conditioned on γ, { |Uγ(t)| : t ≥ 0} is a counting process with time-varying intensity
deg(Xt), so

E[ |Uγ(t)| | γ ] =
∫ t

0

deg(Xs)ds.
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Without conditioning on γ, { |{s ≤ t : Xs 6= Xs−}| : t ≥ 0} is a counting process with
adapted intensity deg(Xt). Taking E[ · | γ ] in (2.7) gives

E[Nt(Xt) | γ ] ≤ 1 +

∫ t

0

deg(Xs)ds+ |{s ≤ t : Xs 6= Xs−}|,

then taking E[ · ], noting the jump rate of Xs is deg(Xs) and using Fubini’s theorem, we
find

E[Nt(Xt) ] ≤ 1 + 2

∫ t

0

E[ deg(Xs) ]ds.

With respect to our construction, ξρt = Xt for t ≥ 0. Therefore, the result follows from
the duality relation between coalescing random walk and the voter model, since

ζ
(ρ)
t

d
= {x : ξxt = ξρt }.

Finally we complete the proof of Proposition 1.2.

Proof of Proposition 1.2. Lemma 2.3 ensures that E[deg(Xt)] = E[deg(ρ)] for t ≥ 0. Apply
this to Proposition 2.4, so when we take E[·] of (2.5) and apply Fubini’s theorem we
obtain

E[ |ζ(ρ)t | ] ≤ 1 + 2tE[deg(ρ)]

for t ≥ 0. We conclude the proof by observing that, by Lemma 2.1, we have E[|ζρt |2] =
E[|ζ(ρ)t |].

3 Counterexample when E[deg(ρ)] = ∞
Example 3.1. We now briefly discuss an example showing that the assumption of finite
expected degree is needed for the validity of Theorem 1.1. Let (T, ρ) be the binary
canopy tree. This graph arises as the Benjamini-Schramm limit of balls in the 3-regular
tree, and can be described as follows: Every vertex v of T has a height h(v) ∈ {0, 1, . . .}.
Vertices of height zero are leaves that each have a single height 1 neighbour, while
vertices at height n ≥ 1 have two neighbours at height n− 1 and a single neighbour at
height n+ 1. The isomorphism class of the rooted graph (T, v) depends only on h(v), and
it is well-known that (T, ρ) is unimodular if ρ is chosen to have a random height with
P(h(ρ) = n) = 2−n−1.

Replace each edge of (T, ρ) between height n and n+1 with 3n parallel edges to obtain
a unimodular random rooted graph (G, ρ). Observe that Edeg(ρ) =

∑∞
n=1 h(n)3

n = ∞.

If Zn is a discrete time simple random walk on G, then h(Zn) is a biased random walk
on {0, 1, . . .} that moves up with probability 3/5 when it is not at height zero. From
any starting point, the expected number of discrete time steps that the walk spends at
any given height is bounded by a constant, and it follows that the expected time that
the continuous time walk spends at height n is exponentially small in n, uniformly in
the starting point. We deduce from this together with the Markov property that the
continuous time walk on G is explosive, and moreover that the probability that it has not
exploded by time t is exponentially small in t, uniformly in the starting point.

Now suppose that we start a continuous time random walk at every site of G. We run
the walks independently, and particles do not coalesce. The natural coupling ensures,
for each vertex v of G, the probability that v is occupied by at least one particle at time t

in this model is at least the probability that v is occupied at time t in the CRW. On the
other hand, we have by time reversal that the expected number of particles occupying v

at time t in this model is equal to the probability that the random walk started at v has
not exploded by time t. Since this probability decays exponentially with t, we deduce
that the expected occupation time of v is finite, and hence that the CRW on G is not site
recurrent.
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