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Abstract

We prove that the largest and smallest root in modulus of random Kac polynomials
have a non-universal behavior. They do not converge towards the edge of the support
of the limiting distribution of the zeros. This non-universality is surprising as the large
deviations principle for the empirical measure is universal. This is in sharp contrast
with random matrix theory where the large deviations principle is non-universal but
the fluctuations of the largest eigenvalue are universal. We show that the modulus of
the largest zero is heavy tailed, with a number of finite moments bounded from above
by the behavior at the origin of the distribution of the coefficients. We also prove that
the random process of the roots of modulus smaller than one converges towards a
limit point process. Finally, in the case of complex Gaussian coefficients, we use the
work of Peres and Virág [15] to obtain explicit formulas for the limiting objects.
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1 Introduction

Consider a random polynomial of the form

Pn(z) =

n∑
k=0

akz
k = an

n∏
k=1

(z − z(n)k )

where a0, . . . , an are i.i.d. random variables and z(n)1 , . . . , z
(n)
n are the complex zeros of

Pn. These polynomials are often called Kac polynomials. The zeros of these polynomials
are known to concentrate on the unit circle of C as their degree tends to infinity under
some moment condition on the coefficients. This universal behavior has been studied
by many authors since the work of Sparo and Shur [17] and we refer to the book [2] for
more precise information on the history of the topic. The most precise result about this
convergence was given by Ibragimov and Zaporozhets in [12], where they prove that for
any bounded and continuous function f and any ε > 0

P

(∣∣∣∣∣ 1n
n∑
k=1

f(z
(n)
k )− 1

2π

∫ 2π

0

f(eiθ)dθ

∣∣∣∣∣ > ε

)
−−−−→
n→∞

0

*CEREMADE, UMR CNRS 7534 Université Paris-Dauphine, PSL Research university, Place du Maréchal de
Lattre de Tassigny 75016 Paris, France. E-mail: butez@ceremade.dauphine.fr

https://doi.org/10.1214/18-ECP114
http://www.imstat.org/ecp/
http://arXiv.org/abs/1704.02761v1
http://hal.archives-ouvertes.fr/hal-01504174
mailto:butez@ceremade.dauphine.fr


The largest root of random Kac polynomials is heavy tailed

if and only if E(log(1 + |a0|)) <∞ and P(a0 = 0) < 1.
This result means that a proportion going to one of the zeros clusters uniformly on

the unit circle. It does not prevent a negligible part of the zeros to be real or to be away
from the unit circle. In this situation, it is natural to ask if maxk |z(n)k | and mink |z(n)k |
converge towards 1 as n goes to infinity. In this note, we prove that the behavior of the
extremal zeros of Pn is not universal and that the random variable max |z(n)k | is usually a
heavy tailed random variable. We give an upper bound on the number of finite moments,
depending on the cumulative distribution function of the coefficients at 0.

To study the zeros of Pn for large n, we may want to see Pn as the partial sum of a
random entire series. If we assume that the random variable |a0| is non-deterministic
and satisfies E(log(1 + |a0|)) <∞, then the entire series P∞(z) =

∑∞
k=0 akz

k has almost
surely a radius of convergence equal to 1 and P∞ is a random non-constant holomorphic
function on the unit disk. Hence P∞ has a countable set of zeros {z(∞)

k } which are
counted with multiplicity. As P∞ is almost surely a non-constant analytic function, its
zeros are isolated and have no accumulation point inside the open unit disk. This ensures
that there is a finite number of zeros inside any compact set in the disk.

Theorem 1.1 (Main result). Assume that the random variable a0 satisfies E(log(1 +

|a0|)) <∞, that |a0| is not deterministic and that P(a0 = 0) = 0. Let n ∈ N ∪ {∞} and

x
(n)
1 = min

k
|z(n)k | and if n <∞, x(n)n = max

k
|z(n)k |.

Then the following holds

1. The random variable x(n)n has the same distribution as 1/x
(n)
1 .

2. There exists three constants C1 > 0, r > 0 and A > 0 depending only on the
distribution of |a0| such that

∀ 0 < t < C1, P
(
x
(n)
1 ≤ t

)
≥ P

(
|a0| ≤

rt

2

)
A. (1.1)

3. If there exists k ≥ 0, a > 0 and δ > 0 such that

∀ t < δ, P(|a0| ≤ t) ≥ atk then E((x(n)n )k) =∞.

4. Almost surely, the point process χn =
{
z
(n)
k such that |z(n)k | < 1

}
converges weakly

in the space of Radon measures towards χ∞ =
{
z
(∞)
k

}
. More precisely, for any

continuous and compactly supported function f defined on the open unit disk
D(0, 1), we have ∑

k

f(z
(n)
k )

a.s−−−−→
n→∞

∑
k

f(z
(∞)
k ).

5. The random variable x(n)1 converges almost surely towards x(∞)
1 and x(n)n converges

in distribution towards x(∞) := 1/x
(∞)
1 .

The condition P(a0 = 0) = 0 ensures that the degree of Pn is n. Hence the zero set

{z(n)k } is well defined. If we remove this condition, the theorem is still true if we take the

convention that, for a polynomial of degree k < n, z(n)k+1 = · · · = z
(n)
n =∞.

In the case of real Gaussian coefficients, Majumdar and Schehr proved a similar
result to the point 3 for the largest real root in [16]. They use a Taylor expansion of the
first intensity function of the real zeros at 0 to prove that the density of x(n)n decays at
infinity like 1/t2.
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Notice that the first three points of Theorem 1.1 are valid for any fixed n. The heavy
tail behavior of the largest root is not asymptotic. The points (4) and (5) imply that
the heavy tail phenomena do not vanish at infinity, namely that x(∞) does not have
more finite moments that x(n)n . The point (4) is a deterministic statement and is a direct
application of Hurwitz’s theorem in complex analysis. It will allow us to obtain Corollary
1.2 which gives the limit of the point process χn for complex Gaussian coefficients.

What does this theorem say for some classical distribution of the coefficients? If the
distribution of |a0| is absolutely continuous with respect to the Lebesgue measure on R+

with density g, then the point (3) can be linked to the density g at zero:

1. if g is continuous at 0 and g(0) > 0 then the largest root in modulus has infinite
mean;

2. if g(t) ∼ αt at zero, then x(n)n has an infinite second moment.

These two situations cover most of the classical examples of random variables. Real
Gaussian random variables, exponential random variables, Cauchy random variables
and many others are covered by the first part of the remark. Radial complex random
variables such as complex Gaussian random variables are covered by the second point.
This is a consequence of the polar change of coordinates which adds a factor 2πr to the
density. This phenomenon is illustrated in Figure 1: when the coefficients are complex,
the density of x(n)1 vanishes at zero.

If the distribution of the ak’s is supported in an annulus bounded away from zero,
then all the roots lie in an annulus. This can be seen as a consequence of the Gershgorin
circle theorem of localization of the eigenvalues of matrices, applied to the companion
matrix of the polynomial Pn. In this setting, we also know that the empirical measure of
Pn converges deterministically towards the uniform measure on the unit circle [11].

This theorem can be surprising if we compare it to similar results in random matrix
theory. There is a strong analogy of results and techniques between random polyno-
mials and random matrices. For Ginibre random matrices or Kac random polynomials,
the empirical measures converge towards a deterministic measure and the explicit
distribution of the eigenvalues (or zeros) can be computed when the coefficients are
Gaussian (real or complex). Large deviation principles for the empirical measures were
obtained with the same speed and very similar rate functions ([9], [1] for Ginibre, [19]
and [4] for Kac polynomials). For random matrices, the large deviations principle for
the empirical measure is known not to be universal [3] and to depend on the tail of
the coefficients of the matrix. For random polynomials, the large deviations principle
is universal [5]. For random matrices, the fluctuations of the largest eigenvalue at the
edge of the limiting distribution have been studied by many authors since [18] and have
proven to be universal.

When the ak’s are i.i.d. standard complex Gaussian random variables, the zeros of Pn
form a Coulomb gas in Cn (see [19]) with density of the form

(z
(n)
1 , . . . , z(n)n ) ∼ 1

Zn
exp

∑
i 6=j

log |z(n)i − z(n)j | − (n+ 1) log
1

2π

∫ 2π

0

n∏
k=1

|eiθ − z(n)k |
2dθ

 .

This is similar to the eigenvalues of complex Ginibre random matrices where the density
of the eigenvalues on Cn is of the form (see [8])

(λ1, . . . , λn) ∼ 1

Z ′n
exp

∑
i 6=j

log |λi − λj | − n
n∑
k=1

|λi|2

2

 .
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They have in common the same interaction between the particles, but the confining
term is different. Why does the largest particle have such a different behavior for
polynomials and matrices? If we look at the behavior of the confining term in each
variable for random polynomials, we see that it grows at infinity like log(|z|) while the
confining term for Ginibre is V (z) = |z|2/2. We believe that it is a general fact for
Coulomb gases: when the confining term is of order log |z| at infinity, the largest particle
has a heavy tail and when the confining term is stronger than logarithm, the largest
particle should converge towards the edge of the limiting distribution. The potential
energy of the largest particle is approximatively

∫
− log |z − w|dµ∞(w) + V (z), where

µ∞ is the limiting distribution of the particles. Hence, if V grows faster than logarithm,
the cost of having a particle far from the support of µ∞ grows at infinity. On the other
hand, if V and

∫
− log |z − w|dµ∞(w) are of same order, the cost of having a particle far

from the support of µ∞ is finite. To our knowledge, this phenomenon is not treated in
the literature. The heuristic above only relies on “energetic” considerations and has not
been proved so far. The same phenomenon should appear for real Gaussian coefficients,
as the distribution of the zeros of Pn [4] is also very similar to the distribution of the
eigenvalues of the real Ginibre ensemble [7]: both form a mixture of Coulomb gases,
each gas having a fixed number of particles on the real line.

If we compare the hypotheses of Theorem 1.1 with the one of the main theorem from
[5], we see that both rely on the behavior of the distribution of the coefficients at zero.
Within the universality class of random Kac polynomials with Gaussian coefficients, the
number of finite moments for the largest root is constant.

Figure 1: Histogram of the x
(500)
1 for exponential coefficients with mean 1 (left) and

dµ = 1/2πe−|z|dz on C (right).

Complex Gaussian coefficients

Theorem 1.1 states that x(n)1 and x(n)n converge in distribution but does not give any
precise information on the limit. In the case of complex Gaussian coefficients, we can
give a more precise result on this limiting distribution, as the zeros of P∞ have been
studied in the case of Gaussian Analytic Functions (GAF) by Peres and Virág in [15]

P∞(z) =
∑
k∈N

akz
k.

The corollary below is just a combination of Theorem 1.1 along with [10, Theorem 5.1.1
and Corollary 5.1.7].

Corollary 1.2 (Gaussian case). Let (ak)k∈N be a sequence of i.i.d. standard complex
Gaussian random variables.
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1. The point process
{
z
(n)
k such that |z(n)k | < 1

}
converges towards the determinantal

point process in the open unit disk D(0, 1) with the Bergman Kernel

∀z, w ∈ D(0, 1), K(z, w) =
1

π(1− zw̄)2
.

As a consequence, the point process {|z(n)k |}k≥1 converges in distribution towards

the set {U1/2k
k }k≥1, where (Uk)k≥1 is a sequence of i.i.d. uniform random variables

on [0, 1].

2. The smallest root in modulus of P∞, z1, has a rotationally invariant distribution and
its modulus, x(∞)

1 , has a cumulative distribution function defined on (0, 1) given by:

F
x
(∞)
1

(t) = 1−
∞∏
k=1

(1− t2k).

This Corollary is no more than the combination of the work of Peres and Virág [15]
with Theorem 1.1. A proof is given at the end of the next section.

Figure 2 is an illustration of the point (2) of Corollary 1.2. The histogram of x(500)1 is
very similar to the graph of the density of x∞1 .

Figure 2: Histogram of x(500)1 for complex Gaussian coefficients and density of x(∞)
1 .

2 Proofs of the results

We start with a lemma that will be essential in the proof of Theorem 1.1.

Lemma 2.1 (Lemma 4.1 in [13]). Let (ak)k∈N be i.i.d. random variables. Fix ε > 0. Then

sup
k∈N

|ak|
eεk

<∞ a.s.⇔ E(log(1 + a0)) <∞.

Proof of the lemma. For every non negative random variable X we have:

∞∑
k=1

P (X ≥ k) ≤ E(X) ≤
∞∑
k=0

P(X ≥ k).

Those inequalities come from the relation: E(X) =
∫
R+ P(X ≥ x)dx. Now we apply this

inequality to the non-negative random variable

X =
1

ε
log(1 + |a0|).
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We deduce that
∞∑
k=1

P

(
|ak|
eεk

> 1

)
<∞

and so we have, thanks to the Borel-Cantelli lemma,

lim sup
|ak|
eεk
≤ 1,

which implies sup
k∈N

|ak|
eεk

<∞.

The reverse implication relies on a similar reasoning, and will not be used in the
proof of the theorem.

Proof of Theorem 1.1. Proof of 1. Let Pn(z) = a0 + a1z + · · ·+ anz
n and

Qn(z) = znPn(1/z) = an + an−1z + · · ·+ a0z
n.

As the ak are i.i.d. random variables, the distribution of the random polynomials Pn and
Qn are the same. If {z(n)k } is the set of zeros of Pn then the set of zeros of Qn is {1/z(n)k }.
This implies that x(n)n and 1/x

(n)
1 have the same distribution.

Proof of 2. Fix n ∈ N∪{∞}. The random variable M := supk≥2 |ak|/ek is almost surely
finite. This is obvious for n <∞ and this is a consequence of lemma 2.1 for n =∞. There
exists K such that P(M < K) > 0. Let us define C2 = P(M < K) > 0. The key idea of
this proof is to use Rouché’s theorem [14, p. 181] to show that Pn and P1(z) = a0 + a1z

have the same number of roots in a neighborhood of the origin. Rouché’s theorem is the
following: if γ is a closed path, which deformation retracts to 0, in some open set U such
that γ has an interior and f and g are two analytic functions on U such that for any z ∈ γ

|f(z)− g(z)| < |f(z)|

then f and g have the same number of zeros in the interior of γ.
To bound from below the probability that x(n)1 is smaller than t, we compare it to the

modulus of the root of P1.

P(x
(n)
1 ≤ t) ≥ P

(
x
(n)
1 ≤ 2

|a0|
|a1|

and 2
|a0|
|a1|
≤ t
)

≥ P
(
Pn has exactly one zero in D

(
0, 2
|a0|
|a1|

)
and 2

|a0|
|a1|
≤ t
)

≥ P
(
Pn has the same number of zeros in D

(
0,

2|a0|
|a1|

)
as P1 and

2|a0|
|a1|

≤ t
)

≥ P

(
sup

|z|=2|a0|/|a1|
|Pn(z)− P1(z)| < inf

|z|=2|a0|/|a1|
|P1(z)| and 2

|a0|
|a1|
≤ t

)
.

We notice that the triangle inequality implies that

inf
|z|=2|a0|/|a1|

|P1(z)| = inf
|z|=2|a0|/|a1|

|a0 + a1z| ≥ inf
|z|=2|a0|/|a1|

|a1||z| − |a0| = |a0|

and that

sup
|z|=2|a0|/|a1|

|Pn(z)− P1(z)| ≤
∑
k≥2

|ak|
(

2|a0|
a1

)k
≤M

∑
k≥2

ek
(

2|a0|
a1

)k
≤M 4e2|a0|2/|a1|2

1− 2e|a0|/|a1|
.
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Let r be a constant such that C3 = P(|a1| > r) > 0, then we obtain

P(x
(n)
1 ≤ t) ≥ P

(
M

4e2|a0|2/|a1|2

1− 2e|a0|/|a1|
< |a0| and 2

|a0|
|a1|
≤ t
)

≥ P
(
K

4e2|a0|2/|a1|2

1− 2e|a0|/|a1|
<
r|a0|
|a1|

and |a1| > r and 2
|a0|
|a1|
≤ t and M < K

)

As t < 1/(A + 1) then A t2

1−t < t, we obtain that the event

{
2
|a0|
|a1|
≤ t and |a1| > r

}
is

included in the event

{
K

4e2|a0|2/|a1|2

1− 2e|a0|/|a1|
< r
|a0|
|a1|

}
if t ≤ e−1

K/r + 1
.

For t ≤ e−1

K/r+1 = C1, we get, using the independence of the ak’s,

P(x
(n)
1 ≤ t) ≥ P

(
2
|a0|
|a1|
≤ t and |a1| > r and M < K

)
≥ P

(
|a0| <

rt

2

)
P (|a1| > r)P (M < K)

≥ C2C3P

(
|a0| <

rt

2

)
.

Proof of 3. Assume that there exist k ≥ 0, a > 0 and δ > 0 such that

∀ t < δ, P(|a0| < t) ≥ atk.

Let X be a non-negative random variable. Then the Fubini theorem implies that

1

k + 1
E(Xk+1) =

∫ ∞
0

tkP(X ≥ t)dt.

Using this along with the point (1), we get

1

k
E((x(n)n )k) =

∫ ∞
0

tk−1P(x(n)n ≥ t)dt

=

∫ ∞
0

tk−1P(x
(n)
1 ≤ 1/t)dt

≥ A
∫ ∞
1/C1

tk−1P(|a0| ≤
2

rt
)dt

≥ A2k

rk

∫ ∞
1/C1

atk−1t−kdt.

This implies that

E

((
x(n)n

)k)
=∞.

Proof of 4. Thanks to Lemma 2.1, we obtain that the radius of convergence of the
random entire function P∞ is almost surely 1. This implies that, almost surely, Pn
converges uniformly towards P∞ on any closed disk D(0, ρ) with radius ρ < 1. In this
setting, the almost sure convergence of the zeros of Pn inside D(0, ρ) is exactly Hurwitz’s
theorem [6, p. 152] in complex analysis. Hurwitz’s theorem is a consequence of Rouché’s
theorem, which is a consequence of the argument principle. We give a proof of the
convergence of the point processes using directly Rouché’s theorem.
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Let (Ω,F ,P) be a probability space on which the ak’s are defined. Let N be a
negligible set such that, for any ω ∈ Ω \N , P∞ is a non-constant entire series with radius
of convergence one.

The rest of the proof is a deterministic result which is valid for any ω ∈ Ω \ N . Let
z(∞) be a zero of P∞, with multiplicity β. As the zeros of P∞ are isolated, for any ε
small enough, P∞ has no other zero than z(∞) in the closed disk D(z(∞), ε). Thanks to
Rouché’s theorem, we know that if

sup
|z−z(∞)|=ε

|Pn(z)− P∞(z)| < inf
|z−z(∞)|=ε

|P∞(z)| (2.1)

then Pn and P∞ have the same number of zeros inside D(z(∞), ε). The inequality (2.1) is
automatically satisfied for n large enough, as we fixed ε such that P∞ does not have a
zero on the boundary of the disk D(z(∞), ε).

Here we proved that for any zero of multiplicity β of P∞, for any ε > 0 sufficiently
small, one can find β zeros of Pn at a distance at most ε of z(∞). This implies that any
fixed finite number of zeros of Pn converges almost surely towards zeros of P∞.

Proof of 5. The fact that x(n)1 converges almost surely toward x(∞)
1 is a consequence of

the point 4). As we know that x(∞)
n has the same distribution as 1/x

(n)
1 , then we obtain

the converge in distribution of x(∞)
n towards 1/x

(∞)
1 for free.

Proof of the Corollary. The first point of the Corollary is nothing more than the combi-
nation of the item (5) of 1.1 along with [15, Theorem 1] and [15, Theorem 2].

The cumulative distribution function of x(∞)
1 is computed thanks to the knowledge of

the distribution of the modulus of the zeros of the hyperbolic GAF [15, Theorem 2]. Let
(Uk)k≥1 be a sequence of i.i.d. uniform random variables on (0, 1), then

P
(
x
(∞)
1 > t

)
= P

(
∀k ≥ 1, |z(∞)

k | > t
)

= P
(
∀k ≥ 1, U

1/2k
k > t

)
=

∞∏
k=1

(
1− t2k

)
which ends the proof of the Corollary.

3 Comments

Notice that the proof of points (1), (2) and (3) of Theorem 1.1 for finite n does not
use the assumption E(log(1 + |a0|)) < ∞. These three points are always valid. This
assumption is only needed to make sure that, almost surely, the ak’s do not grow faster
than ek.

An alternative proof of Theorem 1.1 uses Jensen’s formula [14, p. 341] for analytic
functions. We chose to use an approach based on Rouché’s Theorem as it also implies
the convergence of the point process of the small roots.
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