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Fake uniformity in a shape inversion formula

Christian Rau
Shantou University

Abstract. We revisit a shape inversion formula derived by Panaretos in the
context of a particle density estimation problem with unknown rotation of the
particle. A distribution is presented which imitates, or “fakes”, the uniformity
or Haar distribution that is part of that formula.

1 Introduction

Stochastic geometry makes extensive use of uniform, or Haar distributed, rota-
tions; for example, in constructing random geometric objects (hyperplanes, poly-
topes, or other objects) that have a uniform orientation. The uniformity often
makes it possible to reconstruct a three-dimensional object from two-dimensional
projections or sections; such tasks belong to the realm of stereology, an area which
is connected to both stochastic geometry and spatial statistics. This paper is a cau-
tionary note, illustrating that the said uniformity may, in the case of a natural geo-
metric functional, be imitated, or “faked”, by a non-uniform distribution.

The natural functional that we consider here is a central ingredient in a shape
inversion formula from Panaretos (2009), which he used to tackle a particle re-
construction problem arising from electron microscopy data. This formula, which
is given in Proposition 1 below, allows to recover salient features, which may be
referred to as “landmarks”, of an object in R

d (d ≥ 2) from its projections on an
arbitrary fixed (d − 1)-dimensional subspace. An important complicating feature
of the problem is that the object is subject to a prior random and unknown uniform
rotation before it is imaged. For practically relevant imaging tasks, where the ob-
ject may be a protein fragment, we have d = 3, and the subspace is the imaging
plane of the microscope. In this introduction, we limit ourselves to those notions
that are necessary to formulate the shape inversion formula and our theorem, and
refer to Section 4 for a precise statement of the statistical model.

The precise definition of uniform or Haar (probability) measure on the rota-
tion group is as follows. Recall that SO(d), the group of d × d rotation matrices,
consists of those real matrices A satisfying ATA = I , the d × d identity matrix,
and detA = 1. A random rotation A has the Haar distribution, written as A ∼ μ, if
the distribution of QA is the same as that of A, for any nonrandom Q ∈ SO(d).
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Here we examine how—and indeed, if—the formula given in Proposition 1
changes if one replaces μ by a less symmetric rotation. A motivation for this ques-
tion comes from the fact that the group SO(d) acts on the d-dimensional unit
sphere S

d−1 = {x ∈ R
d : ‖x‖ = 1} via matrix-vector multiplication x �→ Ax. In

measure theory, this connection between SO(d) and S
d−1 is frequently exploited,

and the present paper may be seen as another modest instance. The following fact,
which is relevant to this paper, illustrates this connection: if A ∼ μ and v is any
nonrandom point on S

d−1, then Av has the uniform distribution σ (normalized
Lebesgue surface area measure) on S

d−1. We note in passing that one may con-
versely construct μ from σ [Schneider and Weil (2008), pages 584–585].

In Section 2, after some preliminaries, we state the shape inversion formula
of Panaretos (2009), and formulate the fake uniformity problem. In Section 3, the
Cayley distribution with κ = 1 is found to be a distribution which fakes uniformity
for the Gram matrix functional. Finally, Section 4 gives the statistical model in
detail, and discusses the impact of fake uniformity.

2 (Closely) faking the value of a functional

We begin by describing a cousin of the problem studied in the present note. This
cousin problem is mathematically more sophisticated but, on the other hand, does
not make any reference to rotations. For a compact convex set K ⊂ R

d and u ∈
S

d−1, denote by Ku the orthogonal projection of K onto the hyperplane {x ∈ R
d :

〈x,u〉 = 0}, where 〈·, ·〉 is the usual inner product. Let vd−1(·) denote (d − 1)-
dimensional volume. Consider the functional

s(�,K) =
∫
Sd−1

vd−1(Ku)�(u)dσ(u), (2.1)

where � is an integrable function on S
d−1. Since we consider projections, we may

assume � to satisfy �(u) = �(−u) for all u. For the constant function � ≡ 1,
Cauchy’s surface area formula [Groemer (1996), pages 45–46], yields that s(�,K)

is the Lebesgue surface area of K . (Note that our σ , unlike in Groemer (1996), is
already normalised.) In Groemer (1996), pages 297ff, the following inverse prob-
lem was considered: If s(�,K) is close to s(1,K) for all K with surface area
bounded by some constant, can it be inferred that � is close to 1? The answer
is negative, unless smoothness assumptions on � are imposed; Groemer (1996)
proved this with tools from harmonic analysis on S

d−1.
The “fake uniformity” from the title of the present note is a negative answer

to the cousin problem on SO(d) which we shall formulate at the end of this sec-
tion, and a manifestation of a comment on ill-definedness in Panaretos (2009),
page 3303. Our result is not of a limiting nature, and will not require harmonic
analysis for its proof.

The shape inversion formula of Panaretos (2009) is as follows. Let V be any real
d × � matrix (d ≥ 2, � ≥ 1), and H = diag(1, . . . ,1,0) be the projection matrix
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(with respect to the standard basis of Rd ) which zeroes the last component of a
vector in R

d . We interpret the columns of V as the location vectors of the so-called
landmarks associated with the unknown particle to be reconstructed.

Proposition 1 (Panaretos (2009), Theorem 4.1).∫
SO(d)

Gram(HAV )μ(dA) = d − 1

d
Gram(V ),

where Gram(W) = W TW for any matrix W , so that the entry with index (i, j) in
Gram(W) is the inner product of the ith and j th columns of W .

Note that Gram(AW) = Gram(W) for any A ∈ O(d), the group of d × d orthog-
onal matrices. Hence, Gram(V ) “nearly” encodes shape if the latter were under-
stood to be the information which remains if “we are not interested in location,
orientation or scale of the resulting configuration” [Kendall (1977), page 428]—
however, information on reflections is lost, and this will be seen to be the reason
for fake uniformity.

Proposition 1 says that the original shape can be reconstructed from the pro-
jected shape. As noted in Panaretos (2009), page 3286, this feature is shared
with (2.1). We shall replace μ in Proposition 1 by a distribution which has the
weaker symmetry property of conjugation-invariance.

Definition 1. A random rotation A is conjugation-invariant if QTAQ has the same
distribution as A, for any nonrandom Q ∈ SO(d).

If we assume that A has a density f with respect to μ, then conjugation-invariance
may be expressed by the requirement that f (QTPQ) = f (P ) for all Q as in
Definition 1. We note that conjugation-invariant functions are also called central
[Faraut (2008), page 132].

In the case d = 3, conjugation-invariance has the following geometric meaning.
Recall that Euler’s theorem says that every rotation in R

3 has an axis and angle;
if the rotation is assumed to be counter-clockwise and in the interval (0, π), then
the orientation of the axis is given by a well-defined vector in S

2. It can be shown
that the conjugation-invariant rotations in R

3 which have a density with respect
to Haar measure μ are precisely those for which (i) the oriented rotation axis U

is uniformly distributed on S
2, and (ii) the rotation angle � has a density, and �

and U are independent [Schindler (1997), Theorem 2.2, page 109].
Let us call the Gram matrix Gram(W) a “functional” of a given matrix W , even

though this is an abuse of terminology, since functionals are usually scalar-valued.
(This reservation is not serious, see Remark 2 below.) For the Gram functional,
can the role of μ in Proposition 1 be faked by another distribution? We shall affirm
this by stating an offending alternative random rotation in the next section.
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3 Cayley distribution and main theorem

The Cayley distribution was introduced in Schaeben (1997) under the name of
de la Vallée Poussin distribution, and independently in León, Massé and Rivest
(2006); we adopt the name from the latter reference, as it has also been used in the
R package documentation of Stanfill, Hofmann and Genschel (2014). We state the
Cayley density for the case d = 3. This is the case where we can give an explana-
tion of the result in Theorem 1 through geometry (see the discussion around (3.6));
however, the proof itself, which is based on integration on S

d−1, carries over to the
general case d ≥ 3. The Cayley distribution is given by the density (�(·) is the
Gamma function and tr(·) is the trace)

f CAY
κ (R) =

√
π�(κ + 2)

22κ�(κ + 1/2)

(
1 + tr(R)

)κ

=
√

π�(κ + 2)

2κ�(κ + 1/2)
(1 + cos θ)κ, 0 ≤ θ ≤ π,

which only depends on the rotation angle θ , and thus is conjugation-invariant; the
parameter κ ≥ 0 measures spread around the median I , with the case κ = 0 corre-
sponding to μ. The density of � is [León, Massé and Rivest (2006), page 424],

f CAY
� (θ) = �(κ + 2)√

π2κ�(κ + 1/2)
(1 + cos θ)κ(1 − cos θ), 0 ≤ θ ≤ π, (3.1)

where the factor (1 − cos θ) shows the preference of μ for large rotations, see
also Schindler (1997), Remark 2.4, pages 109–110. Write ek for the kth column
of I (k = 1, . . . , d), where the dimension d will always be clear from the con-
text, and write fvR

for the density of vR = Red with respect to σ , where R is any
conjugation-invariant distribution with a density with respect to μ. For the Cay-
ley distribution, the density fvR

is known for any d , see León, Massé and Rivest
(2006), Prop. 3.3, page 419; in particular

f CAY
vR

(w) = 2−κ(κ + 1)(1 + w3)
κ , w = (w2,w2,w3) ∈ S

2. (3.2)

A density f on S
d−1 that depends only on wd is called zonal (with respect to ed ).

Then f (w) = f (t) for a function f (t) which is defined on the interval [−1,1],
and integrates to a constant (depending on d) which can be evaluated with for-
mula (3.5) below.

We now extend Proposition 1 to conjugation-invariant rotations.

Theorem 1. Let P ∈ SO(d) be a rotation with Haar density fP , and such
that there exists a nonrandom M ∈ SO(d) such that PMT = R is conjugation-
invariant. Then, with V as in Proposition 1,∫

SO(d)
Gram(HAV )fP (A)μ(dA) = V TMT(

I − D2)
MV,
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where D2 = diag((1 − τ2)/(d − 1), . . . , (1 − τ2)/(d − 1), τ2), and

τ2 = �(d
2 )√

π�(d−1
2 )

∫ 1

−1
t2(

1 − t2)(d−3)/2
f v

RT
(t)dt. (3.3)

Proof. Similar to Panaretos (2009), pages 3285–3286, one obtains∫
SO(d)

Gram(HAV )fP (A)μ(dA) = V TMT · {
I − E

(
vRTvT

RT

)} · MV,

E
(
vRTvT

RT

) =
(∫

Sd−1
wiwjfv

RT (w)σ(dw)

)
i,j

. (3.4)

That (3.4) vanishes for i �= j follows from symmetry considerations applied
in conjunction with the following standard integration formula [Faraut (2008),
Proposition 9.1.2, page 189], where σ0 is the uniform distribution on the “equa-
tor” S

d−2
0 = S

d−1 ∩ {x : xd = 0} and g an integrable function:∫
Sd−1

g(x)σ (dx)

= �(d
2 )√

π�(d−1
2 )

∫ π

0

(∫
S

d−2
0

g
(
(sin θ)u + (cos θ)ed

)
σ0(du)

)
sind−2 θ dθ.

(3.5)

That same formula applied to the case i = j = d , for which g is zonal, yields (3.3).
Symmetry considerations also imply that all entries with i = j < d coincide. Fi-
nally, E{tr(D2)} = E(vRTvT

RT) = 1, hence E(vRTvT
RT) = D2, with D2 as in the the-

orem. �

Remark 1. In the case d = 3, the distributions of R and RT = R−1 coincide, as
follows readily from the axis-angle representation of SO(3) in Section 2, together
with the observation that a rotation by the amount θ ∈R around the oriented axis u

is the same as a rotation by the amount −θ around −u. However, the distributions
of R and RT do not coincide in general for d > 3; see the characterisations in Said
et al. (2010), Prop. 2, page 2768.

For the Cayley distribution with d = 3, Theorem 1, Remark 1 and (3.2) give via
integration by parts∫

SO(3)
Gram{HAV }f CAY

κ (A)μ(dA)

= Gram(V ) − Gram
(
DCAY

κ MV
)
,

DCAY
κ = diag

⎛
⎝

√
2(κ + 1)

6 + 5κ + κ2 ,

√
2(κ + 1)

6 + 5κ + κ2 ,

√
2 + κ + κ2

6 + 5κ + κ2

⎞
⎠ .
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We see that DCAY
κ is a scalar matrix (i.e., a scalar multiple of I ) not only for the

case κ = 0, but also for κ = 1. This latter case is what we call fake uniformity of the
Gram matrix functional. We may understand its genesis geometrically as follows:
the nonconstant factor of (3.1) for κ = 1 is

(1 + cos θ)(1 − cos θ) = 1 − cos2 θ = 1

2
(1 − cos 2θ). (3.6)

From the formula for the transformation of the density of a real random variable X

under scaling X �→ cX with c ∈ R, we conclude from (3.6) that the density of �

with respect to Lebesgue measure on [0, π] in the fake case (κ = 1) is obtained
by halving � in the Haar case (κ = 0). Associate each point u = (u1, u2, u3) on
the hemisphere {u ∈ S

2 : u3 ≥ 0} with its reflection T (u) = (u1, u2,−u3). Identi-
fying T with its matrix with respect to the canonical basis {e1, e2, e3}, we observe
that T ∈ O(3)\SO(3), and that HT V = HV for any landmark matrix V . Ignor-
ing the set of points on the equator u3 = 0, which has measure zero and is neg-
ligible, we may now, by suitable choice of either the upper or lower hemisphere,
produce in the fake case κ = 1 the same projected configuration as for the Haar
case κ = 0. Similar to Remark 1, the counter-clockwise angle α changes through
reflection to π − α. Also, note that the foregoing description effectively defines
a coupling between the cases κ = 0 and κ = 1. Alternatively, one may base the
argument on the distribution of vR from (3.2), rather than the distribution of �;
this reasoning is, however, not as appealing geometrically.

Remark 2. An examination of the proof of the theorem reveals that it suffices to
consider the case � = 1: a single landmark vector is enough. This surprising fact,
which seems to be at odds with the notion of “shape” as a configuration of several
points, is true because conjugation-invariance is quite a strong symmetry property.

Remark 3. While we suspect that there are yet earlier references, Proposition 1
is a straightforward consequence of Grinberg and Rubin (2004), Lemma 2.5,
page 796, in conjunction with Remark 2. The fake case, however, does not seem
to have such a near-precedent.

4 Reconstruction from orthogonal views and fake uniformity

In this section, we give some insights into the consequences of fake uniformity
with regard to the tomographic reconstruction problem introduced in Panaretos
(2009) mentioned in Section 1. First, we state the random tomography model that
he introduced, and recall some issues already known from the case of Haar dis-
tributed rotations. We again limit ourselves to the case d = 3.

In the random tomography model, the unknown particle is construed as a three-
dimensional compactly supported probability density ρ(x) = ρ(x1, x2, x3) on R

3.
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An observed image of ρ is a (discretized to a regular grid in practice) projection
of ρ at a random angle, that is, it is given by the compactly supported random field

ρ̌(x1, x2) =
∫ +∞
−∞

ρ
(
U−1x

)
dx3, (4.1)

where U ∼ μ is called the orientation of ρ; below we write Uρ(x) = ρ(U−1x).
The stochastic Radon transform of length N ≥ 1 is a sample {ρ̌1, . . . , ρ̌N } of N

independent and identically distributed (i.i.d.) copies of ρ̌, generated by using a
sample {U1, . . . ,UN } of N i.i.d. copies of U .

As shown in Panaretos (2009), the level of ill-posedness inherent in the problem
does not allow the recovery of ρ itself. However, recovery of [ρ] = {Aρ : A ∈
O(3)}, the equivalence class of ρ which identifies ρ with any rotated or reflected
version Aρ, is possible.

In the context of statistical estimation, a low-dimensional parametrization of the
particle ρ and an arbitrary projection ρ̌ is essential. To this end, the roughly spher-
ical “blobs” that are evident in typical images of protein fragments led Panaretos
(2009) to approximate ρ by a finite Gaussian mixture with fixed isotropic covari-
ance matrices. Each component mean is termed a landmark; by themselves, the
landmarks give a rough but useful approximation of ρ or ρ̌. The landmarks are en-
coded in the columns of the matrix V in Proposition 1 and Theorem 1. The reason
why one focuses on [ρ] rather than ρ in the reconstruction is also the reason why
one aims to reconstruct Gram(V ) rather than V . Proposition 1 and Theorem 1 pro-
vide the connection between the Gram matrices for the original three-dimensional
and the projected two-dimensional landmarks.

In the context of devising statistical procedures from Proposition 1 in conjunc-
tion with (suitable versions of) the law of large numbers and central limit theorem,
two issues stand out, as stated in Panaretos and Konis (2011), Sections 5.1–5.2,
pages 2586–2589. We give them in reverse order.

The second issue was already noted in Panaretos (2009), page 3286, and is dis-
cussed further in Panaretos and Konis (2011): for averaging Gram matrices, one
needs to associate individual landmarks across different images, even though indi-
vidual labels are a priori not encoded in the averaged Gram matrix. The random-
ness in the model is not related to this point (except through issues that may arise
from the possibly different number of images at different “views”, where “view”
is defined in the next paragraph), and hence neither is fake uniformity.

The first issue from Panaretos and Konis (2011) is whether one may use fewer
projections in the law-of-large-numbers approximation of the integral on the left-
hand side of the equation in Proposition 1. We repeatedly make use, as done
in Panaretos and Konis (2011), of the notion of “view” of the particle. This should
be carefully distinguished from the notion of orientation defined around (4.1).
The notion of “view” adopted in Panaretos and Konis (2011), as well as here,
is relevant only to two-dimensional images. By definition, the viewing direction
is given by the vector wn ∈ S

2, which is unique up to sign, in the representation



556 C. Rau

HUn = I −wnw
T
n , where H(x1, x2, x3) = (x1, x2,0). (Thus we regard viewing di-

rections as axial.) The “raw view” of the particle ρ (or its landmarks) is the image
of ρ (or its landmarks) under the map HUn. We may choose to omit the vanish-
ing third (x3) coordinate, leaving us with what is called a “profile” in Panaretos
(2009) and Panaretos and Konis (2011). The view of the projected particle (or its
landmarks) is obtained when the “raw view” (in R

3) is identified with (i) the im-
age of any rotation that leaves the projection plane of H invariant; (ii) the image
obtained from reversal of the viewing direction along the x3 axis. Thus any two
images of the particle ρ comprise identical views if ρ is subjected to the action Uρ

defined immediately after (4.1) but now with U ∈ O(3), rather than SO(3); and
views are equivalence classes with factor group O(2), rather than SO(2), because
of view-reversal. See Panaretos and Konis (2011), Figure 10, page 2593, for an
example.

As shown in Panaretos and Konis (2011), Lemma 5.1, page 2588, three orthogo-
nal views suffice to reconstruct the Gram matrix. While, as noted in Panaretos and
Konis (2011), pages 2588–2589, it is impossible to ensure that the views selected
from the available imagery are indeed orthogonal, the procedure they developed
fared well enough in their practical example.

In the fake case, while orientation is no longer Haar distributed, the viewing
directions generated by the rotation R are still uniform. Hence, fake uniformity
cannot be identified within the tomographic model—unless the modal rotation M

from Theorem 1 is different enough from I to disturb a set of three approximately
orthogonal views from the Haar case. Hence, fake uniformity does indeed consti-
tute a problem from a modelling viewpoint.
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