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Bayesian Estimation Under Informative
Sampling with Unattenuated Dependence

Matthew R. Williams∗ and Terrance D. Savitsky†

Abstract. An informative sampling design leads to unit inclusion probabilities
that are correlated with the response variable of interest. However, multistage
sampling designs may also induce higher order dependencies, which are ignored in
the literature when establishing consistency of estimators for survey data under
a condition requiring asymptotic independence among the unit inclusion prob-
abilities. This paper constructs new theoretical conditions that guarantee that
the pseudo-posterior, which uses sampling weights based on first order inclusion
probabilities to exponentiate the likelihood, is consistent not only for survey de-
signs which have asymptotic factorization, but also for survey designs that induce
residual or unattenuated dependence among sampled units. The use of the survey-
weighted pseudo-posterior, together with our relaxed requirements for the survey
design, establish a wide variety of analysis models that can be applied to a broad
class of survey data sets. Using the complex sampling design of the National
Survey on Drug Use and Health, we demonstrate our new theoretical result on
multistage designs characterized by a cluster sampling step that expresses within-
cluster dependence. We explore the impact of multistage designs and order based
sampling.

Keywords: cluster sampling, stratification, survey sampling, sampling weights,
Markov chain Monte Carlo.
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1 Introduction

Bayesian formulations are increasingly popular for modeling hypothesized distributions
with complicated dependence structures. The primary interest of the data analyst is
to perform inference about a finite population generated from an unknown popula-
tion generating distribution. Our set-up is where the observed data are collected as a
sample taken from that finite population by a government statistical agency or pri-
vate research organization under a complex sampling design distribution. The complex
sampling design results in probabilities of inclusion (of units from the population into
the observed sample) that are associated with some response variable of interest. This
association could result in an observed data set consisting of units that are not in-
dependent and identically distributed. This association induces a correlation between
the response variable of interest and the inclusion probabilities. Sampling designs that
induce this correlation are termed, “informative”, and the balance of information in
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the sample is different from that in the population. Failure to account for this depen-
dence caused by the sampling design could bias estimation of parameters that index
the joint distribution hypothesized to have generated the population (Holt et al., 1980).
While emphasis is often placed on the first order inclusions probabilities (individual
probabilities of selection), an “informative” design may also have other features such as
clustering and stratification that use population information and impact higher order
joint inclusion probabilities. The impact of these higher order terms are more subtle,
but we will demonstrate that they can also impact bias and consistency.

In this paper we are presented with samples acquired under an unequally-weighted,
informative sampling design and our goal is to perform inference on the population dis-
tribution (or model parameters) from the observed sample. Savitsky and Toth (2016)
proposed an automated approach that formulates a sampling-weighted pseudo-posterior
density by exponentiating each likelihood contribution by a sampling weight constructed
to be inversely proportional to its marginal inclusion probability, πi, for units, i =
1, . . . , n, where n denotes the number of units in the observed sample. They demon-
strate that the pseudo-posterior produces asymptotically unbiased estimation of the
population model estimated on the observed sample. Yet, they restrict the class of sam-
pling designs to those where the pairwise dependencies among units attenuate to 0 in
the limit of the population size, N , to guarantee frequentist consistency of the pseudo-
posterior distribution estimated on the sample data, at the true population generating
distribution. While some sampling designs will meet this restricted criterion, nearly all
designs used, in practice, won’t; for example, a two-stage clustered sampling design
where the number of clusters increases proportional to the population size N , but the
number of units within each cluster remain relatively fixed such that the dependence
induced at the second stage of sampling never attenuates to 0. Another common set of
example survey sampling designs outside of the restricted class defined by the current
literature are those which sample households as clusters in one stage and, next, sample
individuals within those households in a following stage. Despite the current lack of the-
oretical results demonstrating consistency of the pseudo-posterior for these multistage
sampling designs, the pseudo-posterior performs well (provides unbiased estimation of
population model parameters), in practice.

This work provides new, relaxed theoretical conditions that guarantee consistency of
the pseudo-posterior estimator for a much broader class of multistage sampling designs
characterized by cluster steps. A cluster step groups units in a target population; for
example, a geographic grouping is often done for convenience and cost to administer the
survey by first sampling a geographic region followed by the sampling of units within
selected regions. A multistage sampling design induces within-cluster dependence among
the sampled units taken from the population and that dependence does not attenuate
as the sample or population size grows. Yet, we prove that consistency is guaranteed for
these dependence-inducing survey sampling designs. The practical significance of our
innovation is that our expanded class of sampling designs under which our theoretical
result guarantees frequentist consistency now includes nearly all commonly-used survey
sampling designs by government statistical agencies and research organizations.

A second contribution of this paper is the design and implementation of a simulation
study that very clearly illustrates our theoretical results. We, first, construct a sampling
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design from outside the new, broader class where there is no restriction on dependence
among units and show that the sampling-weighted pseudo-posterior does not contract
on the true generating distribution. We, next, make a minor change to this design
by embedding the dependent units within clusters (or strata) where the dependence
is unrestricted within each stratum, but attenuates to 0 between strata. This second
design is now a member of the broader class described by our revised theory under
which consistency is guaranteed and our simulation result shows that consistency is,
indeed, achieved.

1.1 Examples

We next outline examples of commonly-used multistage sampling designs, including that
for the National Survey on Drug Use and Health that motivate our simulation study
and application modeling.

Example 1: The Current Expenditure Survey

The Current Expenditure (CE) survey is administered to U.S. households by the U.S.
Bureau of Labor Statistics for the purpose of determining the amount of spending for
a broad collection of goods and service categories and it serves as the main source
used to construct the basket of goods later used to formulate the Consumer Price
Index. The CE employs a multistage sampling design that draws clusters of core-based
statistical areas (CBSAs), such as metropolitan and micropolitan areas, from which
census blocks and, ultimately, households are sampled. Economists desire to model the
propensity to purchase a variety of goods and services. There is a dependence among
households within census block that doesn’t attenuate as the sample size increases. The
revised theoretical conditions of this paper demonstrate that asymptotically unbiased
estimation is achieved for the pseudo-posterior formulation under such designs - where
dependence is concentrated within clusters.

Example 2: The National Survey on Drug Use and Health

Our simulation study and application in the sequel are both motivated by the National
Survey on Drug Use and Health (NSDUH), sponsored by the Substance Abuse and
Mental Health Services Administration (SAMHSA). NSDUH is the primary source for
statistical information on illicit drug use, alcohol use, substance use disorders (SUDs),
mental health issues, and their co-occurrence for the civilian, non institutionalized pop-
ulation of the United States. The NSDUH employs a multistage state-based design
(Morton et al., 2016), with the earlier stages defined by geography within each state
in order to select households (and group quarters) nested within these geographically-
defined primary sampling units (PSUs). The sampling frame was stratified implicitly
by sorting the first-stage sampling units by a CBSA and socioeconomic status indicator
and by the percentage of the population that is non-Hispanic and white. First stage
units (census tracts) were then selected with probability proportionate to a composite
size measure based on age groups. This selection was performed ‘systematically’ along
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the sort order gradient. Second and third stage units (census block groups and census
blocks) were sorted geographically and selected with probability proportionate to size
(PPS) sequentially along the sort order. Fourth stage dwelling units (DU) were selected
systematically with equal probability, selecting every kth DU after a random starting
point. Within households, 0, 1 or 2 individuals were selected with unequal probabilities
depending on age with youth (age 12-17) and young adults (age 18-25) over-sampled.

This paper provides conditions for asymptotic consistency for designs like the NS-
DUH, which are characterized by:

• Cluster sampling, such as selecting only one unit per cluster, or selecting multiple
individuals from a dwelling unit.

• Population information used to sort sampling units along gradients.

Both features are common, in practice, and create pairwise sampling dependencies that
do not attenuate even if the population grows. The consistency of estimators under
these sampling designs are not addressed in the literature. For example, we will ex-
amine the relationship between depression and smoking. Cigarette use and depression
vary by age, metropolitan vs. non-metropolitan status, education level, and other demo-
graphics (Center for Behavioral Health Statistics and Quality, 2015b,a). Both smoking
and depression have the potential to cluster geographically and within dwelling units,
since these related demographics may cluster. Yet the current literature, such as in
Savitsky and Toth (2016), is silent on the issue of non-ignorable clustering that may
be informative (i.e. related to the response of interest). The results presented in this
work establish conditions for a wide variety of survey designs and provide a theoretical
justification that this relationship can be estimated consistently even under a complex
multistage design such as the NSDUH.

1.2 Review of Methods to Account for Dependent Sampling

For consistency results, assumptions of approximate or asymptotic independence of sam-
ple selection (or factorization of joint inclusion probabilities into a product of individ-
ual inclusion probabilities) are ubiquitous. For example, Isaki and Fuller (1982) assume
asymptotic factorization to demonstrate the consistency of the Horvitz-Thompson es-
timator and related regression estimators. More recently, Toth and Eltinge (2011) used
a similar assumption to demonstrate consistency of survey-weighted regression trees
and Savitsky and Toth (2016) used it to show consistency of a survey-weighted pseudo-
posterior.

Chambers and Skinner (2003, Ch.2) review the construction of a sample likelihood
using a Bayes rule expression for the population U likelihood defined on the units in the
sample s, fs(y) = fU (y|I = 1) (similar to Pfeffermann et al. 1998). They explicitly state
the assumption that the “sample inclusion for any particular population unit is indepen-
dent of that for any other unit (and is determined by the outcome of a zero-one random
variable, I)”. The further assumption of independence of the population units stated in
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Pfeffermann et al. (1998) means that weighting each likelihood contribution multiplied
together in the sample is an approximation of the likelihood for the N population units.

Pfeffermann et al. (1998) maintains the assumption of unconditional independence
of the population units, but defines two classes of sampling designs: (1) The first class is
independent, with replacement sampling, so the sample inclusions are all independent.
(2) The second class is some selected with replacement designs that are asymptotically
independent. Chambers and Skinner (2003) discuss the pseudo-likelihood (and cite Kish
and Frankel, 1974, Binder, 1983 and Godambe and Thompson, 1986) for estimation via a
weighted score function. They assume that the correlation between inclusion indicators
has an expected value of 0, where the expectation is with respect to the population
generating distribution. We note that they do not assume this correlation to be exactly
equal to 0. However this condition still appears to be more restrictive than that of
asymptotic factorization in which deviations from factorization shrink to 0 at a rate
inverse to the population size N : O(N−1).

The assumptions above are relied on to show consistency. However in practice, ap-
proximate sampling independence is only assumed for the first stage or primary sampling
units (PSUs), with dependence between secondary units within these clusters commonly
assumed. This setup is the defacto approach for design-based variance estimation (for
example, see Heeringa et al., 2010, Ch.3 and Rao et al., 1992) and is used in all the
major software packages for analyzing survey data. One goal of the current work is to
reconcile this discrepancy by extending the class of designs for which consistency re-
sults are available to cover designs seen in practice such as those for which design-based
variance estimation strategies already exist.

We focus on extending the results of the survey-weighted pseudo-posterior method
of Savitsky and Toth (2016) which provides for flexible modeling of a very wide class of
population generating models. By refining and relaxing the conditions on factorization,
we expand results to include many common sampling designs. These conditions for the
sampling designs can be applied to generalize many of the other consistency results
mentioned above. There are some population models of interest for which marginal
inclusion probabilities may not be sufficient and pairwise inclusion probabilities and
composite likelihoods can be used to achieve consistent results (Yi et al., 2016; Williams
and Savitsky, 2018). However, Williams and Savitsky (2018) demonstrate that both
a very specific population model (for example conditional behavior of spouse-spouse
pairs within households) and specific sample design (differential selection of pairs of
individuals within a household related to outcome) are needed for marginal weights to
lead to bias. In the usual setting of inference on a population of individuals (rather than
on a population of joint relationships within households), pairwise weights and marginal
weights are numerically similar, converging to one another for moderate sample sizes.
The theory presented in the current work also clarifies why both approaches lead to
consistent results. Furthermore, the current work also applies when individual units are
mutually exclusive; for example, only selecting one individual from a household to the
exclusion of all others. Such designs are not covered by the composite likelihood with
pairwise weights approach, which require non-zero joint inclusion probabilities.

The remainder of this work proceeds as follows: In Section 2 we briefly review the
pseudo-posterior approach to account for informative sampling via the exponentiation of
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the likelihood with sampling weights. Our main result, presented in Section 3, provides
the formal conditions controlling for sampling dependence. In Section 4, we provide two
simulations. We first demonstrate consistency for a multistage survey design analogous
to the NSDUH. We next create a pathological design based on sorting. The design vio-
lates our assumptions for sampling dependence and estimates fail to converge. However,
we show that this design will lead to consistency if embedded within stratified or clus-
tered designs. Lastly, we revisit the NSDUH with two simple examples (Section 5) and
provide some conclusions (Section 6).

2 Pseudo-Posterior Estimator to Account for
Informative Sampling

We briefly review the pseudo-likelihood and associated pseudo-posterior as constructed
in Savitsky and Toth (2016) and revisited by Williams and Savitsky (2018).

Suppose there exists a Lebesgue measurable population-generating density, π(y|λ),
indexed by parameters, λ ∈ Λ. Let δi ∈ {0, 1} denote the sample inclusion indicator for
units i = 1, . . . , N from the population. The density for the observed sample is denoted
by, π(yo|λ) = π(y|δ = 1,λ), where “o” indicates “observed”.

The plug-in estimator for posterior density under the analyst-specified model for
λ ∈ Λ is

π̂ (λ|yo, w̃) ∝
[

n∏
i=1

p (yo,i|λ)w̃i

]
π (λ) , (1)

where
∏n

i=1 p(yo,i|λ)w̃i denotes the pseudo-likelihood for observed sample responses, yo.
The joint prior density on model space assigned by the analyst is denoted by π(λ). The
sampling weights, {w̃i ∝ 1/πi}, are inversely proportional to unit inclusion probabilities
and normalized to sum to the sample size, n. Let π̂ denote the noisy approximation to
posterior distribution, π, based on the data, yo, and sampling weights, {w̃}, confined
to those units included in the sample, S.

3 Consistency of the Pseudo-Posterior Estimator

Let ν ∈ Z
+ index a sequence of finite populations, {Uν}ν=1,...,Nν , each of size, |Uν | = Nν ,

such that Nν < Nν′ , for ν < ν
′
, so that the finite population size grows as ν increases.

Suppose that Xν,1, . . . ,Xν,Nν are independently generated from an unknown distribu-
tion P0, (with density, p0) defined on the sample space, (X ,A). A sampling design
distribution, Pν , is defined by placing a known distribution on a vector of inclusion
indicators, δν = (δν1 ∈ {0, 1}, . . . , δνNν ∈ {0, 1}), linked to the units comprising the
population, Uν . The (survey) sampling distribution is subsequently used to take an
observed random sample of size nν ≤ Nν . Our conditions needed for the main result
employ known marginal unit inclusion probabilities, πνi = Pr{δνi = 1} for all i ∈ Uν

and the second order pairwise probabilities, πνij = Pr{δνi = 1 ∩ δνj = 1} for i, j ∈ Uν ,
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which are obtained from the joint distribution over (δν1, . . . , δνNν ). We denote the (sur-
vey) sampling distribution by Pν . A common sampling design constructs the πνi to be
proportional to the Xνi, such that units, i, with larger values for Xνi are more likely
to be included in the sample. This type of sampling design is referred to as probability
proportional to size (PPS). For example, the U.S. Bureau of Labor statistics admin-
isters the Current Employment Statistics (CES) survey of business establishments in
a geography and industry to assess the total employment for that geography and in-
dustry. Larger establishments with more employees are assigned a higher probability
of inclusion into the survey because these larger establishments drive more of the vari-
ance in the estimator, so that including more larger establishments will produce a more
efficient, lower variance estimator of total employment.

The asymptotics under our construction is controlled by ν. We fix a ν, construct an
associated finite population of size, Nν , generate random variables Xν1, . . . ,XνNν ∼ P0,
construct unit marginal sample inclusion probabilities, (πν1, . . . , πνN ) under Pν and then
draw a sample, {1, . . . , nν} from that population.

Under informative sampling, the inclusion probabilities are formulated to depend on
the finite population data values, XNν = (X1, . . . ,XNν ). Information from the popula-
tion is used to determine size measures for unequal selection πνi and used to establish
clustering and stratification which determine joint inclusions probabilities πνij . Since
the balance of information is different between the population and a resulting sample,
a posterior distribution for (X1δν1, . . . ,XNν δνNν ) that ignores the distribution for δν
will not lead to consistent estimation.

Our task is to perform inference about the population generating distribution, P0,
using the observed data taken under an informative sampling design. We account for
informative sampling by “undoing” the sampling design with the weighted estimator,

pπ (Xiδνi) := p (Xi)
δνi/πνi , i ∈ Uν , (2)

which weights each density contribution, p(Xi), by the inverse of its marginal inclusion
probability. This approximation for the population likelihood produces the associated
pseudo-posterior,

Ππ (B|X1δν1, . . . ,XNν δνNν ) =

∫
P∈B

∏Nν

i=1
pπ

pπ
0
(Xiδνi)dΠ(P )∫

P∈P
∏Nν

i=1
pπ

pπ
0
(Xiδνi)dΠ(P )

, (3)

that we use to achieve our required conditions for the rate of contraction of the pseudo-
posterior distribution on P0. We note that both P and δν are random variables defined
on the space of measures (P and B ⊆ P) and the distribution, Pν , governing all pos-
sible samples, respectively. An important condition on Pν formulated in Savitsky and
Toth (2016) that guarantees contraction of the pseudo-posterior on P0 restricts pairwise
inclusion dependencies to asymptotically attenuate to 0. This restriction narrows the
class of sampling designs for which consistency of a pseudo-posterior based on marginal
inclusion probabilities may be achieved. We will replace their condition that requires
marginal factorization of all pairwise inclusion probabilities with a less restrictive con-
dition allowing for non-factorization for a small partition of pairwise inclusion proba-
bilities. This expands the allowable class of sampling designs under which frequentist
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consistency may be guaranteed. We assume measurability for the sets on which we
compute prior, posterior and pseudo-posterior probabilities on the joint product space,
X × P . For brevity, we use the superscript, π, to denote the dependence on the known
sampling probabilities, {πνij}i,j∈Uν ; for example,

Ππ (B|X1δν1, . . . ,XNν δνNν ) := Π (B|(X1δν1, . . . ,XNν δνNν ) , {πνij : i, j ∈ Uν}) .

Our main result is achieved in the limit as ν ↑ ∞, under the countable set of succes-
sively larger-sized populations, {Uν}ν∈Z+ . We define the associated rate of convergence
notation, aν = O(bν), to denote |aν | ≤ M |bν | for a constant M > 0.

3.1 Empirical Process Functionals

We employ the empirical distribution approximation for the joint distribution over popu-
lation generation and the draw of an informative sample that produces our observed data
to formulate our results. Our empirical distribution construction follows Breslow and
Wellner (2007) and incorporates inverse inclusion probability weights, {1/πνi}i=1,...,Nν ,
to account for the informative sampling design,

P
π
Nν

=
1

Nv

Nν∑
i=1

δνi
πνi

δ (Xi) , (4)

where δ(Xi) denotes the Dirac delta function, with probability mass 1 on Xi and we
recall that Nν = |Uν | denotes the size of the finite population. This construction con-

trasts with the usual empirical distribution, PNν = 1
Nv

∑Nν

i=1 δ(Xi), used to approximate
P ∈ P , the distribution hypothesized to generate the finite population, Uν .

We follow the notational convention of Ghosal et al. (2000) and define the associ-
ated expectation functionals with respect to these empirical distributions by P

π
Nν

f =
1
Nν

∑Nν

i=1
δνi

πνi
f(Xi). Similarly, PNνf = 1

Nν

∑Nν

i=1 f(Xi). Lastly, we use the associated

centered empirical processes, Gπ
Nν

=
√
Nν(P

π
Nν

− P0) and GNν =
√
Nν(PNν − P0).

The sampling-weighted, (average) pseudo-Hellinger distance between distributions,

P1, P2 ∈ P , dπ,2Nν
(p1, p2) = 1

Nν

∑Nν

i=1
δνi

πνi
d2(p1(Xi), p2(Xi)), where d(p1, p2) =

[
∫
(
√
p1 −

√
p2)

2dμ]
1
2 (for dominating measure, μ). We need this empirical average dis-

tance metric because the observed (sample) data drawn from the finite population under
Pν are no longer independent. The associated non-sampling Hellinger distance is speci-
fied with, d2Nν

(p1, p2) =
1
Nν

∑Nν

i=1 d
2(p1(Xi), p2(Xi)).

3.2 Main Result

We proceed to construct associated conditions and a theorem that contain our main
result on the consistency of the pseudo-posterior distribution under a broader class of
informative sampling designs at the true generating distribution, P0. This approach
follows the main in-probability convergence result of Savitsky and Toth (2016) which
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extends Ghosal and van der Vaart (2007) by adding new conditions that restrict the
distribution of the informative sampling design. Instead of the standard asymptotic
factorization condition, we provide two alternative conditions which allow for residual
dependence between sampling units:

Suppose we have a sequence, ξNν ↓ 0 and Nνξ
2
Nν

↑ ∞ and nνξ
2
Nν

↑ ∞ as ν ∈ Z
+ ↑ ∞

and any constant, C > 0,

(A1) (Local entropy condition - Size of model)

sup
ξ>ξNν

logN (ξ/36, {P ∈ PNν : dNν (P, P0) < ξ}, dNν ) ≤ Nνξ
2
Nν

(A2) (Size of space)

Π (P\PNν ) ≤ exp
(
−Nνξ

2
Nν

(2(1 + 2C))
)

(A3) (Prior mass covering the truth)

Π

(
P : −P0 log

p

p0
≤ ξ2Nν

∩ P0

[
log

p

p0

]2
≤ ξ2Nν

)
≥ exp

(
−Nνξ

2
Nν

C
)

(A4) (Non-zero Inclusion Probabilities)

sup
ν

⎡
⎣ 1

min
i∈Uν

|πνi|

⎤
⎦ ≤ γ, with P0−probability 1.

(A5.1) (Growth of dependence is restricted)
For every Uν there exists a binary partition {Sν1, Sν2} of the set of all pairs
Sν = {{i, j} : i 
= j ∈ Uν} such that

lim sup
ν↑∞

|Sν1| = O(Nν),

and

lim sup
ν↑∞

max
i,j∈Sν2

∣∣∣∣ πνij

πνiπνj
− 1

∣∣∣∣ = O(N−1
ν ), with P0−probability 1

such that for some constants, C4, C5 > 0 and for Nν sufficiently large,

|Sν1| ≤ C4Nν ,

and

Nν sup
ν

max
i,j∈Sν2

∣∣∣∣ πνij

πνiπνj
− 1

∣∣∣∣ ≤ C5.
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(A5.2) (Dependence restricted to countable blocks of bounded size)
For every Uν there exists a partition {B1, . . . , BDν} of Uν with Dν ≤ Nν ,
limν↑∞ Dν = O(Nν), and the maximum size of each subset is bounded:

1 ≤ sup
ν

max
d∈1,...,Dν

|Bd| ≤ C4.

Such that the set of all pairs Sν = {{i, j} : i 
= j ∈ Uν} can be partitioned into
Sν1 = {{i, j} : i 
= j ∈ Bd, d ∈ {1, . . . , Dν}} and
Sν2 = {{i, j} : i ∈ Bd ∩ j /∈ Bd, d ∈ {1, . . . , Dν}} with

lim sup
ν↑∞

max
i,j∈Sν2

∣∣∣∣ πνij

πνiπνj
− 1

∣∣∣∣ = O(N−1
ν ), with P0−probability 1

such that for some constant, C5 > 0,

Nν sup
ν

max
i,j∈Sν2

∣∣∣∣ πνij

πνiπνj
− 1

∣∣∣∣ ≤ C5, for Nν sufficiently large.

(A6) (Constant Sampling fraction) For some constant, f ∈ (0, 1), that we term the
“sampling fraction”,

lim sup
ν

∣∣∣∣ nν

Nν
− f

∣∣∣∣= O(1), with P0−probability 1.

The first three conditions are the same as Ghosal and van der Vaart (2007). They
restrict the growth rate of the model space (e.g., of parameters) and require prior
mass to be placed on an interval containing the true value. Condition (A4) requires
the sampling design to assign a positive probability for inclusion of every unit in the
population because the restriction bounds the sampling inclusion probabilities away
from 0. Condition (A6) ensures that the observed sample size, nν , limits to ∞ along
with the size of the partially-observed finite population, Nν , such that the variation of
information about the population expressed in realized samples is controlled.

Savitsky and Toth (2016) rely on asymptotic factorization for all pairwise inclusion
probabilities. Their (A.5) condition is a conservative approach to establish a finite up-
per bound for the un-normalized posterior mass assigned to those models, P , at some
minimum distance from the truth, P0. They require all terms, a set of size O(N2

ν ), to
factorize with the maximum deviation term shrinking at a rate of O(N−1

ν ), since there
are N2 terms divided by N (inherited from an empirical process).

Although their condition guarantees the L1 contraction result, it defines an overly
narrow class of sampling designs under which this guaranteed result holds. As discussed
in the introduction, multistage household survey designs are not members of this allowed
class because the within household dependency does not attenuate for a set of pairs of
size O(Nν). We replace their (A5) with (A5.1), which allows up to O(Nν) pairwise
terms to not factor, such that there remains a residual dependence. We show in the
Supplementary Material (Williams and Savitsky, 2019) that the contraction result may,
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nevertheless, be guaranteed under this condition as each of the non-factoring terms has
an O(1) bound. The implication of our condition is that we have constructed a wider
class of sampling designs that includes those from Savitsky and Toth (2016), in addition
to the multistage cluster designs for fixed cluster sizes.

Our condition (A5.2) is a special case of (A5.1) specified for cluster designs where the
number of units per cluster is bounded by a constant, which encompasses the multistage
NSDUH household design from which we draw our application data set. We walk from
(A5.1) to (A5.2) by constructing Sν1 through a collection of clusters (Bν1, . . ., BνDν ),
where the size |Bνd| is bounded from above. Sampling dependence within each cluster
Bνd is unrestricted, while dependence across clusters must asymptotically factor.

Theorem 1. Suppose conditions (A1)–(A6) hold. Then for sets PNν ⊂ P, constants,
K > 0, and M sufficiently large,

EP0,PνΠ
π
(
P : dπNν

(P, P0) ≥ MξNν |X1δν1, . . . ,XNν δνNν

)
≤

16γ2 [γC2 + C3]

(Kf + 1− 2γ)
2
Nνξ2Nν

+ 5γ exp

(
−
Knνξ

2
Nν

2γ

)
, (5)

which tends to 0 as (nν , Nν) ↑ ∞.

Proof. The expectation is taken with respect to the joint distribution, (P0, Pν), over
population generation and the taking of a survey sample from that population. The
proof follows exactly that in Savitsky and Toth (2016) where we bound the numerator
(from above) and the denominator (from below) of the expectation with respect to the
joint distribution of population generation and the taking of a sample of the pseudo-
posterior mass placed on the set of models, P , at some minimum pseudo-Hellinger
distance from P0. We reformulate one of the enabling lemmas of Savitsky and Toth
(2016), which we present in the Supplementary Material, where the reliance on (their)
condition (A5) requiring asymptotic factoring of pairwise unit inclusion probabilities
is here replaced by condition (A5.1) that allows for non-factorization of a subset of
pairwise inclusion probabilities.

As noted in Savitsky and Toth (2016), the rate of convergence is decreased for a
sampling distribution, Pν , that expresses a large variance in unit pairwise inclusion
probabilities such that γ will be relatively larger. Samples drawn under a design that
expresses a large variability in the first order sampling weights will express more dis-
persion in their information relative to a simple random sample of the underlying finite
population. We construct C3 = C5 + 1 and C2 = C4 + 1. Under the more restrictive
condition (A5) of Savitsky and Toth (2016), our constant C4 = 0 and thus C2 = 1.

4 Simulation Examples

We construct a population model to address our inferential interest of a binary out-
come y. Many health related outcomes such as substance use are binary. For simplicity
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of demonstration we consider a linear predictor μ = Xβ. However more complex models
can be used.

yi | μi
ind∼ Bern (θi = Fl(μi)) , i = 1, . . . , N (6)

where θi = P (yi = 1) and Fl is the cumulative distribution function for the logistic
distribution. We let μ depend on two predictors x1 and x2. The variable x1 represents
the observed information available for analysis, whereas x2 represents information avail-
able for sampling, which is either ignored or not available for analysis. The x1 and x2

distributions are N (0, 1) and E(r = 1/5) with rate r, where N (·) and E(·) represent
normal and exponential distributions, respectively. The size measure used for sample
selection is x̃2 = x2 −min(x2) + 1.

μ = −1.88 + 1.0x1 + 0.5x2

where the intercept was chosen such that the median of μ is approximately 0, therefore
the median of θ = Fl(μ) is approximately 0.5 (Results for small θi are similar but take
larger sample sizes n to converge as θ → 0).

Even though the population response y was simulated with μ = f(x1, x2), we esti-
mate the marginal model at the population level for μ = f(x1). This exclusion of x2 is
analogous to the situation in which an analyst does not have access to all the sample
design information and ensures that our sampling design instantiates informativeness
(where y is correlated with the selection variable, x2, that defines inclusion probabili-
ties). In particular, we estimate the models under each of several sample design scenarios
and compare the population fitted models, μ = f(x1), to those from the samples.

We formulate the logarithm of the sampling-weighted pseudo-likelihood for estimat-
ing (μ, λ) from our observed data for the n ≤ N sampled units,

log

[
n∏

i=1

p (yi | x1i, β0, β1)
w̃i

]
=

n∑
i=1

w̃i log p (yi | x1i, β0, β1)

=

n∑
i=1

w̃iyi log(Fl(β0 + x1iβ1)) (7)

+ w̃i(1− yi) log(1− Fl(β0 + x1iβ1)),

where θi = Fl(μi), μi = β0 + x1iβ1, and the sampling weights, w̃i are normalized such
that the sum of the weights equals the sample size

∑n
i=1 w̃i = n.

Finally, we estimate the joint posterior distribution using (7), using the NUTS Hamil-
tonian Monte Carlo algorithm implemented in Stan (Carpenter, 2015). Example code is
provided in the Supplementary Material. Prior distributions for β were chosen as ∝ 1.
A sensitivity analysis using heavy-tailed proper priors in the t family yielded essentially
the same results (not shown).
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4.1 Multistage Cluster Designs

We begin by abstracting the five-stage, geographically-indexed NSDUH sampling design
(Morton et al., 2016) to a simpler, three stage design of {area segment, household,
individual} that we use to draw samples from a synthetic population in a manner that
still generalizes to the NSDUH (and similar multistage sampling designs where the
number of last stage units does not grow with overall population size). We simulate a
population of N = 6000, with 200 primary sampling units (PSUs) each containing 10
households (HHs) which each contain 3 individuals with independent responses yi.

For the simulation, the number of selected PSUs was varied K ∈ {10, 20, 40, 80, 160},
the number of selected HHs within each PSU was fixed at 5, and the number of selected
individuals within each HH was 1. Each setting was repeated M = 200 times. Details
for the selection at each stage follows:

1. For each PSU indexed by k, an aggregate size measure X2,k =
∑

ij x2,ij|k was
created summing over all individuals i and HHs j in PSU k. PSUs are then selected
proportional to this size measure based on Brewer’s PPS algorithm (Brewer, 1975).

2. Once PSUs are selected, for each HH within the selected PSUs indexed by j, an
aggregate size measure X2,j|k =

∑
i x2,i|jk was created summing over all individu-

als i within each HH in the selected PSUs. HHs are selected independently across
PSUs. Within each PSU, HHs are selected systematically with equal probability
by first sorting on X2,j|k and then selecting a random starting point.

3. Within each selected HH, a single person is selected with probability proportional
to size x2,i|jk.

The nested structure of the sampling induces asymptotic independence between
PSUs. Within PSUs, the systematic sampling of HHs creates a block of non-attenuating
dependence between households. Likewise, the sampling of only one person within each
HH creates a joint dependence πii′|jk = 0 between individuals within the same HH.
Therefore, non-factorization of the second order inclusions remains within each PSU (see
Figure 1). Figure 2 compares the bias and mean square error (MSE) for estimation with
equal weights (blue) and inverse probability weights (red). As expected, the sampling
weights remove bias and lead to convergence, since the non-factoring pairwise inclusion
probabilities are of O(N).

4.2 Dependent Sampling of First Stage Units

We now use the same population response model and distributions for y, x1, and x2

but consider the case of single stage sampling designs where the sample size is half the
population (i.e. a partition of size N/2). In particular, we construct a design with second
order dependence that grows O(N2) and demonstrate that estimates for this design fail
to converge. However, with slight modifications, the design can be altered into O(N)
dependence and does demonstrate convergence, as predicted by the theory.
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Figure 1: Matrix {i, j} of deviations from factorization (πij/(πiπj) − 1) for two PSUs
(out of a population of 200) from the three stage sample design. Each PSU contains
10 HHs, which each contain 3 persons. Magnitude (left) and sign (right) of deviations.
Empty cells correspond to 0 deviation (factorization). Created with ‘ggplot2’ (Wickham,
2009).

Figure 2: The marginal estimate of μ = f(x1) under a linear model and three-stage
sampling design. Compares the whole population curve (broken grey) to the sample
with equal weights (red/light grey), and inverse probability weights (blue/dark grey).
Top to bottom: estimated curve, log of absolute bias, log of mean square error. Left to
right: doubling of sample size (50 to 800). Created with ‘ggplot2’ (Wickham, 2009).
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One simple way to create an informative design is to use the size measure x̃2 to
sort the population. Partition the population U into a “high” (U1) group with the top
N/2 and a “low” (U2) group with the bottom N/2. This partition rule leads to an
outcome space with only two possible samples of size N/2: U1 and U2. For simplicity,
assume an equal probability of selection of 1/2. Then it follows that πi = 1/2, for all
i ∈ 1, . . . , N , and πij = 1/2 if i, j ∈ Uk, for k = 1, 2 but 0 if i ∈ Uk and j ∈ Uk′ with
k 
= k′. In fact, all joint inclusions, from orders 2 to N/2, are 1/2 if all members indexed
are in the same partition and 0 otherwise. These second and higher order inclusion
probabilities do not factor with increasing population size N . Thus, the number of
pairwise inclusions probabilities that do not factor (πij 
= 1/4) grows at rate O(N2),
violating condition (A5.1).

Alternatively, we could embed the partitioning procedures within strata, where the
strata are created according to rank order, have a fixed size, and the number of strata
grow with population size N . For example grouping every 50 units into a stratum,
then partitioning within each. Such a modification is relatively minor, but leads to
factorization for all but O(N) pairwise inclusion probabilities. This can be visualized
as the diagonal blocks in the full pairwise inclusion matrix (see Figure 3).

Figure 3: Matrix {i, j} of deviations from factorization (πij/(πiπj) − 1) for an equal
probability dyadic partition design by number of strata (0 to 32). Empty cells correspond
to 0 deviation (factorization). Created with ‘ggplot2’ (Wickham, 2009).
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Figure 4: The marginal estimate of μ = f(x1) under a linear model and one-stage
sampling design with dyadic partitions. Compares the whole population curve (broken
grey) to binary partition (red and blue/light and dark grey) and the stratified partition
sample (black) - one stratum per 50 individuals, each divided into a binary partition,
repeated 100 times. Top to bottom: estimated curve, log of absolute bias, log of mean
square error. Left to right: doubling of population size (100 to 1600). Created with
‘ggplot2’ (Wickham, 2009).

For eachN ∈ {100, 200, 400, 800, 1600}, we generate a single population and compare
the relative convergence of the original dyadic partitions and the stratified versions.
Figure 4 compares the bias and mean square error (MSE) of the two partitions (red and
blue) compared to the average of 100 samples from the stratified version (black). It’s
clear that as the population size (and sample size) grows, the bias of the two partitions
does not go away (the variability is due to a single realization of the population at each
size), while the overall bias and MSE of the stratified version clearly decreases with
increasing N, consistent with the theory.

5 Application to the NSDUH

A simple logistic model of current (past month) smoking status by past year major
depressive episode (MDE) was fit via the survey weighted pseudo-posterior as described
in Section 4 using both equal and probability-based analysis weights for 41,700 adults
from the 2014 NSDUH public use data set (Figure 5). It is reasonable to assume that
equal weights lead to higher estimates of smoking, as young adults are more likely to
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Figure 5: Posterior estimates (mean and 95% intervals) for adults in the US who smoked
cigarettes in the past month by past year major depressive episode, using equal weights
(red/light grey) and probability based analysis weights (blue/dark grey) based on the
2014 National Survey on Drug Use and Health. Created with ‘ggplot2’ (Wickham, 2009).

smoke and are over-sampled. Although the differences (after survey weighting) may
seem relatively small, the effect size is policy-relevant and reflects a large number of
individuals in the population.

A more dramatic difference between equal weights and survey weights can be seen
when comparing the rates of new marijuana users between 33,500 youth and 21,300
adults (the at-risk respondents) (Figure 6). Because younger adults are over-sampled
relative to older adults and the initiation of marijuana is rarer for older adults, the
survey weighted estimated rate for adults (in the population) is nearly half that as under
equal weighting. The decrease in estimated adult new marijuana users under survey
weighting inflates the estimated difference between adults and youths as compared to
equal weighting.

Based on the theoretical results and the simulation study presented in this paper, we
have justification that the probability-based weights have removed any bias and provide
consistent estimation for the NSDUH sampling design. The large number of strata and
the asymptotically independent first stage of selection creates factorization for all but
O(N) pairwise inclusion probabilities, even though the clustering and the sorting of
units before selection may be informative (i.e. related to the outcome measure).

6 Conclusions

This work is motivated by the discrepancy between the theory available to justify con-
sistent estimation for survey sample designs and the practice of estimation for complex,
multistage cluster designs such as the NSDUH. Previous requirements for approximate
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Figure 6: Posterior estimates (mean and 95% intervals) individuals who first use mar-
ijuana in the past year (2013-2014) by age group (Youth/Adult), using equal weights
(red/light grey) and probability based analysis weights (blue/dark grey) based on the
2014 National Survey on Drug Use and Health. Created with ‘ggplot2’ (Wickham, 2009).

or asymptotic factorization of joint sampling probabilities exclude such designs, leaving
the practitioner unable to fully justify their use. We have presented an alternative re-
quirement that allows for unrestricted sampling dependence to persist asymptotically
rather than to attenuate. For example, dependence between units within a cluster is
unrestricted provided that the cluster size is bounded and dependence between clusters
attenuates. This dependence can be positive (joint selection) or negative (mutual exclu-
sion). Results are further demonstrated via a simulation study of a simplified NSDUH
design.

Additional simulations expand our understanding of the impact of sorting. While
the direct application of these methods can lead to dependence among all units (effec-
tively sampling one cluster of infinite size), embedding these features within stratified
or clustered designs can be justified (for subsequent estimation using marginal sampling
weights) by our main results and performs well in simulation and in practice. For exam-
ple, geographic units sorted along a gradient can now be fully justified for the NSDUH,
because the sampling along this gradient occurs independently across a large number of
strata. Similarly, the nested sampling of households within census blocks within CBSAs
for the CE survey is justified due to the large number of CBSAs sampled.

With this work, the use of the sample weighted pseudo-posterior (Savitsky and Toth,
2016) is now available to a much wider variety of survey programs. We note that while
establishing consistency is essential, understanding other properties of pseudo-posteriors
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such as credible intervals, still requires more research. Similarly, model selection for
posteriors could be extended to the survey weighted pseudo-posteriors, for example the
WAIC statistic (Gelman et al., 2014).

Lastly, although beyond the scope of this work, the properties of the sampling de-
sign needed for consistent estimation may also provide insight into methods which use
subsampling of the complete data set (not the survey sample) as a tool for computa-
tional scalability. The results of this work provide some insight on the types of sampling
designs which might be expected to work (bounded residual dependence of O(N)) and
those which would likely fail (residual dependence of order O(N2)). For example, an
approach for scaling logistic regression for large data in Wang et al. (2018) uses subsam-
pling of individuals without dependence (πij = πiπj). The main result of the current
work suggests that more complex sampling such as multistage cluster sampling may
also be used, if for example, a multilevel model were being fit to data with a nested
structure such as patients within hospitals.

Supplementary Material

Appendices for “Bayesian Estimation Under Informative Sampling with Unattenuated
Dependence” (DOI: 10.1214/18-BA1143SUPP; .pdf). Supplementary appendices are
provided online to support the proof of Theorem 1 and to demonstrate example code
and MCMC diagnostics.
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