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Bayesian Network Marker Selection via the
Thresholded Graph Laplacian Gaussian Prior

Qingpo Cai∗, Jian Kang†, and Tianwei Yu‡

Abstract. Selecting informative nodes over large-scale networks becomes increas-
ingly important in many research areas. Most existing methods focus on the local
network structure and incur heavy computational costs for the large-scale problem.
In this work, we propose a novel prior model for Bayesian network marker selection
in the generalized linear model (GLM) framework: the Thresholded Graph Lapla-
cian Gaussian (TGLG) prior, which adopts the graph Laplacian matrix to char-
acterize the conditional dependence between neighboring markers accounting for
the global network structure. Under mild conditions, we show the proposed model
enjoys the posterior consistency with a diverging number of edges and nodes in
the network. We also develop a Metropolis-adjusted Langevin algorithm (MALA)
for efficient posterior computation, which is scalable to large-scale networks. We
illustrate the superiorities of the proposed method compared with existing alter-
natives via extensive simulation studies and an analysis of the breast cancer gene
expression dataset in the Cancer Genome Atlas (TCGA).

Keywords: gene network, generalized linear model, network marker selection,
posterior consistency, thresholded graph Laplacian Gaussian prior.

1 Introduction

In biomedical research, complex biological systems are often modeled or represented
as biological networks (Kitano, 2002). High-throughput technology such as next gen-
eration sequencing (Schuster, 2007), mass spectrometry (Aebersold and Mann, 2003)
and medical imaging (Doi, 2007) has generated massive datasets related to those bio-
logical networks. For example, in omics studies, a biological network may represent the
interactions or dependences among a large set of genes/proteins/metabolites; and the
expression data are a number of observations at each node of the network (Barabási
et al., 2011). In neuroimaging studies, a biological network may refer to the functional
connectivity among many brain regions or voxels; and the neural activity can be mea-
sured at each node of the network. In many biomedical studies, one important research
question is given a known network, to select informative nodes from tens of thousands
of candidate nodes that are strongly associated with the disease risk or other clinical
outcomes (Greicius et al., 2003). We refer to these informative nodes as network mark-
ers (Kim et al., 2012; Peng et al., 2014; Yuan et al., 2017) and the selection procedure
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as network marker selection. One promising solution is to perform network marker se-
lection under regression framework where the response variable is the clinical outcome
and predictors are nodes in the network. The classical variable selection (George and
McCulloch, 1993; Fan and Li, 2001) in the regression model can be considered as a
special case of the network marker selection, where the variable refers to the nodes in a
network without edges.

For variable selection in regression models, many regularization methods have been
proposed with various penalty terms, including the least absolute shrinkage and selec-
tion operator or the L1 penalty (Tibshirani, 1996; Zou, 2006, LASSO), elastic-net or the
L1 plus L2 penalty (Zou and Hastie, 2005), the Smoothly Clipped Absolute Deviation
penalty (Fan and Li, 2001, SCAD), the minimax concave penalty (Zhang, 2010, MCP)
and so on. Several network constrained regularization regression approaches have been
developed to improve selection accuracy and increase prediction power. One pioneer-
ing work is the graph-constrained estimation (Li and Li, 2008, Grace), which adopts
the normalized graph Laplacian matrix to incorporate the network dependent struc-
ture between connected nodes. As an extension of Grace, the adaptive Grace (Li and
Li, 2010, aGrace) makes constraints on the absolute values of weighted coefficients be-
tween connected nodes. Alternatively, an Lγ norm group penalty (Pan et al., 2010)
and a fused LASSO type penalty (Luo et al., 2012) have been proposed to penalize
the difference of absolute values of coefficients between neighboring nodes. Instead of
imposing constraints on coefficients between neighboring nodes, an L0 loss to penalize
their selection indicators (Kim et al., 2013) has been proposed, leading to a non-convex
optimization problem for parameter estimation, which can be solved by approximating
the non-continuous L0 loss using the truncated lasso penalty (TLP).

In addition to frequentist approaches, Bayesian variable selection methods have re-
ceived much attention recently with many successful applications. The Bayesian meth-
ods are natural to incorporate the prior knowledge and make posterior inference on
uncertainty of variable selection. A variety of prior models have been studied, such as
the spike and slab prior (George and McCulloch, 1993), the LASSO prior (Park and
Casella, 2008), the Horseshoe prior (Polson and Scott, 2012), the non-local prior (John-
son and Rossell, 2012), the Dirichlet Laplace prior (Bhattacharya et al., 2015) and
more. To incorporate the known network information, Stingo et al. (2011) employed a
Markov random field to capture network dependence and jointly select pathways and
genes; and Chekouo et al. (2016) adopted a similar approach for imaging genetics anal-
ysis. Zhou and Zheng (2013) proposed rGrace, a Bayesian random graph-constrained
model to combine network information with empirical evidence for pathway analysis.
A partial least squares (PLS) g-prior was developed in Peng et al. (2013) to incorpo-
rate prior knowledge on gene-gene interactions or functional relationship for identifying
genes and pathways. Chang et al. (2016) proposed a Bayesian shrinkage prior which
smoothed shrinkage parameters of connected nodes to a similar degree for structural
variable selection.

The Ising model is another commonly used Bayesian structural variable selection
method. It has been used as a prior model for latent selection indicators that lay on
an undirected graph characterizing the local network structure. They are especially
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successful for variable selection over the grid network motivated by some applications,
for example, the motif finding problem (Li and Zhang, 2010) and the imaging data
analysis (Goldsmith et al., 2014; Li et al., 2015). However, it is very challenging for
fully Bayesian inference on the Ising model over the large-scale network due to at least
two reasons: 1) The posterior inference can be quite sensitive to the hyperparameter
specifications in the Ising priors based on empirical Bayes estimates or subjective prior
elicitation in some applications. However, fully Bayesian inference on those parameters
is difficult due to the intractable normalizing constant in the model. 2) Most posterior
computation algorithms, such as the single-site Gibbs sampler and the Swendsen-Wang
algorithm, incur heavy computational costs for updating the massive binary indicators
over large-scale networks with complex structures. It worth noting that, different from
using the known network structure for variable selection, Dobra (2009); Kundu et al.
(2015); Liu et al. (2014) and Peterson et al. (2016) also proposed Bayesian structured
variable selection without using a known network structure.

To address limitations of existing methods, we propose a new prior model: the thresh-
olded graph Laplacian Gaussian (TGLG) prior, to perform network marker selection
over the large-scale network by thresholding a latent continuous variable attached to
each node. To model the selection dependence over the network, all the latent variables
are assumed to follow a multivariate Gaussian distribution with mean zero and covari-
ance matrix constructed by a normalized graph Laplacian matrix. The effect size of
each node is modeled through an independent Gaussian distribution.

Threshold priors have been proposed for Bayesian modeling of sparsity in various
applications. Motivated by the analysis of financial time series data, Nakajima and West
(2013a) and Nakajima and West (2013b) proposed a latent threshold approach to im-
posing dynamic sparsity in the simultaneous autoregressive models (SAR). Nakajima
et al. (2017) further extended this type of models for the analysis of Electroencephalog-
raphy (EEG) data. To analyze neuroimaging data, Shi and Kang (2015) proposed a
hard-thresholded Gaussian process prior for image-on-scalar regression; and Kang et al.
(2018) introduced a soft-thresholded Gaussian process for scalar-on-image regression.
To construct the directed graphs in genomics applications, Ni et al. (2017) adopted a
hard threshold Gaussian prior in a structural equation model. However, all the existing
threshold prior models do not incorporate the useful network structural information,
and thus are not directly applicable to the network marker selection problem of our
primary interest.

In this work, we propose to build the threshold priors using the graph Laplacian
matrix, which has been used to capture the structure dependence between neighboring
nodes (Li and Li, 2008; Zhe et al., 2013; Li and Li, 2010). Most of those frequentist
methods directly specify the graph Laplacian matrix from the existing biological net-
work. Liu et al. (2014) has proposed a Bayesian regularization graph Laplacian (BRGL)
approach which utilizes the graph Laplacian matrix to specify a priori precision matrix
of regression coefficients. However, BRGL is fundamentally different from our method
in that it is one type of continuous shrinkage priors for regression coefficients which
have quite different prior supports compared with our TGLG priors. BRGL were de-
veloped only for linear regression and its computational cost can be extremely heavy
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for large-scale networks. In addition, there is lack of theoretical justifications for BRGL
when the large-scale network has a diverging number of edges and nodes.

Our method is a compelling Bayesian approach to variable selection with a known
network structure. The TGLG prior has at least four markable features: 1) Fully Bayesian
inference for large-scale networks is feasible in that the TGLG prior does not involve any
intractable normalizing constants. 2) Posterior computation can be more efficient, since
the TGLG-based inference avoids updating the latent binary selection indicators and
instead updates the latent continuous variables, to which many existing approximation
techniques can be potentially applied. 3) The graph Laplacian matrix (Chung, 1997;
Li and Li, 2008; Zhe et al., 2013) based prior can incorporate the topological structure
of the network which has been adopted in genomics. 4) The TGLG prior enjoys the
large support for Bayesian network marker selection over large-scale networks, leading
to posterior consistency of model inference with a diverging number of nodes and edges
under the generalized linear model (GLM) framework.

The remainder of the manuscript is organized as follows. In Section 2, we introduce
the TGLG prior and propose our model for network marker selection under the GLM
framework. In Section 3, we study the theoretical properties for the TGLG prior and
show the posterior consistency of model inference. In Section 4, we discuss the hyper
prior specifications and the efficient posterior computation algorithm. We illustrate the
performance of our approach via simulation studies and an application on the breast
cancer gene expression dataset from The Cancer Genome Atlas (TCGA) in Section 5.
We conclude our paper with a brief discussion on the future work in Section 6.

2 The Model

Suppose the observed dataset includes a network with pn nodes, one response variable
and q confounding variables. For each node, we have n observations. For observation
i, i = 1, . . . , n, let yi be the response variable, xi = (xi1, · · · , xipn)

T be the vector
of nodes and zi = (zi1, · · · , ziq)T be the vector of confounding variables. Denote by
Dn = {zi,xi, yi}ni=1 the dataset. We write the number of nodes as pn to emphasize
on the diverging number of nodes in our asymptotical theory. Drop subscript i to have
generic notation for a response variable y, a vector of nodes x and a vector of confounders
z. Generalized linear model (GLM) is a flexible regression model to relate a response
variable to a vector of nodes and confounding variables. The GLM density function for
(y,x, z) with one natural parameter is:

f∗(y, h∗) = exp{a(h∗)y + b(h∗) + c(y)}, (1)

where h∗ = zTω∗ + xTβ∗ is the linear parameter in the model, ω∗ and β∗ are true
coefficients that generate data, a(h) and b(h) are continuous differentiable functions.
The true mean function is

μ∗ = E(y | z,x) = −b′(h∗)/a′(h∗) ≡ g−1(zTω∗ + xTβ∗),

where g−1(·) is an inverse link function, which can be chosen according to the specific
type of the response variable. For example, one can choose the identity link for the
continuous response and the logit link for the binary response.
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In (1), coefficient vector ω is a nuisance parameter to adjust for the confounder
effects, for which we assign a Gaussian prior with mean zero and independent covariance,
i.e. ω ∼ N(0, σ2

ωIq) for σ
2
ω > 0. Here Id represents an identity matrix of dimension d for

any d > 0. Coefficient vector β represents the effects of nodes on the response variable.
Here we perform network marker selection by imposing sparsity on β. To achieve this
goal, we develop a new prior model for β: the thresholded graph Laplacian Gaussian
(TGLG) prior. Suppose the observed network can be represented by a graph G, with
each vertex corresponding to one node in the network. Let j ∼ k indicate there exists
an edge between vertices j and k in G. Let dj represent the degree of vertex j, i.e., the
number of nodes that are connected to vertex j in G. Denote by L = (Ljk) a pn × pn
normalized graph Laplacian matrix, i.e. Ljk = 1 if j = k and dj �= 0, Ljk = −1/

√
djdk

if j ∼ k, and Ljk = 0 otherwise. For any d > 0, denote by 0d an all zero vector of
dimension d. For any λ, ε, σ2

α, σ
2
γ > 0, we consider an element-wise decomposition of β

for the prior specifications:

β = α ◦ tλ(γ), γ ∼ N{0pn , σ
2
γ(L+ εIpn)

−1}, α ∼ N(0pn , σ
2
αIpn). (2)

Here α = (α1, . . . , αpn)
T represents the effect size of nodes. The operator ”◦” is the

element-wise product. The vector thresholding function is tλ(γ) = {I(|γ1| > λ), . . . ,
I(|γpn | > λ)}T, where I(A) is the event indicator with I(A) = 1 if A occurs and I(A) =
0 otherwise. The latent continuous vector γ = (γ1, . . . , γpn)

T controls the sparsity over
graph G. We refer to (2) as the TGLG prior for β, denoted as β ∼ TGLG(λ, ε, σ2

γ , σ
2
α).

The TGLG prior implies that for any two nodes j and k, γj and γk are conditionally
dependent given others if and only if j ∼ k over the graph G. In this case, their absolute
values are more likely to be smaller or larger than a threshold value λ together. This
further implies that nodes j and k are more likely to be selected as network marker or not
selected together if j ∼ k. Figure 1 shows an example of a graph and the corresponding
correlation matrix of γ for ε = 10−2, where the γ’s of connected vertices are highly
correlated.

There are four hyperparameters in the TGLG prior model. The threshold λ controls
a priori the sparsity. When λ → 0, all the nodes tend to be selected. When λ → ∞,
none of them will be selected. The parameter ε determines the impact of the network on
the sparsity. When ε → ∞, γ’s of connected vertices tend to be independent while they
tend to be perfectly correlated when ε → 0. The two variance parameters σ2

γ and σ2
α

control the prior variability of the latent vectors γ and α respectively. Note that σ2
γ and

λ are not completely identifiable, but for some specifications they can affect much the
sparsity of βj ’s in prior specifications. For example, when 3σγ is much smaller than λ,
the prior probability of zero βj can be close to one. On the other hand, for any positive
σγ , when λ close to zero, βj is nonzero with a high prior probability.

Now we discuss how to specify the hyperparameters. For variance terms σ2
γ and

σ2
α, we use the conjugate prior model by assigning the Inverse-Gamma distribution

IG(aγ , bγ) and IG(aα, bα) respectively. We fix σ2
ω as a large value. We assign the uniform

prior to the threshold parameter λ, i.e. λ ∼ Unif(0, λu) with upper bound λu > 0. We
choose a wide range by set λu = 10 in the rest of manuscript. For parameter ε, we can
either assign an log-normal prior (logε ∼ N(με, σ

2
ε)) or set as a fixed small value.
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Figure 1: An example of the graph and the corresponding correlation matrix of γ that
was constructed from the inverse graph Laplacian matrix.

3 Theoretical Properties

In this section, we examine the theoretical properties of TGLG prior based network
marker selection under the GLM framework. In particular, we establish the posterior
consistency with a diverging number of nodes in the large-scale networks.

Let ξ ⊂ {1, 2, · · · , pn} denote the set of selected node indices, i.e. I(|γj | > λ) = 1,
if j ∈ ξ, I(|γj | > λ) = 0, otherwise. The number of nodes in ξ is denoted as |ξ|. For
a model ξ = (i1, · · · , i|ξ|), denote by βξ = (βi1 , · · · , βi|ξ|)

T the coefficient of interest,
respectively. Let π(ξ, dβξ, dω) represent the joint prior probability measure for model ξ,
parameters βξ and confounding coefficients ω. Their joint posterior probability measure
conditional on dataset Dn is:

π(ξ, dβξ, dω | Dn) =

∏n
i=1 f(yi, hi)π(ξ, dβξ, dω)∑

ξ′
∫
βξ′

∏n
i=1 f(yi, hi)π(ξ′, dβξ′ , dω)

,

where f(yi, hi) = exp{a(hi)yi+b(hi)+c(yi)} is the density function of yi given xi and zi
based on GLM with hi = zTi ω+xT

i β. We examine asymptotic properties of the posterior
distribution of the density function f regarding to the Hellinger distance (Jiang, 2007;
Song and Liang, 2015) under some regularity conditions. The Hellinger distance d(f1, f2)
between two density functions f1(x, y) and f2(x, y) is defined as

d(f1, f2) =

[∫ ∫ {
f
1/2
1 (x, y)− f

1/2
2 (x, y)

}2

dxdy

]1/2
.

We list all the regularity conditions in the Appendix. We show that the TGLG prior
and the proposed model enjoy the following properties:
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Theorem 1 (Large Support for Network Marker Selection). Assume a sequence εn ∈
(0, 1] with nε2n → ∞ and a sequence of nonempty models ξn. Assume conditions (C1)–
(C3) and (C7) hold. Given σ2

α and σ2
γ , for any sufficiently small η > 0, there exists Nη

such that for all n > Nη, we have

π(ξ = ξn) ≥ e−nε2n/128 and (3)

π(βξ ∈ B(ξn, η) | ξ = ξn) ≥ e−nε2n/128 with B(ξn, η) = {β∗
j ± ηε2n/|ξn|}j∈ξn . (4)

There exists Cn > 0, such that for all sufficiently large n and for any j ∈ ξn:

π(|βj | > Cn | ξn) ≤ e−nε2n/4. (5)

This theorem shows that the TGLG prior has a large support for the network marker
selection. Particularly, (3) states that the TGLG prior can select the true network
marker with a positive prior probability bounded away from zero, (4) ensures that the
prior probability of the coefficients falling within an arbitrarily small neighborhood
of the true coefficients with probability bounded away from zero, and (5) indicates a
sufficiently small tail probability of the TGLG prior.

Theorem 2 (Posterior Consistency for Network Marker Selection). For the GLM with
bounded covariates, i.e. |xj | ≤ M for all j = 1, · · · , pn and |zk| ≤ M for all k = 1, · · · , q,
suppose the true node regression coefficients satisfy

lim
n→∞

pn∑
j=1

|β∗
j | < ∞.

Let εn ∈ (0, 1] be a sequence such that nε2n → ∞. Assume conditions (C1)–(C7) hold.
Then we have the following results:

(i) Posterior consistency:

lim
n→∞

P{π[d(f, f∗) ≤ εn|Dn] ≥ 1− 2e−nε2n/64} = 1, (6)

where f is the density function sampled from the posterior distribution and f∗ is
the true density function.

(ii) For all sufficiently large n:

P{π[d(f, f∗) > εn|Dn] ≥ 2e−nε2n/64} ≤ 2e−nε2n/64. (7)

(iii) For all sufficiently large n:

E{π[d(f, f∗) > εn|Dn]} ≤ 4e−nε2n/32. (8)

Probability measure P and expectation E are both with respect to data Dn that are
generated from the true density f∗.
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This theorem establishes the posterior consistency of network marker selection. In
particular, (6) implies that the posterior distribution of density f concentrates on an
arbitrarily small neighborhood of the true density f∗ under the Hellinger distance with a
large probability. This probability converges to one as sample size n → ∞. (7) provides
the convergence rate of the posterior distribution indicating how fast the tail proba-
bility approaches to zero. (8) indicates the average convergence rate of the posterior
distribution of density f concentrating on the arbitrarily small neighborhood of the
true density f∗.

Please refer to the Supplementary File 1 (Cai et al., 2018a) for proofs of Theorems
1 and 2.

4 Posterior Computation

Our primary goal is to make posterior inference on regression coefficients for net-
work markers, i.e. β. According to the model specification, the sparsity of βj is de-
termined by the sparsity of αj and whether |γj | is less than λ or not, i.e. I(βj = 0) =
I(αj = 0)I(|γj | ≤ λ). Since αj has a non-sparse normal prior, the posterior inclusion
probability of node j is just equal to the posterior probability of |γj | being greater
than λ; and given βj �= 0, the effect-size can be estimated by E(βj ||γj | > λ,Dn). All
other parameters in the model can be estimated by its posterior expectations.

To simulate the joint posterior distribution for all parameters, we adopt an effi-
cient Metropolis-adjusted Langevin algorithm (MALA) (Roberts and Rosenthal, 1998)
for posterior computation. We introduce a smooth approximation for the thresholding
function:

I(|γj | > λ) � 1

2

{
1 +

2

π
arctan

(
γ2
j − λ2

ε0

)}
for ε0 → 0,

leading to the analytically tractable first derivative:

∂βj

∂γj
= αj

2γj/ε0
π(1 + (γ2

j − λ2)2/ε20)
.

We choose ε0 = 10−8 in the simulation studies and real data application in this article.

Denote by f(yi | ω,α,γ, λ) the likelihood function for all the parameters of interest
for observation i. Let φ(x | μ,Σ) denote the density function of a multivariate normal
distribution with mean μ and covariance matrix Σ and φ+(x | μ, μl, μu, τ

2) denote
the density of a truncated normal distribution N+(μ, μl, μu, τ

2) density with mean μ,
variance τ2 and interval [μl, μu]. Let Vω = σ2

ωIq be the variance of the prior distribution
for ω. Let Λγ = (L + εIpn)

−1. To update λ, it is natural to use the random walk
with a normal distribution as the proposal distribution. As we have a uniform prior
specifications for λ, we use the truncated normal distribution to improve the sample
efficiency, since the candidate sample falls in the same range in the prior specifications.
Our choices are λl = 0 and λl = 10. The proposal variances τ2γ , τ

2
α, τ

2
ω and are all

adaptively chosen by tuning acceptance rates to 30% for random walk and 50% for
MALA in simulation studies and 15% for random walk and 30% for MALA in real data
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Algorithm 1 Posterior updates within each iteration.

Input: the parameters from the last iteration
Output: the updated parameters for the next iteration
1: Draw ω∗ ∼ N(ω, τ2ωIq). Update ω = ω∗ with probability

min

{
1,

φ(ω∗ | 0, Vω)
∏

i f(yi | ω∗, •)
φ(ω | 0, Vω)

∏
i f(yi | ω, •)

}
.

2: Draw γ∗ ∼ N{μ(γ), τ2γ Ip}, where μ(γ) = γ +
τ2
γ

2 (∂logf∂γ − 1
2σ

2
γΛγγ) with ∂logf

∂γj
=∑n

i=1(a
′(zTi ω + xT

i β) + b′(zTi ω + xT
i β))xij

∂βj

∂γj
. Update γ = γ∗ with probability

min

{
1,

φ(γ | μ(γ∗), τ2γ Ip)φ(γ
∗ | 0, σ2

γΛγ)
∏

i f(yi | γ∗, •)
φ(γ∗ | μ(γ), τ2γ Ip)φ(γ | 0, σ2

γΛγ)
∏

i f(yi | γ, •)

}
.

3: Update ξ = {j : |γj | > λ}.
4: For j /∈ ξ, draw αj ∼ N(0, σ2

α). Draw α∗
ξ ∼ N

{
μ(αξ), τ

2
αI|ξ|

}
, where μ(αξ) =

αξ +
τ2
α

2 (∂logf∂αξ
− 1

2Σξαξ) with ∂logf
∂αj

=
∑n

i=1(a
′(zTi ω + xT

i β) + b′(zTi ω + xT
i β))xij

for j ∈ ξ and Σξ = σ2
αI|ξ|. Update αξ = α∗

ξ with probability

min

{
1,

φ(αξ | μ(α∗
ξ), τ

2
αI|ξ|)φ(α

∗
ξ | 0,Σξ)

∏
i f(yi | α∗

ξ , •)
φ(α∗

ξ | μ(αξ), τ2αI|ξ|)φ(αξ | 0,Σξ)
∏

i f(yi | αξ, •)

}
.

5: Draw σ2
γ ∼ IG(ãγ , b̃γ) where ãγ = aγ + p

2 and b̃γ = bγ +
γTΛ−1

γ γ

2 .

6: Draw σ2
α ∼ IG(ãα, b̃α) where ãα = aα + p

2 and b̃α = bα +
∑

j α2
j

2 .
7: (Optional) Draw ε∗ ∼ N(ε, τ2ε ). Update ε = ε∗ with probability

min

{
1,

|L+ ε∗Ipn |
1
2 ε exp{−ε∗γTγ/(2σ2

γ)− (log ε∗ − με)
2/(2σ2

ε)}
|L+ εIpn |

1
2 ε∗ exp{−εγTγ/(2σ2

γ)− (log ε− με)2/(2σ2
ε)}

}
.

8: (Optional) Draw λ∗ ∼ N+(λ, λl, λu, τ
2
λ). Update λ = λ∗ with probability

min

{
1,

φ+(λ | λ∗, λl, λu, τ
2
λ)

∏
i f(yi | λ∗, •)

φ+(λ∗ | λ, λλ, λu, τ2λ)
∏

i f(yi | λ, •)

}
.

analysis. Our choice of the acceptance rate takes into account the general theoretical
results on the optimal scaling of random walk (Roberts et al., 1997) and MALA (Roberts
and Rosenthal, 1998; Roberts et al., 2001). However, the log-likelihood of our model
involves both smooth and discontinuous functions, which do not satisfy the regularity
conditions of the general theoretical results. Thus, we have made slight changes in
the theoretical optimal acceptance rates according to our numerical experiments. See
Algorithm 1 for the details of our posterior updates.
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Denote by {γ(i),α(i), λ(i)}Ni=1 the MCMC samples obtained after burn-in. We esti-
mate the posterior inclusion probability for node j(j = 1, · · · , pn) by

P̂r(βj �= 0 | Dn) =
1

N

N∑
i=1

I{|γ(i)
j | > λ(i)}.

According to Barbieri et al. (2004), we select the informative nodes with at least 50%

inclusion probability, denote by M̂ = {j : P̂r(βj �= 0 | Dn) > 0.5} the indices of all the
informative nodes. To estimate regression coefficients of informative nodes, we choose
the estimated conditional expectation of βj given βj �= 0 by

Ê{βj | βj �= 0, Dn} =

∑N
i=1 α

(i)
j I(|γ(i)

j | > λ(i))∑N
i=1 I{|γ

(i)
j | > λ(i)}

, for j ∈ M̂.

5 Numerical Studies

We conduct simulation studies to evaluate performance of the proposed methods com-
pared with existing methods for different scenarios.

5.1 Small Simple Networks

Following settings in Li and Li (2008), Zhe et al. (2013) and Kim et al. (2013), we
simulate small simple gene networks consisting of multiple subnetworks, where each
subnetwork contains one transcription factor (TF) gene and 10 target genes that are
connected to the TF gene; and two of the subnetworks are set as the true network
markers. We consider two types of true network markers. In Type 1 network marker,
TF and all 10 target genes are informative nodes; see Figure 2(a). In Type 2 network
marker, TF and half of target genes are informative nodes; see Figure 2(b). For each
informative node, the magnitude of the effect size, β, is simulated from Unif(1, 3) and
its sign is randomly assigned as positive or negative.

In each subnetwork, the covariate variables for 11 nodes, i.e., the expression levels of
the TF gene and 10 target gene, are jointly generated from a 11-dimensional multivariate
normal distribution with zero mean and unit variance, where the correlation between
the TF gene and each target gene is 0.5; and the correlation between any two different
target genes is 0.25. We assume the covariate variables are independent across different
subnetworks.

To generate the response variable given the true network markers, we consider binary
and continuous cases, where the continuous response variable is generated from linear
regression, i.e. y ∼ N(Xβ,

∑
i β

2
i /3); and the binary response is generated from logistic

regression, i.e. Pr(y = 1) = 1/{1 + exp(−Xβ)}.
We consider two scenarios for the number of subnetworks: 3 and 10; the correspond-

ing numbers of nodes, p = 33 and p = 110 respectively. For the network with Type 1
markers, the number of informative nodes is 22; For the network with Type 2 markers,
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Figure 2: Two types network markers in the simulated small simple networks, where
true informative nodes are marked in red. In Type 1 network marker, TF and all target
genes are informative nodes. In Type 2 network marker, TF and half of target genes are
informative nodes.

the number of informative nodes is 12. We generate 50 datasets for each scenario. For
linear regression, each dataset contains 100 training samples and 100 test samples; for
logistic regression, each dataset contains 200 training samples and 200 test samples.

We compare the proposed TGLG approach with the following existing methods:
Lasso (Tibshirani, 1996), Elastic-net (Zou and Hastie, 2005), Grace (Li and Li, 2008),
aGrace (Li and Li, 2010), L∞ and aL∞ (Luo et al., 2012), TTLP and LTLP (Kim
et al., 2013), BRGL (Liu et al., 2014) and Ising model (Goldsmith et al., 2014; Li et al.,
2015). For the hyper priors in the TGLG approach, we assign weakly informative priors:
σ2
γ ∼ IG(0.01, 0.01), σ2

α ∼ IG(0.01, 0.01). For all the regularized approaches, we adopt
three-fold cross validations to choose tuning parameters. For the Ising prior model, we
specify the priors as

p(γ) = ζ(a, b) exp

⎡⎣a∑
i

γi +
∑
i

⎧⎨⎩∑
j∈Ni

bI(γi = γj)

⎫⎬⎭
⎤⎦

and βi|γi = 1 ∼ N(0, σ2
β), where Ni denotes the neighbor nodes set of node i. For

hyper prior specifications in Ising model, we fix a = −2 and choose b from 2, 5, 7 and 10
based on model performance. We implement a single-site Gibbs sampler for Ising model.
For BRGL by Liu et al. (2014), the network markers are selected when the posterior
probability P(|βj | >

√
Var(βj)|Dn) exceeds 0.5.

To evaluate posterior sensitivity to the prior specification of γ in TGLG, we consider
three cases. 1) TGLG-I: assign a network-independent prior for γ, i.e., γ ∼ N{0p, σ

2
γIp);

2) TGLG-F: fix ε = 10−5 and 3) TGLG-L: assign a log-normal prior to ε, i.e., log ε ∼
N(−5, 9).

For all the Bayesian methods, we run 30,000 MCMC iterations with the first 20,000
as burn-in. We also check the MCMC convergences by running five chains and computing
the Gelman-Rubin diagnostics. For all the Bayesian methods, the estimated 95% CI
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Method PMSE TP FP AUC PMSE TP FP AUC

Type 1 p = 33 Type 1 p = 110

Lasso 52.3(1.6) 20.6(0.2) 7.3(0.3) 0.778(0.006) 71.6(1.9) 17.2(0.3) 19.6(1.2) 0.792(0.005)

Elastic-net 50.9(1.4) 21.8(0.1) 10.4(0.2) 0.788(0.004) 73.7(1.8) 19.6(0.3) 46.6(2.9) 0.811(0.004)

Grace 56.8(1.5) 21.6(0.1) 10.1(0.2) 0.864(0.007) 87.5(2.0) 17.9(0.4) 37.5(2.5) 0.897(0.004)

aGrace 53.7(1.5) 22.0(0.0) 10.7(0.1) 0.875(0.007) 76.4(2.1) 20.6(0.3) 65.9(3.6) 0.899(0.005)

L∞ 51.4(1.5) 21.8(0.1) 8.9(0.4) 0.970(0.006) 66.5(1.7) 21.5(0.2) 22.7(1.5) 0.973(0.005)

aL∞ 54.2(1.3) 21.8(0.1) 8.2(0.6) 0.669(0.034) 63.5(1.5) 21.5(0.2) 19.6(1.4) 0.946(0.010)

TTLP 54.3(1.6) 21.9(0.0) 10.1(0.4) 0.834(0.019) 72.6(2.0) 20.9(0.4) 44.2(4.6) 0.920(0.004)

LTLP 51.3(1.2) 22.0(0.0) 8.8(0.6) 0.933(0.005) 67.1(1.7) 21.5(0.2) 57.6(2.7) 0.897(0.009)

BRGL 51.0(1.3) 19.5(0.2) 4.1(0.3) 0.883(0.008) 79.7(1.8) 17.9(0.2) 22.1(0.9) 0.867(0.006)

Ising(b=7) 54.9(3.0) 19.7(0.7) 2.9(0.7) 0.925(0.017) 94.9(5.9) 15.1(0.9) 33.9(2.4) 0.786(0.023)

TGLG-I 50.1(1.3) 21.9(0.1) 10.7(0.2) 0.863(0.010) 81.4(2.1) 14.8(0.5) 22.6(2.6) 0.779(0.009)

TGLG-F 45.2(1.2) 22.0(0.0) 2.2(0.6) 0.912(0.032) 63.9(2.8) 19.7(0.4) 17.8(2.9) 0.899(0.016)

TGLG-L 46.0(1.3) 21.9(0.1) 1.7(0.5) 0.968(0.016) 74.1(2.4) 17.1(0.5) 19.3(2.7) 0.847(0.013)

Type 2 p = 33 Type 2 p = 110

Lasso 23.1(0.6) 11.7(0.1) 11.8(0.6) 0.830(0.006) 30.6(0.8) 9.5(0.2) 19.1(1.1) 0.826(0.007)

Elastic-net 23.4(0.6) 11.8(0.1) 15.4(0.6) 0.802(0.006) 31.4(0.9) 10.6(0.2) 34.0(2.1) 0.818(0.006)

Grace 25.8(0.6) 11.4(0.1) 14.7(0.6) 0.813(0.005) 35.2(0.8) 9.1(0.2) 25.8(1.9) 0.855(0.005)

aGrace 25.9(0.7) 12.0(0.0) 20.3(0.3) 0.868(0.006) 32.8(0.8) 11.6(0.1) 73.0(3.5) 0.895(0.007)

L∞ 23.8(0.6) 11.9(0.1) 17.2(0.6) 0.812(0.005) 30.3(0.7) 11.3(0.2) 28.9(1.9) 0.928(0.005)

aL∞ 26.1(0.7) 11.9(0.1) 16.9(0.6) 0.643(0.018) 30.6(0.6) 11.3(0.2) 27.1(1.7) 0.893(0.009)

TTLP 25.9(0.8) 12.0(0.0) 20.0(0.5) 0.801(0.008) 32.2(0.8) 11.6(0.2) 64.3(5.2) 0.923(0.004)

LTLP 24.7(0.7) 12.0(0.0) 20.4(0.4) 0.825(0.008) 30.6(0.7) 11.7(0.2) 75.1(3.6) 0.864(0.006)

BRGL 23.7(0.6) 11.4(0.1) 7.3(0.4) 0.938(0.007) 37.7(0.9) 9.9(0.1) 23.8(1.1) 0.876(0.008)

Ising(b=7) 27.8(1.5) 9.9(0.5) 11.6(0.8) 0.855(0.024) 45.8(2.6) 7.6(0.6) 44.5(2.0) 0.709(0.032)

TGLG-I 23.7(0.6) 10.8(0.2) 8.0(0.9) 0.918(0.006) 33.9(0.9) 7.2(0.3) 7.6(1.5) 0.829(0.011)

TGLG-F 22.8(0.6) 11.4(0.1) 10.2(0.7) 0.901(0.015) 28.7(1.1) 10.5(0.3) 14.2(2.1) 0.922(0.012)

TGLG-L 22.3(0.6) 11.6(0.1) 8.9(0.6) 0.930(0.008) 28.8(0.9) 8.8(0.3) 6.4(1.1) 0.908(0.011)

Table 1: Simulation results for linear regression. PMSE: prediction mean squared error.
TP: true positives, FP: false positives; number of informative nodes in Type 1 network
is 22; number of informative nodes in Type 2 network is 12.

of the potential scaled reduction factors for the deviance is [1.0, 1.0], indicating the
convergence of the MCMC algorithm. To compare the performance of different methods,
we compute true positives, false positives and the area under the curve (AUC) for true
network markers recovery, prediction mean squared error (PMSE) for linear regression
and classification error (CE) for logistic regression regarding to outcome. We report the
mean and standard error over 50 datasets for each metric we choose to compare in the
result table.

Table 1 summarizes the results for linear regression under different settings. In most
cases, TGLG approaches with incorporating network structure achieve a smaller PMSE,
smaller number of false positives with a comparable amount of true positives compared
with other methods. For the Ising model, we only report the results in the case of
b = 7 since it has an overall best performance among all choices of b values. In fact,
the performance of the Ising model varies greatly for different choices of values for
b and it may perform very bad with an inappropriate value of b. Table 3 shows the
mean computation time over 50 datasets for Ising model and TGLG. It shows that our
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Method CE TP FP AUC CE TP FP AUC

Type 1 p = 33 Type 1 p = 110

Lasso 20.8(0.7) 21.2(0.1) 6.9(0.4) 0.811(0.004) 30.8(1.1) 19.1(0.4) 25.1(1.7) 0.836(0.004)

Elastic-net 21.0(0.8) 21.4(0.1) 8.4(0.4) 0.818(0.004) 32.6(0.8) 19.9(0.2) 29.4(2.1) 0.848(0.003)

Ising(b=5) 39.2(3.0) 15.2(1.2) 0.0(0.0) 0.937(0.011) 47.6(4.1) 13.5(1.1) 10.2(2.9) 0.826(0.031)

TGLG-I 19.2(0.6) 21.9(0.1) 10.0(0.2) 0.877(0.011) 30.5(0.9) 17.1(0.3) 16.0(1.4) 0.851(0.008)

TGLG-F 19.4(0.7) 21.8(0.1) 8.0(0.5) 0.858(0.021) 30.8(1.1) 17.6(0.4) 13.0(1.1) 0.870(0.007)

TGLG-L 18.7(0.7) 21.8(0.1) 7.5(0.5) 0.875(0.018) 30.4(1.0) 17.3(0.3) 13.4(1.1) 0.858(0.008)

Type 2 p = 33 Type 2 p = 110

Lasso 25.2(0.9) 11.7(0.1) 10.1(0.7) 0.856(0.004) 32.7(1.0) 10.6(0.2) 22.7(2.2) 0.872(0.004)

Elastic-net 26.1(0.8) 11.9(0.0) 13.2(0.7) 0.796(0.004) 36.6(1.2) 10.5(0.3) 25.9(2.5) 0.849(0.004)

Ising(b=5) 27.4(1.4) 9.5(0.4) 7.2(0.4) 0.899(0.016) 37.7(2.8) 7.4(0.5) 9.0(1.7) 0.820(0.025)

TGLG-I 22.6(0.8) 11.4(0.1) 4.8(0.6) 0.961(0.007) 29.4(1.2) 9.7(0.3) 6.9(0.9) 0.897(0.0012)

TGLG-F 23.2(0.8) 11.5(0.1) 6.3(0.6) 0.941(0.010) 29.3(1.0) 9.9(0.3) 6.7(0.6) 0.903(0.010)

TGLG-L 22.1(0.8) 11.6(0.1) 5.8(0.7) 0.959(0.005) 28.6(1.0) 10.1(0.2) 6.2(0.8) 0.921(0.009)

Table 2: Simulation results for logistic regression with sample size 200. CE: classification
error (number of incorrect classification); TP: true positive; FP: false positive; number
of Type 1 true network markers: 22; number of Type 2 true network markers: 12.

Linear regression Logistic regression

Ising TGLG Ising TGLG

p = 33 Type 1 140.1(0.5) 21.5(0.2) 230.1(7.6) 26.7(0.3)

Type 2 140.1(0.5) 21.0(0.3) 229.9(7.6) 26.4(0.2)

p = 110 Type 1 1191.4(7.1) 31.7(0.2) 1210.1(10.1) 37.7(1.0)

Type 2 1153.4(8.5) 30.6(0.1) 1203.6(8.4) 36.5(0.9)

Table 3: Average computing time with standard error in seconds for Ising model and
TGLG based network marker selection. All the computations run on a desktop computer
with 3.40 GHz i7 CPU and 16 GB memory.

method is much more computationally efficient than the Ising model, especially for the
large-scale networks.

As for the three cases of adopting TGLG approaches, TGLG-L has the best overall
performance regarding to the PMSE and false positives. TGLG-F tends to have a larger
false positive than TGLG-L and TGLG-I, since selection variables for connected nodes
are highly dependent when fixed ε = 10−5. However, TGLG-F still has a smaller PMSE
than TGLG-I. Compared with TGLG-I, TGLG-L has smaller false positives and PMSE
in most cases. These facts show that incorporating network structure can improve model
prediction performance of TGLG in linear regression.

Table 2 summarizes the results for the logistic regression under different simulation
settings. Here the TGLG is only compared with Lasso, Elastic-net and the Ising model.
For Type 1 network, the Ising model has a smaller number of false positives than all
three TGLG approaches. However, the Ising model has a larger prediction error and a
smaller number of true positives. In all other scenarios, TGLG outperforms the Ising
model. Table 3 demonstrates the TGLG approach is much more computational efficient
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than the Ising model in Logistic regression. In addition, TGLG-F and TGLG-L have a
smaller number of false positives and classification error than TGLG-I in most cases,
which indicates that including network structure could improve model performance in
logistic regression.

5.2 Large Scale-Free Networks

We perform simulation studies on large scale-free networks, which are commonly used
network models for gene networks. We simulate scale-free network (Barabási and Albert,
1999) with 1,000 nodes using R function barabasi.game in package igraph. In the
simulated scale-free network, we set the true network markers by selecting 10 nodes
out of 1,000 as the true informative nodes according to two criteria: 1) all the true
informative nodes form a connected component (Hopcroft and Tarjan, 1973) in the
network; 2) all the true informative nodes are disconnected, in which case the TGLG
model assumption does not hold. For each informative node, the magnitude of the effect
size is simulated from Unif(1, 3) and its sign is randomly assigned as positive or negative.
Covariates X are generated from a multivariate normal distribution X ∼ N(0, 0.3D),
where D is the shortest path distance matrix between nodes in the generated scale-
free network. Response variable Y is generated using Y ∼ N(Xβ,

∑
β2
i /3) for linear

regression and Pr(Y = 1) = 1/{1+exp(−Xβ)} for logistic regression. According to the
above procedure, we simulate 50 datasets with sample size 200.

We apply the aforementioned all three TGLG methods (TGLG-I, TGLG-F,
TGLG-L) to each dataset compared with Lasso and Elastic-net. In addition, to evalu-
ate the robustness of network structure mis-specifications, for each simulated scale-free
network, we randomly select 20% of nodes and permute their labels; and then we apply
TGLG-L with this mis-specified network. We refer to this approach as TGLG-M.

Table 4 reports the same performance evaluation metrics as Table 1 and Table 2.
When the informative nodes form a connected component in the network, overall
TGLG-L achieve the best performance regarding to PMSE or CE, and false positives.
When the informative nodes are all disconnected, TGLG-L still has the best performance
in linear regression, but is slightly worse than TGLG-I in logistic regression. This fact
indicates that TGLG approaches is not sensitive to our model assumption regarding the
true network markers. In both cases, TGLG-M performs worse than TGLG-L with cor-
rectly specified networks, but still better than Lasso and Elastic-net. This implies that
the useful network information can improve the performance of TGLG, while TGLG-L
is robust the network misspecification.

5.3 Application to Breast Cancer Data from the Cancer Genome
Atlas

In the real data application, we use the High-quality INTeractomes (HINT) database
for the biological network (Das and Yu, 2012). We apply our method to the TCGA
breast cancer (BRCA) RNA-seq gene expression dataset with 762 subjects and 10,792
genes in the network. The response variable we consider here is ER status – whether the
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Method PMSE TP FP AUC CE TP FP AUC

Linear regression Logistic regression

True informative nodes form a connected component

Lasso 21.7(0.6) 9.5(0.1) 54.4(3.8) 0.936(0.004) 43.3(1.6) 8.4(0.2) 29.6(3.4) 0.771(0.028)

Elastic-net 23.2(0.7) 9.6(0.1) 69.0(3.9) 0.931(0.004) 57.9(2.4) 7.7(0.2) 22.4(3.2) 0.928(0.006)

TGLG-I 21.7(0.8) 9.1(0.1) 13.5(1.9) 0.950(0.007) 37.2(1.3) 7.7(0.2) 8.9(0.9) 0.892(0.011)

TGLG-F 21.8(0.9) 9.3(0.1) 14.6(1.5) 0.968(0.006) 35.2(1.3) 8.0(0.2) 7.8(0.9) 0.902(0.011)

TGLG-L 20.7(0.7) 9.1(0.1) 10.1(1.5) 0.957(0.006) 35.4(1.4) 7.9(0.3) 8.3(1.0) 0.893(0.011)

TGLG-M 21.2(0.8) 9.1(0.1) 11.3(1.5) 0.952(0.007) 37.1(1.3) 7.8(0.2) 9.3(1.1) 0.892(0.012)

True informative nodes are all disconnected

Lasso 20.8(0.6) 9.8(0.1) 55.0(3.7) 0.940(0.003) 43.4(1.2) 8.9(0.2) 26.8(3.0) 0.824(0.028)

Elastic-net 22.2(0.7) 9.8(0.1) 68.6(3.9) 0.941(0.003) 55.7(1.9) 8.4(0.2) 27.3(4.0) 0.939(0.003)

TGLG-I 21.4(0.9) 9.4(0.1) 13.4(2.0) 0.974(0.006) 35.4(1.3) 8.6(0.2) 7.9(0.8) 0.931(0.009)

TGLG-F 21.7(0.8) 9.4(0.1) 16.7(1.9) 0.971(0.006) 35.5(1.4) 8.4(0.2) 7.8(0.9) 0.922(0.010)

TGLG-L 20.6(0.8) 9.6(0.1) 11.6(2.1) 0.980(0.004) 36.9(1.5) 8.5(0.2) 9.4(1.1) 0.925(0.009)

TGLG-M 21.3(0.9) 9.4(0.1) 11.4(1.7) 0.969(0.005) 35.3(1.2) 8.5(0.2) 8.4(0.9) 0.928(0.008)

Table 4: Simulation results for scale-free network. The number of true informative nodes
is 10. Sample size is 200 and the number of nodes is 1,000.

cancer cells grow in response to the estrogen. The ER status is a molecular characteristic
of the cancer which has important implications in prognosis. The purpose here is not
focused on prediction. Rather we intend to find genes and functional modules that are
associated with ER status, through which biological mechanisms differentiating the two
subgroups of cancer can be further elucidated.

We code ER-positive as 1 and ER-negative as 0. We remove subjects with un-
known ER status. In total, there are 707 subjects with 544 ER-positive and 163 ER-
negative. We remove 348 gene nodes with low count number, which leaves us with
10,444 nodes. To apply our methods, we first standardize the gene nodes and then ap-
ply a logistic regression model for network marker selection. For prior settings, we use
σ2
γ ∼ IG(0.01, 0.01), σ2

α ∼ IG(0.01, 0.01) and σ2
ω = 50. We fix λ at different grid values

and choose λ = 0.004 by maximizing the likelihood values. The MCMC algorithms run
100,000 iterations with first 90,000 as burn-in and thin by 10. To perform the Gelman
Rubin diagnostics, we run three chains with different initial values randomly drawn
from priors and the upper bound of the 95% CI of the potential reduction scale factor
for the model deviance is around 1.1, showing an acceptable MCMC convergence in
terms of model fitting.

A total of 470 genes are selected as networks marker by our approach. To facilitate
data interpretation, we conduct the community detection on the network containing the
selected network markers and their one-step neighbors (Clauset et al., 2004). There is a
total of eight modules that contain 10 or more selected genes. The plot of the modules,
together with their over-represented biological process as identified using the ‘GOstats’
package (Falcon and Gentleman, 2007), are listed in Supplementary File 2 (Cai et al.,
2018b).

Figure 3 shows two example network modules. The first example (Figure 3(a)) con-
tains 95 selected gene network markers, including 14 that are connected with other net-
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Figure 3: Two example modules of selected genes.

GOBPID Pvalue Term

GO:0080135 0.0001618 regulation of cellular response to stress

GO:0044070 0.000381 regulation of anion transport

GO:0060969 0.0004409 negative regulation of gene silencing

GO:0055013 0.000757 cardiac muscle cell development

GO:0030888 0.0009629 regulation of B cell proliferation

GOBPID Pvalue Term

GO:0030097 0.00006398 hemopoiesis

GO:1902533 0.0003036 positive regulation of intracellular signal transduction

GO:0002250 0.0004063 adaptive immune response

GO:0032467 0.0004452 positive regulation of cytokinesis

GO:0070229 0.0005767 negative regulation of lymphocyte apoptotic process

Table 5: Selected Goterm results for the two selected modules shown in Figure 3. The
upper part is the Goterm results for Figure 3(a) and the lower part is the Goterm results
for Figure 3(b).

work markers. The top 5 biological processes associated with these 95 genes are listed in
Table 5. The most significant biological process that is over-represented by the selected
genes in this module is regulation of cellular response to stress (p=0.00016), with 14
of the selected genes involved in this biological process. Besides the general connection
between stress response and breast cancer, ER status has some specific interplay with
various stress response processes. For example, breast cancer cells up-regulate hypoxia-
inducible factors, which cause higher risk of metastasis (Gilkes and Semenza, 2013).
Hypoxia inducible factors can influence the expression of estrogen receptor (Wolff et al.,
2017). In addition, estrogen changes the DNA damage response by regulating proteins
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including ATM, ATR, CHK1, BRCA1, and p53 (Caldon, 2014). Thus it is expected
that DNA damage response is closely related to ER status.

Five other genes in this module are involved in the pathway of regulation of anion
transport, which include the famous mTOR gene, which is implicated in multiple cancers
(Le Rhun et al., 2017). The PI3K/AKT/mTOR pathway is an anticancer target in ER+
breast cancer (Ciruelos Gil, 2014). The other four genes, ABCB1 (Jin and Song, 2017),
SNCA (Li et al., 2018), IRS2 (Yin et al., 2017) and NCOR1 (Lopez et al., 2016) are all
involved in some other types of cancer.

In ER- breast cancer cells, the lack of ER signaling triggers the epigenetic silencing
of downstream targets (Leu et al., 2004), which explains the significance of the biological
process ”negative regulation of gene silencing”. Many genes in the ”cardiac muscle cell
development” processes are also part of the growth factor receptor pathway, which has a
close interplay with estrogen signaling (Osborne et al., 2005). Four of the genes fall into
the process ”regulation of B cell proliferation”. Among them, AHR has been identified as
a potential tumor suppressor (Formosa et al., 2017). ERα is recruited in AhR signaling
(Matthews and Gustafsson, 2006). IRS2 responds to interleukin 4 treatment, and its
polymorphism is associated with colorectal cancer risk (Yin et al., 2017). CLCF1 signal
transduction was found to play a critical role in the growth of malignant plasma cells
(Burger et al., 2003). It appears that these genes are found due to their functionality
in signal transduction, rather than specific functions in B cell proliferation.

The second example is a much smaller module including 14 selected genes. Six of the
14 genes are involved in both hemopoiesis and immune system development (Table 5).
They are all signal transducers. Among them, AGER is a member of the immunoglobulin
superfamily of cell surface receptors, which also acts as a tumor suppressor (Wu et al.,
2018). CD27 is a tumor necrosis factor (TNF) receptor. Treatment with the estrogen
E2 modulates the expression of CD27 in the bone marrow and spleen cells (Stubelius
et al., 2014). TNFSF18 is a cytokine that belongs to the tumor necrosis factor (TNF)
ligand family. Although its relation with estrogen and breast cancer is unclear, its re-
ceptor GITR shows increased expression in tumor-positive lymph nodes from advanced
breast cancer patients (Krausz et al., 2012), and is targeted by some anti-cancer im-
munotherapy (Schaer et al., 2012). UBD is a ubiquitin-like protein, which promotes
tumor proliferation by stabilizing the translation elongation factor eEF1A1 (Liu et al.,
2016).

Interestingly, three of the other top biological processes are also immune processes.
In normal immune cells, estrogen receptors regulate innate immune signaling pathways
(Kovats, 2015). In addition, some of the selected genes in these pathways have been
found to associate with cancer. Examples include AURKB, which belongs to the family
of serine/threonine kinases, and contributes to chemo-resistance and poor prognosis in
breast cancer (Zhang et al., 2015), and SVIL, which mediates the suppression of p53
protein and enhances cell survival (Fang and Luna, 2013).

Overall, genes selected by TGLG are easy to interpret. Many known links exist
between these genes and ER status, or breast cancer in general. Still many of the
selected genes are not reported so far to be linked to ER status or breast cancer. Our
results indicate they may play important roles.
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6 Discussion

In summary, we propose a new prior model: TGLG prior for Bayesian network marker
selection over large-scale networks. We show the proposed prior model enjoys large prior
support for network marker selection over large-scale networks, leading to the poste-
rior consistency. We also develop an efficient Metropolis-adjusted Langevin algorithm
(MALA) for posterior computation. The simulation studies show that our method per-
forms better than existing regularized regression approaches with regard to the selection
and prediction accuracy. Also, the analysis of TCGA breast cancer data indicates that
our method can provide biologically meaningful results.

This paper leads to some obvious future work. First, we can apply the TGLG prior
for network marker selection under other modeling framework such as the survival model
and the generalized mixed effects model. Second, the current posterior computation can
be further improved by utilizing the parallel computing techniques within each itera-
tion of the MCMC algorithm, for updating the massive latent variables simultaneously.
Third, another promising direction is to use the integrated nested laplace approxima-
tions (INLA) for Bayesian approximating computation taking advantages of the TGLG
prior involving high-dimensional Gaussian latent variables.

Supplementary Material

Supplementary file 1 for “Bayesian network marker selection via the thresholded graph
Laplacian Gaussian prior” (DOI: 10.1214/18-BA1442SUPPA; .pdf). Supplementary ma-
terials available at Bayesian Analysis online includes proofs of the theoretical results.

Supplementary file 2 for “Bayesian network marker selection via the thresholded graph
Laplacian Gaussian prior” (DOI: 10.1214/18-BA1442SUPPB; .pdf). Supplementary ma-
terials available at Bayesian Analysis online includes results for real data analysis.
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regularized regression.” Journal of the Royal Statistical Society: Series B (Statis-
tical Methodology), 74(2): 287–311. MR2899864. doi: https://doi.org/10.1111/

j.1467-9868.2011.01015.x. 80

Roberts, G. O., Gelman, A., Gilks, W. R., et al. (1997). “Weak convergence and optimal
scaling of random walk Metropolis algorithms.” The annals of applied probability ,
7(1): 110–120. MR1428751. doi: https://doi.org/10.1214/aoap/1034625254. 87

Roberts, G. O. and Rosenthal, J. S. (1998). “Optimal scaling of discrete approxima-
tions to Langevin diffusions.” Journal of the Royal Statistical Society: Series B (Sta-
tistical Methodology), 60(1): 255–268. MR1625691. doi: https://doi.org/10.1111/
1467-9868.00123. 86, 87

Roberts, G. O., Rosenthal, J. S., et al. (2001). “Optimal scaling for various
Metropolis-Hastings algorithms.” Statistical science, 16(4): 351–367. MR1888450.
doi: https://doi.org/10.1214/ss/1015346320. 87

Schaer, D. A., Murphy, J. T., and Wolchok, J. D. (2012). “Modulation of GITR for
cancer immunotherapy.” Current Opinion in Immunology , 24(2): 217–24. 95

Schuster, S. C. (2007). “Next-generation sequencing transforms today’s biology.” Nature
methods, 5(1): 16. 79

Shi, R. and Kang, J. (2015). “Thresholded multiscale Gaussian processes with appli-
cation to Bayesian feature selection for massive neuroimaging data.” arXiv preprint
arXiv:1504.06074. 81

Song, Q. and Liang, F. (2015). “A split-and-merge Bayesian variable selection approach
for ultrahigh dimensional regression.” Journal of the Royal Statistical Society: Se-
ries B (Statistical Methodology), 77(5): 947–972. MR3414135. doi: https://doi.org/
10.1111/rssb.12095. 84

Stingo, F. C., Chen, Y. A., Tadesse, M. G., and Vannucci, M. (2011). “Incorporat-
ing biological information into linear models: A Bayesian approach to the selec-
tion of pathways and genes.” The annals of applied statistics, 5(3). MR2884929.
doi: https://doi.org/10.1214/11-AOAS463. 80

Stubelius, A., Erlandsson, M. C., Islander, U., and Carlsten, H. (2014). “Immunomodu-
lation by the estrogen metabolite 2-methoxyestradiol.” Clinical Immunology , 153(1):
40–8. 95

Tibshirani, R. (1996). “Regression shrinkage and selection via the lasso.” Journal of
the Royal Statistical Society. Series B (Methodological), 267–288. MR1379242. 80,
89

Wolff, M., Kosyna, F. K., Dunst, J., Jelkmann, W., and Depping, R. (2017). “Impact
of hypoxia inducible factors on estrogen receptor expression in breast cancer cells.”
Archives of Biochemistry and Biophysics , 613: 23–30. 94

http://www.ams.org/mathscinet-getitem?mr=3476525
https://doi.org/10.1002/sim.6792
https://doi.org/10.1002/sim.6792
http://www.ams.org/mathscinet-getitem?mr=2899864
https://doi.org/10.1111/j.1467-9868.2011.01015.x
https://doi.org/10.1111/j.1467-9868.2011.01015.x
http://www.ams.org/mathscinet-getitem?mr=1428751
https://doi.org/10.1214/aoap/1034625254
http://www.ams.org/mathscinet-getitem?mr=1625691
https://doi.org/10.1111/1467-9868.00123
https://doi.org/10.1111/1467-9868.00123
http://www.ams.org/mathscinet-getitem?mr=1888450
https://doi.org/10.1214/ss/1015346320
https://arxiv.org/abs/1504.06074
http://www.ams.org/mathscinet-getitem?mr=3414135
https://doi.org/10.1111/rssb.12095
https://doi.org/10.1111/rssb.12095
http://www.ams.org/mathscinet-getitem?mr=2884929
https://doi.org/10.1214/11-AOAS463
http://www.ams.org/mathscinet-getitem?mr=1379242


102 Thresholded Graph Laplacian Gaussian (TGLG)

Wu, S., Mao, L., Li, Y., Yin, Y., Yuan, W., Chen, Y., Ren, W., Lu, X., Li, Y., Chen, L.,
Chen, B., Xu, W., Tian, T., Lu, Y., Jiang, L., Zhuang, X., Chu, M., and Wu, J. (2018).
“RAGE may act as a tumour suppressor to regulate lung cancer development.” Gene,
651: 86–93. 95

Yin, J., Zhang, Z., Zheng, H., and Xu, L. (2017). “IRS-2 rs1805097 polymorphism is
associated with the decreased risk of colorectal cancer.” Oncotarget , 8(15): 25107–
25114. 95

Yuan, X., Chen, J., Lin, Y., Li, Y., Xu, L., Chen, L., Hua, H., and Shen, B. (2017).
“Network biomarkers constructed from gene expression and protein-protein interac-
tion data for accurate prediction of Leukemia.” Journal of Cancer , 8(2): 278. 79

Zhang, C.-H. (2010). “Nearly unbiased variable selection under minimax concave
penalty.” The Annals of statistics, 894–942. MR2604701. doi: https://doi.org/
10.1214/09-AOS729. 80

Zhang, Y., Jiang, C., Li, H., Lv, F., Li, X., Qian, X., Fu, L., Xu, B., and Guo, X. (2015).
“Elevated Aurora B expression contributes to chemoresistance and poor prognosis in
breast cancer.” International Journal of Clinical and Experimental Pathology , 8(1):
751–7. 95

Zhe, S., Naqvi, S. A., Yang, Y., and Qi, Y. (2013). “Joint network and node selection
for pathway-based genomic data analysis.” Bioinformatics, 29(16): 1987–1996. 81,
82, 88

Zhou, H. and Zheng, T. (2013). “Bayesian hierarchical graph-structured model for
pathway analysis using gene expression data.” Statistical applications in genetics
and molecular biology , 12(3): 393–412. MR3101037. doi: https://doi.org/10.1515/
sagmb-2013-0011. 80

Zou, H. (2006). “The adaptive lasso and its oracle properties.” Journal of the Ameri-
can statistical association, 101(476): 1418–1429. MR2279469. doi: https://doi.org/
10.1198/016214506000000735. 80

Zou, H. and Hastie, T. (2005). “Regularization and variable selection via the elastic net.”
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(2): 301–
320. MR2137327. doi: https://doi.org/10.1111/j.1467-9868.2005.00503.x.
80, 89

Acknowledgments

Funding for the project was provided by the NIH grants 1R01MH105561 and 1R01GM124061.

http://www.ams.org/mathscinet-getitem?mr=2604701
https://doi.org/10.1214/09-AOS729
https://doi.org/10.1214/09-AOS729
http://www.ams.org/mathscinet-getitem?mr=3101037
https://doi.org/10.1515/sagmb-2013-0011
https://doi.org/10.1515/sagmb-2013-0011
http://www.ams.org/mathscinet-getitem?mr=2279469
https://doi.org/10.1198/016214506000000735
https://doi.org/10.1198/016214506000000735
http://www.ams.org/mathscinet-getitem?mr=2137327
https://doi.org/10.1111/j.1467-9868.2005.00503.x

	Introduction
	The Model
	Theoretical Properties
	Posterior Computation
	Numerical Studies
	Small Simple Networks
	Large Scale-Free Networks
	Application to Breast Cancer Data from the Cancer Genome Atlas

	Discussion
	Supplementary Material
	References

