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Learning Semiparametric Regression with
Missing Covariates Using Gaussian Process

Models

Abhishek Bishoyi†, Xiaojing Wang‡∗, and Dipak K. Dey§

Abstract. Missing data often appear as a practical problem while applying clas-
sical models in the statistical analysis. In this paper, we consider a semiparametric
regression model in the presence of missing covariates for nonparametric compo-
nents under a Bayesian framework. As it is known that Gaussian processes are a
popular tool in nonparametric regression because of their flexibility and the fact
that much of the ensuing computation is parametric Gaussian computation. How-
ever, in the absence of covariates, the most frequently used covariance functions
of a Gaussian process will not be well defined. We propose an imputation method
to solve this issue and perform our analysis using Bayesian inference, where we
specify the objective priors on the parameters of Gaussian process models. Sev-
eral simulations are conducted to illustrate effectiveness of our proposed method
and further, our method is exemplified via two real datasets, one through Lang-
muir equation, commonly used in pharmacokinetic models, and another through
Auto-mpg data taken from the StatLib library.

MSC 2010 subject classifications: Primary 60K35, 60K35; secondary 60K35.

Keywords: Gaussian processes, missing at random, missing covariates,
nonparametric regression, semiparametric regression.

1 Introduction

In nonparametric regression, the objective is to find relationships between response and
covariates without assuming the parametric form of a regression function. Nonparamet-
ric regression is a rapidly growing and exciting field. It offers a more flexible way to
model the effects of covariates on the response compared to parametric models, which
often have more restrictive conditions on the mean function. Many competing methods
are available for nonparametric regression, including kernel-based methods, regression
splines, smoothing splines, and wavelet and Fourier series expansions. When both re-
sponses and covariates are fully observed, the relevant theories and methods are well
developed as described in Takezawa (2005). But a drawback of nonparametric regression
models lies in its ability of interpretability in contrast to parametric regression models.
Thus, various efforts have been addressed on semiparametric models, which balance the
interpretation of parametric models and flexibility of nonparametric models. However,
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there is limited literature on either nonparametric or semiparametric models for missing
covariates appearing in the nonparametric components of a regression.

For missing data, there are three basic classifications. If missingness does not de-
pend on either observed or missing values, the data are called missing completely at
random (MCAR). While the assumption of missing at random (MAR) is that missing-
ness depends only on the observed values. The MAR is less restrictive than the MCAR.
A much more relaxed assumption is missing not at random (MNAR), where the missing-
ness depends on the data that are missing. A compressively review of general parametric
statistical inferences with missing data has been discussed in Little and Rubin (2002).

When we come up with nonparametric modeling, one common approach is splines,
such as using basis function representations for the mean function (e.g., Denison (2002)).
Yau and Kohn (2003) used thin plate splines to allow the mean and variance to change
with covariates. In certain applications, the structure may be overly restrictive due to the
specific splines used in the model. However, model estimation using regression splines
become more challenging when covariates have missingness. Faes et al. (2011) developed
a nonparametric model based on spline basis functions, where covariates are missing.
They carried out inference using variational Bayes approximations (cf., Beal (2003))
and showed that in the case of missing covariates, variational Bayes approximations
produce multimodality in the posterior distributions where the one-to-one mapping
does not exist for the unknown function.

In the Bayesian framework, nonparametric regression (or nonparametric classifi-
cation) problems become the elicitation of the suitable priors on the mean function.
Dirichlet process models are very popular methods for Bayesian nonparametric. Wang
et al. (2010) developed a classification model to handle incomplete inputs, where they
extended the finite Quadratically Gated Mixture of Experts (QGME) developed by
Liao et al. (2007) to an infinite QGME via a Dirichlet process prior. Since the Markov
chain Monte Carlo (MCMC) based analysis for this model suffers from huge computa-
tional costs, Wang et al. (2010) implemented approximate inference via the variational
Bayesian approach. Recently, Zhang et al. (2016) proposed an infinite Dirichlet process
mixture model to solve unsupervised learning for clustering with missing data. They as-
sumed missing data as latent variables and obtained their posterior distributions using
the variational Bayesian expectation maximization algorithm. Often, the computation
burden is heavy on all these Dirichlet Process models above. Hence, the inference is
carried out using approximate methods like variational Bayes and others. Moreover, the
current literature for missing predictors in Dirichlet process models is only focused on
clustering problems other than regression.

Gaussian process (GP) models are acknowledged as another popular tool for non-
parametric regression. The usage of GP models has been widespread in spatial models,
in the analysis of computer experiments and time series, in machine learning and so on
(Rasmussen and Williams (2006)). For the properties of GP models, one can refer to
Adler (1990), Van Der Vaart and Wellner (1996), Rasmussen and Williams (2006) and
Cramér and Leadbetter (2013). Further, with normality assumption on the residuals,
Choi and Schervish (2007) have shown assigning GP priors to the unknown regression
function would lead to a consistent estimator for the regression function. However, for
GP models, the case of missing inputs has received little attention, due to the challenge
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of propagating the input uncertainty through the nonlinear GP mapping. Only re-
cently, there appear several studies focusing on GP models with inputs subject to some
measurement uncertainty (Girard and Murray-Smith (2003), Quiñonero-Candela and
Roweis (2003) and Damianou and Lawrence (2015)). They often developed a two-stage
procedure for estimating such GP models either using variational Bayesian methods
or expectation maximization procedures, wherein the first stage, they estimated the
model parameters only for complete cases and then in the second step, they alternately
updated model parameters and adjusted estimates of missing input points. However,
the situation to deal with noisy inputs due to measurement uncertainty will be quite
different from the situation where the inputs are completely missing.

Therefore, in this paper, we consider the scenario when an input of GP models is sub-
ject to MCAR or MAR as for the purpose to fill in the gap of missing data for GP models
in the literature. To avoid the risk of introducing modeling biases in parametric regres-
sion models as well as the existing drawbacks of nonparametric regression models (such
as the difficulty of interpretation and lack of extrapolation capability), we will consider
semiparametric regression models in our study. Specifically, we will use the partially lin-
ear model, the most commonly used semiparametric regression model (cf., Engle et al.
(1986), Ruppert et al. (2003), Härdle and Liang (2007) and references therein). A GP
prior will be assigned to nonparametric components for this semiparametric regression
model. Further, we will impute the missing covariate of the nonparametric component
via a Bayesian hierarchical model, which will be a key for us to recover the covariance
function of the GP prior.

To complete the prior specification of GP models, we need to elicit the priors on
the hyperparameters of a GP. Those hyperparameters often control the smoothness and
variation of a GP. However, it is often difficult to specify subjective information over
hyperparameters of a GP model. Thus, we will consider using noninformative priors. In
Berger et al. (2001), they mentioned assigning noninformative priors such as commonly
used constant priors and independent Jeffrey’s priors for hyperparameters of a GP both
fail to yield proper posteriors. Instead, they recommended the ‘exact’ reference prior
for GP models when there is no white noise. Ren et al. (2012) extended the ‘exact’
reference prior in the case when we have white noises for the responses and showed
the posterior is propriety under such prior. We further prove that under some mild
conditions, the posterior propriety of the GP under the ‘exact’ reference prior will still
hold in the presence of ignorable missing covariates. In addition, we have conducted a
simulation study to compare the results from the ‘exact’ reference prior with certain
weakly informative priors applied to hyperparameters of a GP.

The format of the paper is organized as below. In Section 2, we outline the setting
of semiparametric regressions in a Bayesian hierarchical modeling framework. Section
3 will focus on the discussion of sampling methods to estimate model parameters and
deriving posterior predictive distribution. In addition, we show the posterior propriety of
our model under the “exact” reference prior for GP hyperparameters. Then, in Section
4, we perform several simulation studies to validate our proposed method and compare
with existing methods. We present two real-world applications in Section 5 to show the
advantage of our proposed model over some competitive models. Finally, in Section 6,
we draw the conclusion and point out some future direction.
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2 Semiparametric Regression Models with Ignorable
Missing Covariates

The task of finding a good function estimation from a given dataset receives a lot of
attention not only in the statistics literature but also in the neural network and ma-
chine learning communities. One of the popular approaches for Bayesian nonparametric
regression is using a GP prior in modeling the unknown underlying function with non-
linear and nonparametric structures. GP model admits a much richer latent structure
than that of a parametric model, where the latter one restricts to certain fixed paramet-
ric structure. Thus, the GP model will potentially better approximate the true response
function. In this section, we are going to propose our semiparametric regression model
in a Bayesian framework to handle missing data, where we will use a GP model to
estimate the nonparametric component.

The semiparametric regression model that we consider is given by

yi = z′iβ + g(xi) + εi, (2.1)

for i = 1, 2, · · · , n. Here, β = [β0, · · · , βp]
′ is a q × 1 vector of coefficients for fully

observed covariates zi = [1, zi1, · · · , zip]′ and further, define Z = [z1, · · · , zn]′ ∈ �n×q,
where q = p+1. We assume that p << n and denote y = [y1, · · · , yn]′. Here, g(·) is the
unknown function, xi’s ∈ � are the observed inputs (subject to missing) and εi’s are

random errors. Without loss of generality, we assume εi
i.i.d∼ N (0, σ2

ε ). In the absence of
covariates zi’s, our model is reduced to a nonparametric model yi = g(xi) + εi.

To estimate unknown function g(·), we are going to introduce a GP prior on g(·).
We will consider a zero mean GP to avoid confounding of the mean parameter of a
GP prior with coefficients β in Model (2.1). Let us denote g(·) ∼ GP (0, σ2

zk(·, · | �)),
where k(·, · | �) is the correlation function, and σ2

z and � are hyperparameters of the GP.
Then, given any finite n distinct inputs x1, · · · , xn ∈ �, [g(x1), · · · , g(xn)]

′ will follow
a multivariate Gaussian distribution with zero mean vector and covariance matrix Σ,
with (i, j)th entry of Σ, i.e., (Σ)ij = σ2

zkij = σ2
zk(xi, xj | �), for i, j = 1, · · · , n. In

this paper, we only considered isotropic correlation kernel, that is, kij = k(xi, xj |
�) = Ψ�(||xi−xj ||) for some isotropic correlation function Ψ� and ||.|| denote Euclidean
distance. A common choice of isotropic correlation functions is the squared exponential
kernel (also known as Gaussian kernel), that is,

(Σ)ij = σ2
zk(xi, xj | �) = σ2

z exp

(
− (xi − xj)

2

2�2

)
, (2.2)

where the scaling parameter σ2
z controls the variation of the response surface and the

length-scale parameter � guides the smoothness of sample paths. In Subsection 4.2,
we will also discuss about other power exponential correlation and Matérn class of
correlation functions.

Let us consider the input xi’s in Model (2.1) are subject to missing. This may
happen because respondents in a survey refuse to fill in certain items, or recorders fail
to observe an input due to unknown mistakes in an experimental process or others.
Denote x = [x1, · · · , xn]

′ and presume that x ∼ f(x | ω), where ω are some unknown
parameters. Without loss of generality, we can partition x into

{
xmis,xobs

}
, where xobs
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collects the fully observed values, while xmis denotes the observations absent of x values.
Suppose m out of n covariates xi’s are missing, i.e., xmis ∈ �m and xobs ∈ �n−m. For
imputation of missing covariates under Bayesian framework, we need a probabilistic
model to model the missing xi’s. For i = 1, · · · , n, let Ri be a binary random variable
with success probability πi and use Ri to indicate whether xi is observed or not (Ri = 1
if xi is missing and 0 otherwise). Then, we define R = [R1, · · · , Rn]

′ as a n × 1 vector
of missingness indicator. Here, we consider the following two missingness mechanisms:

(1) πi = P (Ri = 1 | yi, xi, zi) = p for some constant 0 < p < 1. In this case, xi’s
are missing completely at random (MCAR) and the missingness mechanism is
independent of the data.

(2) πi = P (Ri = 1 | yi, xi, zi) = P (Ri = 1 | yi, zi) defines missingness is ignorable.

With these specified missingness mechanisms, our goal is to make the statistical
inference for Model (2.1). We estimate parameters �, σ2

z , σ
2
ε , and β based on marginal

likelihood, where we integrate out the unknown function g(·) in the likelihood, i.e.,

f(y | x,Z, �, σ2
z , σ

2
ε ,β) = Nn(Zβ, σ

2
zG).

Here, Nn(·, ·) indicates a n-dimensional multivariate normal distribution with Zβ being
its mean and σ2

zG being its covariance, where G = ηIn +K, η = σ2
ε /σ

2
z is the variance

component of the noise-to-signal ratio, and K is n × n isotropic correlation matrix
with (i, j)th entry being kij and depending only on �. Throughout the paper, we will
interchange the usage of the notation K and K(�) to represent the correlation matrix
of a GP whenever it is necessary. To simplify the notation, define Θ = (�, σ2

z , η,β
′)′.

Given the observed data D = {R,y,xobs,Z}, the likelihood of Θ,ω for Model (2.1) is:

L(Θ,ω | D) =

∫
xmis

(
n∏

i=1

P (Ri | yi, xi, zi)

)
f(y | x,Z,Θ)f(x | ω) dxmis. (2.3)

Under the two specified missingness mechanisms, P (Ri | yi, xi, zi) will not have
any effect on estimation of parameters Θ and imputation values of missing xmis. Thus,
when we derive the posterior distribution of parameters Θ and missing values xmis,
we can ignore the first term on the right side of the likelihood (2.3). Further, if we
assign a prior on ω as π(ω) then we can integrate out nuisance hyperparameters ω
in Equation (2.3). Define π(x) =

∫
ω
f(x | ω)π(ω)dω as the marginal prior on x and

factorize π(x) = π(xmis | xobs)π(xobs). Then, given the data D, the likelihood of Θ is:

L(Θ | D) ∝
∫
xmis

∫
ω

f(y | x,Z,Θ)f(x | ω)× π(ω) dωdxmis

∝
∫
xmis

f(y | x,Z,Θ)× π(xmis | xobs)dxmis. (2.4)

To utilize Bayesian methods to perform the inference on Model (2.1), we need to
specify priors on the unknown parameters Θ. One common approach is to use proper
priors on Θ, assigning subjective priors or abstracting information from previous data.
One advantage of proper priors is that they can always achieve posterior propriety.
However, the subjective elicitation of GP hyperparameters (i.e., �, η and σ2

z) is difficult
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due to the hard interpretation of their meanings in practice. Therefore, we resort to
specify the priors of GP hyperparameters noninformatively. But Berger et al. (2001)
showed that the conventional noninformative priors lead to improper posterior. Thus,
they derived an exact reference prior under the case without the noise (i.e., σ2

ε = 0 in
our case). Ren et al. (2012) further examined the effect of noise and derived the “exact”
reference prior under the situation σ2

ε �= 0. In this paper, we aim to extend the posterior
propriety of this reference prior in the case of missing data for the GP models.

3 Posterior Propriety and Posterior Inference

In the Section 3.1, we discuss the posterior propriety with the “exact” reference prior.
Then, in Section 3.2, we specify MCMC procedure to carry out Bayesian inference of
parameters in Model (2.1). Section 3.3 will be discussed about how to estimate new
observations from our proposed model.

3.1 Posterior Propriety with the ‘Exact’ Reference Prior

In this subsection, we aim to prove the posterior propriety of our GP models with the
‘exact’ reference prior under the situation when the inputs of GP models are missing.
Following the discussion of Ren et al. (2012), the ‘exact’ reference priors of (�, η, σ2

z) are
based on their Fisher information matrix, which is derived from integrating β out using
a flat prior in the likelihood of Θ below provided that xmis is known,

L∗(Θ | y,xmis,xobs,Z) ∝
(

1

σ2
z

)n/2

|G|−1/2 exp

{
− 1

2σ2
z

(y− Zβ)′G−1(y− Zβ)

}
.

(3.1)
Here, L∗(·) with a subscript ‘∗’ indicating that x is fully observed in this expression.
The Fisher information matrix derived from the integrated likelihood of (�, η, σ2

z) in
(3.1) is given by

I∗(�, η, σ2
z | xmis,xobs) =

1

2

⎛⎜⎝ tr{RG
∂
∂�K}2 tr{R2

G
∂
∂�K} 1

σ2
z
tr{RG

∂
∂�K}

tr{R2
G

∂
∂�K} tr(R2

G)
1
σ2
z
tr(RG)

1
σ2
z
tr{RG

∂
∂�K} 1

σ2
z
tr(RG)

n−q
(σ2

z)
2

⎞⎟⎠ , (3.2)

where RG = G−1−G−1Z(Z′G−1Z)−1Z′G−1, tr(·) is the notation for trace and ∂K/∂l
indicates the first-order partial derivative ofK with respect to �. Applying the derivation
of the ‘exact’ reference prior from Ren et al. (2012), a noninformative prior for Θ is

πRf (Θ | xmis,xobs) = πRf (�, η, σ2
z ,β | xmis,xobs) ∝ 1

σ2
z

√
|I∗(�, η, 1 | xmis,xobs)|,

(3.3)
where I∗(�, η, 1 | xmis,xobs) implies that we use σ2

z = 1 in Equation (3.2). In fact, the
non-informative prior of πRf (�, η, σ2

z ,β | xmis,xobs) can be rewritten as πRf (�, η, σ2
z ,β |

xmis,xobs) = π(β)π(σ2
z)π

Rf
∗ (�, η | xmis,xobs), where π(β) ∝ 1, π(σ2

z) ∝ 1/σ2
z and

πRf
∗ (�, η | xmis,xobs) ∝

√
|I∗(�, η, 1 | xmis,xobs)|.
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Then, to show the posterior propriety of Θ using the “exact” reference prior (3.3)
under the missing data framework for our Model (2.1), we only need to prove the
integration of the joint posterior distributions of Θ and xmis below

π(Θ,xmis | D) ∝
(

1

σ2
z

)n/2

|G|−1/2 exp

{
− 1

2σ2
z

(y− Zβ)′G−1(y− Zβ)

}
× πRf (Θ | xmis,xobs)π(xmis | xobs), (3.4)

is finite over the domain of Θ and xmis. Here, in (3.4), π(xmis | xobs) is the prior for
xmis given the observed xobs, which depends on the marginal distribution of π(x).

To verify the propriety of the joint posterior (3.4), first, let us integrate out β and
σ2
z from this joint distribution, which yields

π(�, η,xmis | D) ∝ |G|−1/2|Z′G−1Z|−1/2(S2)−(n−q)/2

× πRf (�, η | xmis,xobs)π(xmis | xobs),

where S2 = (y − Zβ̂)′G−1(y − Zβ̂) and β̂ = (Z′G−1
Z)−1Z′G−1y. Therefore, in the

presence of ignorable missingness in covariates, to show the joint posterior distribution
of (Θ,xmis) is proper, we only need to verify that

0 <

∫
�

∫
η

∫
xmis

{
|G|−1/2|Z′G−1Z|−1/2(S2)−(n−q)/2

× πRf (�, η | xmis,xobs)π(xmis | xobs)
}
d�dηdxmis < ∞.

Using the Condition A1 to Condition A4 in Supplementary S.1 (Bishoyi et al., 2019),
Ren et al. (2012) have proved that the integrated likelihood L∗∗(x

mis) is finite, that is:

0 < L∗∗(x
mis)

=

∫
�

∫
η

|G|−1/2|Z′G−1Z|−1/2(S2)−(n−q)/2πRf (�, η | xmis,xobs)d�dη < ∞, (3.5)

for a given xmis. Thus, L∗∗(x
mis) is bounded. Then, this is equivalent to prove that

0 <

∫
xmis

L∗∗(x
mis)π(xmis | xobs)dxmis ≤

∫
xmis

Cπ(xmis | xobs) < ∞, (3.6)

where C is some bounded constant. Therefore, if we add additional condition below,

π(xmis | xobs) is a proper density, (A5)

then (3.6) will be finite.

The Condition A5 is easy to achieve. For example, if we specify a proper prior on
x, often the conditional distribution of xmis given xobs will be proper as well. Without
loss of generality, for the discussion throughout the paper, we will assume the covariates

xi’s for the unknown function g(·) in Model (2.1) follow xi
i.i.d.∼ N (μx, σ

2
x) and further,

presume the prior of hyperparameter μx and σ2
x to be π(μx, σ

2
x) ∝ 1/σ2

x. Integrating
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out μx and σ2
x, the conditional marginal prior for π(xmis | xobs) follows a multivariate

t distribution (see details in Equation (S.1) and its derivation in Supplementary S.2
(Bishoyi et al., 2019)). Moreover, in Subsection 4.3, we analyze the sensitivity of the
prior chosen on the missing covariates xi’s that satisfies Condition A5.

From our discussion, using Conditions A1–A4 in Supplementary S.1 (Bishoyi et al.,
2019) with additional Condition A5, we can easily establish the posterior propriety of
(Θ,xmis) in Model (2.1). The Condition A1 ensures that the correlation function will
decrease to zero as the distance between two points goes to infinity, while the Condition
A2 ensures � → ∞, a Taylor expansion of the correlation function will follow. The
commonly used correlation matrix of the GP model such as the power exponential
kernel, Matérn kernel, spherical kernel, rational quadratic kernel, and other isotropic
kernels will often automatically satisfy the Conditions A1 and A2.

3.2 Bayesian Computation and Sampling Schemes

Since the joint posterior distribution of (Θ,xmis) in (3.4) is proper, we will rely on this
joint posterior to make inference for our proposed Model (2.1) when some of input xi’s
are missing.

However, this joint posterior does not have a closed form, thus, we shall resort to
MCMC sampling scheme to draw samples of unknown parameters to make an infer-
ence. There are two key steps in developing the MCMC scheme. First, we draw the
missing values xmis provided that Θ is known and treat the values drawn for xmis as
their imputed values. Second, we sample Θ based on observed xobs and imputed xmis.
These alternative iterations create a Markov chain that eventually stabilizes to the joint
posterior distribution of parameters and missing covariates in (3.4). The detailed steps
of MCMC schemes are described below.

Step 1 : draw xmis from its posterior conditional distribution:

π(xmis | �, η,D) ∝
√
|I∗(�, η, 1 | xmis,xobs)| × |G|−1/2|Z′G−1Z|−1/2

× (S2)−(n−q)/2 × π(xmis | xobs),

where the term I∗(�, η, 1 | xmis,xobs) is defined in Equation (3.3) and π(xmis | xobs) is
derived in Equation (S.1). Since the conditional posterior distribution of xmis do not
have a closed form, we use a Metropolis-Hastings algorithm to impute values of xmis.

Step 2 : Given the imputed values xmis, we sample the value of � using the posterior
conditional distribution given by:

π(� | η,D,xmis) ∝
√
|I∗(�, η, 1 | xmis,xobs)| × |G|−1/2|Z′G−1Z|−1/2 × (S2)−(n−q)/2.

The posterior conditional distribution of � is not closed form, thus we use slice sampling
(cf., Neal (2003)) to draw samples of � from its posterior conditional distribution.

Step 3 : Provided that xmis and � are known, we sample η from its posterior condi-
tional distribution:

π(η | �,xmis,D) ∝
√
|I∗(�, η, 1 | xmis,xobs)| × |G|−1/2|Z′G−1Z|−1/2 × (S2)−(n−q)/2.



A. Bishoyi, X. Wang, and D. K. Dey 223

Also, the posterior conditional distribution of η does not have a closed form and we
will use the slice sampling algorithm to draw samples of η from its posterior conditional
distribution.

Step 4 : When xmis, � and η are known, we draw σ2
z from its posterior conditional

distribution:

[σ2
z | �, η,xmis,D] ∼ IG((n− q)/2, S2/2),

where IG indicates an inverse gamma distribution with the shape parameter (n− q)/2
and the rate parameter S2/2.

Step 5 : Given xmis, �, η and σ2
z , then we can sample β ∼ Nq(β̂, σ

2
z

(
Z′G−1Z

)−1
).

Once we give the initial values for �, η,β, σ2
z , and xmis, then the Bayesian compu-

tation is done by running MCMC algorithms from Step 1 through Step 5 until the
MCMC chain has converged. To evaluate the convergence of the MCMC chains, we run
the MCMC chains with 10 different starting values for the unknown parameters. The
Gelman-Rubin potential scale reduction factor (cf., Brooks and Gelman (1998)) is found
to be very close to 1 at most after 25,000 iterations of MCMC runs in our simulations
and examples for all unknown parameters in the model. We also evaluate the conver-
gence by informally looking at trace plots and we find the MCMC chains are mixing
well after 25,000 iterations in our simulations and examples. After MCMC samples are
converged, the statistical inferences are straightforward by utilizing the MCMC samples.
For example, a posterior median estimate and 95% credible interval for the unknown
function g(·) can be formed from the median, 2.5%, and 97.5% empirical quantiles of
the corresponding MCMC realizations, respectively.

3.3 Posterior Predictive Distribution

In Subsection 3.2, we have developed a MCMC algorithm to impute the missing covari-
ates under ignorable missing mechanism as well as to estimate the unknown parameters
in Model (2.1) simultaneously. However, often in the study, one of our goals is to predict
responses using Model (2.1) when new observations of covariates come; while, another
purpose might be using future observations to assess the performance of our proposed
models in comparison to other competitive models. For these reasons, in this subsection,
we are going to derive the posterior predictive distribution of ynew when we observe
new covariates in Model (2.1).

Let us presume that the n observations {xi, yi, zi}ni=1 are training data points and{
xtest
j , ytestj , ztestj

}t

j=1
are t test points, where xtest

j ’s and ztestj ’s are observed new covari-

ates with ztestj = [1, ztestj1 , · · · , ztestjp ]′, while ytesti ’s are unknown and needed to predict.
To estimate ytestj ’s under the new observations xtest

j ’s and ztestj , from Bayesian per-
spective, we shall first derive the posterior predictive distribution for ytestj ’s given the
observed yi’s and observed covariates.

In addition, denote ytest = (ytest1 , · · · , ytestt )′, xtest = (xtest
1 , · · · , xtest

n )′, and Ztest =
[ztest1 , · · · , ztestt ]′. Then, the posterior predictive distribution of ytest given y and other
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observed covariates can be written as to integrate out all the unknown parameters Θ
and missing values xmis, that is,

π(ytest|xtest,Ztest,D) =

∫ ∫
f(ytest | xtest,Ztest,xmis,Θ,D)

× π(Θ,xmis | D)dΘdxmis, (3.7)

where π(Θ,xmis | D) is the joint posterior distribution of (Θ,xmis) derived in (3.4) and
f(ytest | xtest,Ztest,xmis,Θ,D) is following a multivariate normal distribution, i.e.,

f(ytest | xtest,Ztest,xmis,Θ,D) = Nt

(
f̄test,Cov(ftest)

)
, (3.8)

with f̄test = Ztestβ + Σ(xtest,x)(σ
2
zG)−1(y − Zβ) and Cov(ftest) = Σ(xtest,xtest) −

Σ(xtest,x)(σ
2
zG)−1Σ(x,xtest). Notice that Σ(x,xtest) = Σ′

(xtest,x) is a n × t matrix and

its (i, j)th element (Σ(x,xtest))i,j = σ2
zk(xi, x

test
j | �), where xi is a training point for

i = 1, · · · , n and xtest
j is a test point for j = 1, · · · , t.

Let M be a total number of iterations for MCMC samples after burn-in period.
Then, to generate a random sample ytest from its posterior predictive distribution in
(3.7), it involves two major iterative steps, that is, for i = 1, · · · ,M ,

Step 1 Draw (Θ(i), (xmis)(i)) from π(Θ,xmis | D), where the detailed steps are de-
scribed in Subsection 3.2.

Step 2 After given the values of (Θ,xmis) at the i-th iteration, we sample the i-th
iteration values of ytest from

(ytest)(i) ∼ f(ytest | xtest,Ztest, (xmis)(i),Θ(i),D) = Nt

(
f̄
(i)
test,Cov(f

(i)
test)

)
,

where f̄
(i)
test = Ztestβ(i) + Σ(xtest,x(i))(σ

2(i)
z G(i))−1(y − Zβ(i)), Cov(ftest) =

Σ(xtest,xtest) − Σ(xtest,x(i))(σ
2(i)
z G(i))−1Σ(x(i),xtest) and note x(i) = (xobs,

(xmis)(i))′.

Then, ŷtest =
∑M

i=1 y
test(i)/M is the value of the posterior median estimate of ytest.

4 Simulation Examples

In Subsection 4.1, we design some simulation examples to validate the inference proce-
dure proposed in Section 3 and compare the benefits by imputing the missing values
in Model (2.1) instead of using complete data only. Also, we compare the results of
using our reference priors versus the weakly informative priors for the hyperparame-
ters in the GP prior. Moreover, we empiricially investigage the posterior consistency of
our proposed models under the ‘exact’ reference priors. In Subsection 4.2, we conduct
some experiments to evaluate the sensitivity of misspecification of correlation functions
for GP priors assigned to g(·) in Model (2.1). Further, we analyze the prior choices
assigned for the missing covariates in Subsection 4.3. In the meantime, we perform a
simulation study to compare our proposed method with other competitive methods in
a nonparametric regression when the covariates are missing.
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4.1 Simulation I

Consider the semiparametric regression model (2.1) with the following specification,

yi = β0 + β1zi + g(xi) + εi, i = 1, · · · , n, (4.1)

g(xi) ∼ GP

(
0, σ2

z exp

(
− (xi − ·)2

2�2

))
,

where β0 = −1, β1 = 2, � = 2, σ2
z = 1, xi

i.i.d.∼ N (0, 10), zi
i.i.d.∼ N (1, 5), εi

i.i.d.∼ N (0, σ2
ε )

with σ2
ε = 0.4 and n = 120. Thus, η = σ2

ε /σ
2
z = 0.4. To test the performance of our

proposed method, we randomly select 100 data points out of 120 generated data points
from (4.1) to be training datasets, while the rest 20 data points are left for the assessment
of the prediction power for the model. Next, we create an average of 10%, 25% and 40%
missingness of covariates xi’s in the training data according to the procedure described
below. That is, we randomly generate the missing indicator from

Ri ∼ Bernoulli(pi), with pi =
exp(b0 + b1yi)

1 + exp(b0 + b1yi)
, (4.2)

where Ri = 1 indicates xi is missing for the ith subject, Ri = 0 otherwise. We fix
b1 = −0.1 in (4.2) and then in each simulation run, we solve the value of b0 to make
the average missing probability of pi’s over 100 training points equals to 0.1, 0.25 and
0.4, respectively.

After the data were generated, we employ the MCMC sampling scheme developed
in Subsection 3.2 to estimate model parameters and impute missing values of xi’s. We

assume π(xi)
i.i.d.∼ N (μx, σ

2
x) with the hyperprior on μx and σ2

x being π(μx, σ
2
x) ∝ 1/σ2

x.
Using the derivation in Supplementary S.2 (Bishoyi et al., 2019), we know that the con-
ditional prior distribution of xmis given xobs will follow a multivariate t-distribution.
Although we advocate to use the reference prior discussed in Subsection 3.1 for the
unknown parameters �, η, β0, β1 and σ2

z in Model (4.1), we have also performed a com-
parison with other two popular priors used for our setting in practice. For the three priors
considered, the information containing in the priors is gradually increasing as below:

1. Reference Prior (named Prior 1 ): We use the priors proposed in Subsection 3.1.

2. Vaguely Informative Prior (named Prior 2 ): According to the range of xi’s we
generate, we assign a uniform prior on [−20, 20] to �. Besides, we presume an
inverse gamma prior with mean 1 and variance 100 for σ2

z and log(η) ∼ N (0, 100).
The priors for all other parameters are specified the same as Prior 1.

3. Weakly Informative Prior (named Prior 3 ): We assign the following priors for �,
η, β0 and β1: � ∼ N+(0, 10), log(η) ∼ N(0, 2), β0 ∼ N (0, 10), β1 ∼ N (0, 10),
where N+(·, ·) indicates the normal distribution is truncated on its left. Further,
we assume σ2

z follows an inverse gamma prior with mean 1 and variance 10.

For each simulated data, we run the MCMC for 100,000 iterations, where the first
50,000 draws are discarded as a burn-in phase and every 10th values of MCMC samples
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10 % Missing 25 % Missing 40 % Missing
PM CC PM CC PM CC

PMSE for y
Prior 1 0.0201 0.0211 0.0305 0.0419 0.0579 0.0891
Prior 2 0.0195 0.0215 0.0276 0.0394 0.0566 0.0883
Prior 3 0.0173 0.0190 0.0193 0.0317 0.0409 0.0662

Bias for �
Prior 1 0.0491 0.0492 0.0525 0.0812 0.0837 0.1219
Prior 2 0.0487 0.0502 0.0526 0.0714 0.0829 0.1154
Prior 3 0.0266 0.0289 0.0355 0.0481 0.0593 0.0901

Bias for η
Prior 1 0.0035 0.0037 0.0042 0.0066 0.0103 0.0213
Prior 2 0.0029 0.0039 0.0040 0.0063 0.0095 0.0187
Prior 3 0.0011 0.0018 0.0026 0.0044 0.0066 0.0105

Bias for σ2
z

Prior 1 0.0623 0.0652 0.0801 0.0961 0.1591 0.1949
Prior 2 0.0601 0.0626 0.0788 0.0915 0.1451 0.1896
Prior 3 0.0312 0.0315 0.0671 0.0888 0.1077 0.1354

Bias for β0
Prior 1 0.0255 0.0253 0.0349 0.0467 0.0643 0.0810
Prior 2 0.0210 0.0250 0.0298 0.0312 0.0487 0.0729
Prior 3 0.0199 0.0205 0.0247 0.0289 0.0455 0.0712

Bias for β1
Prior 1 0.0415 0.0430 0.0511 0.0701 0.0805 0.1061
Prior 2 0.0387 0.0399 0.0481 0.0515 0.0772 0.0950
Prior 3 0.0223 0.0271 0.0364 0.0419 0.0600 0.0798

Table 1: Comparison between our proposed method and the naive method via three
different priors for Model (4.1).

are stored to reduce the level of correlation between successive values of the chain. For
each different scenario of missing percentage, we repeat the entire simulation procedure
described above for 50 times using different random seeds. The total computation time
costs 11 hours to run on a Xeon E5-2690 CPU with 2.60 GHz frequency, 128 GB RAM
and 24 cores. Then, under the scenarios of three different priors mentioned above, we
compare the parameters estimated in Model (4.1) using our proposed methods (PM)
to the naive method. In the naive method, we only use the complete cases (CC) (i.e.,
those data points where covariate values xi’s are observed) to fit Model (4.1).

A comparison of these two methods with three different priors is shown in Table
1. We have compared the predicted mean squared error (PMSE) of yi’s for test points
and the bias of the estimated parameters in Model (4.1). Here, we define PMSE =∑t

i=1(y
test
i − ŷtesti )2/t, where {ytesti , xtest

i }ti=1 are test points and ŷtesti ’s are posterior
median estimates of predicted values at input xtest

i ’s. ŷtesti ’s are computed via the proce-
dure described in Subsection 3.3. Notice in Table 1, the bias of the estimated parameters
are calculated using the absolute distance between posterior median estimates of the
parameters and their corresponding true values in the simulation.

From Table 1, it is clear to see that using our proposed method to impute the missing
covariates xi’s, we are able to predict the test points with better accuracy than using
the naive method in all three different levels of missingness. Moreover, when the missing
rate is higher, the posterior median estimates of the hyperparameters of GP prior as
well as the parametric coefficients in Model (4.1) have relative lower biases by using
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10% Missing 20% Missing 40% Missing

Bias �
n = 100 0.0491 0.0525 0.0837
n = 500 0.0489 0.0511 0.0811
n = 1000 0.0415 0.0493 0.0742

Bias η
n = 100 0.0035 0.0042 0.0103
n = 500 0.0031 0.0038 0.0095
n = 1000 0.0028 0.0030 0.0089

Bias σ2
z

n = 100 0.0623 0.0801 0.1591
n = 500 0.0616 0.0799 0.1533
n = 1000 0.0598 0.0723 0.1488

Bias β0

n = 100 0.0255 0.0349 0.0643
n = 500 0.0200 0.0295 0.0601
n = 1000 0.0192 0.0266 0.0584

Bias β1

n = 100 0.0415 0.0511 0.0805
n = 500 0.0380 0.0497 0.0790
n = 1000 0.0295 0.0431 0.0742

Table 2: A simulation study of posterior consistency of our proposed methods under the
‘exact’ reference prior.

our proposed method than using the naive method. Generally speaking, the weakly
informative prior will yield less absolute bias and smaller PMSE than the other two
priors. It makes sense as if the weakly informative prior can provide extra information
to pinpoint the right range of the target parameters. However, if we are lacking of such
information, by using our proposed reference prior in the analysis, our reference prior
is still doing a good job for the inference and prediction in comparison to the vaguely
informative prior shown in Table 1 and is not much different than the weakly informative
prior. However, an advantage for the practitioners in the usage of our proposed priors is
that they can automatically run our program without knowing how to elicit the priors,
whereas they are expected to obtain the comparable results as they do have some weakly
information on the prior beliefs.

Another important topic is to explore the posterior consistency of our proposed
models under the ‘exact’ reference priors. To empirically investigate this problem, we
consider three different sample sizes: n = 100, 500, and 1000 for simulating data from
Model (4.1). We illustrate the bias for each parameter averaging over 50 datasets that
use different random seeds to simulate the data from Model (4.1). Notice that in Table
2, the row of n = 100 is the same as the row of Prior 1 in Table 1. From Table 2, it is
obviously the bias of all parameters become smaller when the sample size gets larger.
This pattern indicates that the posterior consistency empirically holds for our proposed
models under the ‘exact’ reference prior.

4.2 Simulation II

In this subsection, we design several simulation experiments to test the performance of
our proposed method under misspecification of correlation functions for the GP prior
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assigned to g(·) in Model (2.1). Here, we consider three different types of covariance
functions, commonly used in the spatial statistics and machine learning field.

1. Squared Exponential (SE) Covariance Function, see details in Equation (2.2).

2. γ-exponential (γ-E) Covariance Function:

(Σ)ij = σ2
z exp

(
−|xi − xj |γ

�

)
, with 0 < γ ≤ 2,

where |x| is the absolute value of x. In the simulation, we choose γ = 1.

3. Mátern Class (MC) of Covariance Functions:

(Σ)ij = σ2
z

21−ν

Γ(ν)

(√
2ν|xi − xj |

�

)ν

Kν

(√
2ν|xi − xj |

�

)
,

with positive parameters ν and �, where Kν(·) is a modified Bessel function. The
most interesting cases for Mátern class of covariance functions are ν = 3/2 and
ν = 5/2 (denote them as MC3/2 and MC5/2 in Table 3 and Table S), that is:

(Σ)ij = σ2
z

(
1+

√
3|xi −xj |

�

)
exp

(
−
√
3|xi −xj |

�

)
, for ν = 3/2,

(Σ)ij = σ2
z

(
1+

√
5|xi −xj |

�
+

5(xi −xj)
2

3�2

)
exp

(
−
√
5|xi −xj |

�

)
, for ν = 5/2.

In our simulation, we have considered both the choice of ν = 3/2 and ν = 5/2.

For each choice of covariance functions (i.e., 4 choices) and each missing percentages
for the covariate xi’s (i.e., 10%, 25% and 40%), we apply Model (4.1) to generate 10
different sets of data using different random seeds. Thus, we have a total of 10×4×3 =
120 datasets. Here, we choose β0 = −10, β1 = 20, � = 10 and σ2

z = 2 in Model (4.1),
while all other settings are the same as Subsection 4.1. The data is generated in the
same way as described in Subsection 4.1 with only changing the covariance function of
the GP prior assigned to g(·) in Model (4.1).

We use the mean squared error of imputed missing values of xi’s (MSEx), PMSE of
test points yi’s and deviance information criterion (DIC) (Spiegelhalter et al. (2002))
to evaluate the performance and test the goodness of fit for the different choices of
covariance functions. In fact, due to the complication of integrating out xmis in the
likelihood, we use the conditional DIC defined in Celeux et al. (2006) for computing
DIC. Notice that for model comparison, we can define the deviance as

D(Θ,xmis) = −2 log(f(y | Θ,xmis,xobs,Z)),

where f(y | Θ,xmis,xobs,Z) is the conditional likelihood of y. Then, apply the original
definition of DIC to this conditional distribution, which leads to

DIC = −2EΘ,xmis [D(Θ,xmis) | y] + 2 log f(y | Θ̃, x̃mis,xobs,Z),



A. Bishoyi, X. Wang, and D. K. Dey 229

10% Missing 20% Missing 40% Missing
�����T

F
SE SE SE

MSEx
γ-E 0.0165 0.0829 0.0071

MC3/2 0.1922 0.0894 0.5326
MC5/2 0.9803 0.4797 0.0034

PMSE
γ-E 0.0596 0.0658 0.0135

MC3/2 0.0536 0.0078 0.1332
MC5/2 0.2430 0.1321 0.4444

DIC
γ-E 0.0025 0.0157 0.0101

MC3/2 0.0108 0.0186 0.0149
MC5/2 0.0170 0.0462 0.0116

Table 3: The sensitivity analysis of using squared exponential kernels based on MSEx,
PMSE and DIC. ‘T’ represents the true kernel used in generating the data and ‘F’
indicates the kernel applied in fitting the data.

where EΘ,xmis(·) implies taking expectation respect to the joint posterior distribution
of Θ and xmis, which can be easily approximated using an MCMC run by taking the
sample mean of the simulated values of D(Θ,xmis); and for Θ̃ and x̃mis, we choose their
posterior medians in our study.

Since the SE covariance function has lots of good properties and supports a large
class of functions with various shapes, we want to focus on the performance of using
SE covariance functions when the other covariance kernels are true. For the reference,
we present a detailed result in Table S of Supplementary S.3 (Bishoyi et al., 2019) to
assess the performance of our proposed methods under misspecification of covariance
functions for the GP prior in Model (4.1) based on MSEx, PMSE and DIC values. To
better compare those values in Table S, we construct Table 3 using numbers computed
via (using DIC values as an example),

ratio =
|DICSE −DICTrue|

DICTrue
, (4.3)

where | · | represents the absolute value, DICSE is the DIC values using SE covariance
function in the model fit, while DICTrue is the DIC values that employ the true gen-
erated covariance function in the model fit. The DIC values in Equation (4.3) can be
replaced by MSEx and PMSE values. From Table 3, we could see the relative changes of
MSEx, PMSE and DIC values of using SE covariance function in comparison to using
the true kernel is relatively small. Thus, it shows that the performance of our model
using SE covariance under misspecification of covariance kernel is kind of robust. Thus,
in our application, we will choose to work with SE covariance.

4.3 Simulation III

In this subsection, we first design some simulation examples to assess the sensitiv-
ity of the priors assigned to the missing covariates. Then, we perform a simulation
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MSEx PMSE
����������Missing

Prior
Gaussian Uniform Cauchy Gaussian Uniform Cauchy

10% 0.0117 0.0118 0.0116 0.0407 0.0411 0.0406
25% 0.0133 0.0135 0.0134 0.0624 0.0639 0.0630
40% 0.0238 0.0240 0.0236 0.1065 0.1109 0.1060

Table 4: The sensitivity analysis of the choice of priors on imputation of missing covari-
ates based on MSEx and PMSE.

study to compare our proposed method with two competitive methods. One using cubic
smooth splines, where the missing covariates are imputed through multiple imputation
by chained equations (MICE) algorithm (cf., van Buuren and Groothuis-Oudshoorn
(2011)). Another one is the method proposed by Faes et al. (2011), who solved the issue
of missing covariates in the usage of spline basis functions for nonparametric regression.

Since the focus here is more on the estimation of the function g(·) and its missing
covariate, we slightly revise the assumption of Model (4.1) and omit the covariate zi
and the intercept there, i.e.,

yi = g(xi) + εi, (4.4)

where g(xi) = x3
i , xi

i.i.d.∼ Uniform[−5, 5], εi
i.i.d.∼ N (0, 2),

for i = 1, · · · , n and n = 120. Out of 120 observations, we randomly select 100 data
points for training and use the rest of 20 observations as the test dataset. The percentage
of 10%, 25%, and 40% missingness are created among the training points using the
missing mechanism shown in Equation (4.2).

First, let us explore the sensitivity of the prior assigned to the missing covariate xi’s.
To be specific, we investigate three different priors for xi’s in Model (4.4): 1) Gaussian
prior: π(xi) = N (0, 100); 2) Uniform prior: π(xi) = 1({−5 ≤ xi ≤ 5})/10, where 1(·) is
an indicator function; and 3) standard Cauchy prior: π(xi) = 1/[π(1 + x2

i )] for xi ∈ R.
Clearly, the second choice of the prior is identical to the distribution where the covariate
xi’s are generated from. Typically, the Cauchy distribution has much heavier tailer and
thus it might be expected to tolerate more on the misspecification for the choice of the
prior on xi’s.

We have repeated 50 times for the process to generate data from Model (4.4) using
different random seeds. The values in Table 4 are averaged over 50 times and calculated
by using our proposed method in Subsection 3.2 with changing the corresponding priors
specified on the xi’s. From Table 4, it is obvious that the values of MSEx and PMSE are
almost the same among three different choices of the priors for xi’s in all three scenarios
of missingness. This result suggests that the choice of the prior for the covariate xi’s is
insensitive to the inference and prediction in our proposed method provided that the
prior elicitation is containing the domain of the covariate xi’s.

Next, we are going to examine the performance of our proposed procedure to estimate
the unknown function g(·) in comparison with the other two competitive methods. The
three methods compared in Table 5 are the following:
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MSEx PMSE
����������Missing

Method
M1 M2 M3 M1 M2 M3

10% 0.0117 0.0118 0.0123 0.0407 0.1205 0.0409
25% 0.0133 0.0133 0.0134 0.0624 0.1400 0.0564
40% 0.0238 0.0258 0.0253 0.1065 0.1542 0.0995

Table 5: The comparison of three methods based on MSEx and PMSE.

• Method 1 (M1). For estimating g(·), we assign g(·) ∼ GP (0, σ2
zk(·, ·, | �)), where

we choose the SE correlation for k(·, ·, | �). We apply the reference prior discussed
in Subsection 3.1 for the hyperparameters of this GP prior.

• Method 2 (M2). We first perform multiple imputation of the missing covariates
xi’s using MICE algorithm, which we call the MICE package in R. Next, we fit
cubic smoothing spline for g(·) based on the imputed data.

• Method 3 (M3). We apply the method proposed in Faes et al. (2011) to impute
missing covariates and estimate g(·) simultaneously. In their paper, they used
penalized spline with mixed model representation to estimate g(·) (cf., Section 4.1
of Faes et al. (2011)).

We repeated the entire experiment 50 times using different random seeds and in each
dataset, we analyze the data with the three methods described above. We assess the
performance of these methods using MSEx and PMSE, and the results shown in Table
5 are averaging over these 50 experiments.

From Table 5, we can see that the values of MSEx for all three methods are similar
when the missing rates are comparatively lower (i.e., 10% and 25%). It is obviously seen
that when the missing percentage is higher (i.e., 40%), our proposed method performs
much better than the other two in term of MSEx. Based on PMSE, the method pro-
posed by Faes et al. (2011) and our proposed method have relative similar PMSE values,
although Faes et al. (2011)’s method is doing slightly better in higher missing percent-
ages than ours. In term of PMSE, both our method and Faes et al. (2011)’s method
are doing much better than the cubic smoothing splines method. The cubic smoothing
splines (i.e., M2) uses a two-stage estimation procedure, thus it fails to take advantage
of the functional relationship between the response and covariates when imputing the
missing covariates.

5 Application

Since our approach has successfully applied to the simulated data and recovered the
true values of parameters well, we are going to employ our methods to two applica-
tions. According to our investigation for the relative robustness of misspecification of
covariance functions of GP prior and the sensitivity of the prior choice on the missing
covariate xi’s in Section 4, we are going to use SE covariance kernel on the GP prior
and assume a normal distribution on the covariate xi’s throughout the applications.
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Figure 1: Scatterplot of Adsorption Isotherm Data.

5.1 Application I

First, we are going to apply our proposed method in Adsorption Isotherm data for R-113
refrigerant vapors on BPL activated carbon at 298 Kelvin obtained from Mahle et al.
(1994). BPL activated carbon is a virgin granular activated carbon designed for use in
gas phase applications. It can be reactivated for reuse which eliminates disposal problem.
One of the usage of BPL activated carbon is for gas purification and solvent recovery.
R-113 is 1,1,2-Trichloro-1,2,2-Trifluoroethane, which is a colorless to water white, non-
flammable liquid with a slight, ether like odor at high concentrations. It has been used
as a cold degreasing agent, dry cleaning solvent, refrigerant, blowing agent, chemical
intermediate and drying agent. The data we considered contains 29 observations. We
partitioned the data into training and test datasets, containing 24 and 5 observations,
respectively. Figure 1 displays the 24 training points as blue colors and the 5 test points
as red colors from Adsorption Isotherm data in Mahle et al. (1994).

Adsorption is usually described through isotherms, that is, the amount of adsorbate
on the adsorbent (i.e., loading in Figure 1) as a function of its pressure (defined as partial
pressure in Figure 1). It is clear that the loading has a non-decreasing relationship with
the partial pressure from Figure 1. The Langmuir equation, defined in Langmuir (1918)
is one of the most popular models that correlates the amount of adsorbed gases y on
plane surfaces of glass, mica, and platinum with the equilibrium aqueous concentration
x through a nonlinear function given by

Langmuir Model : yi =
αβxi

1 + αxi
+ εi, i = 1, · · · , n, (5.1)

where α > 0, β > 0, n is the total number of observations and εi takes account of

random measurement errors with the assumption that εi
i.i.d.∼ N (0, σ2

ε ). This formula is
the most commonly used isotherm equation because of its simplicity and its ability to
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fit a variety of adsorption data. In our dataset, yi in Equation (5.1) presents loading
(mol/kg), while xi corresponds to partial pressure (pa) and n = 24. However, some
of the assumptions used to derive Equation (5.1) are seldom all true. In addition, the
accuracy of the data collected during the experimental procedure may be affected due
to various reasons like equipment failure, data entry error and etc. Thus, in the presence
of missing or inaccurate data, the inference based on Langmuir equation may be invalid.

When the data is fully observed and accurate, Dey et al. (1997) proposed a model

Log Model : yi = α+ β log(xi) + εi, i = 1, · · · , n (5.2)

to be a competitive model with the Langmuir equation. There are no constraints on the
values of parameters α and β in Equation (5.2). However, their defined model is merely
based on the approximation of the geometric representation of the data generated from
the Langmuir equation to ease the computation.

Particularly, we use the semiparametric model below

GP Model : yi = α+ g(xi) + εi, i = 1, · · · , n,

to compare the performance with the model specified in Equation (5.2) as well as with
the Langmuir Equation (5.1) using the Adsorption Isotherm Data. We evaluate the
accuracy of missing imputation based on mean squared errors criteria for all three
models. From Figure 1, the domain of x, i.e., the partial pressure is always positive. We
want to incorporate this information on the prior of xi’s. Thus, we consider a truncated
normal prior on covariates xi’s, i.e., π(xi | μx, σ

2
x) ∝ N+(μx, σ

2
x). For the priors on the

hyperparameters μx and σ2
x, we use the same noninformative priors as before, that is,

π(μx | σ2
x) ∝ 1 and π(σ2

x) ∝ 1/σ2
x. Details about computation scheme for Langmuir

Model and Log Model are postponed to Supplementary S.4 and Supplementary S.5 in
(Bishoyi et al., 2019), while the computation scheme for GP Model is similar as discussed
in Section 3 by merely changing the prior on xi’s.

We artificially create missingness in the covariates and compare imputed missing
covariate with the true value based on MSEx. In addition, we compare the different
models based on DIC and PMSE for the test points. We use Equation (4.2) to yield the
ignorable missingness for the covariate xi, where we produce the missingness with three
different percentages, i.e., 10%, 25% and 40%. We repeat each generation 50 times.
Thus, for each percentage, we average the values of MSEx, DIC, and PMSE over 50
times for Langmuir Model, Log Model, and GP Model, a summary of which is given in
Table 6. For prediction of yi’s, Log Model and GP Model both are able to predict very
accurately. Similarly, in term of DIC values, Log Model and GP Model are preferred to
Langmuir Model. In term of the MSEx for imputation of missing xi’s, Log Model and
GP Model are able to impute far better than Langmuir Model. Thus, in comparison
to Log Model and GP Model, Langmuir Model performs very poorly in the criteria of
PMSE, MSEx, and DIC.

From Table 6, the performance of GP Model is comparable to Log Model and much
better than Langmuir Model. Although Log model is the best among the three, it
has no theoretical foundation in adsorption isotherm data and it is just approximation



234 Semiparametric Regression with Missing Covariates

Missingness Langmuir Model Log Model GP Model

PMSE
10% 0.0123 0.0019 0.0021
25% 0.0124 0.0020 0.0023
40% 0.0127 0.0023 0.0024

MSEx
10% 224.1800 3.0866 3.1718
25% 272.2199 5.6542 6.8122
40% 301.6536 12.6118 10.2698

DIC
10% 330.6221 309.0777 317.2788
25% 372.2199 321.2100 339.4221
40% 401.3221 370.7133 371.8622

Table 6: The comparison of Langmuir Model, Log Model and GP Model on PMSE,
MSEx and DIC.

Figure 2: Scatterplot of MPG vs Horsepower and MPG vs log(Weight).

to Langmuir Model from experimental data. Therefore, Log Model will have a high
risk of misspecification in real applications. GP Model has nonparametric nature in
its fit, thus it will be more flexible in regressing adsorption isotherm data and can
avoid misspecification. Hence, our GP Model will be a better choice for the analysis of
adsorption isotherm data in comparison to the Langmuir model when we have missing
covariates.

5.2 Application II

In this subsection, we are going to use our method on Auto-mpg data. This dataset is
from the StatLib library maintaining by Carnegie Mellon University and previously was
used in the 1983 American Statistical Association Exposition. This data is also available
in the Statistics and Machine Learning Toolbox in MATLAB with a filename called
“carbig.mat”. One of its application goal is to predict the fuel consumption in miles per
gallon (mpg) using the weight and horsepower of a car. In this data, it contains 398
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PMSE DIC
����������Method

Size
n = 30 n = 60 n = 90 n = 30 n = 60 n = 90

Our Model 21.4647 17.2350 16.7127 416.2000 391.2511 361.1001
Linear Model 23.4285 18.1333 17.8999 459.0211 411.0542 390.2566

Table 7: The comparison of our proposed semiparametric model and the linear model
using the PMSE and DIC criteria based on the imputed data.

instances and we have 6 missing values in the horsepower attribute and it is reasonable
to consider that missingness in the horsepower attribute is ignorable.

A common approach to model the fuel consumption for this data is to apply the
linear regression technique. Our initial study shows that there is a nonlinear relationship
between mpg and horsepower, but there is a linear relationship between mpg and the
natural logarithm of the weight (denote as log(weight) in Figure 2) of the car. Both of
these phenomena can be clearly seen from the original data in Figure 2. We randomly
sample 30, 60 and 90 instances, respectively, from the original data and each sample will
include those 6 missing observations, which miss the horsepower attribute. We repeat
such random draws for 50 times of each 3 cases of instances and we consider the rest of
the observations in the data as test points.

We employ the linear regression and our proposed semiparametric model on the
three cases of instances for the randomly sampled observations. Specifically, we use the
linear structure for the natural logarithm of the weight (in tons) and the nonparametric
structure for the horsepower in our proposed model, that is:

yi = β0 + β1zi + g(xi) + εi, i = 1, · · · , n. (5.3)

Similarly, for the linear regression, we use the horsepower and the natural logarithm of
the weight as predictor variables and the mpg as the response variable, i.e.,

yi = β0 + β1zi + β2xi + εi, i = 1, · · · , n.

In both regressions above, yi corresponds to the mpg, xi is the horsepower attribute, zi
indicates the natural logarithm of the weight of the car, εi is the random error with the

assumption that εi
i.i.d.∼ N (0, σ2

ε ) and n is the number of instances we consider. From
Figure 2, it is natural to assume that the values of the horsepower attribute is nonnega-
tive, thus, we assume a truncated normal prior on xi’s, i.e., π(xi | μx, σ

2
x) ∝ N+(μx, σ

2
x).

All the other priors of unknowns are the same as Subsection 5.1. We compare the per-
formance of both models based on PMSE and DIC, where their values are averaged over
50 draws for each case of instances.

Table 7 shows the results for our semiparametric model versus the linear model in
the scenarios with missing data imputed. As expected, with the increase in the number
of training data points, both values of PMSE and DIC have become smaller for these
two models. However, our proposed semiparametric model is able to perform better
than the linear model in all different sample sizes situations. Thus, our proposed GP
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������������Method
Sample Size

n = 30 n = 60 n = 90

CC 21.8333 17.7081 16.8739
MICE 21.4512 17.9011 17.2433

Table 8: The comparison of PMSE results for Model (5.3) via using complete cases (CC)
and the MICE algorithm in dealing with missing data for Model (5.3).

semiparametric model is superior in the analysis of the Auto-mpg data in comparison
to the linear model.

In addition, we build up Table 8, where we compare the PMSE results for Model
(5.3) using complete cases and the MICE algorithm to deal with missing data for Model
(5.3). When we compare the values of PMSE in the first row from Table 7 with those
shown in Table 8, we can see that our proposed method (which is to impute the missing
covariates and estimate the unknown parameters in a simultaneous way) performs much
better in comparison with MICE imputation algorithms when the sample size is median
(i.e., n = 60 and n = 90); while our method is dominant in the performance of PMSE
in comparison to the complete cases analysis in all three cases.

6 Discussion

In this paper, we have considered the problem of imputation of missing covariates for the
nonparametric part in a semiparametric regression under the Bayesian framework. In
the absence of a parametric regression part, our semiparametric model can be reduced
to a nonparametric regression setting. Our proposed procedure permits us to model
nonparametric as well as semiparametric regression in the presence of missing covariate.

To deal with missing covariates for the nonparametric regression is often difficult.
Especially, when we assign a GP prior to the unknown nonparametric function, the
missing covariates will cause the problem to establish the covariance function of the
GP prior. Our proposed method is the first one to solve this problem for the GP prior,
while it has still kept the flexibility of GPs in the computation for the nonparamet-
ric/semiparametric modeling from Bayesian perspective. Also, we have proved the pos-
terior propriety under the “exact” reference prior for the hyperparameters of GP in the
appearance of missing covariates. Moreover, we have illustrated that in the presence
of ignorable missing covariates for the semiparametric regression model, our proposed
method can perform better than the naive method using complete cases and the cubic
splines using imputed data. In addition, we have demonstrated our proposed method is
at least comparable to the performance of the spline methods proposed by Faes et al.
(2011) to deal with missing covariates in nonparametric regression. In the two applica-
tions, we have displayed that our proposed method is able to perform better than the
competitive parametric methods when there are missing covariates in the data, espe-
cially we are not certain about the parametric relationship between the response and
the predictor variables. Thus, our method will be particularly appealing for analyzing
the data where the covariates are subject to ignorable missingness and the relationship
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between the response and the covariates is unclear. However, we are at least expected
that the unknown function g(·) has an one-to-one mapping, otherwise, we might en-
counter the same multimodality problem in the posterior distribution for the missing
covariates as mentioned in Beal (2003) and Faes et al. (2011).

Throughout this paper, we assume the missing data mechanism is ignorable. Some-
times, this assumption is somewhat restricted. Thus, our next goal is to extend our
proposed procedure for a non-ignorable missing mechanism.

Supplementary Material

Supplementary Materials for “Learning Semiparametric Regression with Missing Co-
variates Using Gaussian Process Models” (DOI: 10.1214/18-BA1136SUPP; .pdf). We
have restated about the four conditions used in Ren et al. (2012) and the derivation for
the Conditional Distribution of xmis Given xobs in Section S.1 and Section S.2 of the
supplement, respectively. Moreover, we have put the detailed results of MSEx, PMSE
and DIC for different covariance kernels in Simulation II of Section 4.2 as Section S.3 of
the supplement material. Also, in Section S.4 and Section S.5 of the supplement mate-
rial, we have included the MCMC sampling scheme for Langmuir model estimation as
well as the MCMC sampling scheme for Log Model Estimation for Section 5.2.
See more details in Supplement S (http://doi.org/10.2307/1390675).
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Analysis of Spatially Correlated Data.” Journal of the American Statistical
Association, 96(456): 1361–1374. MR1946582. doi: https://doi.org/10.1198/

016214501753382282. 217, 220

Bishoyi, A., Wang, X., and Dey, D. K. (2019). “Supplementary Materials for “Learning
Semiparametric Regression with Missing Covariates Using Gaussian Process Mod-
els”.” Bayesian Analysis. doi: https://doi.org/10.1214/18-BA1136SUPP. 221,
222, 225, 229, 233

Brooks, S. P. and Gelman, A. (1998). “General methods for monitoring convergence of
iterative simulations.” Journal of computational and graphical statistics, 7(4): 434–
455. MR1665662. doi: https://doi.org/10.2307/1390675. 223

Celeux, G., Forbes, F., Robert, C. P., Titterington, D. M., et al. (2006). “Deviance
information criteria for missing data models.” Bayesian analysis, 1(4): 651–673.
MR2282197. doi: https://doi.org/10.1214/06-BA122. 228

https://doi.org/10.1214/18-BA1136SUPP
http://doi.org/10.2307/1390675
http://www.ams.org/mathscinet-getitem?mr=1088478
http://www.ams.org/mathscinet-getitem?mr=1946582
https://doi.org/10.1198/016214501753382282
https://doi.org/10.1198/016214501753382282
https://doi.org/10.1214/18-BA1136SUPP
http://www.ams.org/mathscinet-getitem?mr=1665662
https://doi.org/10.2307/1390675
http://www.ams.org/mathscinet-getitem?mr=2282197
https://doi.org/10.1214/06-BA122


238 Semiparametric Regression with Missing Covariates

Choi, T. and Schervish, M. J. (2007). “On posterior consistency in nonparametric re-
gression problems.” Journal of Multivariate Analysis, 98(10): 1969–1987. MR2396949.
doi: https://doi.org/10.1016/j.jmva.2007.01.004. 216

Cramér, H. and Leadbetter, M. R. (2013). Stationary and related stochastic processes:
Sample function properties and their applications. Courier Corporation. MR0217860.
216

Damianou, A. and Lawrence, N. D. (2015). “Semi-described and semi-supervised learn-
ing with Gaussian processes.” arXiv preprint arXiv:1509.01168. 217

Denison, D. G. (2002). Bayesian methods for nonlinear classification and regression,
volume 386. John Wiley & Sons. MR1962778. 216

Dey, D. K., Chen, M.-H., and Chang, H. (1997). “Bayesian Approach for Nonlinear
Random Effects Models.” Biometrics, 53(4): 1239–1252. 233

Engle, R. F., Granger, C. W. J., Rice, J., and Weiss, A. (1986). “Semiparametric Esti-
mates of the Relation Between Weather and Electricity Sales.” Journal of the Amer-
ican Statistical Association, 81(394): 310–320. 217

Faes, C., Ormerod, J. T., and Wand, M. P. (2011). “Variational Bayesian Inference
for Parametric and Nonparametric Regression With Missing Data.” Journal of the
American Statistical Association, 106(495): 959–971. MR2894756. doi: https://doi.
org/10.1198/jasa.2011.tm10301. 216, 230, 231, 236, 237

Girard, A. and Murray-Smith, R. (2003). “Learning a Gaussian process model with
uncertain inputs.” Technical report, Department of Computing Science, University of
Glasgow. 217
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