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SPECTRAL METHOD AND REGULARIZED MLE ARE BOTH
OPTIMAL FOR TOP-K RANKING!

BY YUXIN CHEN*Z, JIANQING FANT*3 CONG MA* AND KAIZHENG WANG*
Princeton University* and Fudan University"

This paper is concerned with the problem of top-K ranking from pair-
wise comparisons. Given a collection of n items and a few pairwise com-
parisons across them, one wishes to identify the set of K items that receive
the highest ranks. To tackle this problem, we adopt the logistic parametric
model—the Bradley—Terry—Luce model, where each item is assigned a latent
preference score, and where the outcome of each pairwise comparison de-
pends solely on the relative scores of the two items involved. Recent works
have made significant progress toward characterizing the performance (e.g.,
the mean square error for estimating the scores) of several classical methods,
including the spectral method and the maximum likelihood estimator (MLE).
However, where they stand regarding top-K ranking remains unsettled.

We demonstrate that under a natural random sampling model, the spectral
method alone, or the regularized MLE alone, is minimax optimal in terms of
the sample complexity—the number of paired comparisons needed to ensure
exact top-K identification, for the fixed dynamic range regime. This is ac-
complished via optimal control of the entrywise error of the score estimates.
We complement our theoretical studies by numerical experiments, confirm-
ing that both methods yield low entrywise errors for estimating the underlying
scores. Our theory is established via a novel leave-one-out trick, which proves
effective for analyzing both iterative and noniterative procedures. Along the
way, we derive an elementary eigenvector perturbation bound for probability
transition matrices, which parallels the Davis—Kahan sin ® theorem for sym-
metric matrices. This also allows us to close the gap between the ¢, error
upper bound for the spectral method and the minimax lower limit.

1. Introduction. Imagine we have a large collection of » items, and we are
given partially revealed comparisons between pairs of items. These paired com-
parisons are collected in a nonadaptive fashion, and could be highly noisy and
incomplete. The aim is to aggregate these partial preferences so as to identify
the K items that receive the highest ranks. This problem, which is called fop-K
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rank aggregation, finds applications in numerous contexts, including web search
[Dwork et al. (2001)], recommendation systems [Baltrunas, Makcinskas and Ricci
(2010)], sports competition [Masse (1997)], to name just a few. The challenge is
both statistical and computational: how can one achieve reliable top-K ranking
from a minimal number of pairwise comparisons, while retaining computational
efficiency?

1.1. Popular approaches. To address the aforementioned challenge, many
prior approaches have been put forward based on certain statistical models. Ar-
guably one of the most widely used parametric models is the Bradley—Terry—Luce
(BTL) model [Bradley and Terry (1952), Luce (1959)], which assigns a latent pref-
erence score {w]}1<;<, to each of the n items. The BTL model posits that: the
chance of each item winning a paired comparison is determined by the relative
scores of the two items involved, or more precisely,

*
- J
w + w}f

w
(1.1) P{item j is preferred over item i} =

in each comparison of item i against item j. The items are repeatedly compared in
pairs according to this parametric model. The task then boils down to identifying
the K items with the highest preference scores, given these pairwise comparisons.

Among the ranking algorithms tailored to the BTL model, the following two
procedures have received particular attention, both of which rank the items based
on appropriate estimates of the latent preference scores.

(1) Spectral method. By connecting the winning probability in (1.1) with the
transition probability of a reversible Markov chain, the spectral method attempts
recovery of {w}} via the leading left eigenvector of a sample transition matrix.
This procedure, also known as Rank Centrality [Negahban, Oh and Shah (2017)],
bears similarity to the PageRank algorithm.

(2) Maximum likelihood estimator (MLE). This approach proceeds by finding
the score assignment that maximizes the likelihood function [Ford (1957)]. When
parameterized appropriately, solving the MLE becomes a convex program, and
hence is computationally feasible. There are also important variants of the MLE
that enforce additional regularization.

Details are postponed to Section 2.2. In addition to their remarkable practical
applicability, these two ranking paradigms are appealing in theory as well. For
instance, both of them provably achieve intriguing ¢, accuracy when estimating
the latent preference scores [Negahban, Oh and Shah (2017)].

Nevertheless, the ¢ error for estimating the latent scores merely serves as a
“meta-metric” for the ranking task, which does not necessarily reveal the accuracy
of top-K identification. In fact, given that the £; loss only reflects the estimation er-
ror in some average sense, it is certainly possible that an algorithm obtains minimal
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£, estimation loss but incurs (relatively) large errors when estimating the scores of
the highest ranked items. Interestingly, a recent work Chen and Suh (2015) demon-
strates that: a careful combination of the spectral method and the coordinate-wise
MLE is optimal for top-K ranking. This leaves open the following natural ques-
tions: where does the spectral alone, or the MLE alone, stand in top-K ranking?
Are they capable of attaining exact top-K recovery from minimal samples? These
questions form the primary objectives of our study.

As we will elaborate later, the spectral method part of the preceding questions
was recently explored by Jang, Kim, Suh and Oh (2016), for a regime where a
relatively large fraction of item pairs have been compared. However, it remains
unclear how well the spectral method can perform in a much broader —and often
much more challenging—regime, where the fraction of item pairs being compared
may be vanishingly small. Additionally, the ranking accuracy of the MLE (and its
variants) remains unknown.

1.2. Main contributions. The central focal point of the current paper is to as-
sess the accuracy of both the spectral method and the regularized MLE in top-K
identification. Assuming that the pairs of items being compared are randomly se-
lected and that the preference scores fall within a fixed dynamic range, our paper
delivers a somewhat surprising message:

Both the spectral method and the regularized MLE achieve perfect identification of top-
K ranked items under optimal sample complexity (up to some constant factor)!

It is worth emphasizing that these two algorithms succeed even under the spars-
est possible regime, a scenario where only an exceedingly small fraction of pairs of
items have been compared. This calls for precise control of the entrywise error—
as opposed to the ¢> loss—for estimating the scores. To this end, our theory is
established upon a novel leave-one-out argument, which might shed light on how
to analyze the entrywise error for more general optimization problems.

As a byproduct of the analysis, we derive an elementary eigenvector perturba-
tion bound for (asymmetric) probability transition matrices, which parallels Davis—
Kahan’s sin ® theorem for symmetric matrices. This simple perturbation bound
immediately leads to an improved ¢; error bound for the spectral method, which
allows to close the gap between the theoretical performance of the spectral method
and the minimax lower limit.

1.3. Notation. Before proceeding, we introduce a some notation that will
be useful throughout. To begin with, for any strictly positive probability vector
m € R", we define the inner product space indexed by & as a vector space in R"
endowed with the inner product (x, y)r = > 7_, m;x;y;. The corresponding vector
norm and the induced matrix norm are defined respectively as ||x ||z = +/{X, X)x
and [|Allz = SUP|ix|lz=1 ||xTA||n-
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Additionally, the notation f(n) = O(g(n)) or f(n) < g(n) means there is a
constant ¢ > O such that | f (n)| < c|g(n)|, f(n) = Q2 (g(n)) or f(n) = g(n) means
there is a constant ¢ > 0 such that | f(n)| > c|g(n)|, f(n) = O(gn)) or f(n) <
g(n) means that there exist constants ¢y, cy > 0 such that c1|g(n)| < |f(n)| <
c21g(n)], and f(n) = o(g(n)) means lim,_, oo % =0

Given a graph G with vertex set {1,2,...,n} and edge set £, we denote
by Lg =3 jec.i>j(ei —ej)(ei — e j)T the (unnormalized) Laplacian matrix
[Chung (1997)] associated with it, where {e;}1<;<, are the standard basis vectors
in R”. For a matrix A € R"™*" with n real eigenvalues, we let Aj(A) > Ax(A) >

-+ > A, (A) be the eigenvalues sorted in descending order.
2. Statistical models and main results.

2.1. Problem setup. We begin with a formal introduction of the Bradley—
Terry—Luce parametric model for binary comparisons.

Preference scores. As introduced earlier, we assume the existence of a positive
latent score vector

@2.1) w*=[wl, ..., w]"

that comprises the underlying preference scores {w; > 0}1<;<, assigned to each
of the n items. Alternatively, it is sometimes more convenient to reparameterize
the score vector by

(2.2) 0* =[6f.....6]"  where 6] =logw?.

»¥n
These scores are assumed to fall within a dynamic range given by
(2.3) w,* € [Wmin, Wmax], or 9,'* € [Omin, Omax]

for all 1 <i <n and for some wpyin > 0, Wmax > 0, Omin = l0g Win and Opax =
log wmax. We also introduce the condition number as

(2.4) K .= wmax/wmin.

Notably, the current paper primarily focuses on the case with a fixed dynamic range
(i.e., k is a fixed constant independent of n), although we will also discuss exten-
sions to the large dynamic range regime in Section 3. Without loss of generality, it
is assumed that

2.5 wmax>wTZw;Z...Zw

meaning that items 1 through K are the desired top-K ranked items.
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Comparison graph. Let G = (V, &) stand for a comparison graph, where the
vertex set )V = {1, 2, ..., n} represents the n items of interest. The items i and j are
compared if and only if (i, j) falls within the edge set £. Unless otherwise noted,
we assume that G is drawn from the Erd6s—Rényi random graph G, ,, such that an
edge between any pair of vertices is present independently with some probability
p. In words, p captures the fraction of item pairs being compared.

Pairwise comparisons. For each (i, j) € £, we obtain L independent paired
comparisons between items i and j. Let yl.(lj). be the outcome of the £th comparison,
which is independently drawn as

1 ith probability " ¢
1) ind. with probability = — -,
(2.6) yl.(J = wi + w;‘ A 4 el

0 else.

By convention, we set ylg’lj). =1- yj(lf for all (i, j) € £ throughout the paper. This

is also known as the logistic pairwise comparison model, due to its strong resem-
blance to logistic regression. It is self-evident that the sufficient statistics under this

model are given by

. I &
(2.7) y:={yijlGj)e€}  wherey,;:= z;yi(,/)'-
* 0%
To simplify the notation, we shall also take y; j= w;;’w»f = sf : o -

J ei e

Goal. The goal is to identify the set of top-K ranked items—that is, the set of
K items that enjoy the largest preference scores—from the pairwise comparison
data y.

2.2. Algorithms.

2.2.1. The spectral method: Rank centrality. The spectral ranking algorithm,
or Rank Centrality [Negahban, Oh and Shah (2017)], is motivated by the connec-
tion between the pairwise comparisons and a random walk over a directed graph.
The algorithm starts by converting the pairwise comparison data y into a transition
matrix P =[P; j]li<i j<n in such a way that

1 R
70 if (i, j) €€,
1
2.8) Pij=y1-+ Y vk ifi=],

k(i k)eE
0 otherwise,
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Algorithm 1 Spectral method (Rank Centrality)
Input the comparison graph G, sufficient statistics y, and the normalization fac-
tor d.
Define the probability transition matrix P = [P; ;]1<;, j<u asin (2.8).
Compute the leading left eigenvector & of P.
Output the K items that correspond to the K largest entries of .

for some given normalization factor d > 0, and then proceeds by computing the
stationary distribution & € R" of the Markov chain induced by P. As we shall see
later, the parameter d is taken to be on the same order of the maximum vertex
degree of G while ensuring the nonnegativity of P. As asserted by Negahban, Oh
and Shah (2017), & is a faithful estimate of w* up to some global scaling. The
algorithm is summarized in Algorithm 1.

To develop some intuition regarding why this spectral algorithm gives a rea-
sonable estimate of w*, it is perhaps more convenient to look at the population
transition matrix P* = [Pl-ikj]lfl"anI

Lwj if i, j) €&
- if (i, ,
d wr + wj‘ J
* 1 wi
Fij= - —k_ifi=,
kines Wi T Wk
0 otherwise,

which coincides with P by taking L — oo. It can be seen that the normalized score
vector

1

-
(2.9) = o [wl w3, ..., wy ]
i=1W;

is the stationary distribution of the Markov chain induced by the transition matrix
P*, since P* and * are in detailed balance, namely,

As aresult, one expects the stationary distribution of the sample version P to form
a good estimate of w*, provided the sample size is sufficiently large.

2.2.2. The regularized MLE. Under the BTL model, the negative log-
likelihood function conditioned on G is given by (up to some global scaling)

&Y i
LO;y):=— Z {yj’ilogm—’_(l_yj’i)bgm}
2.11) i.))CE > |

- Z {_J’j,i(Oi—9j)+10g(1+e9i_9j)}‘
@i, j)e€i>j
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The regularized MLE then amounts to solving the following convex program:
S 1
(2.12) minimizegern £, (0; y) := L(0; y) + Ek||0||%,

for a regularization parameter A > 0. As will be discussed later, we shall adopt

nplogn

the choice A < 7 throughout this paper. For the sake of brevity, we let 6
represent the resulting penalized maximum likelihood estimate whenever it is clear
from the context. Similar to the spectral method, one reports the K items associated
with the K largest entries of .

2.3. Main results. The most challenging part of top-K ranking is to distin-
guish the Kth and the (K + 1)th items. In fact, the score difference of these two
items captures the distance between the item sets {1, ..., K} and {K + 1, ..., n}.
Unless their latent scores are sufficiently separated, the finite-sample nature of the
model would make it infeasible to distinguish these two critical items. With this
consideration in mind, we define the following separation measure:

*
(2.13) A = K~ K41
Wmax
This metric turns out to play a crucial role in determining the minimal sample
complexity for perfect top-K identification.

The main finding of this paper concerns the optimality of both the spectral
method and the regularized MLE in the presence of a fixed dynamic range [i.e.,
k = O(1)]. Recall that under the BTL model, the total number N of samples we
collect concentrates sharply around its mean, namely,

(2.14) N =(1+0()E[N]= (1 +o(1))n*pL/2

occurs with high probability. Our main result is stated in terms of the sample com-
plexity required for exact top-K identification.

THEOREM 2.1. Consider the pairwise comparison model specified in Sec-
cologn

tion 2.1 with k = O(1). Suppose that p > =—=— and that

n
2
n“pL - cinlogn

(2.15) >
2 A%

for some sufficiently large positive constants cy and c1. Further assume L < ¢y -n®?
for any absolute constants c», c3 > 0. With probability exceeding 1 — O (n™>), the
set of top-K ranked items can be recovered exactly by the spectral method given in
Algorithm 1, and by the regularized MLE given in (2.12). Here, we take d = cqnp

/nplogn
L

in the spectral method and ) = c,, in the regularized MLE, where cq > 2

and c; > 0 are some absolute constants.
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REMARK 2.2. We emphasize that p > Col% for co > 1 is a fundamental
requirement for the ranking task. In fact, if p < (1 —¢) lof" for any constant & > 0,
then the comparison graph G ~ G, , is disconnected with high probability. This
means that there exists at least one isolated item (which has not been compared

with any other item) and cannot be ranked.

REMARK 2.3. In fact, the assumption that L < ¢; - n“3 for any absolute con-
stants ¢, c3 > 0 is not needed for the spectral method.

REMARK 2.4. Here, we assume the same number of comparisons L to sim-
plify the presentation as well as the proof. The result still holds true if we have

distinct L; ;’s for each i # j, as long as n’p min;«; L; j 2 "Z’#.
K

Theorem 2.1 asserts that both the spectral method and the regularized MLE

achieve a sample complexity on the order of "IA(’zg". Encouragingly, this sample

complexity coincides with the minimax limit iderll(tiﬁed in Chen and Suh (2015),
Theorem 2, in the fixed dynamic range, that is, k = O(1).

THEOREM 2.5 [Chen and Suh (2015)]. Fix e € (0, %), and suppose that

(1—¢)nlogn —2

(2.16) n?pL <2c 2
K

’

where ¢y = wfnin / (4wfnax). Then for any ranking procedure \r, one can find a score
vector w* with separation Ak such that  fails to retrieve the top-K items with

probability at least ¢.

We are now positioned to compare our results with Jang et al. (2016), which also
investigates the accuracy of the spectral method for top-K ranking. Specifically,
Theorem 3 in Jang et al. (2016) establishes the optimality of the spectral method

for the relatively dense regime where p 2 ,/ k’%. In this regime, however, the total
sample size necessarily exceeds

(2.17) n*pL/2>n*p/2> \/n3logn,

which rules out the possibility of achieving minimal sample complexity if Ak is
sufficiently large. For instance, consider the case where A =< 1, then the optimal
sample size—as revealed by Theorem 2.1 or Chen and Suh (2015), Theorem 1—is
on the order of

(n logn)/A% =nlogn,
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which is a factor of /IO’g’n lower than the bound in (2.17). By contrast, our results

hold all the way down to the sparsest possible regime where p =< lof", confirm-

ing the optimality of the spectral method even for the most challenging scenario.
Furthermore, we establish that the regularized MLE shares the same optimality
guarantee as the spectral method, which was previously out of reach.

2.4. Optimal control of entrywise estimation errors. In order to establish the
ranking accuracy as asserted by Theorem 2.1, the key is to obtain precise control
of the £ loss of the score estimates. Our results are as follows.

THEOREM 2.6 (Entrywise error of the spectral method). Consider the pair-
wise comparison model in Section 2.1 with k = O(1). Suppose p > Col# for
some sufficiently large constant co > 0. Choose d = cqnp for some constant cqg > 2
in Algorithm 1. Then the spectral estimate 1 satisfies

_ *
(2.18) lr — "o < [logn
7*]l o npL

with probability 1 — O(n=>), where T* is the normalized score vector [cf- (2.9)].

THEOREM 2.7 (Entrywise error of the regularized MLE). Consider the pair-
wise comparison model specified in Section 2.1 with k = O(1l). Suppose that
p = CO]# for some sufficiently large constant ¢y > 0 and that L < ¢y - n®3
for any absolute constants cp,c3 > 0. Set the regularization parameter to be

A=cy "pl% for some absolute constant c), > 0. Then the regularized MLE 6

satisfies
%
le? — 7 Yo _ [logn
P ~
le?” =0 1o npL

with probability exceeding 1 — O (n™>), where 0" = %ITO* and &% :=[e", ...,
0,1T
en]’.

Theorems 2.6-2.7 indicate that if the number of comparisons associated with
each item—which concentrates around np L—exceeds the order of log , then both
methods are able to achieve a small £, error when estimating the scores.

Recall that the ¢, estimation error of the spectral method has been characterized
by Negahban, Oh and Shah (2017) (or Theorem 5.2 of this paper that improves it
by removing the logarithmic factor), which obeys

_ *
0.19) Iz ="l _ [logn

~

ll7* 12 npL
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with high probability. Similar theoretical guarantees have been derived for another
variant of the MLE (the constrained version) under a uniform sampling model as
well [Negahban, Oh and Shah (2017)]. In comparison, our results indicate that
the estimation errors for both algorithms are almost evenly spread out across all
coordinates rather than being localized or clustered. Notably, the pointwise errors
revealed by Theorems 2.6-2.7 immediately lead to exact top-K identification as
claimed by Theorem 2.1.

PROOF OF THEOREM 2.1.  In what follows, we prove the theorem for the spec-
tral method part. The regularized MLE part follows from an almost identical argu-
ment, and hence is omitted.

Since the spectral algorithm ranks the items in accordance with the score esti-
mate 7, it suffices to demonstrate that

m —mj >0, ViI<i<K,K+1<j<n.
To this end, we first apply the triangle inequality to get

T — T - 77,‘*_77; _ |7 —JTi*| _ |7T] -7 o
I oo — ll7*[l0c ll72* [l oo ||7t*||oo
2| — oo

172 [l oo

In addition, it follows from Theorem 2.6 as well as our sample complexity assump-
tion that

(2.20)

_ %
It — ™ oo < logn and anL > nlozgn‘
ll72* [l oo npL A
* 2
These conditions taken collectively imply that W < %A k as long as n’foLgiK

exceeds some sufficiently large constant. Substitution into (2.20) reveals that ; —
mj >0, as claimed. []

2.5. Heuristic arguments. We pause to develop some heuristic explanation as
to why the estimation errors are expected to be spread out across all entries. For
simplicity, we focus on the case where p = 1 and L is sufficiently large, so that y
and P sharply concentrate around y* and P*, respectively.

We begin with the spectral algorithm. Since & and & * are respectively the invari-
ant distributions of the Markov chains induced by P and P*, we can decompose

Q21) (w—n%)' =a'P—a*"P*=(m—n*) P+x* (P - P¥).
—,_—J
=

When p =1 and wmi‘x = 1, the entries of ™ (resp., the off-diagonal entries of P*
and P — P*) are all of the same order and, as a result, the energy of the uncertainty
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term & is spread out (using standard concentration inequalities). In fact, we will
demonstrate in Section 5.2 that

(2.22) 1§ 1100 < |logn L —n*||2\/10gn’
7|00 npL ll7* 112

which coincides with the optimal rate. Further, if we look at each entry of (2.21),
then forall 1 <m <n,

T — 7 =[(m — zt*)TP]m +&n

(2.23) = (mm — JT;)Pm,,,L
contraction
-y
—i—[PLm,...,Pm,],m,O, Pm+1’m,...,Pn,m] + &
Ty — T,

error averaging

By construction of the transition matrix, one can easily verify that P, ,, is bounded
away from 1 and P; ,, =< % for all j % m. As a consequence, the identity 7 ' P =
x| allows one to treat each 7, — 7, as a mixture of three effects: (i) the first term
of (2.23) behaves as an entrywise contraction of the error; (ii) the second term of
(2.23) is a (nearly uniformly weighted) average of the errors over all coordinates,
which can essentially be treated as a smoothing operator applied to the error com-
ponents and (iii) the uncertainty term &,,. Rearranging terms in (2.23), we are left
with
1 n
(2.24) (1 = Po)|tm — | 5;Z}ni — 7| + Em, Vm

i=1
which further gives

1 n
(2.25) \}n—n*”oog;Z!m — 7|+ 1€ o

i=1
There are two possibilities compatible with this bound (2.25): (1) [T — T |0 <
EY w7l and ) 1 — 7o S N lloo S V2 Im* oo by (2.22). In
either case, the errors are fairly delocalized, revealing that

7 — oo {l Il — =1 |l —ﬂ*llzvlogn}

ll7* [l oo no7*lle [l *[12

~

We now move on to the regularized MLE, following a very similar argument.
By the optimality condition that V£, () = 0, one can derive (for some 7 to be
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specified later)
0—60*=0—nVL,(0)—
=0 —nVL0)— (0" —nVLL(O%)) —nVL(07)

—_—
=

~ (I — V2L, (0%))(0 — 0%) —¢.

Write V2£;(0*) = D — A, where D and A denote respectively the diagonal
and off-diagonal parts of V2L, (6*). Under our assumptions, one can check that
Dy <nforalll <m <nand Aj, <1 for any j # m. With this notation in
place, one can write the entrywise error as follows:

O — 05 = (1 = nDpy) (O + Y nAjm(0; —07) = tn.
Jij#Fm

By choosing n = ¢p/n for some sufficiently small constant ¢, > 0, we get 1 —
NDym < 1and nA; , =< 1/n. Therefore, the right-hand side of the above relation
also comprises a contraction term as well as an error smoothing term, similar to
(2.23). Carrying out the same argument as for the spectral method, we see that the
estimation errors of the regularized MLE are expected to be spread out.

2.6. Numerical experiments. Itis worth noting that extensive numerical exper-
iments on both synthetic and real data have already been conducted in Negahban,
Oh and Shah (2017) to confirm the practicability of both the spectral method and
the regularized MLE. See also Chen and Suh (2015) for the experiments on the
Spectral-MLE algorithm. This section provides some additional simulations to
complement their experimental results as well as our theory. Throughout the ex-
periments, we set the number of items n to be 200, while the number of repeated
comparisons L and the edge probability p can vary with the experiments. Regard-
ing the tuning parameters, we choose d = 2dn,x in the spectral method where dpax

is the maximum degree of the graph and A =2 in the regularized MLE,
which are consistent with the configurations con31dered in the main theorems. Ad-
ditionally, we also display the experimental results for the unregularized MLE, that
is, A = 0. All of the results are averaged over 100 Monte Carlo simulations.

We first investigate the £, error of the spectral method and the (regularized)
MLE when estimating the preference scores. To this end, we generate the latent
scores w; (1 <i < n) independently and uniformly at random over the interval
[0.5, 1]. Figure 1(a) [resp., Figure 1(b)] displays the entrywise error in the spectral
score estimation as the number of repeated comparisons L (resp., the edge proba-
bility p) varies. As is seen from the plots, the £, error of all methods gets smaller
as p and L increase, confirming our results in Theorems 2.6-2.7. Next, we show
in Figure 1(c) the relative £, error while fixing the total number of samples (i.e.,
n?pL). It can be seen that the performance almost does not change if the sample

nplogn
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0.1

relative £ estimation error

5 10 15 20 25 30 0.2 04 0.6 0.8 1 0 0.2 04 0.6 0.8 1
L: number of repeated comparisons p: edge probability p: edge probability

(a) (b) (c)

F1G. 1. Empirical performance of the spectral method and the (regularized) MLE: (a) £~ error
versus L, (b) Loo error versus p and (c) Loo error versus nsz.

complexity n? p L remains the same. It is also interesting to see that the £+, error of
the spectral method and the MLE are very similar. In addition, Figure 2 illustrates
the relative £ error and the relative £, error in score estimation for all three meth-
ods. As we can see, the relative £, errors are not much larger than the relative £,
errors (recall that n = 200), thus offering empirical evidence that the errors in the
score estimates are spread out across all entries.

Further, we examine the top-K ranking accuracy of all three methods. Here,
we fix p =0.25 and L = 20, set K = 10 and let w}“:lforall 1<i<K and
w}k =1— Aforall K + 1 < j <n. By construction, the score separation satisfies
Ak = A. Figure 3 illustrates the accuracy in identifying the top-K ranked items.
The performance of them improves when the score separation becomes larger,
which matches our theory in Theorem 2.1.

2.7. Other related works. The problem of ranking based on partial preferences
has received much attention during the past decade. Two types of observation mod-
els have been considered: (1) the cardinal-based model, where users provide ex-
plicit numerical ratings of the items, (2) the ordinal-based model, where users are
asked to make comparative measurements. See Ammar and Shah (2011) for de-
tailed comparisons between them.

EEes888882

5 10 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 30
L: number of repeated comparisons L: number of repeated comparisons L: number of repeated comparisons

(a) spectral method (b) regularized MLE (¢) MLE

FIG. 2.  Comparisons between the relative L~ error and the relative €y error for (a) the spectral
method, (b) the regularized MLE and (c) the MLE.
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FI1G. 3. The top-K ranking accuracy of both the spectral method and the regularized MLE.

In terms of the ordinal-based model—and in particular, ranking from pair-
wise comparisons—both parametric and nonparametric models have been exten-
sively studied. For example, Hunter (2004) examined variants of the paramet-
ric BTL model, and established the convergence properties of the minorization-
maximization algorithm for computing the MLE. Moreover, the BTL model falls
under the category of low-rank parametric models, since the preference matrix is
generated by passing a rank-2 matrix through the logistic link function [Rajkumar
and Agarwal (2016)]. Additionally, the work Jiang et al. (2011) proposed a least-
squares type method to estimate the full ranking, which generalizes the simple
Borda count algorithm [Ammar and Shah (2011)]. For many of these algorithms,
the sample complexities needed for perfect total ranking were determined by
Rajkumar and Agarwal (2014), although the top- K ranking accuracy was not con-
sidered there.

Going beyond the parametric models, a recent line of works Chen et al. (2017),
Pananjady et al. (2017), Shah and Wainwright (2015), Shah et al. (2017) con-
sidered the nonparametric stochastically transitive model, where the only model
assumption is that the comparison probability matrix follows certain transitivity
rules. This type of model subsumes the BTL model as a special case. For instance,
Shah and Wainwright (2015) suggested a simple counting-based algorithm which
can reliably recover the top- K ranked items for various models. However, the sam-
pling paradigm considered therein is quite different from ours in the sparse regime;
for instance, their model does not come close to the setting where p is small but L
is large, which is the most challenging regime of the model adopted in our paper
and Chen and Suh (2015), Negahban, Oh and Shah (2017).

All of the aforementioned papers concentrate on the case where there is a sin-
gle ground-truth ordering. It would also be interesting to investigate the scenarios
where different users might have different preference scores. To this end, Lu and
Negahban (2014), Negahban et al. (2017) imposed the low-rank structure on the
underlying preference matrix and adopted the nuclear-norm relaxation approach
to recover the users’ preferences. Additionally, several papers explored the rank-
ing problem for the more general Plackett—Luce model [Hajek, Oh and Xu (2014),
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Soufiani et al. (2013)], in the presence of adaptive sampling [Agarwal et al. (2017),
Busa-Fekete et al. (2013), Heckel et al. (2016), Jamieson and Nowak (2011)], for
the crowdsourcing scenario [Chen et al. (2013)], and in the adversarial setting
[Suh, Tan and Zhao (2017)]. These are beyond the scope of the present paper.

Speaking of the error metric, the £+, norm is appropriate for top-K ranking
problem and other learning problems as well. In particular, £, perturbation bounds
for eigenvectors of symmetric matrices [Abbe et al. (2017), Eldridge, Belkin and
Wang (2017), Fan, Wang and Zhong (2018), Koltchinskii and Lounici (2016)] and
singular vectors of general matrices [Koltchinskii and Xia (2016)] have been stud-
ied. In stark contrast, we study the £, norm errors of the leading eigenvector of
a class of asymmetric matrices (probability transition matrix) and the regularized
MLE. Furthermore, most existing results require the expectations of data matrices
to have low rank, at least approximately. We do not impose such assumptions.

When it comes to the technical tools, it is worth noting that the leave-one-out
idea has been invoked to analyze random designs for other high-dimensional prob-
lems, for example, robust M-estimators [El Karoui (2018)], confidence intervals
for Lasso [Javanmard and Montanari (2018)], likelihood ratio test [Sur, Chen and
Candes (2017)] and nonconvex statistical learning [Chen et al. (2018), Ma et al.
(2017)]. In particular, Zhong and Boumal (2017) and Abbe et al. (2017) use it
to precisely characterize entrywise behavior of eigenvectors of a large class of
symmetric random matrices, which improves upon prior £, eigenvector analysis.
Consequently, they are able to show the sharpness of spectral methods in many
popular models. Our introduction of leave-one-out auxiliary quantities is similar
in spirit to these papers.

Finally, the family of spectral methods has been successfully applied in numer-
ous applications, for example, matrix completion [Keshavan, Montanari and Oh
(2010)], phase retrieval [Chen and Candes (2017)], graph clustering [Abbe et al.
(2017), Rohe, Chatterjee and Yu (2011)] and joint alignment [Chen and Candes
(2016)]. All of them are designed based on the eigenvectors of some symmetric
matrix, or the singular vectors if the matrix of interest is asymmetric. Our paper
contributes to this growing literature by establishing a sharp eigenvector perturba-
tion analysis framework for an important class of asymmetric matrices—the prob-
ability transition matrices.

3. Extension: General dynamic range. All of the preceding results concern
the regime with a fixed dynamic range [i.e., k = O(1)]. This section moves on to
discussing the case with large «.

To start with, by going through the same proof technique, we can readily
obtain—in the general « setting—the following performance guarantees for both
the spectral estimate r and the regularized MLE 6.

THEOREM 3.1. Consider the pairwise comparison model in Section 2.1. Sup-
C()KS logn
n

pose that p > for some sufficiently large constant co > 0, and choose
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d = cqnp for some constant cg > 2 in Algorithm 1. Then with probability exceed-
ing 1 — O(n_s):

1. the spectral estimate 1 satisfies

lr —m* oo logn
Sy ;
70| oo npL

where w* is the normalized score vector as defined in (2.9).
2. the set of top-K ranked items can be recovered exactly by the spectral
method given in Algorithm 1, as long as

n’pL k*nlogn
>l 3
Ak

=
for some sufficiently large constant c| > 0.

THEOREM 3.2. Consider the pairwise comparison model in Section 2.1.
4

cok ™ logn .

Suppose that p > =—=== for some sufficiently large constant co > 0 and that

L < ¢y -n® for any absolute constants ¢y, c3 > 0. Set the regularization parameter
to be . =c;, @ npl# for some absolute constant ¢, > 0. Then with probability
exceeding 1 — o(n>):

1. the regularized MLE 0 satisfies

ik
le? — e o _ , [logn
— St | =
(AR npL

where 0 1= %ITO* and & =1, ..., "7,
2. the set of top-K ranked items can be recovered exactly by the regularized
MLE given in (2.12), as long as

n’pL k*nlogn
> C1l 5
Ak

for some sufficiently large constant c¢1 > O.

REMARK 3.3. The guarantees on exact top-K recovery for both the spectral
method and the regularized MLE are immediate consequences of their £, error
bound, as we have argued in Section 2.4. Hence we will focus on proving the £
error bound in Sections 5-6.

Notably, the achievability bounds for top-K ranking in Theorems 3.1-3.2 do
not match the lower bound asserted in Theorem 2.5 in terms of «. This is partly
because the separation measure Ak fails to capture the information bottleneck for
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the general « setting. In light of this, we introduce the following new measure that
seems to be a more suitable metric to reflect the hardness of the top-K ranking
problem:

3.1) AL Sl S5 J L i <=L

Wk 11 n = (wg +wy)
which will be termed the generalized separation measure. Informally, (A})2 is
a reasonably tight upper bound on certain normalized KL divergence metric [see
the proof of Theorem 3.4 for details in the Supplemental Material [Chen, Fan, Ma
and Wang (2019)]]. With this metric in place, we derive another lower bound as
follows.

THEOREM 3.4. Fix ¢ € (0, %), and let G ~ Gy ,. Consider any preference

score vector w*, and let A% denote its generalized separation. If
2,1 < e?
n“pL < ———,

2 (A%)?
then there exists another preference score vector W with the same generalized sep-
aration A% and different top-K items such that Pe(y) > 1%8 for any ranking
scheme . Here, P.(\) represents the probability of error in distinguishing these
two vectors given y.

The preceding sample complexity lower bound scales inversely proportionally
to (A’}})z. To see why this generalized measure may be more suitable compared to
the original separation metric, we single out three examples in the Supplementary
Material. Unfortunately, our current analyses do not yield a matching upper bound
with respect to A% unless « is a constant. For instance, the analysis of the spec-
tral method relies on the eigenvector perturbation bound (Theorem 5.1), where the
spectral gap and matrix perturbation play a crucial rule. However, the current re-
sults for controlling these quantities have explicit dependency on « [Negahban, Oh
and Shah (2017)]. It is not clear whether we could incorporate the new measure to
eliminate such dependency on «. This calls for more refined analysis techniques,
which we leave for future investigation.

Moreover, it is not obvious whether the spectral method alone or the regularized
MLE alone can achieve the minimal sample complexity in the general k regime. It
is possible that one needs to first screen out those items with extremely high or low
scores using methods like Borda count [Ammar and Shah (2012)], as advocated
by [Chen and Suh (2015), Negahban, Oh and Shah (2017), Jang et al. (2016)]. All
in all, finding tight upper bounds for general x remains an open question.
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4. Discussion. This paper justifies the optimality of both the spectral method
and the regularized MLE for top-K rank aggregation for the fixed dynamic range
case. Our theoretical studies are by no means exhaustive, and there are numerous
directions that would be of interest for future investigations. We point out a few
possibilities as follows.

General condition number k. As mentioned before, our current theory is optimal
in the presence of a fixed dynamic range with k = O(1). We have also made a
first attempt in considering the large « regime. It is desirable to characterize the
statistical and computational limits for more general «.

Goodness-of-fit. Throughout this paper, we have assumed the BTL model cap-
tures the randomness underlying the data we collect. A practical question is
whether the real data actually follows the BTL model. It would be interesting to
investigate how to test the goodness-of-fit of this model.

Unregularized MLE. We have studied the optimality of the regularized MLE

with the regularization parameter A < "pl#. Our analysis relies on the reg-

ularization term to obtain convergence of the gradient descent algorithm (see
Lemma 6.7). It is natural to ask whether such a regularization term is necessary
or not. This question remains open.

More general comparison graphs. So far, we have focused on a tractable but
somewhat restrictive comparison graph, namely, the Erd6s—Rényi random graph.
It would certainly be important to understand the performance of both methods
under a broader family of comparison graphs, and to see which algorithms would
enable optimal sample complexities under general sampling patterns.

Entrywise perturbation analysis for convex optimization. This paper provides
the £, perturbation analysis for the regularized MLE using the leave-one-out trick
as well as an inductive argument along the algorithmic updates. We expect this
analysis framework to carry over to a much broader family of convex optimization
problems, which may in turn offer a powerful tool for showing the stability of
optimization procedures in an entrywise fashion.

5. Analysis for the spectral method. This section is devoted to proving The-
orem 3.1, and hence Theorem 2.6, which characterizes the pointwise error of the
spectral estimate.

5.1. Preliminaries. Here, we gather some preliminary facts about reversible
Markov chains as well as the Erd6s—Rényi random graph.

The first important result concerns the eigenvector perturbation for probability
transition matrices, which can be treated as the analogue of the celebrated Davis-
Kahan sin ® theorem [Davis and Kahan (1970)]. Due to its potential importance
for other problems, we promote it to a theorem as follows.

THEOREM 5.1 (Eigenvector perturbation). Suppose that P, P and P* are
probability transition matrices with stationary distributions &, T, T*, respectively.
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Also, assume that P* represents a reversible Markov chain. When | P — P |+ <
1 — max{iy(P*), —A,(P*)}, it holds that
Iz " (P — P)|lx:
1 —max{A2(P*), =2 (P*)} = [|P — P|lz~

I — 7T [lx <

Several remarks regarding Theorem 5.1 are in order. First, in contrast to stan-
dard perturbation results like Davis—Kahan’s sin © theorem, our theorem involves
three matrices in total, where P, P and P* can all be arbitrary. For gxample,
one may choose P* to be the population transition matrix, and P and P as two
finite-sample versions associated with P*. Second, we only impose reversibility
on P*, whereas P and P need not induce reversible Markov Chains. Third, The-
orem 5.1 allows one to derive the £, estimation error in Negahban, Oh and Shah
(2017) directly without resorting to the power method; in fact, our £, estimation
error bound improves upon Negahban, Oh and Shah (2017) by some logarithmic
factor.

THEOREM 5.2. Consider the pairwise comparison model specified in Sec-
tion 2.1 with k = O(1l). Suppose p > colo% for some sufficiently large con-
stant co > 0 and d > cqnp for cq > 2 in Algorithm 1. With probability exceeding
1 — O(n™d), one has

_ *
Im — 7l

lm*ll2 ~ /npL’

Notably, Theorem 5.2 matches the minimax lower bound derived in Negahban,
Oh and Shah (2017), Theorem 3. As far as we know, this is the first result that
demonstrates the orderwise optimality of the spectral method when measured by
the ¢, loss.

The next result is concerned with the concentration of the vertex degrees in an
Erdés—Rényi random graph.

LEMMA 5.3 (Degree concentration). Suppose that G ~ G, . Let d; be the
degree of node i, dyin = minj<j<, d; and dmax = Maxi<j<pd;. If p > COI% for
some sufficiently large constant co > 0, then the following event

3
(5.1) Aoz{%fdminfdmaxfﬂ}
2 2
obeys

P(Ap) > 1 —0(n™'9).

PROOF. The proof follows from the standard Chernoff bound and is hence
omitted. [

Since d is chosen to be cynp for some constant c; > 2, we have, by Lemma 5.3,
that the maximum vertex degree obeys dmax < d with high probability.
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5.2. Proof outline of Theorem 3.1. In this subsection, we outline the proof of
Theorem 3.1.

Recall that & = [nq,...,7,]" and ©* = [7f,..., JTIT]T are the stationary dis-
tributions associated with P and P*, respectively. This gives

' P=x" and m*" P =x*T.
For each 1 <m < n, one can decompose
Tm—nf=n' P, —a*" P*
=" (P — PE) + (x —*) P,y
=27 (Pim = P} ) + (T = 70) Pum

J .
=1

="
+ > (1 =7 Pim,
Jij#Em
where P, (resp., P% ) denotes the mth column of P (resp., P*). Then it boils

down to controlling /1", I}" and 3 ;. i, (j — 7w7) Pj .

1. Since m* is deterministic while P is random, we can easily control I{"
using Hoeffding’s inequality. The bound is the following.

LEMMA 5.4. With probability exceeding 1 — O (n™>), one has

logn
2

max|I"| 5

2. Next, we show the term /5" behaves as a contraction of |, — |

LEMMA 5.5.  With probability exceeding 1 — O (n™>), there exists some con-
stant ¢ > 0 such that forall 1 <m <n,

m . np logn o«
1= (1= s+ ) o =l

3. The statistical dependency between m and P introduces difficulty in ob-
taining a sharp estimate of the third term }_;.;,, (7; — rr;‘)Pj,m. Nevertheless,
the leave-one-out technique helps us decouple the dependency and obtain effec-
tive control of this term. The key component of the analysis is the Introduction of
a new probability transition matrix P, which is a leave-one-out version of the
original matrix P. More precisely, P replaces all of the transition probabilities
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involving the mth item with their expected values (unconditional on G); that is, for
any i # J,

P j, i#m,jF#m,

p

* . .
Eyivj’ l=m01‘j=m

(m) . _
Pi,j =

*

with yi”‘j = Forany 1 <i <n, set

W
w;‘—l—w;f'
(m) .__ (m)
P i=1- 3 P
Ji#i

in order to ensure that P is a probability transition matrix. In addition, we let
7" be the stationary distribution of the Markov chain induced by P ™. As will be
demonstrated later, the main advantages of introducing ™ are two-fold: (1) the
original spectral estimate 7 is very well approximated by =™, and (2) =™ is
statistically independent of the connectivity of the mth node and the comparisons
with regards to the mth item. Now we further decompose > ., (7; — n’f‘)Pj,m:

Y (=) Pim= Y (tj =7 ) Pim+ Y. (" =) P

Jrj#Em Jrj#m Jrj#Em

=0 =y

4. For 13", we apply the Cauchy—Schwarz inequality to obtain that with prob-
ability at least 1 — O (n~19),

1= xl( £ #) L e

Jrj#Em

29

where (i) follows from the fact that P; , < é for all j # m and dmax < d on the
event Ag (defined in Lemma 5.3). Consequently, it suffices to control the ¢, differ-
ence between the original spectral estimate 7 and its leave-one-out version .
This is accomplished in the following lemma.

LEMMA 5.6. Suppose that npy? > ck logn for some sufficiently large con-
stant ¢ > 0. With probability at least 1 — O (n™>),

164/k logn ” N

(5.2) |x™ x|, < + - =¥
where kK = Wmax/Wmin and y = 1 — max{i(P*), —=A,(P*)} — | P — P*||z~.

Using Negahban, Oh and Shah (2017), Lemmas 3 and 4, and our Lemma 5.3,
we can bound y from below:
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LEMMA 5.7 [Spectral gap, Negahban, Oh and Shah (2017)].  Under the model
specified in Section 2.1, if p > co—=— Og" max{1, %} for some sufficiently large con-

stant co > 0, then with probability at least 1 — O(n™),

yi= 1= max{a(PY). ~2,(P")) — [P — P2 -

5. In order to control /", we exploit the statistical independence between
7™ and P.,. Specifically, we demonstrate the following.
LEMMA 5.8. Suppose that p > Lolﬂ for some sufficiently large constant
co > 0. With probability at least 1 — O(n_lo),

log n

-

1
1715 Sl = xly+ 5

«/np logn + logn Hzr(m)
d

00"

The above bound depends on both ||z — x||> and |7 — 7*|s. We can
invoke Lemma 5.6 and the inequality || ") — %]l o0 < |7 — 7|2+ || — 7|00
to reach

«/nplogn—Hogn logn
715G+ Y =y S I
nplogn +logn N
§ PN TIORN
<{<L+./nplogn+logn>\/7 } lognH I
~\n d 1%
/nplogn + logn
+ (o + VR -

6. Finally, we put the preceding bounds together. When 5'} ogn is large
enough, with high probability, for some absolute constants cy, ¢z, ¢3 > 0 one has

(L_cl /k’ﬂ>|n .
2(1+«)d Ld )""™ m

1 c nplogn +logn\ 16 /x| [logn
SFH(__FL+QVPg g) J}/ngM
Jd  Jn d Y Ld

/nplogn +logn N
e PP )
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simultaneously for all 1 < m < n. By taking the maximum over m on the left-hand
side and combining terms, we get

np logn 1 c3 /nplogn +logn X
(7—c1 L )Hn—n”
2(14+«)d Ld Jd /n d 0

=

1 3 J/nplogn +logn\ 16/ logn
< at+t|l—F—=+—F—+¢ || N oo -
Vd  Jn d Y
=ay
Hence, as long as K5rll§gn is sufficiently large, one has
o logn_i_i_i___i_2 «/nplogn—l—logng logns 1 ’
NZING d np "~ i
which further leads to o 2 1/, a2 S 1, and
logn logn
[w =" 17"l (g IS
npL

This completes the proof of Theorem 3.1 and Theorem 2.6.

6. Analysis for the regularized MLE. This section establishes the £, error
of the regularized MLE as claimed in Theorem 3.2 (and also Theorem 2.7). Recall
that in Theorem 3.2, we compare the regularized MLE 0 with 6* — 6*1. Therefore,
without loss of generality we can assume that

(6.1) 176* =o0.
This combined with the fact that 6,5 — Omin = log k reveals that
167, <logk and [6%|,<+/nlogk.
In addition, we assume that L = O(n°) in this section. It is straightforward to

extend the proof to cover L < ¢; - n“? for any constants ¢3, ¢3 > 0.

6.1. Preliminaries and notation. Before proceeding to the proof, we gather
some basic facts. To begin with, the gradient and the Hessian of £(-; y) in (2.11)
can be computed as

el
6.2 VL®@®;y) = {_ ‘i+7}ei—e';
(6.2) :y) (LDEZ&M vii ¥ g @i —e))
2 eliefi
(6.3) VoL@O;y) = Z m( —ej)(ei _ej)

(i,j)e€,i>j
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Here, eq, ..., e, stand for the canonical basis vectors in IR”. When evaluated at the
truth @*, the size of the gradient can be controlled as follows.

LEMMA 6.1. Let A be as specified in Theorem 3.2. The following event

2
(6.4) Ay = {||V£k(0*; OIS ,/%}

occurs with probability exceeding 1 — O (n=19).

The following lemmas characterize the smoothness and the strong convexity of
the function £ (-; y). In the sequel, we denote by Lg = ) ; jyeg,i>j(€i — €;) X
(e; —e j)T the (unnormalized) Laplacian matrix [Chung (1997)] associated with G.
For any matrix A, we let

(6.5)  Amin.1(A) :=min{u | z" Az > pl|z|)3 for all z with 17z =0},
namely, the smallest eigenvalue when restricted to vectors orthogonal to 1.

LEMMA 6.2. Suppose that p > cologn for some sufficiently large constant
co > 0. Then on the event A as defined in (5.1), one has

)Lmax(VZEA(O; ¥)) <i+np, Vo ¢ R”.

6;
PROOF. Note that ﬁ < %. It follows immediately from the Hessian in
i+e
(6.3) that
) 1 1
)\max(v L;.(0; y)) <A+ Z”LQ” <Ai+ Edmax,

where dnmax 1s the maximum vertex degree in the graph G. In addition, on the event
Ao we have dpax < 2np, which completes the proof. [J

LEMMA 6.3. For all 0 € R" such that |0 — 0|/~ < C for some C >0, we
have

1
Amin L (V2L5(0; 3)) > A + mxmin,i(lfg)-

LEMMA 6.4. Let G~ G, ,, and suppose that p > Lolog"

large constant co > 0. Then one has

P(Amin, L (Lg) > np/2) > 1—0(n~'°).

for some sufficiently

PROOF. Note that Anin | (Lg) is exactly the spectral gap of the Laplacian ma-
trix. See Tropp (2015), Section 5.3.3, for the derivation of this lemma. [

By combining Lemma 6.3 with Lemma 6.4, we reach the following result.
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Algorithm 2 Gradient descent for computing the regularized MLE
Initialize 6° = 6*.
forr=0,1,2,...,T — 1 do

(6.6) 0 =0" —n, VL, (07 y);

COROLLARY 6.5. Under the assumptions of Lemma 6.4, with probability ex-
ceeding 1 — 0 (19, one has

. 2 .
)\mln,i(v »C)»(o, y)) = A+ W”p

simultaneously for all 0 obeying ||0 — 0*| oo < C for some C > 0.

6.2. Proof outline of Theorem 3.2. 'This subsection outlines the main steps for
establishing Theorem 3.2.

Rather than directly resorting to the optimality condition, we adopt an algorith-
mic perspective to analyze the regularized MLE 6. Specifically, we consider the
standard gradient descent algorithm that is expected to converge to the minimizer
0, and analyze the trajectory of this iterative algorithm instead. The algorithm is
stated in Algorithm 2.

Notably, this gradient descent algorithm is not practical since the initial point is
set to be 8*. Nevertheless, it is helpful for analyzing the statistical accuracy of the
regularized MLE 6. In what follows, we shall adopt a time-invariant step size rule:

(6.7) n=n=1/(A+np), t=0,1,2,...
Our proof can be divided into three steps:

I. establish—via standard optimization theory—that the output 87 of Algo-
rithm 2 is sufficiently close to the regularized MLE 6, namely,

logn
68) lo7 -6l <07~ o], = co [ P21

for T = n>, where Cop > 0 is some absolute constant;
II. use the leave-one-out argument to demonstrate that: the output @7 is close
to the truth #* in an entrywise fashion, that is,

logn

0T — o> Car?
o7 %] = o [

for some universal constant C4 > 0. Combining this with (6.8) yields

logn
0 — 6" < 2 |8,
lo 0" o 20
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III. the final step is to translate the perturbation bound on || — 6* ||« to |le? —
* . .
ef |loo as claimed in the theorem.

Before continuing, we single out an important fact that will be used throughout the
proof.

FACT 6.6. Suppose 170* = 0. Then we have 178" =0 for all t > 0.

6.3. Step 1. The first step relies heavily on optimization theory, namely the
theory of gradient descent on strongly convex and smooth functions.

1. It is seen that the sequence {#'}*°, converges geometrically fast to the

regularized MLE @, a property that is standard in convex optimization literature.
This claim is summarized in the following lemma.

LEMMA 6.7. On the event Ay as defined in (5.1), one has
l6" —6],<p'[6°~86

29
A

where,o:l—m.

PROOF. This result directly follows from the smoothness property (see
Lemma 6.2), the trivial strong convexity of £, (6; y) [V2L,(0: y) = Al,, V0], as
well as the convergence property of the gradient descent algorithm [e.g., Bubeck
(2015), Theorem 3.10]. [

A direct consequence of this convergence result and Fact 6.6 is that 179 = 0 for
the regularized MLE 6.
2. We then control ||090 —0||2. Recall that 0° = 6*, and we have the following.

LEMMA 6.8. On the event Ay as defined in (6.4), there exists some constant
cp > 0 such that

[6°—6l,= 6 —6"[, < cov/nlogk.

3. The previous two claims taken together lead us to conclude that

[o" o1,

A T
SpT||00_0||2ngczﬁlogK:Q(l—)H_np) Vnlogk
TA
<c exp(—K n np)ﬁKZ
T lo 1 lo
§chxp<— gn)ﬁxz (by)»x 1P ogn <np)
czlogk \ npL logk L
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T 1
§czexp(— Ogn)ﬁxz (byx4§£§ ! )
calogn\ npL logn ~ logn

1
< CoKz,/ e
npL

for some constants ¢3,c4,Co > 0, L < n’ and sufficiently large T (recall that
T = n?). The above bounds are somewhat loose, but they suffice for our purpose.
We then naturally obtain

logn
lo7 ~ 6] <07 ~ o], = Co?, [ 2%

as claimed. This completes the first step of the proof.

6.4. Step II. The purpose of this step is to show that all iterates {6 }o<,;<7 are
sufficiently close to 8 in terms of the £,,-norm distance. To facilitate analysis, for
each 1 <m < n, we introduce a leave-one-out sequence {6’ ’(m)} constructed via
the following update rule:

(69) ot-l—l,(m) — 0t,(m) . nvﬁgjn)(ot,(m))’
where %) = 90 — * and

L@ y) = ) {—7.i(6; —6;) +Tlog(1 + €% ~%)}
(i,j)e€,i>j,i#m, j#m

o
e a
(6.10) + Z p{_ﬁ(ei —0,) +log(1 + €Y 9’”)}
itim e’ +eom
1
~116113.
+2 16115

Here, the leave-one-out loss function £§m)(0; y) replaces all log-likelihood com-
ponents involving the mth item with their expected values (unconditional on G).
For any 1 <m < n, the auxiliary sequence {#"(™} serves as a reasonably good
proxy for {#"}, while remaining statistically independent of { Yim | (i,m) € E}.

Our proof in this step is inductive in nature. For the sake of clarity, we first list
all induction hypotheses needed in our analysis:

logn
pL

logn
6.11b oLm _ g% | < Cyx? ,
( ) lrgnn?;(n| " | = Cox npL

(6.11a) 16" — 6], < Cix

’
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1
(6.11¢) max [|6" — ' |, < Csx ogn’
l<m<n npL
logn
6.11d 0' — 0%, < Car® :
6.1 Ior =07 = cu [
where Cq,...,C4 > 0 are some absolute constants. We aim to show that if the

iterates at the rth iteration—that is, 8" and {#"™},,,<, —satisfy the induction
hypotheses (6.11), then the (¢ 4+ 1)th iterates continue to satisfy these hypotheses.
Clearly, it suffices to justify (6.11) forall 0 <7 < T =n°.

Before we dive into the inductive arguments, there are a few direct consequences
of (6.11) that are worth listing. We gather them in the next lemma.

LEMMA 6.9. Suppose the induction hypotheses (6.11) hold true for the tth
iteration, then there exist some universal constants Cs, Ce¢ > 0 such that the fol-
lowing two bounds hold:

logn
t,(m) * 2
(6.12a) max. 6" — 0% < Csk”, | o

logn

(6.12b) max [0 — 0%, < Cex
I<m<n pL

Note that the base case (i.e., the case for t = 0) is trivially true due to the same
initial points, namely, 6% — 99 — 9* for all 1 < m < n. We start with the first
induction hypothesis (6.11a), which is supplied below.

LEMMA 6.10. Suppose the induction hypotheses (6.11) hold true for the tth
iteration, then with probability at least 1 — O (n~'0), one has

logn
pL

o+ — 7], = Cux

9’

as long as the step size obeys 0 < n < and C1 > 0 is sufficiently large.

X+n

The remaining induction steps are provided in the following lemmas.

LEMMA 6.11. Suppose the induction hypotheses (6.11) hold true for the tth
iteration, then with probability at least 1 — O (n='%), one has

logn
max o1 _ g% | < Cpi? | gL’
=m=n np

with the proviso that 0 <n < 5—— and Cr 2 Co+cy.
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LEMMA 6.12. Suppose the induction hypotheses (6.11) hold true for the tth
iteration, then with probability at least 1 — O (n~19), one has

1
max H0t+1 0t+1,(m)||2§C3K /ﬂ’
1<m=<n an

as long as the step size obeys 0 <n < s—— + " and C3 > 0 is sufficiently large.

LEMMA 6.13. Suppose the induction hypotheses (6.11) hold true for the tth
iteration, then with probability at least 1 — O(n_lo), one has

/1
||0t+1 0*” <C4K2 ogn
npL

Taking the union bound over T = n” iterations yields that with probability at

least 1 — O(n™>),
logn
07 —0*| < Cu? ,
Jo07 = 0] = Ca? T

which together with the conclusion in Step I results in

forany Cq4 > C3+ C».

logn

613) 0071 =107 =0+ 107~ 0] = (Co+ Cope? 2,

6.5. Step IlI. It remains to show that

le? — e lloo - [logn
el " VonpL”

Toward this end, we observe that foreach 1 <m <n,

|efm — efm| Ie " Om — 6 _ Ot 10=0"lo 19, — % |

’

eemax eemax eemax

where 9~m is between 6, and 6", and 6 is the largest entry of 6*. Continuing the
derivation and using (6.13), we arrive at

* *
|e‘9m _ egm | eemax"‘”o_a ”OO " 2 logn
max < |0 —0%|  Sk° | ——
I<m<n  efma efmax o0 npL

2 /logn .
npL

as long as « is small enough. This completes the proof of Theorem 3.2.

SUPPLEMENTARY MATERIAL

Additional Proofs (DOI: 10.1214/18-A0S1745SUPP; .pdf). Additional proofs
of the results in the paper can be found in the Supplementary Material.


https://doi.org/10.1214/18-AOS1745SUPP
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