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THE STRUCTURE OF EXTREME LEVEL SETS IN BRANCHING
BROWNIAN MOTION

BY ASER CORTINES1, LISA HARTUNG2 AND OREN LOUIDOR3

Universität Zürich, New York University and Technion

We study the structure of extreme level sets of a standard one-dimensional
branching Brownian motion, namely the sets of particles whose height is
within a fixed distance from the order of the global maximum. It is well
known that such particles congregate at large times in clusters of order-one
genealogical diameter around local maxima which form a Cox process in the
limit. We add to these results by finding the asymptotic size of extreme level
sets and the typical height of the local maxima whose clusters carry such
level sets. We also find the right tail decay of the distribution of the distance
between the two highest particles. These results confirm two conjectures of
Brunet and Derrida (J. Stat. Phys. 143 (2011) 420–446). The proofs rely on a
careful study of the cluster distribution.

1. Introduction and results.

1.1. Introduction. This work concerns the fine structure of extreme values of
branching Brownian motion. The latter describes the motion of a particle which
diffuses on the real line according to a standard Brownian motion for a time whose
law is exponential with mean one and then splits into two independent child parti-
cles which repeat the same procedure starting from the last position of their parent.

One way of formulating this process is as follows. Take a continuous time
(binary) Galton–Watson tree T = (Tt : t ≥ 0) with branching rate 1 and denote
by Lt its set of leaves at time t , so that E|Lt | = et . Then conditional on T , let
h = (ht (x) : t ≥ 0, x ∈ Lt) be a mean-zero Gaussian process with covariance func-
tion given by

(1.1) Eht (x)ht ′
(
x′) = sup

{
s ≥ 0 : x, x′ share a common ancestor in Ls

}
,

where t, t ′ ≥ 0 and x ∈ Lt, x
′ ∈ Lt ′ . The connection with the description above is

then obtained by interpreting Lt as the set of particles alive at time t and ht (x) as
the position of particle x ∈ Lt .
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The study of extreme values of h dates back to works of Ikeda et al. [25–27],
McKean [31], Bramson [8, 10] and Lalley and Sellke [28] who derived asymptotics
for the law of the maximal height h∗

t = maxx∈Lt ht (x). Introducing the centering
function

(1.2) mt := √
2t − 3

2
√

2
log+ t where log+ t := log(t ∨ 1),

and writing ĥt for the centered process ht −mt and ĥ∗
t := h∗

t −mt for its maximum,
they show that ĥ∗

t converges in law to G + logZ as t → ∞, where G is a Gumbel
distributed random variable and Z, which is independent of G, is the almost sure
limit as t → ∞ of (a multiple of) the so-called derivative martingale:

(1.3) Zt := C

∑
x∈Lt

(√
2t − ht (x)

)
e
√

2(ht (x)−√
2t),

for some C
 > 0 properly chosen. Henceforth, we use this unconventional normal-
ization, to avoid carrying the constant C
 around in all occurrences of Z.

Other extreme values of h can be studied simultaneously by considering the
extremal process:

(1.4) Et := ∑
x∈Lt

δht (x)−mt .

Asymptotics for this process were treated in the physics literature by, for example,
Brunet and Derrida [11] and more recently in the mathematical literature simulta-
neously by Aïdékon et al. [2] and Arguin et al. [4]. These works show that there
exists a random point measure E such that

(1.5) Et =⇒ E as t → ∞,

in the sense of weak convergence of distributions on the space M of Radon mea-
sures on R endowed with the vague topology. The process E turns out to be a
randomly shifted clustered Poisson point process (PPP) with an exponential inten-
sity. More explicitly, there exists a nondegenerate cluster distribution ν on the set
of point measures in M with support in (−∞,0], such that E can be realized as

(1.6) E := ∑
k≥1

Ck(· − uk),
where (Ck : k ≥ 1) are independently chosen according to ν and the ordered se-
quence u1 > u2 > · · · forms the atoms of the point process E∗, whose law is de-
termined via

(1.7) E∗|Z ∼ PPP
(
Ze−√

2u du
)
,

with Z defined as above.
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For what follows in the paper, we shall use a slightly stronger version of the
convergence in (1.5). To state it, let us first endow the set Lt with the genealogical
distance d = dt given by

(1.8) d
(
x, x′) := inf

{
s ≥ 0 : x, x′ share a common ancestor in Lt−s

}
,

where t ≥ 0 and x, x′ ∈ Lt . Then, given x ∈ Lt and r > 0, we let Ct,r (x) denote
the (finite time, finite diameter) cluster of relative particle heights, at genealogical
distance at most r from x, defined formally as

(1.9) Ct,r (x) := ∑
y∈Br (x)

δht (y)−ht (x) where Br (x) := {
y ∈ Lt : d(x, y) < r

}
.

Finally, fixing any positive function t 
→ rt such that both rt and t/rt tend to ∞ as
t → ∞ and letting L∗

t = {x ∈ Lt : ht (x) ≥ ht (y),∀y ∈ Brt (x)}, we can define the
generalized extremal process Êt as

(1.10) Êt := ∑
x∈L∗

t

δht (x)−mt ⊗ δCt,rt (x).

The process Êt , which is a random point measure on R × M, records both the
centered height of rt -local maxima of h and the cluster around them.

Then the proof of Theorem 2.3 in [4] readily shows that

(1.11) (Êt ,Zt )
t→∞=⇒ (Ê,Z) with Ê |Z ∼ PPP

(
Ze−√

2u du ⊗ ν
)
,

and Zt , Z and ν as before. In fact, one can realize E , E∗ and Ê on the same proba-
bility space such that

(1.12) E∗ = ∑
(u,C)∈Ê

δu and E = ∑
(u,C)∈Ê

C(· − u),

with the sums running over all points in the support of Ê . Moreover, letting

(1.13) E∗
t := ∑

x∈L∗
t

δht (x)−mt ,

we clearly have E∗
t =⇒ E∗ as t → ∞.

This explains the clustered structure of the limit process E as given by (1.6). The
“back-bone” Poisson point process E∗ captures the asymptotics of extreme values
which are also the local maxima in an O(1)-genealogical neighborhoods around
them, while the clusters (Ck : k ≥ 1) describe the asymptotic law of the (relative)
heights of particles in these neighborhoods.

The validity of this description, or equivalently of relation (1.12), is a conse-
quence of the following result from [3] (Theorem 2.1), which shows that particles
achieving extreme height separate in the limit into clusters of diameter O(1) which
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are t − O(1) apart (in genealogical distance), namely

(1.14) lim
t→∞
r→∞

P
(∃x, y ∈ Lt : ht (x) ∧ ht (y) > mt + v and d(x, y) ∈ [r, t − r]) = 0,

for all v ∈ R, where r → ∞ after t → ∞ in the limit superior.
Naturally, the clustered structure of E implies that its structural features will

be determined by the properties of the cluster distribution ν. Two different albeit
equivalent descriptions of the latter have been given in [2] and [4]. In [4] (Theo-
rem 2.1, Proposition 2.9), it is described as the t → ∞ limit of the configuration
of heights seen from the maximal particle, when the latter is conditioned to reach
the unlikely height of

√
2t . The existence of this limit was first shown by Chau-

vin and Rouault [13] who described it in terms of a distinguished “spine” particle
(see Section 2.2) which produces offspring at an increased rate and reaches the
unusual height. Alternative descriptions of ν are given in [2] (Theorem 2.3 and
Theorem 2.4) in terms of a distinguished particle moving according to a Brownian
motion in a potential, from which branching Brownian motions descend and are
conditioned to stay above zero.

1.2. Results. In this manuscript, we provide a more detailed description of the
extreme level sets of branching Brownian motion, improving upon the state-of-the-
art as outlined above (see also Section 1.4). The term extreme (super/upper) level
set will be used in this work to refer to the set of indices or heights of particles in Lt

whose value under ht is above mt +v for some fixed v ∈ R. In light of convergence
statements (1.5) and (1.11), such results can be stated, rather equivalently, both in
an asymptotic form or directly in terms of the limiting objects. Since each form is
of interest by itself, we will use both formulations.

In what follows, we say that f (u, v) converges to F in the limit when u → u0
followed by v → v0, to mean that limv→v0 lim supu→u0

|f (u, v) − F | = 0. If
f (u, v) = fw(u, v) and F = Fw , then this converges is uniform in w ∈ W , if
the above holds with an additional supw∈W before the absolute value. We write
f (u) ∼ g(u) as u → u0 to mean that f (u)/g(u) → 1 as u → u0. This should not
be confused with the notation for “is distributed according to” which will use the
same symbol. Finally, arbitrary positive constants are marked by decorated ver-
sion of the letter C (e.g., C′) and unless otherwise specified, they may change
their value from one line to another.

1.2.1. Extreme level sets. Our first result concerns the asymptotic size of the
level set of extreme values at height mt − v. The following theorem confirms a
conjecture by Brunet and Derrida (Section 4.3 in [11]; see also Section 1.4 below).

THEOREM 1.1. There exists C� > 0 such that

(1.15)
E([−v,∞))

C�Zve
√

2v

P−→ 1 as v → ∞.
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In particular, for all ε > 0,

(1.16) lim
v→∞ lim sup

t→∞
P

(∣∣∣∣Et ([−v,∞))

C�Zve
√

2v
− 1

∣∣∣∣ > ε

)
= 0.

The asymptotic growth rate (as v → ∞) of the number of points in E should be
compared with the growth rate of the number of points in the process E∗, which
records the limit of only those extreme values which are also local maxima. It
follows from (1.7) and a simple application of the weak law of large numbers that

E∗([−u,∞))

Ze
√

2u/
√

2

P−→
u→∞ 1 and

(1.17)

lim
u→∞ lim sup

t→∞
P

(∣∣∣∣E∗
t ([−u,∞))

Ze
√

2u/
√

2
− 1

∣∣∣∣ > ε

)
= 0.

The above shows that points coming from the clusters around extreme local max-
ima account for an additional multiplicative linear prefactor in the overall growth
rate of extreme values.

This gives rise to the following natural question: What is the “typical” height
of those local maxima in E∗

t |[−v,∞) whose cluster points “carry” the level set
Et |[−v,∞)? As the next theorem shows, the contribution is essentially uniform
across all heights in [−v,∞). For a precise statement, recall (1.12), then given
a Borel set B ⊆ R define

E(·;B) := ∑
(u,C)∈Ê

C(· − u)1{u∈B} and

Et (·;B) := ∑
(u,C)∈Êt

C(· − u)1{u∈B}.
(1.18)

Then we have the following.

THEOREM 1.2. Fix any α ∈ (0,1]. Then as v → ∞,

(1.19)
E([−v,∞); [−αv,∞))

E([−v,∞))

P−→ α.

In particular,

(1.20) lim
v→∞ lim sup

t→∞
P

(∣∣∣∣Et ([−v,∞); [−αv,∞))

Et ([−v,∞))
− α

∣∣∣∣ > ε

)
= 0.

We can rephrase the statement in (1.20) in terms of a uniform sampling from all
particles whose height is above mt − v as follows.
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COROLLARY 1.3. Given t, v > 0, let X be a particle chosen uniformly from
all particles x ∈ Lt satisfying ĥt (x) ≥ −v and set Y := argmax{ĥt (y) : y ∈
Bt,rt (X)}. Then as t → ∞ followed by v → ∞,

(1.21)
ĥt (Y ) − (−v)

v
=⇒ U

([0,1]).
Roughly speaking, for each u ∈ [O(1), v] the total contribution to the level set

Et ([−v,∞)) from clusters around local maxima at height mt − u is uniformly
∼ C�Ze

√
2v , making the total size of the level set ∼ C�Zve

√
2v in agreement with

Theorem 1.1.
Lastly, we find the rate of decay of the right tail probabilities of the distance

between the maximum and the second maximum particles in ht , thereby con-
firming another conjecture of Brunet and Derrida (Section 4.2 in [11]). Setting
h

∗(2)
t := max{ht (x) : x ∈ Lt,ht (x) < h∗

t }, we have the following.

THEOREM 1.4. Let v1 > v2 > · · · be the ordered atoms of E . Then

(1.22) lim
w→∞w−1 logP

(
v1 − v2 > w

) = −(2 + √
2).

In particular,

(1.23) lim
w→∞ lim sup

t→∞
∣∣w−1 logP

(
h∗

t − h
∗(2)
t > w

) + (2 + √
2)

∣∣ = 0.

1.2.2. Cluster level sets. As evident by (1.6), the key to obtaining the theorems
above lies in obtaining corresponding structural results concerning the cluster dis-
tribution ν. Thanks to a good control over the convergences in (1.5), (1.11) and the
explicit description of E and Ê , one can turn local asymptotic properties of clusters
into global statements concerning these limit processes, and then to asymptotic re-
sults for the extreme level sets of ht itself. In this subsection, we therefore state the
cluster law properties, which are used to derive the main theorems in this paper.
These properties should be of independent interest.

The first proposition concerns the asymptotic mean number of cluster particles
at height −v or above, as well as an upper bound on its second moment. Recall
that by definition and (1.11), if C ∼ ν then C([0,∞)) = C({0}) = 1 almost surely.

PROPOSITION 1.5. Let C ∼ ν. Then with C� > 0 as in Theorem 1.1,

(1.24) EC
([−v,0]) ∼ C�e

√
2v as v → ∞.

Moreover, there exists C > 0 such that, for all v ≥ 0,

(1.25) E
[
C
([−v,0])2] ≤ C(v + 1)e2

√
2v.
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As surmised by the above upper bound, the number of points in C lying in
[−v,0] does not concentrate around its mean for large v.

In the next proposition, we find the rate of decay in the right tail of the distribu-
tion of the distance between the top two cluster particles.

PROPOSITION 1.6. Let C ∼ ν. Then

(1.26) lim
v→∞v−1 logP

(
C
([−v,0

)) = 0) = −2.

1.3. Proof outline. Let us give a brief outline of the proof of the main results
in this paper. As mentioned before, the key ingredient in deriving results pertaining
to the extremal landscape of the process is the study of the cluster distribution ν.
Aside from the limit of the derivative martingale Z, whose effect is merely a global
shift, all remaining ingredients in the definition of E and Ê are explicit. Properties
of the cluster law can therefore be translated via (1.6) or (1.11) and (1.12), to
properties of E and Ẽ and through convergences (1.5) and (1.11) into asymptotic
properties of the statistics of extreme values of h.

1.3.1. Cluster level sets. The study of cluster law properties, which constitutes
the core of the paper, begins by observing that the product structure of the intensity
measure in (1.11) and indistinguishably of particles, imply that we could focus
on the limiting law of the cluster around a uniformly chosen particle Xt in Lt ,
conditioned to be the global maximum at time t and having height, say, mt . Tracing
the trajectory of this distinguished particle backwards in time and accounting, via
the spinal decomposition (Many-to-one lemma, see Section 2.2), for the random
genealogical structure, one sees a particle performing a standard Brownian motion
W = (Ws)s≥0 from mt at time 0 to 0 at time t . This, so-called, spine particle
gives birth at random Poissonian times (at an accelerated rate 2; see Section 2.2)
to independent standard branching Brownian motions, which then evolve back to
time 0 and are conditioned to have their particles stay below mt at this time. The
cluster distribution at genealogical distance r around Xt is therefore determined
by the relative heights of particles of those branching Brownian motions which
branched off before time r (see Figure 1).

Formally, denoting by 0 ≤ σ1 < σ2 < · · · the points of a Poisson point pro-
cess N on R+ with rate 2 and letting H = (hs

t (x) : t ≥ 0, x ∈ Ls
t )s≥0 be a

collection of independent branching Brownian motions (with W,N and H in-
dependent), the limiting distribution ν(·) may be written (Lemma 5.1) as the
t → ∞ limit of P(Ct,rt (Xt ) ∈ ·|h∗

t = ht (Xt) = mt), where rt is as in (1.10) and
h∗

t = maxx∈Lt ht (x). Writing further Pt,y
0,x for the conditional probability measure

P(·|W0 = x,Wt = y), this probability reads as

(1.27) P
t,0
0,mt

( ∑
σk≤rt

∑
x∈L

σk
σk

δ
h

σk
σk

(x)−mt
(· − Wσk

) ∈ ·
∣∣∣ max
k:σk∈[0,t]

(
Wσk

+ hσk∗
σk

) ≤ mt

)
.
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FIG. 1. The cluster Ct,r (Xt ) around the spine Xt , conditioned to be the maximum and at height
mt . The process Ws is a Brownian bridge from (0,mt ) to (t,0) and σ1, σ2, . . . are the branching
times.

Since the law of Ws under Pt,0
0,mt

is the same as that of Ws + mt(1 − s
t
) under

P
t,0
0,0, introducing Ŵt,s := Ws − γt,s with γt,s := 3/(2

√
2)(log+ s − s

t
log+ t), we

may rewrite the above as (Lemma 3.2):

(1.28) ν(·) = lim
t→∞P

t,0
0,0

( ∑
σk≤rt

Eσk
σk

(· − Ŵt,σk
) ∈ ·

∣∣∣ max
k:σk∈[0,t]

(
Ŵt,σk

+ ĥσk∗
σk

) ≤ 0
)
,

where E s
t is the extremal process associated with hs

t and ĥs
t = hs

t − mt . The triplet
(Ŵ ,N ,H) will be referred to as a decorated random-walk-like process (see Sec-
tion 3). We remark that this characterization bares strong resemblance to the de-
scription of the cluster distribution in [2].

The above representation can now be used to study the distribution of the size
of cluster level sets as well as the law of the distance to the second highest particle
in the cluster. To estimate the first moment of the size of the cluster level set, one
can use (1.28), uniform integrability and Palm calculus to express EC([−v,0]) for
C ∼ ν and any v ≥ 0 as the limit when t → ∞ of∫ rt

0
2 ds

∫
O(1)

E
(
E s

s

([−v,0] − z
); z + ĥs∗

s ≤ 0
)

× P
t,0
0,0(maxk:σk∈[0,t](Ŵt,σk

+ ĥσk∗
σk

) ≤ 0, Ŵt,s ∈ dz)

P
t,0
0,0(maxk:σk∈[0,t](Ŵt,σk

+ ĥ
σk∗
σk ) ≤ 0)

dz.(1.29)
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Above, we have also conditioned on {Ŵt,s = z} for z = O(1) and used the total
probability formula (see Lemma 5.4 and the proof of Lemma 5.2).

The left most term in the integrand is the first moment of the size of the (global)
extreme level set of hs

s , subject to a truncation event restricting the height of its
global maximum. Using once again the spinal decomposition, we can express this
expectation in terms of a probability involving (again) a uniformly chosen particle
Xt as

E
(
Et

([−v,u]); ĥ∗
t ≤ u

)
= et

P
(
ĥt (Xt ) ∈ [−v,u], ĥ∗

t ≤ u
)

= et
∫ u

w=−v
P

(
ĥ∗

t ≤ u|ĥt (Xt ) = w
)
P

(
ĥt (Xt ) ∈ dw

)
,(1.30)

where v ≤ 0 and u ≥ −v. As before, tracing the trajectory of the spine particle,
the last conditional probability can be further expressed in terms of the decorated
random-walk-like process as

(1.31) P
(
ĥ∗

t ≤ u|ĥt (Xt ) = w
) = P

t,−u
0,w−u

(
max

k:σk∈[0,t]
(
Ŵt,σk

+ ĥσk∗
σk

) ≤ 0
)
.

Examining (1.29) and (1.31), we see that to complete the derivation we need
good estimates on probabilities of the form P

t,y
0,x(maxk:σk∈[0,t](Ŵt,σk

+ ĥσk∗
σk

) ≤ 0),
namely of the event that the random-walk-like process plus its decorations stays
below 0 at random sampling times. For standard Brownian motion, the well-known
reflection principle gives

(1.32) P
t,y
0,x

(
max

s∈[0,t]Ws ≤ 0
)

∼ 2xy

t
as t → ∞,

uniformly in x, y ≤ 0 satisfying xy = o(t) and with the right-hand side holding
as an upper bound for all t ≥ 0 and x, y ≤ 0. We show (Section 2.1) that similar
estimates hold for the decorated random-walk-like process as well. This is not very
surprising, as the drift function γt,s is bounded by 1+ log+(s∧(t −s)) (Lemma 3.3
with r = 0), the random decorations (hs∗

s : s ≥ 0) are (at least) exponentially tight
(Lemma 2.8) and the random sampling times (σk : k ≥ 1) arrive at a Poissonian
rate.

Using such estimates in (1.31) one obtains P(ĥ∗
t ≤ u|ĥt (Xt ) = w) ≈ C(u+ +

1)(u−w)t−1 (in this section ≈ means “roughly equals to”). This can then be used
in (1.30) together with

P
(
ĥt (Xt ) ∈ dw

) = P
(
ht (x) − mt ∈ dw

)
= (2πt)−1/2e−(mt+w)2/2t ≈ Cte−te−√

2w−w2/(2t) dw,(1.33)

to yield (Lemma 4.2)

(1.34) E
(
Et

([−v,u]); ĥ∗
t ≤ u

) ≈ (
u+ + 1

)
(u + v)Ce

√
2v−v2/(2t).



2266 A. CORTINES, L. HARTUNG AND O. LOUIDOR

Plugging this back into the integral in (1.29) and estimating the probability
in the denominator by Ct−1 and the probability in the numerator by Cz2(s(t −
s))−1

P
t,0
0,0(Ŵt,s ∈ dz) ≈ Ct−1s−3/2z2, one obtains (after integration over z),

EC
([−v,0]) ≈ Cve

√
2v

∫ ∞
s=0

s−3/2e−v2/(2s) ds

= Ce
√

2v
∫ ∞
r=0

r−3/2e−1/(2r) dr = C′e
√

2v,(1.35)

which is the first part of Proposition 1.5 with C� = C′. Similar computations, albeit
more involved, can be used to obtain an upper bound on the second moment of
C([−v,0]) as in the second part of Proposition 1.5.

1.3.2. Extreme level sets. As suggested before, we can take advantage of con-
vergences (1.5) and (1.11) to prove all results for the limit processes E and Ê
first and then convert these to asymptotic statements for ht , using standard weak
convergence arguments for random measures. Working directly with the limiting
objects has the advantage that, equipped with the needed cluster properties, their
law has an explicit and rather simple form (see (1.6), (1.11), (1.12)).

Let us demonstrate this by deriving asymptotics for the size of extreme level
sets (Theorem 1.1). To this end, we show that E([−v,∞))v−1e−√

2v tends to C�Z

as v → ∞ in probability (Lemma 6.1). Using (1.6), we can begin by writing
E([−v,∞]) as the sum

∑
k≥1 Ck([−v − uk,0]), with Ck , uk as in (1.6). Ignor-

ing terms with uk /∈ [−v + √
logv,

√
logv], which are negligible in the scale we

consider (see proof of Lemma 6.1) and denoting by Ẽ([−v,∞)) the sum of the
remaining terms, we can condition on Z and use (1.35) together with the Poisson
law of E∗ to estimate E(Ẽ([−v,∞) | Z) by∫ √

logv

−v+√
logv

EC
([−v − u,0])Ze−√

2u d

≈
∫ √

logv

−v+√
logv

C�e
√

2(v+u)Ze−√
2u du ≈ C�Zve

√
2v.(1.36)

A similar computation using the second moment bound on EC([−v − u,0]) in
place of the first, shows that the conditional (on Z) variance of Ẽ([−v,∞)) is at
most Cv−1 times its conditional mean. Then Chebyshev’s inequality shows that
Ẽ([−v,∞)) is concentrated around its conditional mean, which in light of (1.36)
and Ẽ([−v,∞)) ≈ E([−v,∞)) yields the desired result.

1.3.3. Distance to the second maximum. Lastly, let us discuss the upper tail
decay of the law governing the distance between the first and second maxima of
h, namely Theorem 1.4 and Proposition 1.6 on which the theorem relies. Again,
thanks to the convergence of the extremal process, we can look at the distance
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between the two highest points v1 > v2 in E . Then the clustered structure of the
limit (1.6) readily shows that these points are at least w > 0 apart, if and only if
the distance between the two highest local maxima u1 > u2 in E∗ and the distance
to the second highest particle in cluster C1 of u1 are both at least w. Thanks to
independence, we therefore get

(1.37) P
(
v1 − v2 > w

) = P
(
u1 − u2 > w

)
P

(
C
([−w,0)

) = 0
)
.

The first probability on the right-hand side evaluates to Ce−√
2w (see proof of

Theorem 1.4). This is an easy exercise in Poisson point processes, after noticing
that the random shift governing the law of E∗ can be just ignored.

For the second probability (Proposition 1.6), we again use the random-walk
representation of the cluster distribution, per (1.27) and (1.28) and estimate instead
the probability that Ct,rt ([−w,0)) = 0 as t → ∞ under the conditional measure,
where Ct,rt = Ct,rt (Xt ). For a lower bound, we follow the heuristics of Brunet and
Derrida (Section 4.2 in [11]) and observe that having no points in Ct,rt |[−w,0) can
be realized by the intersection of the event that Ŵt,s reaches height −w or below
at some time s = τ ∈ (0, rt ) without branching, with the event that Ŵt,σk

+ ĥσk∗
σk

≤
−w for all σk ∈ [τ, rt ].

Now, the probability of the first event is, up to subexponential terms, e−w2/(2τ)×
e−2τ . This is clearly the case without the conditioning, but can be shown to hold
also under the conditional measures in (1.28). When Ŵt,τ ≤ −w, an entropic
repulsion effect, which is the result of conditioning the random-walk-like pro-
cess plus its decorations to stay negative, makes the probability of the second
event decay only polynomially in w (uniformly in t). Multiplying the two yields
e−w2/(2τ)−2τ as a lower bound (on an exponential scale) on the conditional prob-
ability of {Ct,rt ([−w,0)) = 0} for any choice of τ and all t large enough. The
exponent is maximized at τ = w/2, yielding a lower bound of e−2w (see Figure 2).

A matching upper bound can be obtained by stopping the process Ŵt,s at the first
time T when it reaches height −w(1−ε) for ε > 0. Then up to this time and if w is
large, any branching event will result in violation of the condition C([−w,0)) = 0
with probability 1 − δ, where δ > 0 can be made arbitrarily small, by choosing
ε appropriately. This makes the probability of having no points in [−w,0) con-
ditional on T at most e−2(1−δ)T and gives an overall upper bound (on an expo-
nential scale) of e−w2/(2τ)−2(1−δ)τ dτ on the probability that Ct,rt ([−w,0)) = 0
and T ∈ dτ , under the conditional measure in (1.28). Integrating with respect to
τ , we are led to the maximization problem from before, and consequently obtain
e−(2−δ′)w as an upper bound for all t ≥ 0 and arbitrarily small δ′ > 0, as desired.

1.4. Context, extensions and open problems. Branching Brownian motion is
among the most fundamental random processes in modern probability theory.
Aside from an intrinsic mathematical interest, the motivation for considering such
a model comes from various disciplines, such as biology, where it is a canonical
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FIG. 2. A typical realization for {C([−w,0)) = 0}: The process Ŵt,s reaches height −w at time
τ = w/2 without branching and then, along with its decorations, stays below −w until time rt .

choice for describing population dynamics (e.g., [20]) or physics, where it can be
used to model correlated energy levels in spin-glass-type systems [7, 17, 18]. In
mathematics, it has deep connections with analysis, for example, via the F-KPP
equation (used by McKean [31] to derive asymptotics for the centered maximum)
as well as other fields in probability such as random matrices [21], super-processes
[16], multiplicative chaos [32] and more. We invite the reader to consult [6, 33] for
recent sources on this and related models.

From the point of view of extreme value theory, results of the past few years
have shown that branching Brownian motion belongs to the same universality
class as other models, where correlations are “scale-free” (either logarithmic or
tree-like). These include the branching random walk [1, 29], the two-dimensional
Gaussian free field [5, 9] (and logarithmically correlated Gaussian fields in general
[19]), characteristic polynomials of GUE ensembles [22] and more. In all of these
models, the asymptotic form of the extremal process (or at least the derived law
of the centered maximum) is that of a randomly shifted clustered Poisson point
process with an exponential intensity, as in (1.6), albeit with different laws for the
shift and cluster decorations.

Statistics of extreme values of such systems are interesting for multiple reasons.
From a pure-mathematical perspective, logarithmic or tree-like correlations can be
thought of as the next natural step after the i.i.d. case, where the theory of ex-
treme values is fully developed. More applicatively, the very large (or very small)
values in a system often correspond to quantities of interest in the reality which
the model describes. For instance, interpreting the heights as energy levels in a
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spin-glass system, (negative) extreme values capture the lowest energy states. The
latter carry the corresponding Gibbs distribution at low temperature (glassy-phase)
[12, 24, 30].

Getting back to our results, the extension to branching Brownian motion with a
general offspring distribution requires only minor changes in the proofs. For sim-
plicity, we treated the binary splitting case only. All theorems and propositions will
therefore still hold, albeit with different constants. Moreover, we conjecture that
Theorem 1.1 (with a different rate in the exponential), Theorem 1.2 and Corol-
lary 1.3 also hold in other models, where correlations are scale-free.

In particular, we believe that our method of proof could be applied in the case
of the branching random walk and the two-dimensional Gaussian-free field. This
is because the three main ingredients in the proofs (see Section 1.3): convergence
of the extremal process, random walk representation of the cluster distribution and
uniform tails for the centered maximum, are available in these two models as well.
Nevertheless, carrying out this program requires overcoming nontrivial technical
challenges and would result in a welcomed contribution to the field.

On the other hand, the statement of Proposition 1.6 depends crucially on the
distribution of the difference between the heights of two nearby particles (in ge-
nealogical distance) or vertices (in lattice distance). Unlike for branching Brown-
ian motion, where this difference can be made large by a delayed branching event,
costing only an exponentially decaying probability (see Section 1.3.3), the tail of
this difference is Gaussian for both the branching random walk and the Gaussian-
free field. We conjecture that this will result in a Gaussian decay for the probability
in the statement of Proposition 1.6, and consequently also for the probability in
Theorem 1.4. We pose this as an open problem.

Organization of the paper. The remainder of the paper is organized as follows.
Section 2 includes the necessary technical tools to be used in the proofs thereafter.
These include mainly the random walk estimates discussed above as well as the
spinal decomposition and uniform bounds on the tail of the centered maximum.
In Section 3, we present the reduction statements, in which events concerning a
spine particle are converted to events involving the decorated random-walk-like
process. This section includes also some estimates for probabilities of such events,
the proof of which uses the random-walk results from Section 2. Next comes Sec-
tion 4, in which we use the reduction statements and the random-walk estimates
to compute moments of E([−v,∞)) subject to a truncation event restricting the
height of the global maximum. These in turn are used in Section 5 to derive all
results concerning cluster level sets, that is, all propositions in Section 1.2.2. Sec-
tion 6 contains the proofs of all the theorems in Section 1.2.1, namely all extreme
level set statements. Lastly, proofs of the random walk estimates from Section 2
can be found in the supplement material [14].
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2. Technical tools. In this section, we introduce several technical tools which
will be used throughout in the proofs to follow. Section 2.1 includes estimates on
the probability that a random-walk-like process, with random time steps and dec-
orations, stays below a curve. As explained in the proof outline (Section 1.3), such
a process arises after various reduction steps, by tracing, backward in time, a uni-
formly chosen particle reaching an extreme height. Because of the randomness of
the underlying branching structure, the genealogy as seen from the point of view of
this distinguished (spine) particle has a biased distribution. Spinal decomposition
theory can then be used to account for this bias and to convert statements involv-
ing the spine particle to ones which pertain to all particles. This is the subject of
Section 2.2. Finally Section 2.3 includes uniform bounds on the tail probabilities
of the centered maximum.

Although the “random-walk” statements in Section 2.1 are standard in flavor,
the particularity of the random-walk-like process to which they apply, implies that
one cannot find them “on-the-shelf” and new proofs have to be provided. Since
these are quite lengthy and technical they have been placed in the supplemental
material [14].

2.1. Random walk estimates. Let W = (Wu : u ≥ 0) be a standard one dimen-
sional Brownian motion. Given x, y ∈ R and 0 ≤ s < t , we shall denote by P

t,y
s,x

and Ps,x the conditional distribution P(·|Ws = x,Wt = y) and P(·|Ws = x), re-
spectively (if s = 0 we assume that W0 was x in the first place). On the same prob-
ability space, let us suppose also the existence of a collection Y = (Yu : u ≥ 0)

of independent random variables, which is also independent of W . These random
variables, which will be referred to as “decorations,” satisfy

(2.1) ∀u, z ≥ 0 : P
(|Yu| ≥ z

) ≤ δ−1e−δz

for some δ > 0.
The third collection of random variables defined on this space, comes in the

form of a Poisson point process on R:

(2.2) N ∼ PPP(λdx),

for some λ > 0. This process is assumed to be independent of W and Y and we
denote by σ = (σk : k ≥ 1) the collections of all atoms of N , enumerated in in-
creasing order.

We will be interested in controlling the probability that the process W −Y eval-
uated at all points σ ∩ [0, t] stays below a curve γt = (γt,u : u ≥ 0), satisfying, for
all 0 ≤ u ≤ t ,

(2.3) −δ−1 ≤ γt,u ≤ δ−1
(

1 +
( t∧

(u)

)1/2−δ)
,

t∧
(u) := u ∧ (t − u),

where δ ∈ (0,1/2) (to avoid using too many parameters we will use one δ in mul-
tiple conditions). The first statement is an upper bound. In this case, we might as
well use the bounding function as the barrier curve itself.
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PROPOSITION 2.1. Suppose that W,Y,N are defined as above with respect
to some λ > 0 and δ ∈ (0,1/2). Then there exists C = C(λ, δ) such that for all
t ≥ 0, x, y ∈ R,

P
t,y
0,x

(
max

k:σk∈[0,t]

(
Wσk

− δ−1
(

1 +
( t∧

(σk)

)1/2−δ)
− Yσk

)
≤ 0

)

≤ C
(x− + 1)(y− + 1)

t
,(2.4)

Moreover, there exists C′ = C′(λ, δ) such that for all t ≥ 0 and all x, y ∈ R such
that xy ≤ 0,

P
t,y
0,x

(
max

k:σk∈[0,t]

(
Wσk

− δ−1
(

1 +
( t∧

(σk)

)1/2−δ)
− Yσk

)
≤ 0

)

≤ C′ (x− + e−√
2λ(1−δ)x+

)(y− + e−√
2λ(1−δ)y+

)

t
exp

(
(y − x)2

2t

)
.(2.5)

For an asymptotic statement, we naturally need to control the limiting behavior
of both the decorations and the family of curves γ = (γt )t≥0. For the former, we
assume that

(2.6) Yu
u→∞=⇒ Y∞,

for some random variable Y∞. For the latter, we require that for all u ≥ 0,

(2.7) γt,u
t→∞−→ γ∞,u, γt,t−u

t→∞−→ γ∞,−u,

where γ∞,u, γ∞,−u ∈ R+ (with slight abuse, we shall use the notation γ∞,−0 for
the limit of limt→∞ γt,t ). We then have the following.

PROPOSITION 2.2. Suppose that W,Y,N and γ are defined as above with
respect to some λ > 0 and δ ∈ (0,1/2). Then there exists nonincreasing positive
functions f,g :R→ (0,∞) depending on δ, λ, γ and Y , such that

(2.8) P
t,y
0,x

(
max

k:σk∈[0,t](Wσk
− γt,σk

− Yσk
) ≤ 0

)
∼ 2

f (x)g(y)

t
as t → ∞,

uniformly in x, y satisfying x, y ≤ 1/ε and (x− + 1)(y− + 1) ≤ t1−ε , for any fixed
ε > 0. Moreover,

(2.9) lim
x→∞

f (−x)

x
= lim

y→∞
g(−y)

y
= 1.
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REMARK 2.3 (Monotonicity w.r.t. boundary conditions). Notice that if x ≤ x′
and y ≤ y′, then for all t ≥ 0 we have

P
t,y
0,x

(
max

k:σk∈[0,t](Wσk
− γt,σk

− Yσk
) ≤ 0

)

≥ P
t,y′
0,x′

(
max

k:σk∈[0,t](Wσk
− γt,σk

− Yσk
) ≤ 0

)
.(2.10)

Indeed, one can pass from a Brownian bridge from x to y to a Brownian bridge
from x′ to y′ replacing Ws by Ws − ( s

t
(y′ − y) + (x′ − x)(1 − s

t
)) inside the

probability brackets. Since the above interpolation function is positive for every
s ∈ [0, t], we can simply lower bound it by zero to obtain (2.10). In particular, it
is straightforward to show that if the convergence from Proposition 2.2 holds, then
both f and g are nonincreasing.

We also need to know that the above asymptotics are continuous (in the sense
specified below) in Y and γ . To this end for each r ≥ 0, let Y (r) be a collection of
random variables as Y above and γ (r) be a function as γ above, satisfying (2.1)
and (2.3) uniformly for all r ≥ 0 with some δ ∈ (0,1/2). Suppose that (2.6) holds
for Y

(r)
u with the limit denoted by Y

(r)∞ and that (2.7) holds with the limits denoted
by γ

(r)∞,u and γ
(r)
−∞,u. Then we have the following.

PROPOSITION 2.4. Suppose that W,Y,N , γ and Y (r), γ (r) for r ≥ 0 are de-
fined as above with respect to some λ > 0, δ ∈ (0,1/2). Let f (r), g(r) be the func-
tions f , g, respectively, given in Proposition 2.2 applied to W,Y (r),N and γ (r).
Assume that

∀u ∈ [0,∞] : Y (r)
u

r→∞=⇒ Yu,

∀u ∈ [0,∞) : γ
(r)
∞,±u

r→∞−→ γ∞,±u.
(2.11)

Then for all x ∈ R,

(2.12) f (r)(x)
r→∞−→ f (x), g(r)(x)

r→∞−→ g(x),

with f,g given by Proposition 2.2 applied to W,Y,N and γ . In particular, if
Y

(r)∞ = Y∞ and γ
(r)
∞,−u = γ∞,−u for all r ≥ 0 and u ≥ 0, then g(r)(x) = g(x) for

all r ≥ 0.

2.2. Spinal decomposition. A key tool for reducing the computation of mo-
ments of the number of particles satisfying a certain condition is the so-call spinal
decomposition, in the form of the two lemmas below. We refer the reader to [23]
for a more general and thorough treatment of this method, as well as an historical
overview.

For integer k ≥ 1, the k-spine branching Brownian motion describes particles
which branch and diffuse as in the original process, only that in addition they may
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carry “marks” indexed by the set {1, . . . , k}, which affect their branching and/or
diffusion laws. For our purposes, we can assume that the diffusion law is always
that of a standard Brownian motion and splitting is always binary, regardless of the
carried marks. What is affected by the marks, is the branching rate, which is 2m

if the particle carries m marks. In addition, once a particle branches, each mark is
transferred to one of its two children with equal probability and independently of
the other marks.

As before, the set of particles at time t will be denoted by Lt , which again
we equip with the genealogical metric d = dt . The positions of particles will be
given by the random collection ht = (ht (x) : x ∈ Lt), again exactly as before. The
new information, namely the location of the marks at time t , will be denoted by
the collection Xt = (Xt(l) : l = 1, . . . , k), where Xt(l) ∈ Lt is the particle holding
mark l at time t . The genealogical line of decent of particle Xt(l), namely the
function t 
→ Xt(l), will be referred to as the lth spine of the process.

We shall denote by P̃
(k) the underlying probability measure and by Ẽ

(k) the
corresponding expectation. To simplify the notation in the case k = 1, we shall
write P̃, Ẽ and Xt in place of P̃(1), Ẽ(1) and Xt(1). Note that in the case k = 0 the
process is reduced to a regular branching Brownian motion, in which case we will
keep using the notation P, E and use (Ft : t ≥ 0) to denote its natural filtration.

The first lemma shows how to reduce first moment computations for regular
branching Brownian motion to expectations involving the 1-spine measure. To
avoid integrability issues, we state it for a bounded function, although this is en-
tirely not necessary.

LEMMA 2.5 (Many-to-one). Let F = (F (x) : x ∈ Lt) be a bounded Ft -
measurable real-valued random function on Lt . Then

(2.13) E

( ∑
x∈Lt

F (x)

)
= et

ẼF(Xt).

The second lemma is suitable for second moment computations.

LEMMA 2.6 (Many-to-two). Let F = (F (x, y) : x, y ∈ Lt) be a bounded Ft -
measurable real-valued random function on Lt × Lt . Then

(2.14) E

( ∑
x,y∈Lt

F (x, y)

)
= e3t

Ẽ
(2)(F (

Xt(1),Xt (2)
)
e−d(Xt (1),Xt (2))).

REMARK 2.7. Observe that on the event {d(Xt(1),Xt (2)) = r} for some 0 ≤
r ≤ t , at all branching events prior to time t − r , which occur at rate 4, both spine
particles “chose” to follow the same child. Since such events have probability 1/2
and they are independent of each other, standard Poisson thinning arguments show
that conditional on {d(Xt (1),Xt(2)) = r} branching along the line of descent of
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the two spine particles up to time t − r occurs at rate 2. Since the motion is not
effected by the conditioning, we see that under the conditioning, the two-spine
process behaves as a one-spine process up to time t −r , with the two spine particles

identified. The same reasoning also implies that (t − d(Xt(1),Xt (2)))
law= e ∧ t ,

where e is an exponential random variable with rate 2.

2.3. Uniform tail estimates for the centered maximum. Even though asymp-
totics for the upper tail are well known, precise asymptotics for the lower tail are
harder to find. Recall that we are writing h∗

t for maxx∈Lt ht (x).

LEMMA 2.8. There exists C,C′ > 0, such that for all t ≥ 0 and u ≥ 0,

(2.15) P
(
h∗

t − mt > u
) ≤ Cue−√

2u and P
(
h∗

t − mt < −u
) ≤ C′e−(2−√

2)u.

PROOF. A sharper bound for the right-tail probabilities was obtained in Corol-
lary 10 of [3]. For the left tail, we can appeal to both [8] and [3]. From the first ref-
erence, we now that u(t, x) := P(h∗

t > x) is the unique solution to the F-KPP equa-
tion with heavy-side initial data, and that for any x < 0, the function u(t, m̃t + x),
where m̃t is the median of u(t, ·), is decreasing in t and converges to ω(x), with
ω forming the so-called traveling wave solution of the F-KPP equation. More-
over, it is shown in [8] that |mt − m̃t | stays bounded uniformly in t ≥ 0. On the
other hand, in [3] (Appendix A of the [v1] arXiv version), the authors show that
1 − ω(−x) ∼ e−(2−√

2)x as x → ∞. Combing the above, the bound on the left tail
follows. �

3. Reduction to a decorated random-walk-like process. In the sequel, we
shall need to estimate probabilities concerning the height of one or two spine par-
ticles and the clusters around them, subject to a restriction on the global maximum
of the process. By tracing the spine particles backward in time, such events can
be recast in terms of a decorated random-walk-like process, for which asymptotic
probabilities are given in Section 2.1. We therefore proceed by defining this pro-
cess explicitly and then stating various reduction lemmas which will be needed in
the sequel. The section concludes with a few lemmas in which the probability of
events involving the decorated process are estimated. These estimates will be used
frequently in the proof to follow.

3.1. Definition of the walk and reduction statements. As before, let W = (Ws :
s ≥ 0) be a standard Brownian motion, whose initial position we leave free to be
determined according to the conditional statements we make. For 0 ≤ s ≤ t , we fix

(3.1) γt,s := 3

2
√

2

(
log+ s − s

t
log+ t

)
and Ŵt,s := Ws − γt,s .
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We shall also need the collection H = (hs = (hs
t )t≥0 : s ≥ 0) of independent copies

of h, that we will assume to be independent of W as well. Finally, let N be a Pois-
son point process with intensity 2 dx on R+, independent of H and W and denote
by σ1 < σ2 < · · · its ordered atoms. The triplet (Ŵ ,N ,H) forms the decorated
random-walk-like process, which was eluded to in the beginning.

To see the relevance of the above process, recall that Br (x) is the ball of radius
r around x in the genealogical distance d, and that we write ĥt = ht − mt and
ĥ∗

t = maxx∈Lt ĥt (x). For A ⊆ Lt set also ĥ∗
t (A) for maxx∈A ĥt (x), then:

LEMMA 3.1. For all 0 ≤ r ≤ t and u,w ∈ R,

(3.2)

P̃
(
ĥ∗

t

(
Bc

r (Xt )
) ≤ u|ĥt (Xt ) = w

)
= P

(
max

k:σk∈[r,t]
(
Ŵt,σk

+ ĥσk∗
σk

) ≤ 0
∣∣Ŵt,r = w − u, Ŵt,t = −u

)
.

In particular for all t ≥ 0 and v,w ∈ R,

(3.3)

P̃
(
ĥ∗

t ≤ u|ĥt (Xt ) = w
)

= P

(
max

k:σk∈[0,t]
(
Ŵt,σk

+ ĥσk∗
σk

) ≤ 0
∣∣Ŵt,0 = w − u, Ŵt,t = −u

)
.

PROOF. Since both Brownian motion and Poison point process are distribu-
tional invariant under time reversal, tracing the spine particle backward in time,
the left-hand side of (3.2) can be written as

(3.4) P

(
max

k:σk∈[r,t]
(
Wσk

+ hσk∗
σk

) ≤ mt + u
∣∣W0 = mt + w,Wt = 0

)
,

where Ws , σk and hσ
t are as above.

Now independence of N , W and H together with standard Gaussian properties
enjoyed by W imply that the probability above does not change if we replace Ws

by Ws + u + mt(t − s)/t everywhere in (3.4). Replacing hs
s and Ws by ĥs

s + ms

and by Ŵt,s + γt,s , respectively, and observing that mts/t − ms = γt,s , we obtain
(3.2), then (3.3) follows by plugging in r = 0. �

In a similar way, we can express the distribution of the cluster around the spine
particle, given that it reaches height mt . For what follows, E s

t denotes the extremal
process of hs

t , defined as in (1.4) only with respect to hs
t in place of ht .

LEMMA 3.2. Let At := {maxk:σk∈[0,t](Ŵt,σk
+ ĥσk∗

σk
) ≤ 0}, then for all 0 ≤ r ≤

t we have that

P̃
((
Ct,r (Xt ),

(
ht−s(Xt−s) − mt

)
s≤r

) ∈ ·|ĥ∗
t = ĥt (Xt ) = 0

)
= P

(( ∑
σk≤r

Eσk
σk

(· − Ŵt,σk
), (Ŵt,s − ms)s≤r

)
∈ ·

∣∣∣Ŵt,0 = Ŵt,t = 0;At

)
.(3.5)
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PROOF. As in the proof of Lemma 3.1, we can replace ht−s(Xt−s) in the left-
hand side of (3.5) by Ws , so that the conditioning event in the left-hand side of
(3.5) reads

(3.6)
{
W0 = mt,Wt = 0, max

k:σk∈[0,t]Wσk
+ hσk∗

σk
− mt ≤ 0

}
,

and Ct,r (Xt )
law= ∑

x∈L
σk
σk

δ
Wσk

+h
σk
σk

(x)−mt
. The result follows after applying the same

transformations as in the proof of Lemma 3.1. �

The advantage of the above formulation, which uses the decorated random walk
Ŵt,s , is that it is suitable for an application of the random walk estimates from
Section 2.1, provided that γt,s from (3.1) and ĥs∗

s satisfy the required conditions.
Lemma 2.8 shows that ĥs∗

s satisfies the tail conditions with δ < (2 − √
2)−1. To

check the conditions for γt,s , we shall need the following technical lemma, whose
proof is elementary.

LEMMA 3.3. Let s, r, t ∈ R be such that 0 ≤ r ≤ r + s ≤ t , then

−1 ≤ log+(r + s) −
(

t − (r + s)

t − r
log+ r + s

t − r
log+ t

)

≤ 1 + log+(
s ∧ (t − r − s)

)
.(3.7)

PROOF. Starting with the lower bound, it follows from the concavity of log
that 0 is lower bound when r ≥ 1. If r < 1 and r + s < 1, then the middle expres-
sion is equal to −s(log+ t)/(t − r), which is again grater than −1. Lastly if r < 1
but r + s ≥ 1, then the middle expression is equal to log(r + s) − s(log t)/(t − r),
whose minimum, attained at s = 1 − r , is again greater than −1.

For the upper bound, we consider the two cases s ≤ (t − r)/2 and s > (t − r)/2
separately. In the first case, by replacing log+ t by log+ r in the middle expression,
it is enough to prove the upper bound for log+(r + s) − log+ r . But concavity of
log implies that the latter is at most 1 + log+ s, which proves the statement for
s ≤ (t − r)/2. On the other hand, if s > (t − r)/2 we set s ′ = t − r − s and rewrite
the middle expression in (3.7) as

log+(
t − s′) −

(
s′

t − r
log+ r + t − r − s′

t − r
log+ t

)

≤ (
log+ t − log+ r

) s′

t − r
.(3.8)

Above, to get the second inequality, we have bounded log+(t − s′) by log+ t . Ap-
pealing to concavity of the logarithm function again, if r ≥ 1, then the right-hand
side above is further upper bounded by log(s ′ + r) − log r which is again smaller
than 1+ log+ s′ as before, which is what we need to show in this case. If r < 1 and
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t < 1, then the upper bound is trivial. Finally, if r < 1 and t ≥ 1, then the upper
bound follows from the inequality s′ log t ≤ (t − 1)(1 + log+ s′) which holds for
all s′ ≤ t . �

3.2. Fundamental estimates. With the above result at hand, we can state the
following two lemmas, which are essentially corollaries of the random walk esti-
mates from Section 2.1. In the first one, we obtain upper bounds and asymptotics
for the probabilities appearing in Lemma 3.1.

LEMMA 3.4. There exists C,C′ > 0 such that for all 0 ≤ r ≤ t and w,v ∈ R,

(3.9)

P

(
max

k:σk∈[r,t]
(
Ŵt,σk

+ ĥσk∗
σk

) ≤ 0|Ŵt,r = v, Ŵt,t = w
)

≤ C
(v− + 1)(w− + 1)

t − r
,

and if vw ≤ 0 then

(3.10)

P

(
max

k:σk∈[r,t]
(
Ŵt,σk

+ ĥσk∗
σk

) ≤ 0|Ŵt,r = v, Ŵt,t = w
)

≤ C′ (v− + e− 3
2 v+

)(w− + e− 3
2 w+

)

t − r
exp

(
(v − w)2

2(t − r)

)
.

Also, there exists nonincreasing functions g : R → (0,∞) and f (r) : R → (0,∞)

for r ≥ 0, such that for all such r ,

(3.11) P

(
max

k:σk∈[r,t]
(
Ŵt,σk

+ ĥσk∗
σk

) ≤ 0|Ŵt,r = v, Ŵt,t = w
)

∼ 2
f (r)(v)g(w)

t − r
,

as t → ∞ uniformly in v,w satisfying v,w < 1/ε and (v− + 1)(w− + 1) ≤ t1−ε

for any fixed ε > 0. Moreover,

(3.12) lim
v→∞

f (r)(−v)

v
= lim

w→∞
g(−w)

w
= 1,

for any r ≥ 0. Finally, there exists f : R→ (0,∞) such that for all v ∈ R,

(3.13) f (r)(v)
r→∞−→ f (v).

PROOF. Given r, t, v,w satisfying the above assumptions, let t (r) := t − r .
By tilting and shifting, we can replace Ŵt,s everywhere inside the probability on
the left-hand side of (3.9) by Ŵt,s + γt,r + s−r

t(r)
(γt,t − γt,r ) = Ws − γt,s + γt,r +

s−r

t(r)
(γt,t − γt,r ). Setting

(3.14) γ
(r)

t(r),s
:= γt,s+r − γt,r − s

t(r)
(γt,t − γt,r ), Y (r)

s := −ĥ
(s+r)∗
s+r ,
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and using shift law invariance of W and N , the left-hand side of (3.9) now reads

(3.15) P

(
max

k:σk∈[0,t (r)]
(
Wσk

− γ
(r)

t(r),σk
− Y (r)

σk

) ≤ 0|W0 = v,Wt(r) = w
)
.

Next, we want to apply Propositions 2.1, 2.2 and 2.4. We just need to make sure
that the conditions required by these propositions hold. By assumption, (2.2) holds
with λ = 2 and thanks to Lemma 2.8 we know that (2.1) holds with any δ small
enough uniformly in r . Finally, using Lemma 3.3 noting that the middle expression
in (3.7) is exactly (2

√
2/3)γ

(r)

t(r),s
, we have

−1 ≤ (2
√

2/3)γ
(r)

t(r),s

≤ 1 + log+
t (r)∧

(s) : 0 ≤ r ≤ t, and 0 ≤ s ≤ t (r),(3.16)

which shows that Condition (2.3) holds with any δ < 1/2. This implies that for any
r ≥ 0 both statements in Proportion 2.1 apply, provided that we choose δ ∈ (0,1/2)

small enough. In particular, by decreasing δ if necessary, we may and will assume
that

√
2λ(1 − δ) = 2(1 − δ) ≥ 3/2, which yields (3.9) and (3.10).

Turning now to (3.11), (3.12) and (3.13), a bit of algebra shows that for fixed r

and all s ≥ 0

lim
t (r)→∞

γ
(r)

t(r),s
= 3

2
√

2

(
log+(s + r) − log+ r

) =: γ (r)∞,s,

lim
t (r)→∞

γ
(r)

t(r),t (r)−s
= 0 =: γ (r)

∞,−s,

(3.17)

while the convergence of the centered maximum gives, Y
(r)
s =⇒ Y as s → ∞ or

r → ∞, where Y has the limiting law of the centered maximum. Moreover, for all
s ≥ 0 clearly γ

(r)∞,s −→ 0 as r → ∞. Therefore, the conditions of Proposition 2.2
and Proposition 2.4 are satisfied implying (3.11), (3.12) and (3.13). �

4. Truncated moments of the level set size. The goal in this section is to
estimate the first and second moments of the number of particles lying above mt +
v for v ∈ R. Since the expectation of such quantities blows up as t → ∞, one
has to introduce a truncation event. Unlike the usual truncation event (introduced
by Bramson in [10]), whereby the trajectory of such particle is constrained to lie
below a curve, we choose to use the event that the global maximum stays below
a certain value, namely {h∗

t ≤ mt + u}. This truncation can be more conveniently
used later, when we derive cluster properties (Section 5). In light of the tightness
of the centered global maximum, the probability of this event tends to 0 when
u → ∞ uniformly in t . Therefore, for the sake of distributional results, we can
always work under this restriction and remove it just in the very end.
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Recall the definition of the extremal process from (1.4). Since for every Borel
set A ⊆ R,

Et (A)1{ĥ∗
t ≤u} = ∑

x∈Lt

1{ĥt (x)∈A,ĥ∗
t ≤u} and

Et (A)21{ĥ∗
t ≤u} = ∑

x,y∈Lt

1{ĥt (x)∈A,ĥt (y)∈A,ĥ∗
t ≤u}

(4.1)

we can use the spinal decomposition in the form of the many-to-one and many-
to-two lemmas in Section 2.2, to compute the expectation of the quantities above,
provided we can estimate the probabilities, under the corresponding spine mea-
sures, of the events in the sums, with x, y replaced by the spine particles Xt(1),
Xt(2), respectively. We start with the first moment.

4.1. First moment. Recall that the one-spine measure as introduced in Sec-
tion 2.2 is denoted by P̃ and the corresponding expectation is Ẽ.

LEMMA 4.1. There exists C,C′ > 0 such that for all t ≥ 0 and v ≤ u,

(4.2) P̃
(
ĥt (Xt ) ≥ v, ĥ∗

t ≤ u
) ≤ Ce−te−√

2v(u − v + 1)
(
u+ + 1

)(
e− v2

4t + e
v
2
)
,

in addition, if u ≤ 0 then we also have that

(4.3) P̃
(
ĥt (Xt ) ≥ v, ĥ∗

t ≤ u
) ≤ C′e−te−√

2v(u − v + 1)e− 3
2 u−

.

Moreover, with g : R → (0,∞) from Lemma 3.4 we have that uniformly in u, v

satisfying |u| ≤ 1/ε and tε < u − v < t1−ε , for any fixed ε > 0,

(4.4) P̃
(
ĥt (Xt ) ≥ v, ĥ∗

t ≤ u
) ∼ e−te−√

2v− v2
2t (u − v + 1)

g(−u)√
π

as t → ∞.

PROOF. Starting with the first upper bound, we write the left-hand side of
(4.2) as the integral

(4.5)
∫ u

w=v
P̃

(
ĥ∗

t ≤ u|ĥt (Xt ) = w
)
P̃

(
ĥt (Xt ) ∈ dw

)
.

Using the second part of Lemma 3.1 and then the first upper bound in Lemma 3.4,
the conditional probability in the integral is bounded above by Ct−1(u − w +
1)(u+ + 1). At the same time, ĥt (Xt ) is Gaussian with mean −mt := −√

2t +
3

2
√

2
log+ t and variance t . Therefore,

(4.6)

P̂(ĥt (Xt ) ∈ dw)

dw
= te−te−√

2w

√
2π

exp
(
−

(w − 3
2
√

2
log+ t)2

2t

)

≤ Cte−t exp
(
−√

2w − w2

4t

)
.
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Using these inequalities in (4.5), we may bound the integral by

(4.7) Ce−t (u+ + 1
)
(u − v + 1) ×

⎧⎨
⎩e− v2

4t
−√

2v : v ≥ (−√
8 + η)t,

e(2+η)t : v < (−√
8 + η)t,

with any η > 0 and C = C(η) > 0. Choosing η small enough, the last factor in
(4.7) can be bounded by e−√

2v(e−v2/4t + ev/2), which gives the upper bound.
Now, if u ≤ 0, then v ≤ w ≤ 0 and consequently the left-hand side of (4.6) can

be bounded by Cte−t × exp(−√
2w − w2

2t
). Observing that w −u ≤ 0, we now use

the second upper bound in Lemma 3.4 to estimate the first term in the integral in
(4.5). The probability in question is now bounded by

(4.8) Ce−te− 3
2 u−

∫ u

w=v
e−√

2w(u − w + 1)dw,

which is smaller than the right-hand side of (4.3) for a proper constant C ′ > 0.
As for the asymptotic statement, we use Lemma 3.1 again and then Lemma 3.4

with r = 0 for the first term in the integral, but this time we use (3.11) in order to
obtain asymptotics. This gives

(4.9) P̃
(
ĥ∗

t ≤ u|ĥt (Xt ) = w
) ∼ 2

f (0)(w − u)g(−u)

t
,

as t → ∞, uniformly in u, v as specified in the statement and any w ∈ [v,u]. Using
(4.6) we also have that uniformly in w ∈ [v,u]

(4.10)
P̂(ĥt (Xt ) ∈ dw)

dw
∼ te−t

√
2π

exp
(
−√

2w − w2

2t

)
as t → ∞.

Plugging these estimates in (4.5), the integral there is uniformly asymptotic to
(2/π)1/2e−t g(−u) times,

(4.11)

∫ u

w=v
f (0)(w − u) exp

(
−√

2w − w2

2t

)
dw

= (u − v + 1)e−√
2v− v2

2t

∫ u−v

y=0

f (0)(v − u + y)

u − v + 1
e−√

2y− y2

2t
− yv

t dy,

where we have also substituted y = w − v to obtain the second line above.
Since f (0)(−x) ∼ x as x → ∞ and u − v ≥ tε the ratio in the integrand

is bounded by above and tends to 1 as t → ∞, with convergence uniform in
y = o(tε). Moreover, since |v|t−1 = o(1) uniformly as t → ∞, the above integral
restricted to y > log t vanishes as t → ∞. On the other hand, when y ∈ [0, log t]
the integrand converges uniformly to e−√

2y as t → ∞, implying that the integral
itself converges uniformly to

∫ ∞
0 e−√

2y dy = 1/
√

2, which yields (4.4). �

We are now in a position to estimate the first moment of Et ([v,∞)) under the
restriction that ĥ∗

t ≤ u.
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LEMMA 4.2. There exists C > 0 such that for all t ≥ 0 and v ≤ u,

(4.12) E
(
Et

([v,∞)
); ĥ∗

t ≤ u
) ≤ Ce−√

2v(u − v + 1)
(
u+ + 1

)(
e−v2/4t + ev/2)

.

Moreover, with g : R → (0,∞) from Lemma 3.4 we have that uniformly in u, v

satisfying |u| ≤ 1/ε and tε < u − v < t1−ε , for any fixed ε > 0,

(4.13) E
(
Et

([v,∞)
); ĥ∗

t ≤ u
) ∼ e−√

2v− v2
2t (u − v + 1)

g(−u)√
π

as t → ∞.

PROOF. Writing Et ([v,∞))1{ĥ∗
t ≤u} as

∑
x∈Lt

F (x) with F(x) being the indi-
cator function 1{ĥt (x)≥v,ĥ∗

t ≤u}, we may apply the (many-to-one) Lemma 2.5 and
then use Lemma 4.1 to estimate the resulting integral, the result follows. �

4.2. Second moment. For the second moment, we only need an upper bound.
Recall that the two-spine measure as introduced in Section 2.2 is denoted by P̃

(2)

and the corresponding expectation is Ẽ(2).

LEMMA 4.3. There exists C > 0 such that for all 0 ≤ r ≤ t and v ≤ u,

P̃
(2)(min

{
ĥt

(
Xt(1)

)
, ĥt

(
Xt(2)

)} ≥ v, ĥ∗
t ≤ u|d

(
Xt(1),Xt(2)

) = r
)

≤ C
e−t−r [e

√
2u(u+ + 1)e−2

√
2v(u − v + 1)2]

1 + (r ∧ (t − r))3/2

(
e− (u−v)2

4t + e− (u−v)
2

)
.(4.14)

PROOF. In light of Remark 2.7, by conditioning further on the position of
ht−r (Xt−r (1)) (which is also the position of ht−r (Xt−r (2))) the left-hand side of
(4.14) can be written as

(4.15)

∫
z
P̃

(
ĥr (Xr) ≥ v − z, ĥ∗

r ≤ u − z
)2

× P̃
(
ĥt−r (Xt−r ) − mt,r ∈ dz, ĥ∗

t

(
Br (Xt )

c) ≤ u
)
,

where mt,r := mt − mr − mt−r = 3
2
√

2
(log+ r + log+(t − r) − log+ t) and Xt is

the one-spine particle. Observe that mt,r is always nonnegative and satisfies

(4.16) mt,r − 3

2
√

2
log+

t∧
(r) ∈ [−2 log 2,0].

To bound the second term in the integrand, we use Lemma 3.1 to express it as
P̃(ĥt−r (Xt−r ) − mt,r ∈ dz) times,

(4.17) P

(
max

k:σk∈[r,t]
(
Ŵt,σk

+ ĥσk∗
σk

) ≤ 0
∣∣Ŵt,r = z + mt,r − u, Ŵt,t = −u

)
.
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Since ĥt−r (Xt−r ) has a Gaussian distribution with mean −mt−r and variance t −r ,
its probability density function at dz + mt,r is explicitly given by

(4.18)

1√
2π(t − r)

exp
(
−

(
√

2(t − r) − 3
2
√

2
log+(t − r) + mt,r + z)2

2(t − r)

)

≤ C(t − r)e−(t−r)−√
2(z+mt,r ),

where we have used the bound on mt,r and the fact that z
log+(t−r)

t−r
− C′ z2

t−r
is

bounded uniformly in t, r and z for any C′ > 0. At the same time, we can use (3.9)
to bound the conditional probability in (4.17) by C(t − r)−1(u+ + 1)((u − z −
mt,r )

+ + 1).
Turning to the first term in (4.15), if z ≤ u we use (4.2) to bound it by

C
(
e−re−√

2(v−z)(u − v + 1)(u − z + 1)
(
e−(v−z)2/4t + e(v−z)/2))2

≤ Ce−2r (u − v + 1)2e−2
√

2ve2
√

2z(u − z + 1)2(
e−(v−z)2/4t + ev−z).(4.19)

Otherwise, if z > u, we use (4.2) for one factor and (4.3) for the other. This gives

C
(
e−re−√

2(v−z)(u − v + 1)
(
e− (v−z)2

4t + e
(v−z)

2
))

× (
e−re−√

2(v−z)(u − v + 1)e− 3
2 (z−u))

= Ce−2r (u − v + 1)2e−2
√

2ve2
√

2ze− 3
2 (z−u)(e−(v−z)2/4t + e(v−z)/2)

.(4.20)

We now split the integral in (4.15) according to whether z ≤ u or z > u. In the
former range, we use (4.19) and bound it by

Ce−t−r−√
2mt,r

(
u+ + 1

)
(u − v + 1)2e−2

√
2v

×
∫
z≤u

(
e− (v−z)2

4t
+√

2z + ev+(
√

2−1)z)(u − z + 1)3 dz.(4.21)

Expanding the first parenthesis in the integrand and then integrating each of
the resulting terms separately, the integral of the second term is bounded by
Ce

√
2u−(u−v). For the integral of the first term, we observe that the exponent −(v−

z)2/(4t)+√
2z is maximized at z = 2

√
2t + v. Therefore, if u < 2

√
2(1 − η)t + v

for some η > 0, the integral of the first term is bounded by a constant times the
value of the integrand at u, which gives the bound Ce

√
2ue−(u−v)2/4t , with C > 0

depending on η. On the other hand, if u > 2
√

2(1 − η)t + v, then we integrate the
first term in absolute value over all R, thereby obtaining the upper bound

Cte2t+√
2v(u − v − 2

√
2t + 1)3 ≤ Ce

√
2ue−(u−v)/2,(4.22)
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for η small enough, where we have used that 2
√

2(1 − η)t ≤ u − v. Putting all of
these together, the integral in (4.21) can always be bounded by

(4.23)

Ce
√

2u(
e−(u−v)/2 + e−(u−v)2/4t + e−(u−v))

≤ Ce
√

2u(
e−(u−v)2/4t + e−(u−v)/2)

.

Returning to the integral in (4.15), in the range z ≥ u we use (4.20) to the get
the upper bound

(4.24)

e−t−r−√
2mt,r

(
u+ + 1

)
(u − v + 1)2e−2

√
2v

×
∫
z≥u

e
√

2z− 3
2 (z−u)(e−(v−z)2/4t + e(v−z)/2)

dz.

The sum of the first two exponents maximizes at z = v − (3 − 2
√

2)t ≤ u −
(3 − 2

√
2)t , while the sum of the first and the last exponents always maximizes

at u. This means that z = u determines the bound on the integral and gives
Ce

√
2u(e−(u−v)2/4t +e−(u−v)/2) as an upper bound exactly as in the previous range.

Altogether, the integral in (4.15) is bounded above by

Ce−t−r−√
2mt,r

(
u+ + 1

)
(u − v + 1)2e−2

√
2ve

√
2u

×(
e−(v−u)2/4t + e−(u−v)/2)

.(4.25)

To make the identification with the right-hand side of (4.14), just notice that (4.16)
implies

(4.26) e−√
2mt,r ≤ C

(
1 + (

r ∧ (t − r)
)−3/2)

,

proving the statement. �

We can now use the many-to-two lemma to bound the second moment.

LEMMA 4.4. There exists C > 0 such that for all v ≤ u,

(4.27)

E
(
Et

([v,∞)
)2; ĥ∗

t ≤ u
)

≤ e−2
√

2v(u − v + 1)2e
√

2u(
u+ + 1

)(
e−(u−v)2/4t + e−(u−v)/2)

.

PROOF. In light of the second equation in (4.1), we can use (the many-to-two)
Lemma 2.6 with F(x, y) = 1{min{ĥt (y),ĥt (x)}≥v,ĥ∗

t ≤u}, thereby obtaining

(4.28) e3t
Ẽ

(2)(e−d(Xt (1),Xt (2));min
{
ĥt

(
Xt(1)

)
, ĥt

(
Xt(2)

)} ≥ v, ĥ∗
t ≤ u

)
.

Conditioning on d(Xt(1),Xt(2)) and recalling that the distribution of t −
d(Xt(1),Xt (2)) is exponential with rate 2 truncated at t (see Remark 2.7), we
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may use Lemma 4.3 to bound the last display by

(4.29)

Ce
√

2u(
u+ + 1

)
e−2

√
2v(u − v + 1)2(

e−(u−v)2/4t + e−(u−v)/2)
× e3t

(
e−3t +

∫ t

r=0

e−t−r

1 + (r ∧ (t − r))3/2 e−re−2(t−r) dr

)
.

Since the term in the second line is bounded by a constant, the result follows. �

5. Proofs of cluster level set propositions. The aim in this section is to prove
the cluster properties stated in Section 1.2.2. We start with the following lemma
that characterizes the limiting cluster distribution in terms of the cluster around the
spine particle, conditioned to be the global maximum. Recall the spinal decom-
position from Section 2.2 and that in particular Xt denotes the spine particle at
time t .

LEMMA 5.1. Let C ∼ ν be distributed according to the cluster law. Then for
any ν-continuity set B ⊆M and any u ∈ R,

(5.1) P(C ∈ B) = lim
t→∞ P̃

(
Ct,rt (Xt ) ∈ B|ĥt (Xt ) = ĥ∗

t = u
)
,

where Ct,rt (Xt ) := ∑
y∈Bt,rt (Xt )

δht (y)−ht (Xt ) denotes the cluster around Xt as de-
fined in (1.9).

PROOF. The proof of Theorem 2.3 in [2] shows that P(Ct,rt (X
∗
t ) ∈ B) −→

P(C ∈ B) as t → ∞, where Ct,rt (X
∗
t ) is the cluster around the highest particle

X∗
t := argmaxx∈Lt

ht (x). Thanks to the product structure of the intensity measure
governing the limiting Poisson point process and the absolute continuity of its first
coordinate, the above limit still holds if we condition on h∗

t = mt + u for any
u ∈ R, namely

(5.2) P(C ∈ B) = lim
t→∞P

(
Ct,rt

(
X∗

t

) ∈ B|h∗
t = mt + u

)
.

We rewrite the probability in the right-hand side above as the conditional expected
value of

∑
x∈Lt

1{Ct,rt (x)∈B,ĥt (x)=ĥ∗
t }, and use (the many-to-one) Lemma 2.5 twice,

with x 
→ 1{Ct,rt (x)∈B}∩{ĥ∗
t =ĥt (x)∈du} and then with x 
→ 1{ĥ∗

t =ĥt (x)∈du} as the ran-
dom function F(x), to obtain

(5.3) P
(
Ct,rt

(
X∗

t

) ∈ B | h∗
t = mt + u

) = P̃(Ct,rt (Xt ) ∈ B, ĥt (Xt ) = ĥ∗
t ∈ du)

P̃(ĥt (Xt ) = ĥ∗
t ∈ du)

,

which is equal to the right-hand side of (5.1). �

For what follows in this section, we will mostly work with variants of the con-
ditional probability P̃(· | ĥt (Xt ) = ĥ∗

t ), in which case the configuration Ct,rt (Xt )
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around the spine is exactly the configuration around the maximal particle X∗
t there-

fore we shorten the notation Ct,rt (Xt ) into

(5.4) C∗
t,rt

:= Ct,rt (Xt ) = ∑
y∈Bt,rt (Xt )

δht (y)−h(Xt ).

We can now begin proving the propositions in Section 1.2.2. We dedicate a
subsection to each of these proofs.

5.1. Proof of Proposition 1.5. The proof of Proposition 1.5 follows readily
from the two results below, whose proofs we postpone to the end of the section.
The first one gives the v → ∞ asymptotic of ẼC∗

t,rt
([−v,0]).

LEMMA 5.2. There exists C > 0 such that as t → ∞ and then v → ∞,

(5.5) Ẽ
(
C∗

t,rt

([−v,0])|ĥ∗
t = ĥt (Xt ) = 0

) ∼ Ce
√

2v,

whereas the second one provides upper bounds for the second moment of
C∗

t,rt
([−v,0]).

LEMMA 5.3. There exists C > 0 such that for all v ≥ 0,

(5.6) lim sup
t→∞

Ẽ
((
C∗

t,rt

([−v,0]))2|ĥ∗
t = ĥt (Xt ) = 0

) ≤ C(v + 1)e2
√

2v.

PROOF OF PROPOSITION 1.5. By Lemma 5.3, for all v ≥ 0 there exist t0 ≥ 0
such that the collection of random variables {C∗

t,rt
([−v,0]) : t ≥ t0} is uniformly

integrable under the conditional measure P̃(·|ĥ∗
t = ĥt (Xt ) = 0) and, therefore, in

light Lemma 5.1 with u = 0, the expectation of C∗
t,rt

([−v,0]) under this measure
converges as t → ∞ to the expectation of C([−v,0]) under ν, provided that C does
not charge −v with positive probability. The latter condition, which is equivalent
to [−v,0] being a stochastic continuity set for C, is needed in order to ensure that
C∗

t,rt
([−v,0]) converges weakly to C([−v,0]) under the conditional measure.

Now, although [−v,0] is indeed C-stochastic continuous, we can avoid having
to prove this by proceeding in a different way. Given v ∈ R, we can always find v−
1/v < v′ ≤ v ≤ v′′ ≤ v +1/v such that v′, v′′ are not charged by C with probability
1. The existence of such points is assured by the fact that the set of points which are
charged with positive probability by C is at most countable. Then by monotonicity,

EC
([−v,0]) ≥ EC

([−v′,0
]) =: lim

t→∞ ẼC∗
t,rt

([−v′,0
]);

EC
([−v,0]) ≤ EC

([−v′′,0
]) = lim

t→∞ ẼC∗
t,rt

([−v′′,0
])

.
(5.7)

Now, the first and last quantities are asymptotically equivalent to Ce
√

2v′
and

Ce
√

2v′′
, respectively, which in light of the choice of v′, v′′ are also asymptotic
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to Ce
√

2v . This shows the first part of the proposition with C� = C, where C is the
constant in Lemma 5.2.

The second part of the proposition follows from Lemma 5.1, Lemma 5.3 and
an application of Fatou’s lemma, whenever [−v,0] is a stochastic continuity sets
under C (as a process on R−). As before, if this is not the case, we pick v′′ as
before and use monotonicity again. �

It remains therefore to prove Lemma 5.2 and Lemma 5.3 and at this point we
can appeal to Lemma 3.2 to represent the cluster C∗

t,rt
in terms of the decorated

random walk process of Section 3. This is the content of the next lemma, but
before we can state it, we need several new definitions and/or abbreviations. First,
recall the random objects: W , H and N from Section 3 and that E s

t is the extremal
process of hs

t . Next, let us abbreviate for t ≥ 0,

(5.8) At :=
{

max
k:σk∈[0,t]

(
Ŵt,σk

+ ĥσk∗
σk

) ≤ 0
}
, P̂t (·) = P(·|Ŵt,0 = Ŵt,t = 0),

with Êt the corresponding expectation. Finally, for v ≥ 0 and 0 ≤ s ≤ t we set
jt,v(s) := Êt Jt,v(s) where

(5.9) Jt,v(s) := E s
s

([−v,0] − Ŵt,s

)
1{ĥs∗

s ≤−Ŵt,s} × 1At ,

and for 0 ≤ s ≤ s ′ ≤ t , also jt,v(s, s
′) := Êt Jt,v(s, s

′) where

(5.10)

Jt,v

(
s, s′) := E s

s

([−v,0] − Ŵt,s

)
1{ĥs∗

s ≤−Ŵt,s}

× E s′
s′

([−v,0] − Ŵt,s′
)
1{ĥs′∗

s′ ≤−Ŵt,s′ } × 1At .

We now have the following.

LEMMA 5.4. Let v ≥ 0. Then

(5.11) Ẽ
(
C∗

t,rt

([−v,0]); ĥ∗
t ≤ 0|ĥt (Xt ) = 0

) = 2
∫ rt

s=0
jt,v(s)ds

and

(5.12)

Ẽ
((
C∗

t,rt

([−v,0]))2; ĥ∗
t ≤ 0|ĥt (Xt ) = 0

) = 4
∫ rt

s,s′=0
jt,v

(
s, s′) ds ds ′

+ 2
∫ rt

s=0
jt,v(s, s)ds.

PROOF. Let us start with (5.11). By Lemma 3.1 with r = 0, u = w = 0 and
Lemma 3.2 with r = rt (ignoring the law of ht−s(Xt−s)), we may write the left-
hand side as

(5.13) Êt

∫ rt

s=0
Jt,v(s)N (ds).
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Since N is a Poisson point process on R+ with intensity 2 dx, it associated Palm
kernel can be written as (P(Ns ∈ ·) : s ≥ 0) where (Ns : s ≥ 0) is a family of point

processes such that Ns
law= N + δs , assumed to be defined alongside W and H and

independent of them. Now, conditional on F := σ(W,H) the random function Jt,v

depends only on N (through the last indicator in its definition). Therefore, by the
Palm–Campbell theorem (see, e.g., Proposition 13.1.IV in [15]) and independence
between Ns and F ,

(5.14) Êt

(∫ rt

s=0
Jt,v(s)N (ds)|F

)
= 2

∫ rt

s=0
Êt

(
Jt,v(Ns, s)|F)

ds, P̂t -a.s.,

where Jt,v(Ns, s) is defined as Jt,v(s) in (5.9) only with Ns replacing N . However,
because of the middle indicator in definition (5.9), there is in fact no difference
between Jt,v(Ns, s) and Jt,v(s). Taking now expectation with respect to Êt and
using Fubini’s theorem to exchange between the integral and the expectation on
the right-hand side, we obtain (5.11).

The second claim of the lemma is quite similar. We first write the left-hand side
of (5.12) as

(5.15) Êt

(∫ rt

s=0
Jt,v(s)N (ds)

)2
= Êt

∫ rt

s,s′=0
Jt,v

(
s, s′)N 2(

ds × ds ′),
where N 2 is the product measure of N with itself. Letting (Ns,s′ : s, s′ ≥ 0) be a

collection of point process which are independent of W and H and with Ns,s′ law=
N + δs + 1s′ �=sδs′ , we now use the second-order Palm–Campbell theorem (see,
e.g., example 13.1.11 in [15] or alternatively just apply the usual theorem to N 2).
This shows that the last expectation is equal to∫ rt

s,s′=0
Êt

(
Jt,v

(
Ns,s′, s, s′))M(

ds × ds′)

=
∫ rt

s,s′=0
Êt

(
Jt,v

(
s, s′))M(

ds × ds′),(5.16)

where in the first integral Jt,v(Ns,s′, s, s′) is defined as Jt,v(s, s
′) only with Ns,s′

replacing N , again making no difference, and in the second integral M2 is
the intensity measure of the process N 2 on R

2+. Since M2 satisfies M2(A) :=
4

∫ ∞
s,s′=0 1A(s, s′)ds ds ′ + 2

∫ ∞
s=0 1A(s, s)ds for all Borel sets A ⊆ R

2+, the result
follows. �

Next, we need asymptotics and bounds on jt,v(s) and jt,v(s, s
′). This is where

the results of Section 4 will be used. For what comes next, given M ≥ 0, we shall
need the following refinements of Jt,v(s) from (5.9):

(5.17) J<M
t,v (s) = Jt,v(s)1{|Ŵt,s |<M}, J

≥M
t,v (s) = Jt,v(s)1{|Ŵt,s |≥M},

with j<M
t,v (s), j

≥M
t,v (s) the respective expectations under Êt . We start with upper

bounds.
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LEMMA 5.5. There exists C,C′ > 0 such that for all t ≥ 0, 0 ≤ s ≤ t/2, v ≥ 0
and M ≥ 0,

(5.18) j
≥M
t,v (s) ≤ C

e
√

2v(v + 1)

t (s + 1)
√

s
× e−C′M(

e− v2
16s + e− v

2
)
.

Also, there exists C > 0 such that for all t ≥ 0, 0 ≤ s ≤ s ′ ≤ t/2 and v ≥ 0,

(5.19) jt,v

(
s, s′) ≤ C

(v + 1)2e2
√

2v(e− v2
16s + e− v

4 )(e− v2

16s′ + e− v
4 )

t (s + 1)(s′ − s + 1)
√

s(s′ − s + 1s=s′)
.

PROOF. Starting with the first inequality, by conditioning on Ŵt,s we write
j

≥M
t,v (s)

(5.20)
∫
|z|≥M

qt

(
(0,0); (s, z)) × es,v(z) × qt

(
(s, z); (t,0)

) × pt(s, z)dz,

where qt ((s1, z1), (s2, z2)) is given by

(5.21) P

(
max

k:σk∈[s1,s2]
(
Ŵt,σk

+ ĥσk∗
σk

) ≤ 0|Ŵt,s1 = z1, Ŵt,s2 = z2

)
;

es,v(z) := E(Es([−v,0] − z); ĥ∗
s ≤ −z) and pt(s, z) is the (conditional) density

function P(Ŵt,s ∈ dz|Ŵt,0 = Ŵt,t = 0)/dz.
Observe that the definition of qt above does not change if we replace Ŵt,u by

Ŵt ′,u for any t ′ ≥ s2 everywhere inside the probability brackets. Indeed, recalling
the definition of Ŵt,u in (3.1), we see that the difference Ŵt,u − Ŵt ′,u is a (deter-
ministic) linear function of u, which is lost under the conditioning, because of the
Gaussian law of Ŵ . In particular, we can rewrite the integral as

(5.22)
∫
|z|≥M

qs

(
(0,0); (s, z)) × es,v(z) × qt

(
(s, z); (t,0)

) × pt(s, z)dz.

Now, conditioned on Ŵt,0 = Ŵt,t the law of Ŵt,s is Gaussian with mean −γt,s

and variance s(t − s)/t . Thanks to the assumption s ≤ t/2, the above variance
always lies inside [s/2, s], and hence pt(s, z) is smaller than Cs−1/2e−(z+γt,s )

2/2s .
Using Lemma 3.4, either the first upper bound if z ≤ 0 or the second if z ≥ 0, we
have

(5.23) qs

(
(0,0); (s, z)) × pt(s, z) ≤ C

(z− + e− 3
2 z+

)

(s + 1)
√

s
.

Above we have replaced s−1 from (3.9) by (s + 1)−1. To justify such replacement,
we notice that if s ≥ 1, we can compensate for this change increasing the con-
stant C. Whereas, if s ∈ [0,1], we just bound the left-hand side above by pt(s, z)

which is always smaller than the right-hand side, again increasing the constant if
necessary.
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Using the upper bound in Lemma 4.2 to estimate es,v(z) and again the first
upper bound in Lemma 3.4 for qt ((s, z); (t,0)), the integral in (5.22) is smaller
than

C

∫
|z|≥M

(z− + e− 3
2 z+

)

(s + 1)
√

s
e
√

2(v+z)(v + 1)
(
z− + 1

)(
e− (v+z)2

4s + e− v+z
2

)z− + 1

t − s
dz

≤ C
e
√

2v(v + 1)

t (s + 1)
√

s

∫ (
z− + 1

)2(
z− + e− 3

2 z+)

× (
e− (v+z)2

4s
+√

2z + e− v+z
2 +√

2z) dz,(5.24)

where the range of the last integral is |z| ≥ M .
We now distribute the last parenthesis in the integrand and obtain two distinct

integrals. Observing that 1/2 ≤ √
2 ≤ 3/2, the first integral can be bounded above

by Ce−C′Me−v2/16s if z ≥ −v/2 and otherwise by

(5.25) e−√
2((v/2)∨M)((v/2) ∨ M + 1

)3 ≤ Ce−C′Me−v/2.

The second can just be bounded by Ce−C′Me−v/2. Combining these bounds the
last integral in (5.24) can always be bounded by Ce−C′M(e−v2/16s + e−v/2), which
shows the first part of the lemma.

Moving on to the second, assume first that s �= s′ and condition this time on
Ŵt,s and Ŵt,s′ to write jt,v(s, s

′) as

(5.26)

∫
z,z′

qs

(
(0,0); (s, z)) × es,v(z) × qs′

(
(s, z); (

s′, z′))
× es′,v

(
z′) × qt

((
s′, z′); (t,0)

) × pt

(
(s, z); (

s′, z′)) dz dz′,

where pt((s, z); (s′, z′)) = P(Ŵt,s ∈ dz, Ŵt,s′ ∈ dz′|Ŵt,0 = Ŵt,t = 0) and e·,·(·),
q·(·) are defined as before. Then pt((s, z); (s′, z′)) satisfies

pt

(
(s, z); (

s′, z′))
≤ π−1

(
t

s(s′ − s)(t − s′)

)1/2
exp

(
−(z + γt,s)

2

2s
− (z′ + γt,s′)2

2(t − s ′)

)
.(5.27)

As in the bound for jt,v(s), we now use the upper bounds in Lemma 3.4 for
both qs and qt in the integrand, with the “right” bound chosen depending on
whether z (resp., z′) are positive or negative. This bounds qs((0,0); (s, z)) ×
qt ((s

′, z′); (t,0)) × pt((s, z); (s′, z′)) by

(5.28) Ct−1s−1/2(s + 1)−1(
s′ − s

)−1/2(
z− + e− 3

2 z+)(
z′− + e− 3

2 z′+)
,

where we have used that t − s′ ∈ [t/2, t] and again replaced the qs term by 1 if
s ∈ [0,1].
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Using now Lemma 4.2 to bound the “e-terms” and again the first upper bound
in Lemma 3.4 for the remaining “q-term” if (s′ − s) ≥ 1 or otherwise the trivial
bound 1, the double integral in (5.26) is bounded up to a multiplicative factor by

e2
√

2v(v + 1)2

t (s + 1)(s′ − s + 1)
√

s(s′ − s)

×
∫
z,z′

(
z− + e− 3

2 z+)(
z′− + e− 3

2 z′+)(
z− + 1

)2(
z′− + 1

)2

× (
e− (v+z)2

4s + e− (v+z)
2

)(
e− (v+z′)2

4s′ + e− (v+z′)
2

)
dz dz′.(5.29)

The above integral factors into two identical single variable integrals which
are again equal to the integral in (5.24) when M = 0. Therefore, the bound
obtained there applies making the double integral smaller than (e−v2/(16s) +
e−v/2)(e−v2/(16s′) + e−v/2) and the whole last display smaller than the right-hand
side of (5.19).

Lastly, we handle the case s = s′ and it is here where we need the second mo-
ment bound from Section 4. Again, we write jt,v(s, s) as

(5.30)
∫
z
qs

(
(0,0); (s, z)) × e(2)

s,v(z) × qt

(
(s, z); (t,0)

) × pt(s, z)dz,

where e
(2)
s,v(z) := E(E([−(v + z),−z])2; ĥ∗

s ≤ −z). We now repeat the argument
in the proof of (5.18) with M = 0, only that we use the bound on e

(2)
s,v(z) from

Lemma 4.4 instead of the bound on es,v(z). This gives as an upper bound on
jt,v(s, s),

C
1

t
√

s(s + 1)
(v + 1)2e2

√
2v(

e− v2
4s + e− v

2
)

×
∫
z

(
z− + 1

)2(
z− + e− 3

2 z+)
e
√

2z dz.(5.31)

The last integral is bounded by a constant and thus the whole expression can be
made smaller than the right-hand side of (5.19) if we properly tune the preceding
constants. �

Next, we need also asymptotics for j<M
t,v (s). This is given in the next lemma.

LEMMA 5.6. There exists C > 0 such that as t → ∞ followed by v → ∞ and
then M → ∞,

(5.32) j<M
t,v (s) ∼ Ct−1s−3/2ve

√
2v− v2

2s ,

uniformly in s ∈ [ηv2, v2/η] for any fixed η > 0.
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PROOF. As in the previous lemma, we start by writing j<M
t,v (s) as the integral

j<M
t,v (s) =

∫
|z|<M

qs

(
(0,0); (s, z)) × es,v(z) × qt

(
(s, z); (t,0)

)
× pt(s, z)dz,(5.33)

with qs(·), es,v(·) and pt(·) defined as before. We now use the corresponding
asymptotic results, in place of the upper bounds we have used before, to derive
asymptotics for the above integral when the limits are taken in the prescribed or-
der.

Accordingly, let us first fix η, s, v and M and take t → ∞. Conditioned on
Ŵt,0 = Ŵt,t = 0, the law of Ŵt,s is Gaussian with mean 3

2
√

2
(s(log+ t)/t − log+ s)

and variance s(t − s)/t . Hence, for all z and s fixed the density pt(s, z) of Ŵt,s

tends to

(5.34) (2πs)−1/2 exp
(
−

(z + 3
2
√

2
log+ s)2

2s

)
as t → ∞,

and is bounded by Cs−1/2 for all t ≥ s/2 and any z ∈ R fixed. At the same time, by
the third part of Lemma 3.4, we know that qt ((s, z); (t,0)) is asymptotic equivalent
to 2t−1f (s)(z)g(0) as t → ∞. The first upper bound in the same lemma also says
that qt ((s, z); (t,0)) is smaller than C(t − s)−1(z− + 1) < 2Ct−1(z− + 1) if t ≥
s/2, which yields f (s)(z) ≤ C(z− + 1) for all s > 0, z ∈ R and t sufficiently large.
Then, using the dominated convergence theorem, we can replace the quantities
in the integrand of (5.33) with their asymptotic equivalences and obtain that the
integral itself is asymptotic to

2
g(0)

t
√

2πs

∫
|z|<M

qs

(
(0,0); (s, z))es,v(z)f

(s)(z)

× exp
(
−

(z + 3
2
√

2
log+ s)2

2s

)
dz,(5.35)

when t → ∞ for fixed s and v.
Next, we keep M fixed and take v → ∞. We will consider s ∈ [ηv2, η−1v2], so

that s → ∞ as well. Then, by the third part of Lemma 3.4 again, we have that for
any fixed z,

(5.36) qs

(
(0,0); (s, z)) ∼ 2

f (0)(0)g(z)

s
as s → ∞,

with f (0)(0), g(z) > 0 from the lemma. Moreover, the upper bounds in the same
lemma also show that the left-hand side above is smaller than Cs−1(z− + e−3z+/2)

for all z and s. Again, this implies that g(z) ≤ C(z− + e−3z+/2) for all z with
the constant independent of s. As for f (s)(z), the last part of Lemma 3.4 says that
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f (s)(z) is positive and it tends to f (z) > 0 as s → ∞ and since we have established
that f (s)(z) ≤ C(z− + 1) the same bound applies to the function f . Finally, we
estimate es,v(z) using Lemma 4.2 with u, v, t there replaced by −z,−(v + z) and
s, respectively. Since |z| ≤ M and η

√
s ≤ v ≤ η−1√s, the conditions of the lemma

are satisfied with ε = 1/M and all s large enough, which yields

(5.37) es,v(z) ∼ v
g(z)√

π
exp

(√
2(v + z) − (v + z)2

2s

)
∼ (

ve
√

2v− v2
2s

)g(z)√
π

e
√

2z,

when v → ∞ uniformly in s ∈ [ηv2, η−1v2] and |z| < M . Combining all the above
and using the dominated convergence theorem again, we see that the integral in
(5.35) is asymptotic to

(5.38) C
ve

√
2v− v2

2s

s

∫
|z|<M

e
√

2zf (z)g(z)2 dz,

as v → ∞ uniformly in s as required and for fixed M . Finally, in light of the
positivity and upper bounds for f and g the last integral converges when M → ∞
to a positive and finite constant. Collecting all the results together, we complete
the proof. �

We can now prove Lemma 5.2 and Lemma 5.3 and thereby complete the proof
of Proposition 1.5.

PROOF OF LEMMA 5.2. Fix first v ≥ 0 and write Ẽ(C∗
t,rt

([−v,0])|ĥ∗
t =

ĥt (Xt ) = 0) as

(5.39)
Ẽ(C∗

t,rt
([−v,0]); ĥ∗

t ≤ 0|ĥt (Xt ) = 0)

P̃(ĥ∗
t ≤ 0|ĥt (Xt ) = 0)

.

An application of Lemma 3.1 with r = u = w = 0 followed by the third part of
Lemma 3.4 shows that the denominator is asymptotic to Ct−1 as t → ∞ with
C ∈ (0,∞). Hence, it remains to treat the numerator.

Now let M,η > 0, assume t is large enough and use Lemma 5.4 to write the
numerator as

2
∫ η−1v2

s=ηv2
j<M
t,v (s)ds

+ 2
∫ rt

s=0

(
jt,v(s)1s∈[ηv2,η−1v2]c + j

≥M
t,v (s)1s∈[ηv2,η−1v2]

)
ds.(5.40)

We first want to claim that the second integral becomes negligible when M → ∞
and η → 0, in the asymptotic regime we consider. To this end, we observe that
jt,v(s) = j

≥0
t,v (s), so the first upper bound in Lemma 5.5 may be used to estimate
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j
≥M
t,v (s) as well as jt,v(s) and bound the second integral above by Ct−1e

√
2v(v+1)

times

∫ ∞
s=0

e−v2/16s + e−v/2
√

s(s + 1)

(
1{s∈[ηv2,η−1v2]c} + e−C′M1{s∈[ηv2,η−1v2]}

)
ds

≤
∫ ∞

0

e− v
2√

s(s + 1)
ds +

∫ ηv2

0

e− v2
16s

s3/2 ds + e−C′M
∫ ∞
ηv2

s− 3
2 ds +

∫ ∞
v2
η

s− 3
2 ds

≤ C

(
e− v

2 + 1

v
+ e−C′M

v
√

η
+

√
η

v
,

)
.

(5.41)

Therefore the second integral is bounded above by t−1e
√

2v times
(
e−v/4 +

e−C′Mη−1/2 +√
η
)
. The latter factor tends to 0 when v → ∞ followed by M → ∞

and then η → 0.
At the same time, thanks to the uniform convergence in Lemma 5.6 we know

that as t → ∞ followed by v → ∞ and then M → ∞, the first integral in (5.40)
is asymptotic equivalent to

(5.42) Ct−1ve
√

2v
∫ η−1v2

s=ηv2
s−3/2e−v2/2s ds = Ct−1e

√
2v

∫ η−1

y=η
y−3/2e−1/2y dy,

where we have substituted y = v2s to obtain the second integral. Taking now
η → 0, the last integral converges to a constant which is positive and finite.

Combining the estimate on the first integral with the bound on the second shows
that the numerator is asymptotically equivalent to Ct−1e

√
2v as t → ∞ followed

by v → ∞. Together with the Ct−1 asymptotics for the denominator, this yields
the desired result. �

Lastly, we provide the following.

PROOF OF LEMMA 5.3. As in the proof of Lemma 5.2, we can write the left-
hand side of (5.6) as

(5.43)
Ẽ((C∗

t,rt
([−v,0]))2; ĥ∗

t ≤ 0|ĥt (Xt ) = 0)

P̃(ĥ∗
t ≤ 0|ĥt (Xt ) = 0)

.

The denominator is asymptotic to Ct−1, and hence it is enough to show that the
expectation in the numerator is bounded above by Ct−1(v + 1)e2

√
2v for all t large

enough. Again, we can use Lemma 5.4 and Lemma 5.5 to bound this expectation
for fixed v and t large enough by Ct−1e2

√
2v(v + 1)2 times

(5.44)
∫ ∞
s=0

e−v2/16s + e−v/4
√

s(s + 1)
×

(
1 +

∫ ∞
s′=s

1√
s′ − s(s′ − s + 1)

ds′
)

ds.
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The second integral is bounded by a constant uniformly in s. The first is
bounded by a constant if v ∈ [0,1] and otherwise, using the substitution s = v2y,
by

(5.45) Ce−v/4 + v−1
∫ ∞
y=0

y−3/2e−1/16y dy ≤ C(v + 1)−1.

All together the expectation in question is bounded above by Ct−1e2
√

2v(v + 1)

whenever t is large, as we set out to prove. �

5.2. Proof of Proposition 1.6. PROOF OF PROPOSITION 1.6. As in the
proofs before, by monotonicity it is enough to show that the limit in (1.26) holds
along v’s which are not charged with positive probability by C. Assuming that v

is as such, we use Lemma 5.1 with u = 0, Lemma 3.1 with r = u = w = 0, and
finally Lemma 3.2 to write P(C([−v,0)) = 0) as the limit

(5.46) lim
t→∞

P(maxk:σk∈[0,t](Ŵt,σk
+ ĥσk∗

σk
+ v1[0,rt ](σk)) ≤ 0|Ŵt,0 = Ŵt,t = 0)

P(maxk:σk∈[0,t](Ŵt,σk
+ ĥ

σk∗
σk ) ≤ 0|Ŵt,0 = Ŵt,t = 0)

.

The denominator is asymptotic to Ct−1 by the third statement in Lemma 3.4 with
v = w = 0 and r = rt . It therefore remains to bound the numerator.

For a lower bound, we follow the heuristics of Brunet and Derrida and restrict
the event in the numerator by intersecting with the event that up time v/2 there
was no branching and that at this time Ŵt,v/2 ≤ −v. Explicitly, we lower bound
the numerator in (5.46) by

P(σ1 > v/2, Ŵt,v/2 ≤ −v|Ŵt,0 = Ŵt,t = 0)

× P

(
max

k:σk∈[0,t]
(
Ŵt,σk

+ ĥσk∗
σk

+ v1[0,rt ](σk)
) ≤ 0|Ŵt,v/2 = −v, Ŵt,t = 0

)
,(5.47)

where we have used the stochastic monotonicity of the trajectories of Ŵt,s with re-
spect to the initial conditions in the second term above. Now Ŵt,v/2 under Ŵt,0 =
Ŵt,t = 0 has a Gaussian law with mean 3

2
√

2
(v(2t)−1 log+ t − log+(v/2)) =

− 3
2
√

2
log+(v/2)+ o(1) and variance v(2t − v)/(4t) = v/2 + o(1), with both o(1)

terms tending to 0 as t → ∞. At the same time, σ1 is exponential with rate 2 and
independent of Ŵ . It follows therefore that the first probability in (5.47) will be
bounded from below by

(5.48) Ce−v 1

(v/2)1/2 exp
(
−

( 3
2
√

2
log+(v/2) + v)2

v

)
≥ C′v− 1

2 e−2v,

for all t large enough.
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As for the second probability in (5.47), using the total probability formula with
respect to Wt,rt and recalling the definition of qt from (5.21), it is at least

(5.49)

∫ −2v

w=−r
2/3
t

qt

(
(v/2,0); (rt ,w + v)

) × qt

(
(rt ,w); (t,0)

)
× P(Ŵt,rt ∈ dw|Ŵt,v/2 = −v, Ŵt,t = 0)dw.

As we have noticed before (e.g., in the proof of Lemma 5.5), we can replace Wt,u

by Wrt ,u in the definition of qt , thereby obtaining,

(5.50) qt

(
(v/2,0); (rt ,w + v)

) = qrt

(
(v/2,0); (rt ,w + v)

)
.

Thanks to the asymptotic statement in Lemma 3.4, the right-hand side of (5.50)
is at least Cr−1

t w− in the above ranges of v,w for all t large enough. The same
statement also shows that qt ((rt ,w); (t,0)) ≥ C′t−1w− under the same conditions.

With the bounds above replacing the corresponding quantities, the last integral
is equal to

(5.51)
C

trt
E

(
Ŵ 2

t,rt
; Ŵt,rt ∈ [−(rt )

2/3,−2v
]|Ŵt,v/2 = −v, Ŵt,t = 0

)
.

Under the conditioning Ŵt,rt is Gaussian with mean and variance given respec-
tively by

(γt,v/2 − v)
t − rt

t − v
2

− γt,rt = 3

2
√

2

(
log

v

2
− log rt − v + o(1)

)
and

(
rt − v

2

)
t − rt

t − v
2

= rt − v

2
+ o(1),

(5.52)

with o(1) → 0 as t → ∞. Therefore, for all t large enough the last expectation is
at least Crt , making the entire expression bounded below by Ct−1. Plugging this
in (5.46) shows that the numerator is at least C′t−1v−1/2e−2v and in light of the
asymptotics for the denominator, also that for all v ≥ 1,

(5.53) P
(
C
([−v,0

)) = 0) ≥ C ′v−1/2e−2v.

We turn to an upper bound for the numerator of (5.46). Thanks to Lemma 2.8,
we know that the lower tails of ĥ∗

t decay uniformly in t ≥ 0. It follows that for any
ε > 0, there must exists M > 0 large enough, such that P(ĥ∗

t < −M) < ε. Fixing
such ε > 0 and M and assuming that v > M and that t ≥ r2

t , we let

(5.54) τ = inf{s ≥ 0 : Ŵt,s = −v + M} ∧ v2}.
Then the numerator in (5.46) conditional on τ = s ≤ v2, is at most

(5.55)

P

(
max

k:σk∈[0,s] ĥ
σk∗
σk

≤ −M
)

× P

(
max

k:σk∈[s,t]
(
Ŵt,σk

+ ĥσk∗
σk

) ≤ 0|Ŵt,s = −v, Ŵt,t = 0
)
,
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where we have used stochastic monotonicity of W with respect to the boundary
conditions and independence between W , H and N .

Conditioning on N ([0, s]) and using the fact that P(ĥσk∗
σk

≤ −M) < ε for
each atom σk of N under the conditioning, we may bound the first probability
above by EεN ([0,s]) = e−2s(1−ε). As for the second, using the first upper bound in
Lemma 3.4, we see that it is bounded above by C(v + 1)(t − s)−1 ≤ C′(v + 1)t−1,
for all t large enough with C′ not depending on v.

At the same time, conditional on Ŵt,0 = Ŵt,t = 0 the distribution of Ŵt,s is
Gaussian with mean −γt,s = − 3

2
√

2
log+ s + o(1) and variance s(t − s)t−1 = s +

o(1) as t → ∞ with both o(1) tending to 0 uniformly in s ≤ v2. Then, setting
z := −v + M , for all v large enough and then t large enough, we have

(5.56)

P(τ ∈ ds|Ŵt,0 = Ŵt,t = 0)/ds

≤ P(Ŵt,s ∈ dz|Ŵt,0 = Ŵt,t = 0)/dz

≤ Cs−1 exp
(
−

(v − M − 3
2
√

2
log+ s)2

2s

)

≤ Cs−1 exp
(−(1 − ε)v2/(2s)

)
,

whenever s < v2.
Collecting the above bounds and using the total probability formula, we see that

the probability of the event in the numerator of (5.46) is bounded above by

(5.57) C
(v + 1)

t

(∫ v2

s=0
s−1e−(1−ε)(2s+ v2

2s
) ds + e−2(1−ε)v2

)
.

The exponent in the integrand is maximized at s = v/2, and its value then is
−2(1 − ε)v. The last display is therefore at most Ct−1e−2(1−2ε)v for all v large
enough. Together with the asymptotics for the denominator in (5.46), this shows
that for any ε > 0 if v is large enough, then

(5.58) P
(
C
([−v,0)

) = 0
) ≤ Ce−2(1−2ε)v,

Combining (5.53) with (5.58) shows what we wanted to prove. �

6. Proofs of extreme level set theorems. In this section, we combine the re-
sults concerning cluster properties from the previous section with the law of the
limiting generalized extremal process Ê to derive asymptotic results for E . We
then use the convergence of the finite time generalized extremal process Êt to its
corresponding limit, to derive asymptotic statements for the extremal level sets
of h.
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6.1. Structure of extreme level sets. We start with a lemma that essentially
contains the statement of Theorem 1.1 and Theorem 1.2. Recall the definition of
E(·;B) and Et (·;B) in (1.18).

LEMMA 6.1. Let C� be as in Proposition 1.5 and Z be as in (1.3). Then, for
all α ∈ (0,1] as v → ∞,

(6.1)
E([−v,∞); [−αv,∞))

C�Zve
√

2v

P−→ α.

PROOF. Given −∞ < −v < w < z ≤ ∞, let us abbreviate

(6.2) Fv(w, z) := E
([−v,∞); [w,z]) = ∑

(u,C)∈Ê
C
([−v − u,0])1[w,z](u).

Since conditional on Z the law of Ê is that of a Poisson point process whose
intensity factorizes (see (1.11)), we can write

E
(
Fv(w, z)|Z) =

∫ z

w
EC

([−v − u,0])Ze−√
2u du,(6.3)

Var
(
Fv(w, z)|Z) =

∫ z

w
E

(
C
([−v − u,0]))2

Ze−√
2u du,(6.4)

with C distributed according to ν. Using then Proposition 1.5, observing that the
right-hand side in the first statement of the proposition can be made into an upper
bound, albeit with a different constant, we then get

E
(
Fv(w, z)|Z) ≤ C

∫ z

w
e
√

2(v+u)Ze−√
2u du = CZe

√
2v(z − w),(6.5)

Var
(
Fv(w, z)|Z) ≤ C

∫ z

w
(v + u)e2

√
2(v+u)Ze−√

2u du

≤ C′Ze2
√

2v+√
2z(z + v),(6.6)

which is valid for all v,w, z as above. Moreover,

E
(
Fv(w, z)|Z) ∼ C�Ze

√
2v(z − w),

as w + v → ∞ and uniformly in z.(6.7)

Now given α as in the conditions of the Proposition and v ≥ 1, let us set w =
−αv, u = −αv + √

logv and z = √
logv and write

(6.8) Fv(w,∞) = Fv(w,u) + Fv(u, z) + Fv(z,∞).

For the first term, we obtain from (6.5) that

(6.9)
E(Fv(w,u)|Z)

Zve
√

2v
≤ C

√
logv

v

v→∞−→ 0, for all v ≥ 1,
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which implies by Markov’s inequality that Fv(w,u)/(Zve
√

2v) converges to 0
as v → ∞ in P(·|Z)-probability for almost every Z, and hence that Fv(w,u)/

(Zve
√

2v) converge to 0 in P-probability. As for the second term in (6.8), we use
respectively (6.7) and (6.6) to obtain

E(Fv(u, z)|Z)

C�Zve
√

2v
∼ z − u

v
∼ α as v → ∞; and

Var(Fv(u, z)|Z)

E(Fv(u, z)|Z))2 ≤ Ce
√

2z

Z

(z + v)

(z − u)2
v→∞−→ 0.

(6.10)

Chebyshev’s inequality then shows that (C�Zve
√

2v)−1Fv(u, z) tends to α as v →
∞ in P(·|Z)-probability for almost every Z, and hence that

(6.11)
(
C�Zve

√
2v)−1

Fv(u, z) → α in P-probability as v → ∞.

Lastly, for the third term in (6.8), observe that whenever Ê([z,∞)) = 0, we also
have Fv(z,∞) = 0. Since conditional on Z, the intensity measure governing the
law of Ê is finite on [0,∞) almost surely, the latter must happen for large enough z.
This shows that Fv(z,∞)

v→∞−→ 0 almost surely and in particular that

(6.12) Fv(z,∞)
(
Zve

√
2v)−1 −→ 0 as v → ∞ in P-probability.

Combining the convergence results for the three terms in the left-hand side of (6.8)
shows that Fv(w,∞)(C�Zve

√
2v)−1 converges in P-probability to α as v → ∞.

Since Fv(w,∞) is precisely the left-hand side of (1.19), the proof is complete. �

The proof of Theorem 1.1 and Theorem 1.2 are now straightforward.

PROOF OF THEOREM 1.1. The first part of the Theorem has been already
proved in Lemma 6.1 with α = 1, keeping in mind (1.12). For the second part, ob-
serve that the joint convergence of (Êt ,Zt ) to (Ê,Z) together with the almost sure
convergence of Zt to Z, shows that (Êt ,Z) also converges jointly weakly to (Ê,Z).
Moreover, for any v ≥ 0 and a Borel set B ⊆ R, the map Ê 
→ E([−v,∞);B) is
continuous in the underlying topology for almost every Ê . This is because Ê has
a conditional Poissonian law with a product intensity measure, of which the first
coordinate is absolutely continuous with respect to Lebesgue.

Since Z is almost surely positive, the latter implies that for all v ≥ 0,

(6.13)
Et ([−v,∞); [−v,∞])

C�Zve
√

2v

t→∞=⇒ E([−v,∞); [−v,∞])
C�Zve

√
2v

.

The numerator on the right-hand side is exactly E([−v,∞)) in light of (1.12). For
the left-hand side, the asymptotic separation of extreme values as manifested in
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(1.14) shows that we can replace the numerator with Et ([−v,∞)) with the conver-
gence still holding. This together with the first statement of the theorem yields the
desired result. �

PROOF OF THEOREM 1.2. The first part is again an immediate consequence of
Lemma 6.1. Just divide both numerator and denominator by C�Zve

√
2v for v ≥ 1,

recalling that Z is almost surely positive. Then take v → ∞ and use Lemma 6.1
with the given α for the numerator and α = 1 for the denominator. Using also
relation (1.10), this gives (1.19).

As for the second part, the same argument as in the previous proof shows that
the numerator and denominator in (1.20) converge weakly jointly to the numerator
and denominator of (1.19), respectively. This together with the first part shows the
second part of the theorem. �

6.2. Distance to the second maximum. Finally, let us prove the theorem con-
cerning the distance to the second maximum.

PROOF OF THEOREM 1.4. Starting with the first statement and assuming that
E is realized as in (1.6), we have

(6.14)
{
v1 − v2 > w

} = {
u1 − u2 > w

} ∩ {
C1([−w,0)

) = 0
}
.

Since the cluster decorations are independent of the “backbone” Poisson point
process E∗, the two events on the right-hand side are independent, and hence

(6.15) P
(
v1 − v2 > w

) = P
(
u1 − u2 > w

)
P

(
C
([−w,0)

) = 0
)
.

Now, to compute the first probability on the right-hand side, notice that we can
rewrite the intensity measure in the law of E∗ as e−√

2(u−(logZ)/
√

2) du. This recasts
E∗ as a randomly shifted Poisson point process with intensity measure e−√

2u du.
This random shift is irrelevant for the quantity u1 − u2, and hence we may even
assume that Z = 1.

In this case, by conditioning on u1 we can write the probability that u1 −u2 > w

as ∫ ∞
u=−∞

e
−√

2u− 1√
2

e−√
2u

exp
(
−e−√

2u(e−√
2w − 1)√

2

)
du

= e−√
2u

∫ ∞
z=−∞

e
−√

2z− 1√
2

e−√
2z

dz,(6.16)

where we have used the substitution z = u − w. The integral converges to a finite
positive constant showing that P(u1 − u2 > w) = Ce−√

2w .
Therefore, taking the logarithm of both sides in (6.15), dividing by w and letting

w → ∞, the first term converges to −√
2 in light of what we have just proved,
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while the second converges to −2 in light of Proposition 1.6. The two together
show the first part of the theorem.

For the second part of the theorem, first in light of the tightness of the maximum
the joint distribution of the first and second highest points of Et converge weakly
to the distribution of v1 and v2. It follows then by the continuous mapping theorem
that the distribution of h∗

t − h
∗(2)
t converges weakly to the distribution of v1 − v2.

This shows (1.23) when w → ∞ along continuity points of the distribution of
v1 − v2. The extension to any w follows by monotonicity following arguments
similar to the ones used in the proofs before. �
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SUPPLEMENTARY MATERIAL

Decorated random walk restricted to stay below a curve (DOI: 10.1214/18-
AOP1308SUPP; .pdf). Proofs for the random walk statements in Section 2.1.
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