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INTERMITTENCY FOR THE STOCHASTIC HEAT EQUATION
WITH LÉVY NOISE

BY CARSTEN CHONG∗,1 AND PÉTER KEVEI∗,†,2

Technical University of Munich∗ and University of Szeged†

We investigate the moment asymptotics of the solution to the stochastic
heat equation driven by a (d + 1)-dimensional Lévy space-time white noise.
Unlike the case of Gaussian noise, the solution typically has no finite mo-
ments of order 1 + 2/d or higher. Intermittency of order p, that is, the ex-
ponential growth of the pth moment as time tends to infinity, is established
in dimension d = 1 for all values p ∈ (1,3), and in higher dimensions for
some p ∈ (1,1 + 2/d). The proof relies on a new moment lower bound for
stochastic integrals against compensated Poisson measures. The behavior of
the intermittency exponents when p → 1 + 2/d further indicates that inter-
mittency in the presence of jumps is much stronger than in equations with
Gaussian noise. The effect of other parameters like the diffusion constant or
the noise intensity on intermittency will also be analyzed in detail.

1. Introduction. We consider the stochastic heat equation on R
d given by

∂tY (t, x) = κ

2
�Y(t, x) + σ

(
Y(t, x)

)
�̇(t, x), (t, x) ∈ (0,∞) ×R

d,

Y (0, ·) = f,

(1.1)

where κ ∈ (0,∞) is the diffusion constant, σ a globally Lipschitz function and f a
bounded measurable function on R

d . The forcing term �̇ that acts in a multiplica-
tive way on the right-hand side of (1.1) is a Lévy space-time white noise, which is
the distributional derivative of a Lévy sheet in d + 1 parameters. More precisely,
we assume that � takes the form

�(dt,dx) = b dt dx + ρ W(dt,dx) +
∫
R

z (μ − ν)(dt,dx,dz),(1.2)

where b ∈ R is the mean of �, ρ ∈ R is the Gaussian part of �, W is a Gaussian
space-time white noise (see [26]), μ is a Poisson measure on (0,∞)×R

d ×R with
intensity measure ν(dt,dx,dz) = dt dx λ(dz), and λ is a Lévy measure satisfying

λ
({0}) = 0 and

∫
R

(
1 ∧ |z|2)

λ(dz) < ∞.
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Under the assumption that there exists p ∈ [1,1 + 2/d) with

(1.3) mλ(p) :=
(∫

R

|z|p λ(dz)

) 1
p

< ∞,

it is shown in [23] that (1.1) admits a unique mild solution Y satisfying

(1.4) sup
(t,x)∈[0,T ]×Rd

∥∥Y(t, x)
∥∥
p = sup

(t,x)∈[0,T ]×Rd

E
[∣∣Y(t, x)

∣∣p] 1
p < ∞

for all T ≥ 0. A mild solution to (1.1) is a predictable process Y satisfying the
stochastic Volterra equation

(1.5) Y(t, x) = Y0(t, x) +
∫ t

0

∫
Rd

g(t − s, x − y)σ
(
Y(s, y)

)
�(ds,dy)

for (t, x) ∈ (0,∞) ×R
d , where

(1.6) Y0(t, x) :=
∫
Rd

g(t, x − y)f (y)dy, (t, x) ∈ (0,∞) ×R
d,

and

(1.7) g(t, x) := g(κ; t, x) := 1

(2πκt)d/2 e−|x|2
2κt , (t, x) ∈ (0,∞) ×R

d,

is the heat kernel in dimension d . As proved in [11], condition (1.3) can be relaxed
to include Lévy noises with bad moment properties such as α-stable noises, but in
this paper, we will work with (1.3) as a standing assumption.

Our goal is to investigate the behavior of the moments of the solution Y as
time tends to infinity. In particular, we are interested in conditions under which
the solution Y to (1.5) exhibits the phenomenon of intermittency. The following
definition follows [7], Definition III.1.1, [12], equations (1.6) and (1.7) and [20],
Definition 7.5.

DEFINITION 1.1. Let Y be the mild solution to (1.5) and p ∈ (0,∞).

(1) Y is said to be weakly intermittent of order p if

(1.8) 0 < γ (p) ≤ γ (p) < ∞,

where the lower and upper moment Lyapunov exponents γ (p) and γ (p) are de-
fined as

γ (p) := lim inf
t→∞

1

t
inf

x∈Rd
logE

[∣∣Y(t, x)
∣∣p]

,

γ (p) := lim sup
t→∞

1

t
sup
x∈Rd

logE
[∣∣Y(t, x)

∣∣p]
.

(1.9)
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(2) Y is said to have a linear intermittency front of order p if

(1.10) 0 < λ(p) ≤ λ(p) < ∞,

where the lower and upper intermittency fronts λ(p) and λ(p) are defined as

λ(p) := sup
{
α > 0 : lim sup

t→∞
1

t
sup

|x|≥αt

logE
[∣∣Y(t, x)

∣∣p]
> 0

}
,

λ(p) := inf
{
α > 0 : lim sup

t→∞
1

t
sup

|x|≥αt

logE
[∣∣Y(t, x)

∣∣p]
< 0

}
,

(1.11)

with the convention that sup∅ := 0 and inf∅ := +∞.

For important classes of random fields, the purely moment based notion of weak
intermittency in (1.8) translates into an interesting path property called physical
intermittency: With high probability, the random field exhibits an extreme mass
concentration at large times, in the sense that it almost vanishes on R

d except for
exponentially small areas where it develops a whole cascade of exponentially sized
peaks. We refer to [4], Section 2.4, for a precise statement.

Similarly, if the initial condition f decays at infinity [in this case we cannot
expect to have (1.8) because of lacking uniformity in the spatial variable], the
property (1.10) would indicate that intermittency peaks, originating from the initial
mass around the origin, spread in space at a (quasi-)linear speed.

Review of literature. The intermittency problem has been investigated by many
authors in various situations. For example, [7] is a classical reference for intermit-
tency in the parabolic Anderson model (PAM) on Z

d , which is the discrete-space
analogue of (1.1) with

(1.12) σ(x) = σ0x, x ∈ R,

for some σ0 > 0. For the stochastic heat equation, and in particular the continuous
PAM driven by a Gaussian space-time white noise, this is analyzed in all its facets
in [4, 9, 12, 17, 18], just to name a few. We also refer to [20] for a good overview
of the subject.

When it comes to stochastic PDEs with non-Gaussian noise, there is much less
literature on this topic. Apart from work on the discrete PAM (see [1, 13] and
the references therein), we are only aware of [3] that considers the intermittency
problem in continuous space and time. This article investigates the Lévy-driven
stochastic wave equation in one spatial dimension, and shows that the solution is
weakly intermittent of any order p ≥ 2 under natural assumptions. For the proof of
the intermittency upper bounds, the authors employ predictable moment estimates
for Poisson stochastic integrals, which are surveyed in [21] in detail. The proof of
the lower bound, by contrast, relies on L2-techniques, which are the same as in the
Gaussian case treated in [14] or [20].
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Summary of results. For the stochastic heat equation (1.1), however, there is
an important difference that necessitates the development of new techniques for
the intermittency analysis. Namely, as soon as � contains a non-Gaussian part, the
solution to equation (1.1) will typically have finite moments only up to the order
(1+2/d)−ε, even if � itself has moments of all orders or has bounded jump sizes
like in the case of a standard Poisson noise; see Theorem 3.1. In particular, as soon
as we are in dimension d ≥ 2, the solution has no finite second moment. This is in
sharp contrast to the Gaussian case where it is well known that the solution to the
stochastic heat equation, if it exists, has finite moments of all orders. And because,
as a consequence of the comparison principle in Theorem 3.3, we cannot expect in
general that the solution is weakly intermittent of order 1, we are forced to consider
moments of noninteger orders in the range (1,1 + 2/d) ⊆ (1,2). Therefore, well-
established techniques for estimating integer moments of the solution (see [4, 9])
do not apply in this setting.

This problem can be remedied by an appropriate use of the Burkholder–Davis–
Gundy (BDG) inequalities for verifying the intermittency upper bounds; see Theo-
rem 2.4. However, for the corresponding lower bounds, the moment estimates that
are available in the literature (including again the BDG inequalities, but also “pre-
dictable” versions thereof; see, e.g., [21]) do not combine well with the recursive
Volterra structure of (1.5). So although these estimates are sharp, we cannot apply
them to produce the desired intermittency lower bounds. In order to circumvent
this, we use decoupling techniques to establish an—up to our knowledge—new
moment lower bound for Poisson stochastic integrals in Lemma 3.4, which we
think is of independent interest. With this inequality, we then prove the weak inter-
mittency of (1.1) under quite general assumptions. More precisely, if � has mean
zero, we show in Theorem 3.5 and Theorem 3.6 that we have pth order intermit-
tency for all p ∈ (1,3) in dimension 1, and for some p ∈ (1,1+2/d) in dimensions
d ≥ 2. In the latter case, a small diffusion constant κ , or a high noise intensity also
leads to intermittency of any desired order. Noises with positive or negative mean
are treated in Theorem 3.10 or Theorem 3.12, respectively. Moreover, the moment
estimates in Lemma 3.4 also permit us to determine the asymptotics of the in-
termittency exponents as p → 1 + 2/d or κ → 0; see Theorem 4.1. The results
suggest that intermittency in the Lévy case is much more pronounced than with
Gaussian noise.

Our proofs further indicate that the principal source of intermittency is different
between the jump and the Gaussian case. In fact, intermittency in the Gaussian
case is caused by the slow decrease in time of the heat kernel, so peaks in the past
are remembered for a long time and accumulate to new peaks in the future. By
contrast, in the Lévy-driven equation, it is the singularity of the heat kernel at the
origin that causes the high-order intermittent behavior of the solution. So here, for
p close to 1 + 2/d , peaks of order p amplify over short time, and hence generate
even higher peaks. We refer to Remark 3.9 for details.
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In the sequel, we will use the letter C to denote a constant whose value may
change from line to line and does not depend on anything important in the given
context. Sometimes, if we want to stress the dependence of the constant on an
important parameter, say p, we will write Cp . Furthermore, for reasons of brevity,
we write

∫∫ b
a and

∫∫∫ b
a for

∫ b
a

∫
Rd and

∫ b
a

∫
Rd

∫
R

, respectively.

2. Intermittency upper bounds. We first investigate the upper indices γ (p)

and λ(p), respectively. For a random field �(t, x), indexed by (t, x) ∈ (0,∞) ×
R

d , and exponents β ∈ R, c ∈ [0,∞) and p ∈ [1,∞), we use the notation

(2.1) ‖�‖p,β,c := sup
t∈(0,∞)

sup
x∈Rd

e−βt+c|x|∥∥�(t, x)
∥∥
p

and

(2.2) (g � �)(t, x) =
∫ t

0

∫
Rd

g(t − s, x − y)�(s, y)�(ds,dy)

if � is predictable and the stochastic integral (2.2) exists for all (t, x) ∈ (0,∞) ×
R

d . The key ingredient for the intermittency upper bounds is the following Lp-
estimate for stochastic convolutions. The Gaussian case has been obtained in [12],
Proposition 2.5, and [20], Proposition 5.2.

PROPOSITION 2.1 (Weighted stochastic Young inequality). Let d ∈ N,
1 ≤ p < 1 + 2/d and assume that ρ = 0 if p < 2. For any c ≥ 0 and β > κc2d/2,
we have

‖g � �‖p,β,c ≤ Cβ,c(κ,p)‖�‖p,β,c(2.3)

with

Cβ,c(κ,p) = Cp

(
2d |b|

β − 1
2κc2d

+ 2
d(3−p)

2p �(1 − d
2 (p − 1))

1
p mλ(p)

p
2+(2−p)d

2p (πκ)
d(p−1)

2p (β − 1
2κc2d)

2−d(p−1)
2p

+ mλ(2) + |ρ|
(2κ(β − 1

2κc2))
1
4

1{d=1,p≥2}
)
,

(2.4)

where Cp > 0 does not depend on �, κ , β , c or d , and, for any ε > 0, it is bounded
on [1 + ε,1 + 2/d).

The assumption in Proposition 2.1 that ρ = 0 if p < 2 means that if d ≥ 2, then
necessarily the Gaussian part vanishes because p < 1+2/d ≤ 2. This is reasonable
since the stochastic heat equation (1.1) has no function-valued solution in general
if d ≥ 2 and ρ > 0; see, for example, [20], Section 3.5. Moreover, in dimension
d = 1, we shall only consider the case p ≥ 2 if ρ > 0. The reason behind is that
in the case of Gaussian noise, intermittency of order less than 2 is open; see the
remark after Theorem 3.5.
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REMARK 2.2. The three terms in (2.4) illustrate in a nice way the different
contributions of the noise to the size of g ��. The first part comes from the deter-
ministic drift of the noise, the second summand is the Lp-contribution originating
from the jumps, and the third term is the L2-contribution of the jumps and the
Gaussian part (if p ≥ 2). It is important to notice that a Gaussian noise has no
extra Lp-contribution to Cβ,c(κ,p) for p > 2, which reflects the equivalence of
moments of the normal distribution. Furthermore, as p → 1 + 2/d , the second
term explodes for all nontrivial Lévy measures λ, no matter how good their inte-
grability properties are. This is a first indication that the solution to a Lévy-driven
stochastic heat equation (1.1) usually has no finite moments of order 1 + 2/d or
higher. We confirm this rigorously in Theorem 3.1 below.

With the help of Proposition 2.1, we can extend the local moment bound (1.4)
obtained in [23] to a global bound.

PROPOSITION 2.3. Assume that f satisfies |f (x)| = O(e−c|x|) as |x| → ∞
for some c ≥ 0 and that σ in (1.5) is Lipschitz continuous with∣∣σ(x) − σ(y)

∣∣ ≤ L|x − y|, x, y ∈ R,

for some L > 0, and also σ(0) = 0 if c > 0. Further suppose that � takes the form
(1.2) and satisfies (1.3) for some 1 ≤ p < 1 + 2/d as well as ρ = 0 if p < 2. Then
there exists a number β0 > 0 such that the stochastic heat equation (1.5) has a
unique mild solution Y (up to modifications) with ‖Y‖p,β,c < ∞ for all β ≥ β0.

We obtain as an immediate consequence upper bounds for the moments of the
solution Y to the stochastic heat equation (1.5).

THEOREM 2.4 (Intermittency upper bounds). Grant the assumptions and no-
tations of Proposition 2.3:

(1) We have γ (p) < ∞.
(2) If c > 0 and σ(0) = 0, then λ(p) < ∞.

3. Intermittency lower bounds.

3.1. High moments. One important difference between the stochastic heat
equation with jump noise and with Gaussian noise is that the solution Y to (1.5)
has no large moments, even in dimension d = 1 and no matter how good the in-
tegrability properties of the jumps are. In order to understand this, let us consider
the situation where σ ≡ 1, f ≡ 0 and � is a standard Poisson random measure,
that is, λ = δ1, b = 1 and ρ = 0. Denoting by (Si, Yi) the space-time locations of
the jumps of �, we have for (t, x) ∈ (0,∞) ×R

d ,

Y(t, x) =
∫ t

0

∫
Rd

g(t − s, x − y)�(ds,dy) =
∞∑
i=1

g(t − Si, x − Yi)1{Si<t}.
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If t > 1, conditionally on the event that at least one point of � falls into (t −1, t)×∏d
i=1(xi − 1, xi), we have

Y(t, x) ≥ g(U,V ) = 1

(2πκU)
d
2

e−|V |2
2κU ,

where U,V1, . . . , Vd are independent and uniformly distributed on (0,1), and V =
(V1, . . . , Vd). Now

E
[
g(U,V )p

] = 1

(2πκ)
pd
2

∫ 1

0
u−pd

2

(∫ 1

0
e−pv2

2κu dv

)d

du

= 1

(2πκ)
pd
2

∫ 1

0
u

d(1−p)
2

(∫ 1√
u

0
e−py2

2κ dy

)d

du

≥ 1

(2κπ)
pd
2

(∫ 1

0
e−py2

2κ dy

)d ∫ 1

0
u

d(1−p)
2 du,

which is finite if and only if p < 1 + 2/d . So we conclude that

E
[∣∣Y(t, x)

∣∣1+ 2
d
] = ∞

for all (t, x) ∈ (1,∞) × R
d , and, in fact for all t > 0. It is not surprising that

this holds in a much more general setting. The following results also answers an
open problem posed in [3], Remark 1.5. Its proof will be given after the proof of
Theorem 3.6.

THEOREM 3.1 (Nonexistence of high moments). Consider the situation de-
scribed in Proposition 2.3 and assume that λ 
≡ 0. Furthermore, suppose that there
exists (t0, x0) ∈ (0,∞) ×R

d such that

(3.1) σ
(
Y0(t0, x0)

) 
= 0,

where Y0 is defined in (1.6). If Y denotes the unique mild solution to (1.1), then

(3.2) sup
(t,x)∈[0,T ]×Rd

E
[∣∣Y(t, x)

∣∣1+ 2
d
] = +∞

for all T > t0.

REMARK 3.2. The arguments presented in [4] linking the notion of weak
intermittency as defined in Definition 1.1 with physical intermittency remain
valid even if γ (p) = ∞ for large values of p, provided we have γ (p) ↑ ∞ for
p ↑ pmax = inf{p > 0 : γ (p) = ∞} ≤ 1 + 2/d . Under mild assumptions, this is
indeed the case as we will see in Theorem 4.1.
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3.2. The martingale case. In this subsection, we assume that � has mean zero,
that is, b = 0. As in the Gaussian case, we cannot hope for weak intermittency of
order 1 in general. This is a consequence of the following comparison principle
for the stochastic heat equation driven by a nonnegative pure-jump Lévy noise,
whose proof we postpone to the end of Section 5.2. The Gaussian analogue was
established in [22], Theorem 3.1.

THEOREM 3.3 (Comparison principle). Let σ be a nondecreasing Lipschitz
function and � be a Lévy noise as in (1.2) with b ∈ R, ρ = 0 and λ satisfy-
ing λ((−∞,0]) = 0 and mλ(p) < ∞ for some p ∈ [1,1 + 2/d). Assume that
f1 ≥ f2 ≥ 0 are two bounded measurable initial conditions, and Y1 and Y2 the
corresponding mild solutions to (1.1). There exist modifications of Y1 and Y2 such
that, with probability 1, we have Y1(t, x) ≥ Y2(t, x) for all (t, x) ∈ [0,∞) ×R

d .
In particular, if we have in addition that f is a bounded nonnegative function

and 0 ≤ σ(x) ≤ Lx for some L > 0, then the mild solution Y to (1.1) has a non-
negative modification with

e(b∧0)Lt
∫
Rd

g(t, x − y)f (y)dy ≤ E
[∣∣Y(t, x)

∣∣] = E
[
Y(t, x)

]

≤ e(b∨0)Lt
∫
Rd

g(t, x − y)f (y)dy

(3.3)

for all (t, x) ∈ (0,∞) ×R
d . So if b = 0, we have γ (1) = 0 if f is strictly positive

on a set of positive Lebesgue measure; γ (1) = 0 if infx∈Rd f (x) > 0; λ(1) = 0 if

f (x) = O(e−c|x|) for some c > 0; and λ(1) = 0 by definition.

Thus, we are left to consider exponents in the region p ∈ (1,1 + 2/d). In di-
mension 1, we can use Itô’s isometry to calculate second moments, and there are
essentially no differences to the estimates (or exact formulae) obtained in the Gaus-
sian case ([9, 12, 17]). However, for d ≥ 2, we cannot use Itô’s isometry because p

is strictly between 1 and 2. Instead, our main tool for proving intermittency in the
regime p < 2 are the following moment lower bounds for stochastic integrals with
respect to compensated Poisson random measures, which are of independent inter-
est and complement existing sharp (but for our purposes not feasible) estimates in
the literature (see [21]).

LEMMA 3.4. Let (Ft )t≥0 be a filtration on the underlying probability space
and N be an (Ft )t≥0-Poisson random measure on [0,∞) × E, where E is a Pol-
ish space. Further suppose that m denotes the intensity measure of N , and that
H : � × [0,∞) × E →R is an (Ft )t≥0-predictable process such that the process

t �→
∫ t

0

∫
E

H(s, x) Ñ(ds,dx)
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is a well-defined (Ft )t≥0-local martingale, where Ñ(dt,dx) := N(dt,dx) −
m(dt,dx) is the compensation of N .

Then there exists for every p ∈ (1,2] a constant Cp > 0 that is independent of
H and m such that

E

[∣∣∣∣
∫∫

[0,∞)×E
H(t, x) Ñ(dt,dx)

∣∣∣∣p
]

≥ Cp

∫∫
[0,∞)×E E[|H(t, x)|p]m(dt,dx)

(1 ∨ m([0,∞) × E))1−p
2

,

(3.4)

where ∞
∞ := 0. In particular, if the right-hand side of (3.4) is infinite, then also the

left-hand side of (3.4) is infinite. Furthermore, for every p′ ∈ (1,2], the constants
Cp can be chosen to be bounded away from 0 for p ∈ [p′,2].

We are now ready to state the intermittency lower bounds for (1.1) that comple-
ment the corresponding upper bounds in Theorem 2.4. We start with nonvanishing
initial data.

THEOREM 3.5 (Intermittency lower bounds—I). Let Y be the solution to (1.5)
constructed under the assumptions of Proposition 2.3. Additionally, assume that

(3.5) Lf := inf
x∈Rd

f (x) > 0 and Lσ := inf
x∈R\{0}

|σ(x)|
|x| > 0,

and that � has the properties

(3.6) b = 0, λ 
≡ 0 and
∫
R

|z|1+ 2
d 1{|z|>1} λ(dz) < ∞.

Then the following statements are valid:

(1) There exists a value p0 = p0(�,κ,σ ) ∈ [1,1 + 2/d) such that we have
γ (p) > 0 for all exponents p0 < p < 1 + 2/d .

(2) For given p ∈ (1,1+2/d), there exists κ0 = κ0(�,p,σ ) ∈ (0,∞] such that
γ (p) > 0 for all diffusion constants 0 < κ < κ0.

(3) Given p ∈ (1,1 + 2/d) and κ > 0, there exists L0 = L0(�,p, κ) ∈ [0,∞)

such that γ (p) > 0 if σ has the property Lσ > L0.
(4) In dimension d = 1, we can take p0 = 1, κ0 = ∞ and L0 = 0.

To paraphrase, under the assumptions of Theorem 3.5, we have weak intermit-
tency of order p for every p ∈ (1,3) in dimension 1, while for higher dimen-
sions we have this if p is close enough to 1 + 2/d , or κ is small enough, or the
size of σ (or equivalently, the noise intensity) is large enough. It remains an open
question whether in dimension d ≥ 2, we always have intermittency of all orders
p ∈ (1,1 + 2/d). Also, in contrast to the jump case where we have an affirmative
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answer, it seems to be open whether the solution to (1.1) in d = 1 with Gaussian
noise is weakly intermittent of order p ∈ (1,2).

For decaying initial condition, we have the following counterpart for the indices
λ(p).

THEOREM 3.6 (Intermittency lower bounds—II). Let Y be the solution to
(1.5) constructed in Proposition 2.3. Further assume that c > 0, Lσ > 0 [as de-
fined in (3.5)], σ(0) = 0, that f is nonnegative and strictly positive on a set of
positive Lebesgue measure, f (x) = O(e−c|x|) as |x| → ∞, and that � satisfies
(3.6):

(1) There exists a value p1 = p1(�,κ,σ ) ∈ [1,1 + 2/d) such that λ(p) > 0 for
all p ∈ (p1,1 + 2/d).

(2) Given p ∈ (1,1 + 2/d), there exists κ1 = κ1(�,p,σ ) ∈ (0,∞] such that
λ(p) > 0 for all 0 < κ < κ1.

(3) Given p ∈ (1,1 + 2/d) and κ > 0, there exists L1 = L1(�,p, κ) ∈ [0,∞)

such that λ(p) > 0 for all σ satisfying Lσ > L1.
(4) In d = 1, we can take p1 = 1, κ1 = ∞ and L1 = 0.

REMARK 3.7. If d = 1, mλ(2) < ∞ and we consider the indices γ (2), γ (2),
λ(2) and λ(2), there is—thanks to Itô’s isometry—absolutely no difference be-
tween a Lévy and a Gaussian noise if we replace σ by

√
vσ where v = ρ2 +mλ(2)2

is the variance of �. For example, the explicit formulae derived in [9] immediately
extend to the Lévy case.

REMARK 3.8. In [9], the authors consider the stochastic heat equation with a
measure-valued (e.g., a Dirac delta) initial condition. Their proof for the existence
and uniqueness of solutions can be adapted to the Lévy setting by replacing L2-
estimates with Lp-type estimates from the BDG inequalities. Furthermore, since
the heat operator smooths out a rough initial condition immediately, the intermit-
tency properties of the solution will only depend on its decay and support proper-
ties. For example, Theorem 3.6 as well as the Theorems 3.10(2), 3.12 and 4.1(2)
continue to hold for the solution with a Dirac delta initial condition.

REMARK 3.9. The intermittency of (1.1) with Gaussian noise is analytically
due to the nonintegrable tails of g2 at t = +∞ (see [12, 17]). Translated into the
picture of physical intermittency, this suggests that peaks in the past remain “visi-
ble” for a long time, and finally add up to new peaks. In the Lévy case, our proofs
hint at the same phenomenon in dimension 1 for the intermittency islands of low
order (i.e., p close to 1). However, regardless of dimension, peaks of orders close
to 1 + 2/d , which are the dominating ones from a macroscopic level, arise from
the singularity of the heat kernel at small times (this is further confirmed in the
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asymptotics we derive in Theorem 4.1). It seems that high-order intermittency is-
lands immediately trigger the formation of similar (or even larger) islands, leading
to “clusterings” of peaks. It would be interesting for future research to specify and
prove these heuristics.

3.3. Noise with positive or negative drift. In this section, we consider the inter-
mittency problem for (1.1) when the noise � has a nonzero mean. If � has a posi-
tive mean, that is, if b > 0, then under natural assumptions, the solution to (1.1) is
even weakly intermittent of order 1 [and hence also of all orders p ∈ [1,1 + 2/d)].

THEOREM 3.10 (Intermittency for noises with positive drift). Suppose that
Y is the solution to (1.1) constructed in Proposition 2.3 and assume that σ is
a nonnegative Lipschitz continuous function with Lσ > 0 [as defined in (3.5)].
Furthermore, if c = 0, suppose that Lf , as defined in (3.5), is strictly positive,
while for c > 0, suppose that f is nonnegative and strictly positive on a set of
positive Lebesgue measure. If b > 0, the following statements are valid:

(1) If c = 0, then γ (1) > 0.
(2) If c > 0, then λ(1) > 0.

If � has a negative drift, we restrict ourselves to the parabolic Anderson model
where σ is given by (1.12). In this case, we can reformulate (1.1) as an equa-
tion driven by the martingale part of � only. In fact, decomposing �(dt,dx) =
b dt dx + M(dt,dx), equation (1.1) can be written in the form

∂tY (t, x) = κ

2
�Y(t, x) + bσ0Y(t, x) + σ0Y(t, x)Ṁ(t, x),

Y (0, ·) = f.

(3.7)

This is the d-dimensional stochastic cable equation driven by the zero-mean Lévy
space-time white noise Ṁ . In a similar form, it has been studied in [26] for Gaus-
sian driving noise in dimension d = 1. Its mild form is the same as in (1.5) but
with g replaced by

g′(t, x) = g(t, x)ebσ0t , (t, x) ∈ (0,∞) ×R
d .

PROPOSITION 3.11. Under the assumptions of Proposition 2.3, there exists
β1 > 0 such that (3.7) has a unique mild solution Y satisfying ‖Y‖p,β,c < ∞ for
all β ≥ β1. Furthermore, it is a modification of the unique mild solution to (1.1)
constructed in Proposition 2.3.

We omit the proof since the existence and uniqueness result follows exactly as in
the proof for Proposition 2.3. Moreover, the second statement holds because weak
and mild solutions are equivalent in our present setting: The proof is the same as
in [26], Theorem 3.2, for Gaussian M and d = 1.
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THEOREM 3.12 (Intermittency for noises with negative drift). Let Y be the
mild solution to (1.1) as in Proposition 2.3. Suppose that b < 0, mλ(1 + 2/d) < ∞
and that σ is given by (1.12) with σ0 > 0. If c = 0, also assume that Lf > 0, and if
c > 0, that f is nonnegative and positive on a set of positive Lebesgue measure:

(1) If λ 
≡ 0, Theorem 3.5(1)–(3) and Theorem 3.6(1)–(3) continue to hold.
(2) Let a value p ∈ (1,1 + 2/d) be given, with the restriction p ≥ 2 if ρ 
= 0.

Whenever κ or |b| is large enough, or σ0 is small enough (each time keeping the
other two variables fixed), we have γ (p) ≤ γ (p) < 0 and λ(p) = λ(p) = 0.

4. Asymptotics of intermittency exponents. As seen in the previous sec-
tions, the intermittency of the mild solution to (1.1) is stronger for higher values
of p or smaller values of κ . In this section, we investigate the limiting behavior of
γ (p), γ (p), λ(p) and λ(p) as

p → 1 + 2

d
and κ → 0.

In (4.2) and (4.4) below, one should keep in mind that, although not explicitly
indicated in the notation, the indices γ (p) etc. also depend on κ .

THEOREM 4.1 (Asymptotics of intermittency exponents). Consider a noise
� with nonzero Lévy measure λ:

(1) Let c = 0 and grant the assumptions of Theorem 3.5, Theorem 3.10 or The-
orem 3.12 depending on whether � has mean b = 0, b > 0 or b < 0. If b > 0 or
b < 0, we also impose that σ is of the form (1.12). Then we have

lim
p→1+ 2

d

1 + 2
d

− p

| log(1 + 2
d

− p)| logγ (p)

= lim
p→1+ 2

d

1 + 2
d

− p

| log(1 + 2
d

− p)| logγ (p) = 2

d
,

(4.1)

0 < lim inf
κ→0

κ
p−1

1+2/d−p γ (p) ≤ lim sup
κ→0

κ
p−1

1+2/d−p γ (p) < ∞.(4.2)

(2) Let c > 0 and grant the assumptions of Theorem 3.6, Theorem 3.10 or The-
orem 3.12 depending on whether � has mean b = 0, b > 0 or b < 0. If b > 0 or
b < 0, we also impose that σ is of the form (1.12). Then we have

1

d
≤ lim inf

p→1+ 2
d

1 + 2
d

− p

| log(1 + 2
d

− p)| logλ(p)

≤ lim sup
p→1+ 2

d

1 + 2
d

− p

| log(1 + 2
d

− p)| logλ(p) ≤ 2

d
.

(4.3)
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If in addition the initial condition decays superexponentially in the sense that
|f (x)| = O(e−c|x|) as |x| → ∞ for every c ≥ 0, then

(4.4) 0 < lim inf
κ→0

κ
− 1+1/d−p

1+2/d−p λ(p) ≤ lim sup
κ→0

κ
− 1+1/d−p

1+2/d−p λ(p) < ∞.

REMARK 4.2. (1) Equation (4.1) asserts that the moment Lyapunov expo-
nents γ (p) and γ (p), which determine the exponential rates at which E[|Y(t, x)|p]
grows for t → ∞, themselves increase at a superexponential speed as p ap-
proaches 1 + 2/d . This is much faster than in the Gaussian case, where for the
PAM (1.12) in d = 1 with constant f , [4], Theorem 2.6, and [20], Theorem 6.4,
showed that the Lyapunov exponents have a cubic growth as n → ∞:

(4.5) γ (n) = γ (n) = σ 4
0

4!κ n
(
n2 − 1

)
, n ∈ N.

We conclude that the intermittent behavior of the stochastic heat equation with
jumps is much stronger than with Gaussian noise.

(2) Similarly, (4.3) states that the velocity at which pth order intermittency
peaks propagate in space grows superexponentially when p → 1 + 2/d . Again,
this is on a much faster scale than in the Gaussian case, where the indices λ(p)

and λ(p) typically only increase linearly in p: see [19], Proposition 3.11, where
for the PAM (1.12) in d = 1 with compactly supported initial data f , the authors
showed that

(4.6) 0 < lim inf
n→∞

λ(n)

n
≤ lim sup

n→∞
λ(n)

n
< ∞.

We also remark that in the jump case, the asymptotics of the exponents γ (p) and
γ (p) as p → 1 + 2/d are similar to the exponents λ(p) and λ(p), in contrast to
the Gaussian case; cf. (4.5) and (4.6).

(3) Regarding the asymptotics for κ > 0, a notable difference between jump
and Gaussian noise is that in the former case, the rate at which γ (p) and γ (p)

increases as κ → 0 explicitly depends on p, whereas in the latter case, at least for
p ∈ N, it typically does not; see (4.5).

(4) Another interesting observation is that for jump noises, the asymptotics
of λ(p) and λ(p) for κ → 0 exhibit a phase transition at p = 1 + 1/d . If
p ∈ (1,1 + 1/d), they decrease like κ(1+1/d−p)/(1+2/d−p), if p = 1 + 1/d , they
are bounded away from zero and infinity in κ , and for p ∈ (1 + 1/d,1 + 2/d),
they increase like κ−(p−1+1/d)/(1+2/d−p). Intuitively speaking, this is because for
small κ there are two effects that counteract each other: On the one hand, a small
diffusion constant reduces the speed at which the initial mass at the origin can
spread. On the other hand, if κ is small, once an intermittency peak is built up,
it takes longer for the Laplace operator to smooth it out, which facilitates the de-
velopment and transmission of further peaks. Thus, for small values of p, the first
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effect is dominant, while for large values of p, it is the second effect that wins. In
the Gaussian case, the behavior is again different. Here, for any p ∈ [2,∞), we
have

(4.7) 0 < lim inf
κ→0

λ(p) ≤ lim sup
κ→0

λ(p) < ∞.

The lower bound follows from [12], Theorem 1.3, together with the fact that
λ(2) ≤ λ(p) for all p ≥ 2, while the upper bound follows as in the proof of Theo-
rem 4.1 from the formula (2.4).

5. Proofs.

5.1. Proofs for Section 2.

LEMMA 5.1. Define gβ,c(t, x) := g(t, x)e−βt+c|x| for (t, x) ∈ (0,∞)×R
d . If

0 < p < 1 + 2/d , c ≥ 0 and β > κc2d/2, then

∫ ∞
0

∫
Rd

g
p
β,c(t, x)dt dx ≤ 2

d
2 (3−p)�(1 − d

2 (p − 1))

p1+d(1−p
2 )(πκ)

d
2 (p−1)(β − 1

2κc2d)1− d
2 (p−1)

,

where � denotes the gamma function �(x) = ∫ ∞
0 tx−1e−t dt .

PROOF. If β > κc2d/2, then∫ ∞
0

∫
Rd

g
p
β,c(t, x)dt dx

=
∫ ∞

0

e−pβt

p
d
2 (2πκt)

d
2 (p−1)

∫
Rd

e− p
2κt

|x|2

(2πκt/p)
d
2

epc|x| dx dt

≤
∫ ∞

0

e−pβt

p
d
2 (2πκt)

d
2 (p−1)

(∫
R

e− p
2κt

|x|2

(2πκt/p)
1
2

epc|x| dx

)d

dt

≤
∫ ∞

0

2de−pβt

p
d
2 (2πκt)

d
2 (p−1)

(∫
R

e− p
2κt

|x|2

(2πκt/p)
1
2

epcx dx

)d

dt

=
∫ ∞

0

2de−pβt

p
d
2 (2πκt)

d
2 (p−1)

e
1
2 dκpc2t dt

= 2
d
2 (3−p)�(1 − d

2 (p − 1))

p1+d(1−p
2 )(πκ)

d
2 (p−1)(β − 1

2κc2d)1− d
2 (p−1)

.

�
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PROOF OF PROPOSITION 2.1. We use the triangle inequality to split∥∥(g � �)(t, x)
∥∥
p

≤ |ρ|
∥∥∥∥
∫ t

0

∫
Rd

g(t − s, x − y)�(s, y)W(ds,dy)

∥∥∥∥
p

+
∥∥∥∥
∫ t

0

∫
Rd

∫
R

g(t − s, x − y)�(s, y)z (μ − ν)(ds,dy,dz)

∥∥∥∥
p

+ |b|
∥∥∥∥
∫ t

0

∫
Rd

g(t − s, x − y)�(s, y)ds dy

∥∥∥∥
p

=: I1(t, x) + I2(t, x) + I3(t, x)

into a Gaussian, a pure-jump and a drift part. Recall that I1 vanishes for d ≥ 2.
For d = 1 and p ∈ [2,3), we have from the BDG inequalities (see [15], Theo-
rem VII.92) together with Minkowski’s integral inequality that

e−βt+c|x|I1(t, x)

≤ |ρ|Cpe−βt+c|x|
(∫ t

0

∫
R

g2(t − s, x − y)
∥∥�(s, y)

∥∥2
p ds dy

) 1
2

≤ |ρ|Cp‖�‖p,β,c

(∫ t

0

∫
R

g2(t − s, x − y)e−2β(t−s)+2c(|x|−|y|) ds dy

) 1
2

≤ |ρ|Cp‖�‖p,β,c

(∫ ∞
0

∫
R

g2
β,c(s, y)ds dy

) 1
2
.

So we deduce from Lemma 5.1 that

(5.1) sup
(t,x)∈(0,∞)×R

e−βt+c|x|I1(t, x) ≤ Cp|ρ| 1

(2κ(β − 1
2κc2))

1
4

‖�‖p,β,c.

In order to estimate I3, we only need Minkowski’s integral inequality and
Lemma 5.1 to obtain

I3(t, x) ≤ |b|
∫ t

0

∫
Rd

g(t − s, x − y)
∥∥�(s, y)

∥∥
p ds dy

≤ |b|eβt−c|x|‖�‖p,β,c

∫ t

0

∫
Rd

g(t − s, x − y)e−β(t−s)+c(|x|−|y|) ds dy

≤ |b|eβt−c|x|‖�‖p,β,c

∫ t

0

∫
Rd

g(t − s, x − y)e−β(t−s)+c(|x−y|) ds dy

≤ 2d |b|
β − 1

2κc2d
eβt−c|x|‖�‖p,β,c.

(5.2)
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We turn to the estimation of I2. If p ≤ 2, we use the BDG inequality to deduce

I2(t, x)p ≤ Cp
p E

[(∫ t

0

∫
Rd

∫
R

∣∣g(t − s, x − y)�(s, y)z
∣∣2 μ(ds,dy,dz)

)p
2
]

≤ Cp
p

∫ t

0

∫
Rd

∫
R

gp(t − s, x − y)
∥∥�(s, y)

∥∥p
p|z|p ν(ds,dy,dz)

≤ Cp
pepβt−pc|x| 2

d
2 (3−p)�(1 − d

2 (p − 1))(mλ(p))p

p1+d(1−p
2 )(πκ)

d
2 (p−1)(β − 1

2κc2d)1− d
2 (p−1)

‖�‖p
p,β,c.

At the second inequality we used that (
∑∞

i=1 ai)
r ≤ ∑∞

i=1 ar
i for any r ∈ [0,1] and

nonnegative numbers (ai)i∈N. If d = 1 and 2 < p < 3, we use [21], Theorem 1,
with α = 2 to obtain

I2(t, x)p ≤ Cp
p

(
E

[(∫ t

0

∫
R

∫
R

∣∣g(t − s, x − y)�(s, y)z
∣∣2 ν(ds,dy,dz)

)p
2
]

+
∫ t

0

∫
R

∫
R

gp(t − s, x − y)
∥∥�(s, y)

∥∥p
p|z|p ν(ds,dy,dz)

)
.

(5.3)

For the first term, again by Minkowski’s integral inequality and Lemma 5.1, we
have (

E

[(∫ t

0

∫
R

∫
R

∣∣g(t − s, x − y)�(s, y)z
∣∣2 ν(ds,dy,dz)

)p
2
]) 1

p

≤ mλ(2)eβt−c|x|

(2κ(β − 1
2κc2))

1
4

‖�‖p,β,c,

(5.4)

while for the second term,
(∫ t

0

∫
R

∫
R

gp(t − s, x − y)
∥∥�(s, y)

∥∥p
p|z|p ν(ds,dy,dz)

) 1
p

≤ 2
3−p
2p �(

3−p
2 )

1
p mλ(p)eβt−c|x|

p
4−p
2p (πκ)

p−1
2p (β − 1

2κc2)
3−p
2p

‖�‖p,β,c.

(5.5)

Substituting (5.4) and (5.5) back into (5.3), we obtain

e−βt+c|x|I2(t, x)

≤ Cp

(
mλ(2)

(2κ(β − 1
2κc2))

1
4

+ 2
3−p
2p �(

3−p
2 )

1
p mλ(p)

p
4−p
2p (πκ)

p−1
2p (β − 1

2κc2)
3−p
2p

)
‖�‖p,β,c.

(5.6)

The statement now follows from (5.1), (5.2) and (5.6). Finally, since Cp comes
from the BDG inequalities, it remains bounded on [1 + ε,1 + 2/p). �
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PROOF OF PROPOSITION 2.3. The proof combines Proposition 2.1 with ar-
guments in [12], Theorem 1.1 (see also [20], Theorem 8.1).

As usual, we consider the Picard iteration sequence Y (0) = Y0 and

Y (n)(t, x) = Y0(t, x) +
∫ t

0

∫
Rd

g(t − s, x − y)σ
(
Y (n−1)(s, y)

)
�(ds,dy)

for n ∈ N, and define u(n) = Y (n) − Y (n−1). After possibly enlarging the value
of L, we can assume that |σ(x)| ≤ L(1 + |x|) for all x ∈ R. Now let us choose
β0 > 1

2κc2d large enough such that the factor Cβ,c(κ,p) in front of ‖�‖p,β,c on
the right-hand side of (2.3) satisfies

(5.7) Cβ,c(κ,p) <
1

L
for all β ≥ β0.

Using the Lipschitz property of σ , we obtain for all β ≥ β0 and n ∈ N as a conse-
quence of Proposition 2.1,∥∥u(n)

∥∥
p,β,c = ∥∥g �

(
σ

(
Y (n−1)) − σ

(
Y (n−2)))∥∥

p,β,c

≤ Cβ,c(κ,p)
∥∥σ (

Y (n−1)) − σ
(
Y (n−2))∥∥

p,β,c

≤ q
∥∥u(n−1)

∥∥
p,β,c ≤ · · · ≤ qn−1∥∥u(1)

∥∥
p,β,c

for some q = qc(κ,p) < 1. If c = 0, the last term is less than or equal to Cqn(1 +
‖Y0‖p,β,c), while it is bounded by Cqn‖Y0‖p,β,c if c > 0 [and therefore σ(0) = 0].
Since β ≥ β0 > 1

2κc2d ,

‖Y0‖p,β,c = sup
t∈(0,∞)

sup
x∈Rd

e−βt+c|x|
∣∣∣∣
∫
Rd

g(t, x − y)f (y)dy

∣∣∣∣
≤ sup

x∈Rd

ec|x|∣∣f (x)
∣∣ sup
t∈(0,∞)

e−βt
∫
Rd

g(t, x)ec|x| dx

≤ C sup
t∈(0,∞)

e−βt

(∫
R

g(t, x)ecx dx

)d

= C sup
t∈(0,∞)

e−(β− 1
2 κc2d)t < ∞,

it follows that (Y (n))n∈N is a Cauchy sequence with respect to ‖·‖p,β,c, converging
in ‖·‖p,β,c to some limit Y . That Y satisfies (1.5) and is unique up to modifications,
follows as in [10], Theorem 3.1. �

PROOF OF THEOREM 2.4. The first part follows immediately from the fact
that ‖Y‖p,β,0 < ∞ for β ≥ β0 with β0 as in the proof of Proposition 2.3. Concern-
ing the second part of the theorem, observe that ‖Y‖p,β,c < ∞ for β ≥ β0 implies
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E[|Y(t, x)|p] ≤ Ceβpt−cp|x| for all t > 0, x ∈ R
d and some finite constant C > 0.

Hence,

sup
|x|≥αt

E
[∣∣Y(t, x)

∣∣p] ≤ Ceβpt−cpαt ,

and, therefore,

(5.8) lim sup
t→∞

1

t
sup

|x|≥αt

logE
[∣∣Y(t, x)

∣∣p]
< 0

for all α > β0/c. �

5.2. Proofs for Section 3.

LEMMA 5.2. If Xλ has a Poisson distribution with parameter λ, then there
exists for every r > 0 a constant Cr > 0 such that

E
[
Xr

λ

] ≥ Cr

{
λr for λ > 1,

λ for λ ≤ 1.

PROOF. Suppose that (Xλ)λ≥0 forms a standard Poisson process. The law of
large numbers implies that Xλ/λ → 1 a.s. as λ → ∞. The convergence also takes
place in Lp for every p ≥ 1 because E[Xn

λ] is a polynomial in λ of degree n for
every n ∈ N so that supλ≥1 E[Xn

λ]/λn < ∞. In particular, we obtain for every r > 0
that E[Xr

λ]/λr → 1 as λ → ∞, which implies the claim for λ > 1. The bound for
λ ≤ 1 follows from the definition of the expectation and P[Xr

λ = 1] = P[Xλ = 1] =
λe−λ ≥ λe−1. �

The following decoupling inequalities can be found in [25], Theorem 2.4.1. Be-
cause of its importance for proving Lemma 3.4, and because the proof in the refer-
ence is given for processes with values in Banach spaces, we reproduce the proof
in the real-valued setting for the reader’s convenience. In the following lemma, for
notational ease, a random variable ξ : � → R is identified with its natural exten-
sion to the product space � × �, that is, ξ(ω,ω) = ξ(ω).

LEMMA 5.3. Consider two probability spaces (�,F,P) and (�,F,P), each
of them equipped with a discrete-time filtration (Fi)i≥0 and (F i )i≥0, respectively.
Furthermore, let (ξi)i≥1 be a zero-mean (Fi)i≥1-adapted sequence such that ξi

is independent of Fi−1 under P for all i ≥ 1, and let (ξ i)i≥1 be a sequence with
analogous properties on (�,F,P) and the same distribution as (ξi)i≥1. Finally,
assume that (Hi)i≥1 is a sequence of random variables on (�×�,F ⊗F,P⊗P)

such that Hi is Fi−1 ⊗F i−1-measurable for all i ≥ 1. Then for every p ∈ (1,∞)
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there exist constants Cp,C′
p > 0 that are independent of (ξi)i≥1 and (Hi)i≥1 such

that for every N ∈ N,

(
C′

p

)−1
E

[
E

[∣∣∣∣∣
N∑

i=1

Hiξ i

∣∣∣∣∣
p]]

≤ E

[
E

[∣∣∣∣∣
N∑

i=1

Hiξi

∣∣∣∣∣
p]]

≤ CpE

[
E

[∣∣∣∣∣
N∑

i=1

Hiξ i

∣∣∣∣∣
p]]

.

PROOF. Define the random variables

D2i−1 := 1

2
(Hiξi + Hiξ i), D2i := 1

2
(Hiξi − Hiξ i), i = 1, . . . ,N,

and a filtration (Gi )i=0,...,2N by G0 := {∅,�} and

G2i−1 := σ(Fi−1 ⊗F i−1, ξi + ξ i), G2i := Fi ⊗F i , i = 1, . . . ,N.

Obviously, (Di)i=1,...,2N is adapted to (Gi)i=1,...,2N . In addition, denoting by E⊗E

the expectation with respect to P⊗ P, we have for all i = 1, . . . ,N ,

E⊗E[D2i+1 | G2i] = 1

2
Hi+1E⊗E[ξi+1 + ξ i+1] = 0,

E⊗E[D2i | G2i−1] = 1

2
HiE⊗E[ξi − ξ i | ξi + ξ i] = 0,

where the last identity holds because ξi and ξ i are independent with the
same distribution. It follows from [24], Theorem VII.1.1, that the processes
(
∑n

i=1 Di)n=0,...,2N and (
∑n

i=1(−1)i+1Di)n=0,...,2N are discrete-time local mar-
tingales with respect to (Gi)i=0,...,2N .

Observing that

N∑
i=1

Hiξi =
2N∑
i=1

Di,

N∑
i=1

Hiξ i =
2N∑
i=1

(−1)i+1Di

by construction, the claim is a consequence of the classical BDG inequalities be-
cause the two discrete-time local martingales above can be canonically embedded
into continuous-time local martingales with the same quadratic variation process.

�

PROOF OF LEMMA 3.4. We first prove (3.4) for simple integrands of the form

(5.9)
Z(ω, t, x) =

K∑
i,j=1

Xij (ω)1(ti−1,ti ]×Bj
(t, x),

(ω, t, x) ∈ � × [0,∞) × E,

where 0 ≤ t0 ≤ · · · ≤ tK < ∞, (Bj )j=1,...,K are pairwise disjoint Borel subsets of
E, and Xij are Fti−1 -measurable random variables for all i, j = 1, . . . ,K .
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Using Lemma 5.3, we can assume without loss of generality that Z is determin-
istic, that is, the variables Xij (ω) do not depend on ω. To see this, define

ξij (ω) = N
(
(ti−1, ti] × Bj

)
(ω) − m

(
(ti−1, ti] × Bj

)
,

ξ ij (ω) = N
(
(ti−1, ti] × Bj

)
(ω) − m

(
(ti−1, ti] × Bj

)
,

Hij (ω,ω) = Xij (ω),

where N lives on a copy (�,F, (F t )t≥0,P) of the original probability space, with
the same distribution as N . Since ξij is Fti -measurable and Hij is Fti−1 ⊗ F ti−1 -
measurable, Lemma 5.3 applies and yields

E

[∣∣∣∣∣
K∑

i,j=1

Xij (ω)
(
N

(
(ti−1, ti] × Bj

)
(ω) − m

(
(ti−1, ti] × Bj

))∣∣∣∣∣
p]

≥ (
C′

p

)−1
E⊗E

[∣∣∣∣∣
K∑

i,j=1

Xij (ω)

× (
N

(
(ti−1, ti] × Bj

)
(ω) − m

(
(ti−1, ti] × Bj

))∣∣∣∣∣
p]

.

As Xij (ω) does not depend on ω, it is indeed enough to prove (3.4) for determin-
istic integrands.

By the BDG inequalities, there exists Cp > 0 (which is bounded away from 0
for p > p′) such that

E

[∣∣∣∣
∫∫

[0,∞)×E
Z(t, x) Ñ(dt,dx)

∣∣∣∣p
]

≥ CpE

[∣∣∣∣
∫∫

[0,∞)×E
Z2(t, x)N(dt,dx)

∣∣∣∣
p
2
]

= CpE

[∣∣∣∣∣
K∑

i,j=1

X2
ijN

(
(ti−1, ti] × Bj

)∣∣∣∣∣
p
2
]
.

Inequality (3.4) is shown for integrands of the form (5.9) once we can show that

(5.10) E

[∣∣∣∣∣
K∑

i=1

aiN(Ai)

∣∣∣∣∣
r]

≥ C

∑K
i=1 ar

i m(Ai)

(1 ∨ m([0,∞) × E))1−r

for all ai ∈ [0,∞), pairwise disjoint Ai ∈ B([0,∞) × E) and r ∈ (1/2,1]. By the
tower property of conditional expectations,

E

[(
K∑

i=1

aiN(Ai)

)r]

=
∞∑

n=1

E

[(
K∑

i=1

aiN(Ai)

)r ∣∣∣ K∑
i=1

N(Ai) = n

]
P

[
K∑

i=1

N(Ai) = n

]
.
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On the event
∑K

i=1 N(Ai) = n, at most n summands in
∑K

i=1 aiN(Ai) are different
from zero. Therefore, by rewriting aiN(Ai) as a sum ai +· · ·+ai of N(Ai) terms,∑K

i=1 aiN(Ai) becomes a sum of
∑K

i=1 N(Ai) = n (possibly repeated) terms.
Thus, using the estimate (

∑n
i=1 ci)

r ≥ nr−1 ∑n
i=1 cr

i for nonnegative c1, . . . , cn,
we obtain

E

[(
K∑

i=1

aiN(Ai)

)r]

≥
∞∑

n=1

nr−1
E

[
K∑

i=1

ar
i N(Ai)

∣∣∣ K∑
i=1

N(Ai) = n

]
P

[
K∑

i=1

N(Ai) = n

]

=
K∑

i=1

ar
i

∞∑
n=1

nr−1
E

[
N(Ai)

∣∣∣ K∑
i=1

N(Ai) = n

]
P

[
K∑

i=1

N(Ai) = n

]

=
K∑

i=1

ar
i

∞∑
n=1

nr m(Ai)∑K
j=1 m(Aj )

P

[
K∑

i=1

N(Ai) = n

]

=
∑K

i=1 ar
i m(Ai)∑K

j=1 m(Aj )

∞∑
n=1

nr
P

[
K∑

i=1

N(Ai) = n

]

=
∑K

i=1 ar
i m(Ai)∑K

j=1 m(Aj )
E

[(
K∑

i=1

N(Ai)

)r]
.

Since the constant Cr in Lemma 5.2 can be taken independently of r ∈ (1/2,1],
we derive

E

[(
K∑

i=1

aiN(Ai)

)r]
≥ C

∑K
i=1 ar

i m(Ai)

(1 ∨ ∑K
j=1 m(Aj ))1−r

≥ C

∑K
i=1 ar

i m(Ai)

(1 ∨ m([0,∞) × E))1−r
,

which is (5.10).
For a general (Ft )t≥0-predictable process H , one can choose a sequence Hn

of processes of the form (5.9) such that |Hn| ≤ |H | for all n ∈ N and Hn → H

as n → ∞, pointwise in (ω, t, x). If the right-hand side of (3.4) is finite, then
inequality (3.4) follows from the dominated convergence theorem for stochastic
integrals (see [6], equation (2.6)) on the left-hand side and for Lebesgue integrals
on the right-hand side. If the right-hand side of (3.4) is infinite, then the estimates
we have established for simple integrands, together with the BDG inequalities,
imply that also the left-hand side of (3.4) is infinite. �
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LEMMA 5.4. Suppose that a ∈R and X is a random variable with zero mean.
Then for every p ∈ (1,3], we have

E
[|a + X|p] ≥ Cp

(|a|p +E
[|X|p])

,

where Cp = 1/4 for p ∈ (1,2] and Cp = 1/6 for p ∈ (2,3].

PROOF. First, we prove the statement for a = 1 and p ∈ (1,2]. The proof
follows from the following simple inequalities:

(y − 1)p ≥ 1

3

(
yp − 2y + 1

)
, y ≥ 1,

(1 − y)p ≥ 1

3

(
yp − 2y + 3

4

)
, y ∈ [0,1],

(y + 1)p ≥ 1

3

(
yp + 2y + 1

)
, y ≥ 0.

(5.11)

Indeed, denoting the distribution function of X by F , (5.11) and E[X] = 0 imply

E
[|1 + X|p] =

∫ ∞
−∞

|1 + y|p F (dy)

≥
∫ −1

−∞
1

3

(
(−y)p − 2(−y) + 1

)
F(dy)

+
∫ 0

−1

1

3

(
(−y)p − 2(−y) + 3

4

)
F(dy)

+
∫ ∞

0

1

3

(
yp + 2y + 1

)
F(dy)

≥ 1

3
E

[|X|p] + 2

3
E[X] + 1

4
≥ 1

4

(
E

[|X|p] + 1
)
.

For general a ∈R, the statement follows from

E
[|a + X|p] = |a|p E

[∣∣∣∣1 + X

a

∣∣∣∣p
]

≥ |a|p
4

(
E[|X|p]

|a|p + 1
)

= 1

4
E

[|X|p] + 1

4
|a|p.

Here is the proof of (5.11). The first inequality holds for y = 1, and

p(y − 1)p−1 ≥ p
(
yp−1 − 1

) = 1

3

(
pyp−1 − 2

) + 2p

3
yp−1 + 2

3
− p

≥ 1

3

(
pyp−1 − 2

)
,

that is, the derivative of the left-hand side is greater than that of the right-hand side
for all y ≥ 1. Thus, the first inequality follows. For the second, using the simple
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estimate yp + (1 − y)p ≤ 1, y ∈ [0,1], we have

3(1 − y)p − yp + 2y − 3

4
≥ 3(1 − y)p − (

1 − (1 − y)p
) + 2y − 3

4

≥ 4(1 − y)2 + 2y − 7

4
=

(
2y − 3

2

)2
,

which is nonnegative, so the second inequality is proved. Finally, for y ≥ 0,

(y + 1)p ≥ yp + 1 = 1

3

(
yp + 2y + 1

) + 2

3

(
yp − y + 1

) ≥ 1

3

(
yp + 2y + 1

)
.

The proof is similar for p ∈ (2,3], once the inequalities

(y − 1)p ≥ 1

6

(
yp − 6y + 1

)
, y ≥ 1,

(1 − y)p ≥ 1

3

(
yp − 3y + 1

) ≥ 1

6

(
yp − 6y + 1

)
, y ∈ [0,1],

(y + 1)p ≥ 1

3

(
yp + 3y + 1

) ≥ 1

6

(
yp + 6y + 1

)
, y ≥ 0,

(5.12)

are established. We leave the proof of (5.12) to the interested reader. �

PROOF OF THEOREM 3.5. Part (1): We assume d ≥ 2 here as the case d = 1
will be treated in part (4). In particular, p is always less than 2 and � contains
no Gaussian part. By Lemma 5.4 and the BDG inequalities, we have for all p ∈
(1,1 + 2/d),

E
[∣∣Y(t, x)

∣∣p]

≥ Cp

(
L

p
f +E

[∣∣∣∣
∫∫∫ t

0
g2(t − s, x − y)σ 2(

Y(s, y)
)
z2 μ(ds,dy,dz)

∣∣∣∣
p
2
])

.
(5.13)

This estimate remains valid if we replace μ on the right-hand side by the measure

(5.14) μ
(t,x)
ε,δ (ds,dy,dz) := 1[0,t](s)1{g(t−s,x−y)>ε}1[−δ,δ]c(z)μ(ds,dy,dz),

where ε > 0 is arbitrary and δ > 0 is small enough such that λ([−δ, δ]c) > 0. The
corresponding intensity measure is given by

ν
(t,x)
ε,δ (ds,dy,dz) := 1[0,t](s)1{g(t−s,x−y)>ε}1[−δ,δ]c(z)ds dy λ(dz),

and satisfies

ν
(t,x)
ε,δ

([0,∞) ×R
d ×R

) = λ
([−δ, δ]c) ∫∫ t

0
1{g(s,y)>ε} ds dy

≤ λ
([−δ, δ]c) ∫∫ ∞

0
1{g(s,y)>ε} ds dy < ∞,
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with an upper bound independent of (t, x). By Lemma 3.4, we obtain (keeping in
mind that Lf > 0 and Lσ > 0, and using the BDG inequality from the first to the
second line)

E
[∣∣Y(t, x)

∣∣p]

≥ Cp

(
1 +E

[∣∣∣∣
∫∫∫ t

0
g2(t − s, x − y)σ 2(

Y(s, y)
)
z2 μ

(t,x)
ε,δ (ds,dy,dz)

∣∣∣∣
p
2
])

≥ Cp

(
1 +E

[∣∣∣∣
∫∫∫ t

0
g(t − s, x − y)σ

(
Y(s, y)

)

× z
(
μ

(t,x)
ε,δ − ν

(t,x)
ε,δ

)
(ds,dy,dz)

∣∣∣∣p
])

≥ Cp

(
1 +

∫
R

|z|p1{|z|>δ} λ(dz)

(1 ∨ λ([−δ, δ]c)
∫∫ ∞

0 1{g(s,y)>ε} ds dy)1−p
2

×
∫∫ t

0
gp(t − s, x − y)1{g(t−s,x−y)>ε}E

[∣∣Y(s, y)
∣∣p]

ds dy

)

(5.15)

with a constant Cp independent of (t, x). As a consequence, the function

Ip(t) := inf
x∈Rd

E
[∣∣Y(t, x)

∣∣p]
satisfies

(5.16) Ip(t) ≥ ap +
∫ t

0
wp(t − s)Ip(s)ds

for some ap > 0 where

wp(t) = Cp

∫
R

|z|p1{|z|>δ} λ(dz)

(1 ∨ λ([−δ, δ]c)
∫∫ ∞

0 1{g(t,x)>ε} dt dx)1−p
2

×
∫
Rd

gp(t, x)1{g(t,x)>ε} dx.

(5.17)

By Lemma 3.4 and Lemma 5.4, both Cp and ap can be taken bounded away from
0 if p is bounded away from 1. Since g /∈ L1+2/d([0, T ] ×R

d) for any T > 0 (cf.
the calculations before Theorem 3.1), and the heat kernel decays exponentially in
space, we have

∫∫ ∞
0 gp(t, x)1{g(t,x)>ε} dt dx → ∞ as p → 1 + 2/d , and conse-

quently,

(5.18) lim
p→1+ 2

d

∫ ∞
0

wp(t)dt = ∞.

Hence, there exists p0 ∈ (1,1 + 2/d) such that
∫ ∞

0 wp0(t)dt > 1. By classical
renewal theory (see, e.g., [2], Theorem V.7.1), it follows that the solution to the
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equation

i(t) = ap +
∫ t

0
wp0(t − s)i(s)ds

satisfies i(t) ≥ eγ t for all t ≥ t0 and some t0 > 0 and γ > 0. Since we have
Ip0(t) ≥ i(t) by [20], Theorem 7.11, we conclude that γ (p0) > 0, and by Jensen’s
inequality, also γ (p) > 0 for all p0 ≤ p < 1 + 2/d .

Part (2): Again, we only consider the case d ≥ 2. A direct computation shows
that ∫∫ ∞

0
gp(t, x)1{g(t,x)>ε} dt dx

= 2π
d
2

�(d
2 )

∫ 1
2πκε2/d

0

∫ √
−dκt log(2πκε2/d t)

0

e−pr2

2κt

(2πκt)
pd
2

rd−1 dr dt

= π
d
2

π�(d
2 )κε

2
d
−p

∫ 1

0

∫ √
−ds log(s)

2πε2/d

0
s−pd

2 e−pr2πε2/d

s rd−1 dr ds

= (d
2 )

d
2

π�(d
2 )κε1+ 2

d
−p

∫ 1

0

∫ 1

0
s

pd(z2−1)
2

(−s log(s)
) d

2 zd−1 dz ds

= Cp

κε1+ 2
d
−p

(5.19)

for all p ∈ (0,1 + 2/d). This formula is still valid for p = 0. Thus, for the function
in (5.17), which we denote by wκ(t) now since κ is the parameter that interests us,
there exists C > 0 that is independent of κ such that

(5.20) lim
κ→0

∫ ∞
0

wκ(t)dt = C lim
κ→0

κ1−p
2

κ
= lim

κ→0
Cκ−p

2 = ∞.

The proof can now be completed as in the first part of the theorem.
Part (3): This part follows as before because Lσ enters Cp in (5.17) in a multi-

plicative way.
Part (4): For d = 1, it suffices by Jensen’s inequality to consider p ∈ (1,2).

Furthermore, by Lemma 5.4 and the BDG inequalities, we may assume ρ = 0
without loss of generality. Then the proof of part (1) remains valid up to equation
(5.17). Instead of varying the value of p, we now let ε → 0, keeping p ∈ (1,2),
κ > 0 as well as δ > 0 fixed. Writing wε(t) in the following instead of wp(t) for
the function in (5.17), it follows from (5.19) that

lim
ε→0

∫ ∞
0

wε(t)dt = C lim
ε→0

ε3(1−p
2 )

ε3−p
= C lim

ε→0
ε−p

2 = ∞,

and the assertion follows. �
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PROOF OF THEOREM 3.6. Let α > 0, p ∈ (1,2 ∧ (1 + 2/d)) and write x =
(x1, . . . , xd). By Proposition 2.3, x �→ E[|Y(t, x)|p] is integrable, so we deduce
from (5.15) (with ε, δ > 0 sufficiently small) and the hypothesis Lσ > 0,∫

x1≥αt
E

[∣∣Y(t, x)
∣∣p]

dx

≥ 1

4

(∫
x1≥αt

∣∣Y0(t, x)
∣∣p dx + C

∫
x1≥αt

(∫∫ t

0
gp(t − s, x − y)

× 1{g(t−s,x−y)>ε}E
[∣∣Y(s, y)

∣∣p]
ds dy

)
dx

)
,

where the constant C is given by

(5.21) C =
∫
R

|z|p1{|z|>δ} λ(dz)

(
1 ∨ λ

([−δ, δ]c) ∫∫ ∞
0

1{g(t,x)>ε} dt dx

)p
2 −1

.

Let us write v(t) := ∫
x1≥αt E[|Y(t, x)|p]dx, v0(t) := ∫

x1≥αt |Y0(t, x)|p dx and

h(t) :=
∫
x1≥αt

gp(t, x)1{g(t,x)>ε} dx.

Using that x1 − y1 ≥ α(t − s) and y1 ≥ αs imply x1 ≥ αt , we obtain

v(t) ≥ 1

4

(
v0(t) + C

∫ t

0
h(t − s)v(s)ds

)

for all t ≥ 0. A straightforward extension of [9], Lemma 4.2, to the d-dimensional
setting shows that v0(t) > 0 for all t > 0. So on the one hand, if

(5.22) C

∫ ∞
0

h(t)dt > 4,

it follows from renewal theory (see the proof of Theorem 3.5) that

(5.23) lim sup
t→∞

e−βtv(t) = lim sup
t→∞

e−βt
∫
x1≥αt

E
[∣∣Y(t, x)

∣∣p]
dx = ∞

whenever β > 0 is sufficiently small. On the other hand, from Proposition 2.3, we
know that∫

x1≥α′t
E

[∣∣Y(t, x)
∣∣p]

dx ≤ Ceβ ′t
∫
x1≥α′t

e−c|x| dx

≤ Ceβ ′t
∫
x1≥α′t

e
− c√

d
(|x1|+···+|xd |)

dx

≤ Ceβ ′t
∫ ∞
α′t

e
− c√

d
x1 dx1 ≤ Ce

(β ′−α′ c√
d
)t
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for all α′ > 0, some β ′ > 0 and some C > 0 that is independent of t . Thus, the
last expression decays exponentially whenever α′ is large enough, so in this case,
(5.23) implies

lim sup
t→∞

e−βt
∫
αt≤x1<α′t

E
[∣∣Y(t, x)

∣∣p]
dx = ∞,

from which the assertion follows because

sup
|x|≥αt

E
[∣∣Y(t, x)

∣∣p] ≥ sup
x1≥αt

E
[∣∣Y(t, x)

∣∣p]

≥ ((
α′ − α

)
t
)−1

∫
αt≤x1<α′t

E
[∣∣Y(t, x)

∣∣p]
dx.

So the only thing left to show is that we can achieve (5.22) by proper choices
of the parameters involved. Since the heat kernel is radially symmetric, we have∫ ∞

0 h(t)dt ≥ 1
2d

∫ ∞
0 h̃(t)dt where

(5.24) h̃(t) =
∫
|x|≥α̃t

gp(t, x)1{g(t,x)>ε} dx

and α̃ = √
dα. Using polar coordinates and changing variables s = 2πκε2/d t and

u = r2pπε2/d/s, we obtain∫ ∞
0

h̃(t)dt

=
∫ 1

2πκε2/d

0

∫
Rd

gp(t, x)1{α̃t≤|x|<
√

−2κt log(ε(2πκt)d/2)} dx dt

= 2π
d
2

�(d
2 )

∫ 1
2πκε2/d

0

∫ ∞
0

e−pr2

2κt

(2πκt)
pd
2

1{α̃t≤r<
√

−2κt log(ε(2πκt)d/2)}r
d−1 dr dt

= ε−(1+ 2
d
−p)

�(d
2 )p

d
2 (2πκ)

∫ 1

0

∫ ∞
0

s− d
2 (p−1)e−uu

d
2 −11{ α̃2

κ2ε2/d
sp
4π

≤u≤pd
2 log 1

s
} duds.

(5.25)

Note that the latter integral depends on the parameters α̃, κ and ε only through the
ratio

(5.26) R = R(α̃, κ, ε) = α̃2

κ2ε2/d
.

Since s is increasing and log s−1 is decreasing,

R
p

4π
s ≤ pd

2
log s−1, s ∈ (0, s0),
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with s0 = min{2πd/R, e−1}. Therefore, the integral in (5.25) is not less than

∫ s0

0

∫ pd
2 log s−1

Rp
4π

s
s− d

2 (p−1)e−uu
d
2 −1 duds

≥
∫ Rp

4π
s0

0
e−uu

d
2 −1

∫ 4π
Rp

u

0
s− d

2 (p−1) ds du

=
(

4π

Rp

)1− d
2 (p−1) 2

d(1 + 2
d

− p)
γ

(
1 + d

(
1 − p

2

)
,
Rps0

4π

)
,

where the second inequality follows from Fubini’s theorem, and

(5.27) γ (x,T ) =
∫ T

0
tx−1e−t dt, x > 0, T ≥ 0,

stands for the lower incomplete gamma function. Substituting back into (5.25), we
obtain∫ ∞

0
h̃(t)dt ≥ 22−d(p−1)κ−1ε−(1+ 2

d
−p)R

d
2 (p−1)−1

d�(d
2 )π

d
2 (p−1)p1+d(1−p

2 )(1 + 2
d

− p)
γ

(
1 + d

(
1 − p

2

)
,
Rs0

4π

)

= 2(2κ)1−d(p−1)α̃−2(1− d
2 (p−1))

d�(d
2 )π

d
2 (p−1)p1+d(1−p

2 )(1 + 2
d

− p)
γ

(
1 + d

(
1 − p

2

)
,
Rs0

4π

)
,

(5.28)

where R is given in (5.26). Consequently, when α̃2ε−2/d ≥ 2πκ2, we have

∫ ∞
0

h̃(t)dt ≥ 2(2κ)1−d(p−1)α̃−2(1− d
2 (p−1))γ (1 + d(1 − p

2 ), 1
6)

d�(d
2 )π

d
2 (p−1)p1+d(1−p

2 )(1 + 2
d

− p)
.(5.29)

Part (1) of the theorem in dimension d ≥ 2 now follows from the observation
that the right-hand side of (5.29) tends to ∞ as p → 1+2/d , for any given κ,α > 0
and small values of ε and δ [note that the constant C in (5.22) is bounded for p in
a neighborhood of 1 + 2/d].

For (2), choose α = √
2πε1/dκ , with ε being fixed and κ → 0. The lower bound

in (5.29) is of order κ−1, while the constant C in (5.21) is of order κ1−p/2 by
(5.19). Thus, the statement follows by choosing κ sufficiently small. Similar con-
siderations, compare also with the proof of Theorem 3.5, also show part (3) of the
theorem.

For part (4), that is, if we are in dimension d = 1, let us assume ρ = 0 with-
out loss of generality and choose α̃ = √

2πκ2ε, with κ and p being fixed this
time. Then, for any given p and κ , the right-hand side of (5.29) is of order
ε−2(1−(p−1)/2) = ε−(3−p) under the hypotheses of the theorem, while the constant
C in (5.22) is of order ε3(1−p/2) by (5.21) and (5.19), so we can achieve (5.22) by
taking ε small enough. �
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PROOF OF THEOREM 3.1. Let T > t0, p = 1 + 2/d and assume the opposite
of (3.2). Then by Minkowski’s integral inequality,∥∥∥∥b

∫∫ t

0
g(t − s, x − y)σ

(
Y(s, y)

)
ds dy

∥∥∥∥
p

≤ |b|
∫∫ t

0
g(t − s, x − y)

∥∥σ (
Y(s, y)

)∥∥
p ds dy

≤ C|b|T
for all (t, x) ∈ [0, T ]×R

d . Similarly, if d = 1, and we have by the BDG inequality,∥∥∥∥ρ
∫∫ t

0
g(t − s, x − y)σ

(
Y(s, y)

)
W(ds,dy)

∥∥∥∥
p

≤ Cp|ρ|
∥∥∥∥
∫∫ t

0
g2(t − s, x − y)σ 2(

Y(s, y)
)

ds dy

∥∥∥∥
1
2

p
2

≤ Cp|ρ|
(∫∫ t

0
g2(t − s, x − y)

∥∥σ (
Y(s, y)

)∥∥2
p ds dy

) 1
2

≤ Cp|ρ|T 1
4 .

Therefore, we deduce, if the left-hand side of (3.2) was finite, then

(5.30) E

[∣∣∣∣
∫∫∫ t

0
g(t − s, x − y)σ

(
Y(s, y)

)
z (μ − ν)(ds,dy,dz)

∣∣∣∣p
]

< ∞

as well. We now show that this cannot be true. Indeed, as σ(Y0(t0, x0)) 
= 0, there
exists (t1, x1) ∈ (0, t0] × R

d with P[σ(Y (t1, x1)) 
= 0] > 0 [otherwise, we would
have σ(Y (s, y)) = 0 for all (s, y) ∈ (0, t0] ×R

d , and hence Y(t, x) = Y0(t, x) for
all (t, x) ∈ [0, t0] ∈ R

d by (1.1), which together contradict (3.1)]. Therefore, we
have E[|σ(Y (t1, x1))|] > 0, and because the solution to (1.1) is Lr -continuous on
(0,∞) × R

d for all r < 1 + 2/d (see [10], Theorem 4.7(2)), there exist ε, δ > 0
such that

(5.31) 0 ≤ t1 − s < δ, |x1 − y| ≤ √
δ =⇒ E

[∣∣σ (
Y(s, y)

)∣∣] > ε.

As seen in the proof of Theorem 3.5, the left-hand side of (5.30) is greater than
or equal to a constant times the same expression with μ and ν replaced by μ̃ and
ν̃, respectively, where

μ̃(ds,dy,dz) = 1(t1−δ,t1](s)1{|x1−y|≤√
t1−s}(y)1R\[−a,a](z)μ(ds,dy,dz),

ν̃ is its compensator, and a > 0 is chosen such that λ(R \ [−a, a]) > 0. Now if
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d ≥ 2 (and consequently p ≤ 2), Lemma 3.4 gives the estimate

E

[∣∣∣∣
∫∫∫ t1

0
g(t1 − s, x1 − y)σ

(
Y(s, y)

)
z (μ − ν)(ds,dy,dz)

∣∣∣∣p
]

≥ C

∫∫∫ t1
0 gp(t1 − s, x1 − y)E[|σ(Y (s, y))|p]|z|p ν̃(ds,dy,dz)

(1 ∨ ν̃([0, t] ×Rd ×R))1−p
2

= C

(∫ δ

0

∫
|y|≤√

s

∫
R\[−a,a]

ds dy λ(dz)

)p
2 −1 ∫∫∫ t1

t1−δ
gp(t1 − s, x1 − y)

× 1{|x1−y|≤√
t1−s}E

[∣∣σ (
Y(s, y)

)∣∣p]|z|p1{|z|>a} ds dy λ(dz)

≥ Cεpδ(1+ d
2 )(

p
2 −1)

∫ δ

0

∫
|x|≤√

t
gp(t, x)dt dx

= C

∫ δ

0

∫
|x|≤√

t
gp(t, x)dt dx.

The last line is a valid lower bound also in the case d = 1, possibly with another
value of C, as a consequence of [21], Theorem 1. But for p = 1 + 2/d , we have

∫ δ

0

∫
|x|≤√

t
gp(t, x)dt dx =

∫ δ

0

∫
|x|≤√

t

e−p|x|2
2κt

(2πκt)
pd
2

dt dx

≥ Ce− p
2κ

(2πκ)
pd
2

∫ δ

0
t−

pd
2 t

d
2 dt

= C

∫ δ

0

1

t
dt

= +∞,

proving that (5.30) is wrong. �

PROOF OF THEOREM 3.10. For every (t, x) ∈ (0,∞) ×R
d , we have

E
[∣∣Y(t, x)

∣∣] ≥ E
[
Y(t, x)

]
= Y0(t, x) + b

∫ t

0

∫
Rd

g(t − s, x − y)E
[
σ

(
Y(s, y)

)]
ds dy

≥ Y0(t, x) + bLσ

∫ t

0

∫
Rd

g(t − s, x − y)E
[∣∣Y(s, y)

∣∣] ds dy.

Since the integral of g on (0,∞) × R
d is infinite, the theorem follows from the

renewal methods as used in Theorems 3.5 and 3.6. �

PROOF OF THEOREM 3.12. By Proposition 3.11, we can equally consider the
stochastic cable equation (3.7) driven by the noise Ṁ .
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Part (1): We only carry out the proof for c = 0; the arguments are simi-
lar for c > 0 and we leave the details to the reader. Starting with d ≥ 2 and
p ∈ (1,1+2/d), by virtually the same calculations as in the proof of Theorem 3.5,
the function Ip(t) = infx∈Rd E[|Y(t, x)|p] satisfies (5.16) with ap replaced by the
function ap(t) = a′

pe−p|b|σ0t where a′
p > 0 is a constant, and with g replaced by g′

in the definition (5.17) of wp . But still, we have (5.18), so the renewal methods go
through and the conclusion of Theorem 3.5(1) is valid. Statement (3) of the same
theorem can be derived in a similar way.

For statement (2), we observe that the truncated jump measure in (5.14) does
not need to use the same kernel function as in (5.13) a priori (it only needs to have
a finite intensity measure). Hence, for imitating the proof of Theorem 3.5(2), we
only replace g by g′ in (5.13). For the indicator function 1{g(t−s,x−y)>ε} in (5.14),
by contrast, we replace g(t, x) by g(1; t, x) (i.e., the heat kernel with κ = 1 and
without the e−|b|σ0t factor). As a consequence, the function in (5.17) becomes

w′
κ(t) = Cp

∫
R

|z|p1{|z|>δ} λ(dz)

(1 ∨ λ([−δ, δ]c)
∫∫ ∞

0 1{g(1;t,x)>ε} dt dx)1−p
2

×
∫
Rd

e−p|b|σ0t gp(κ; t, x)1{g(1;t,x)>ε} dx.

Only the integral term in the previous line depends on κ . Hence, we conclude
from (5.39) (the calculation there is valid up to the third line for any value of β)
that

∫ ∞
0 w′

κ(t)dt is of order κ−(p−1)d/2.
For d = 1, we need to let p → 3. The BDG inequalities allow us to ignore the

Gaussian part, so by [21], Theorem 1, and Lemma 5.4, we have that

E
[∣∣Y(t, x)

∣∣p]

≥ 1

6

(
Y0(t, x)p + σ

p
0 E

[∣∣∣∣
∫∫∫ t

0

∣∣g′(t − s, x − y)Y (s, y)z
∣∣2 ν(ds,dy,dz)

∣∣∣∣
p
2
]

+ σ
p
0 E

[∫∫∫ t

0

∣∣g′(t − s, x − y)Y (s, y)z
∣∣p ν(ds,dy,dz)

])

≥ 1

6

(
Y0(t, x)p + σ

p
0 m

p
λ(p)

∫∫∫ t

0
g′p(t − s, x − y)E

[∣∣Y(s, y)
∣∣p]

ds dy

)
,

(5.32)

so we can complete the proof as in the case d ≥ 2 above.
Part (2): Since γ (p) < 0 implies λ(p) = 0, we can assume c = 0 in this part

of the theorem. Furthermore, by the hypotheses of Proposition 2.3, the assump-
tion that mλ(1 + 2/d) < ∞, and Jensen’s inequality, we may assume that p is
large enough such that mλ(p) is finite, and if d = 1 and ρ 
= 0, that p ≥ 2.
Writing Cβ,c(b, ρ,λ, κ,p) for the constant Cβ,c(κ,p) in Proposition 2.1 in or-
der to stress the dependence of the constant on the other parameters, we obtain
with identical calculations as in the proof of Proposition 2.1 that ‖g′ � �‖p,β,0 ≤
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Cβ+|b|σ0,0(0, ρ, λ, κ,p). In particular, if we reexamine the proof of Proposition 2.3
and the formula (2.4), we see that whenever κ or |b| is large, or σ0 is small, there
exists β < 0 such that Cβ+|b|σ0,0(0, ρ, λ, κ,p) < 1/σ0, and thus ‖Y‖p,β,0 < ∞
and γ (p) < 0. �

PROOF OF THEOREM 3.3. We introduce the following truncations of �:

�n(dt,dx) = bψn(x)dt dx + ψn(x)

∫ ∞
0

z1{z> 1
n
} (μ − ν)(dt,dx,dz)

=
(
b −

∫ ∞
0

z1{z> 1
n
} λ(dz)

)
ψn(x)dt dx

+ ψn(x)

∫ ∞
0

z1{z> 1
n
} μ(dt,dx,dz)

=: bnψn(x)dt dx + �+
n (dt,dx), n ∈ N,

where ψn(x) = ψ(|x|/n) and ψ : [0,∞) → [0,1] is a smooth function with
1[0,1] ≤ ψ ≤ 1[0,2]. If Yn denotes the solution to (1.1) with noise �n, we have
by [8], Theorem 1, that Yn(t, x) → Y(t, x) in Lp for all (t, x) ∈ [0,∞) ×R

d (the
cited result remains valid for the smooth truncation functions ψn instead of the
indicator functions 1[−n,n]d ). So if we can show that almost surely, with obvious
notation, Yn,1(t, x) ≥ Yn,2(t, x) for all (t, x) ∈ [0,∞) × R

d , then it follows that
Y1(t, x) ≥ Y2(t, x) for all (t, x) ∈ [0,∞) ×R

d upon choosing separable modifica-
tions of Y1 and Y2, which is always possible; see [16], Theorem II.2.4.

Now notice that for every T > 0, the measure �+
n only has finitely many jumps

on [0, T ] × R
d almost surely. Let T0 = 0 and (Ti,Xi,Zi), i = 1, . . . ,Nn(T ), be

the corresponding jump times, positions and sizes. The crucial observation is now
that between (Ti−1, Ti), in absence of jumps, both Yn,1 and Yn,2 satisfy the deter-
ministic PDE

∂tYn,j (t, x) = κ

2
�Yn,j (t, x) + bnσ

(
Yn,j (t, x)

)
ψn(x), j = 1,2,

respectively. Since f1 ≥ f2 and σ is Lipschitz continuous, the comparison princi-
ple for the deterministic heat equation (see [5], Theorem II) implies Yn,1(t, x) ≥
Yn,2(t, x) for all (t, x) ∈ [0, T1)×R

d . By induction, we may therefore assume that
Yn,1(t, x) ≥ Yn,2(t, x) holds for all (t, x) ∈ [0, Ti) × R

d and then prove the same
relation for (t, x) ∈ [Ti, Ti+1) ×R

d . But since Zi ≥ 0, and hence

Yn,1(Ti, x) = Yn,1(Ti−, x) + σ
(
Yn,1(Ti−,Xi)

)
ZiδXi

(x)

≥ Yn,2(Ti−, x) + σ
(
Yn,2(Ti−,Xi)

)
ZiδXi

(x) = Yn,2(Ti, x)

by the induction hypothesis and the monotonicity property of σ , this again follows
from the deterministic comparison principle (by considering smooth approxima-
tions of the Dirac delta function, the result of [5] extends to the measure-valued
initial conditions encountered here).
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Concerning the second statement of the theorem, the nonnegativity of Y fol-
lows from the first part by comparison with the zero solution corresponding to a
zero initial condition. Next, observe that the mean function m(t, x) = E[Y(t, x)]
satisfies m(0, x) = f (x) and

∂tm(t, x)

= �m(t, x) + bE
[
σ

(
Y(t, x)

)]{≤ �m(t, x) + (b ∨ 0)Lm(t, x),

≥ �m(t, x) + (b ∧ 0)Lm(t, x).

(5.33)

Again by the deterministic comparison principle, we have that m′(t, x) ≤ m(t, x) ≤
m′′(t, x) where m′ (resp., m′′) is the solution to (5.33) with equality instead of “≥”
(resp., “≤”). Since m′ (resp., m′′) is given by the left-hand side (resp., right-hand
side) of (3.3), all assertions follow. �

5.3. Proofs for Section 4.

PROOF OF THEOREM 4.1. Part (1): If β0 > 0 satisfies (5.7), then the proof of
Proposition 2.3 reveals that ‖Y‖p,β0,0 < ∞, and hence γ (p) ≤ pβ0. When λ 
≡ 0
and p is close enough to 1 + 2/d , the second summand in (2.4) is always the term
of leading order. Thus, (5.7) holds as soon as β0 satisfies

�(1 − (p − 1)d
2 )

1
p

β
1
p
− d

2p
(p−1)

0

< C ⇐⇒ β0 > C
− 2/d

1+2/d−p �

(
d

2

(
1 + 2

d
− p

)) 2/d
1+2/d−p

for some finite constant C independent of p. Since x�(x) = �(1 + x) → 1 as
x → 0, we can choose

β0 = C
− 2/d

1+2/d−p

( 2
d

1 + 2
d

− p

) 2/d
1+2/d−p

when p is sufficiently close to 1 + 2/d , which implies

(5.34) lim sup
p→1+ 2

d

1 + 2
d

− p

| log(1 + 2
d

− p)| logγ (p) ≤ 2

d
.

The upper bound in (4.2) follows similarly.
For the lower bounds in (4.1) and (4.2), we first consider the case b = 0. For

d ≥ 2 let β1 = β1(p) be the number for which∫ ∞
0

wp(t)e−β1t dt = 1,
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where wp is given by (5.17). Recalling (5.27), and assuming that p is close to
1 + 2/d , and ε, δ > 0 are small enough such that (5.15) holds, we have that∫∫ ∞

0
e−βtgp(t, x)1{g(t,x)>ε} dt dx

=
∫ 1

2πκε2/d

0

e−βt

(2πκt)
pd
2

∫
Rd

e−p|x|2
2κt 1{|x|2<−2κt log(ε(2πκt)d/2)} dx dt

= 2π
d
2

�(d
2 )

∫ 1
2πκε2/d

0

e−βt

(2πκt)
pd
2

∫ √
−2κt log(ε(2πκt)d/2)

0
e−pr2

2κt rd−1 dr dt

= 1

p
d
2 �(d

2 )(2πκ)
d
2 (p−1)

∫ 1
2πκε2/d

0

e−βt

t
d
2 (p−1)

γ

(
d

2
,−p log

(
ε(2πκt)

d
2
))

dt

≥ γ (d
2 ,1)

p
d
2 �(d

2 )(2πκ)
d
2 (p−1)

∫ e−2/(pd)

2πκε2/d

0

e−βt

t
d
2 (p−1)

dt

= γ (d
2 ,1)γ (1 − d

2 (p − 1), (2πκ)−1ε− 2
d e

− 2
pd β)

p
d
2 �(d

2 )(2πκ)
d
2 (p−1)β1− d

2 (p−1)
.

(5.35)

It follows for β ≥ 2πκe2/(pd)ε2/d that∫∫ ∞
0

e−βtgp(t, x)1{g(t,x)>ε} dt dx

≥ γ (d
2 ,1)γ (1 − d

2 (p − 1),1)

p
d
2 �(d

2 )(2πκ)
d
2 (p−1)β1− d

2 (p−1)

≥ γ (d
2 ,1)(1 − e−1)

p
d
2 �(d

2 )(2πκ)
d
2 (p−1)(1 − d

2 (p − 1))β1− d
2 (p−1)

,

(5.36)

where the last step uses γ (1,1) = 1 − e−1 and the fact that xγ (x,1) is a con-
tinuous decreasing function on [0,1]. Indeed, the latter follows from the identity
xγ (x,1) = γ (x + 1,1) + e−1, which can be proved by integration by parts. Ob-
serving that the factor in front of the integral in (5.17) is bounded for p around
1 + 2/d , we deduce from (5.36) that

(5.37) β1 ≥
(

C

1 − d
2 (p − 1)

) 1
1−d(p−1)/2 =

(
C

2
d

1 + 2
d

− p

) 2/d
1+2/d−p

for some constant C independent of p. Hence we obtain from [2], Theorem V.7.1,
that

γ (p) ≥ β1 ≥
(
C

2
d

1 + 2
d

− p

) 2/d
1+2/d−p

,
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which implies

(5.38) lim inf
p→1+ 2

d

1 + 2
d

− p

| log(1 + 2
d

− p)| logγ (p) ≥ 2

d

and hence (4.1) together with (5.34). For d = 1, if we estimate as in (5.32), the
same arguments apply and only some constants would change that have no impact
on the result.

For the lower bound in (4.2), the estimates (5.35) and (5.36) can be re-used
in principle, but we need to make a small change in our arguments because the
denominator in (5.17) involves the kernel g and, therefore, the parameter κ , which
would lead to a suboptimal lower bound. In order to avoid this, we proceed as in
the proof of Theorem 3.12(2), and construct the measure in (5.14) by using the
indicator function 1{g(1;t−s,x−y)>ε} instead of 1{g(t−s,x−y)>ε}, where g(1; t, x) is
the heat kernel with κ = 1. Then we have for κ ≤ 1 and β ≥ 2πε2/de2/(pd),∫∫ ∞

0
e−βtgp(t, x)1{g(1;t,x)>ε} dt dx

= 1

p
d
2 �(d

2 )(2πκ)
d
2 (p−1)

∫ 1
2πε2/d

0

e−βt

t
d
2 (p−1)

γ

(
d

2
,−pκ−1 log

(
ε(2πt)

d
2
))

dt

≥ γ (d
2 ,1)

p
d
2 �(d

2 )(2πκ)
d
2 (p−1)

∫ e−2/(pd)

2πε2/d

0

e−βt

t
d
2 (p−1)

dt

≥ γ (d
2 ,1)γ (1 − d

2 (p − 1),1)

p
d
2 �(d

2 )(2πκ)
d
2 (p−1)β1− d

2 (p−1)
.

(5.39)

Thus, β ≥ Cκ
− p−1

1+2/d−p , proving the lower bound in (4.2).
Now let us explain why the proof of the lower bounds, for both p → 1 + 2/d

and κ → 0, remains essentially unchanged for b < 0 or b > 0. Indeed, if σ is given
by (1.12), Proposition 3.11 implies that we have to multiply g by a factor ebσ0t .
But under the truncation 1{g(t,x)>ε} (resp., 1{g(1;t,x)>ε} when κ → 0 is considered),
we have t < T where T = (2πε2/d)−1 is independent of p (resp., κ). In particular,
g and gebσ0t differ at most by a multiplicative constant ebσ0T on [0, T ], which is
irrelevant for the calculations above.

Part (2): The upper bound for λ(p) in (4.3) as p → 1 + 2/d follows from (1)
because we have (5.8). For the upper bound in (4.4), observe from (5.8) that λ(p) ≤
β0/c where β0 was introduced in the proof of Proposition 2.3. Upon inspection of
formula (2.4), we see that β0 must satisfy

C

β0 − 1
2κc2d

+ C′

κ
d(p−1)

2p (β0 − 1
2κc2d)

2−d(p−1)
2p

+ C′′

κ
1
4 (β0 − 1

2κc2)
1
4

1{d=1,p≥2} ≤ 1.
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As long as λ 
≡ 0, the second summand is the dominant one for small κ , so β0 as a
function of κ behaves in this case like

1

2
κc2d + Cκ

− p−1
1+2/d−p .

Consequently, if we optimize the resulting bound for λ(p) over c, we get

λ(p) ≤ inf
c≥0

(
1

2
κcd + Cc−1κ

− p−1
1+2/d−p

)
= C′κ

1+1/d−p
1+2/d−p ,

which implies the upper bound in (4.4).
In order to establish the lower bounds in (4.3) and (4.4), it suffices by the same

reason as in (1) to take b = 0. In this case, for fixed ε and κ , we bound (5.29) from
below by

C
α̃−2(1−(p−1) d

2 )

1 + 2
d

− p
,

where C > 0 does not depend on p. As a result,

λ(p) ≥
(

C

1 + 2
d

− p

) 1
2(1−(p−1)d/2)

,

which is the lower bound in (4.3). For κ → 0, we repeat the argument given in the
proof of Theorem 3.6, but use the truncation 1{g(1;t,x)>ε} instead of 1{g(t,x)>ε} in
(5.14). Hence, instead of h̃ in (5.24), the function of interest is

h′(t) =
∫
|x|≥α̃t

gp(t, x)1{g(1;t,x)>ε} dx.

If we redo the calculations from (5.25) to (5.29), then instead of (5.26), we should
consider R′ = α̃2/(κε2/d) so that in the end, we obtain exactly the same lower
bound for

∫ ∞
0 h′(t)dt as in (5.29), but under the new condition α̃2ε−2/d ≥ 2πκ .

Hence, we can make
∫ ∞

0 h′(t)dt arbitrarily large if we take

α̃ = Cκ
1+1/d−p
1+2/d−p ,

and a large value for C > 0. This choice of α̃ satisfies α̃2ε−2/d ≥ 2πκ for all
κ small enough, so the lower bound in (4.4) follows. Note that at this part it is
enough if f (x) = O(e−c|x|) holds for some fixed c > 0. �

Acknowledgments. This research was initiated while PK held an Alexander
von Humboldt postdoctoral fellowship at the Technical University of Munich. We
would like to thank the anonymous referee for constructive comments, which in
particular led to a more general statement in Theorem 3.3.



INTERMITTENCY FOR THE HEAT EQUATION WITH LÉVY NOISE 1947

REFERENCES

[1] AHN, H. S., CARMONA, R. A. and MOLCHANOV, S. A. (1992). Nonstationary Anderson
model with Lévy potential. In Stochastic Partial Differential Equations and Their Appli-
cations (Charlotte, NC, 1991). Lect. Notes Control Inf. Sci. 176 1–11. Springer, Berlin.
MR1176765

[2] ASMUSSEN, S. (2003). Applied Probability and Queues, 2nd ed. Applications of Mathematics
(New York) 51. Springer, New York. MR1978607

[3] BALAN, R. M. and NDONGO, C. B. (2016). Intermittency for the wave equation with Lévy
white noise. Statist. Probab. Lett. 109 214–223. MR3434981

[4] BERTINI, L. and CANCRINI, N. (1995). The stochastic heat equation: Feynman–Kac formula
and intermittence. J. Stat. Phys. 78 1377–1401. MR1316109

[5] BESALA, P. (1963). On solutions of Fourier’s first problem for a system of non-linear parabolic
equations in an unbounded domain. Ann. Polon. Math. 13 247–265. MR0179470

[6] BICHTELER, K. and JACOD, J. (1983). Random measures and stochastic integration. In Theory
and Application of Random Fields (Bangalore, 1982). Lect. Notes Control Inf. Sci. 49 1–
18. Springer, Berlin. MR0799929

[7] CARMONA, R. A. and MOLCHANOV, S. A. (1994). Parabolic Anderson Model and Intermit-
tency. Amer. Math. Soc., Providence, RI.

[8] CHEN, B., CHONG, C. and KLÜPPELBERG, C. (2016). Simulation of stochastic Volterra equa-
tions driven by space–time Lévy noise. In The Fascination of Probability, Statistics and
Their Applications 209–229. Springer, Cham. MR3495686

[9] CHEN, L. and DALANG, R. C. (2015). Moments and growth indices for the nonlinear stochas-
tic heat equation with rough initial conditions. Ann. Probab. 43 3006–3051. MR3433576

[10] CHONG, C. (2017). Lévy-driven Volterra equations in space and time. J. Theoret. Probab. 30
1014–1058. MR3687248

[11] CHONG, C. (2017). Stochastic PDEs with heavy-tailed noise. Stochastic Process. Appl. 127
2262–2280. MR3652413

[12] CONUS, D. and KHOSHNEVISAN, D. (2012). On the existence and position of the farthest
peaks of a family of stochastic heat and wave equations. Probab. Theory Related Fields
152 681–701. MR2892959

[13] CRANSTON, M., MOUNTFORD, T. S. and SHIGA, T. (2005). Lyapunov exponent for the
parabolic Anderson model with Lévy noise. Probab. Theory Related Fields 132 321–355.
MR2197105

[14] DALANG, R. C. and MUELLER, C. (2009). Intermittency properties in a hyperbolic Anderson
problem. Ann. Inst. Henri Poincaré Probab. Stat. 45 1150–1164. MR2572169

[15] DELLACHERIE, C. and MEYER, P.-A. (1982). Probabilities and Potential B. Theory of Mar-
tingales. North-Holland Mathematics Studies 72. North-Holland, Amsterdam. Translated
from the French by J. P. Wilson. MR0745449

[16] DOOB, J. L. (1953). Stochastic Processes. Wiley, New York. MR0058896
[17] FOONDUN, M. and KHOSHNEVISAN, D. (2009). Intermittence and nonlinear parabolic

stochastic partial differential equations. Electron. J. Probab. 14 548–568. MR2480553
[18] FOONDUN, M. and KHOSHNEVISAN, D. (2010). On the global maximum of the solution to

a stochastic heat equation with compact-support initial data. Ann. Inst. Henri Poincaré
Probab. Stat. 46 895–907. MR2744876

[19] HU, Y., HUANG, J. and NUALART, D. (2016). On the intermittency front of stochastic heat
equation driven by colored noises. Electron. Commun. Probab. 21 Paper No. 21, 13.
MR3485390

[20] KHOSHNEVISAN, D. (2014). Analysis of Stochastic Partial Differential Equations. CBMS
Regional Conference Series in Mathematics 119. Amer. Math. Soc., Providence, RI.
MR3222416

http://www.ams.org/mathscinet-getitem?mr=1176765
http://www.ams.org/mathscinet-getitem?mr=1978607
http://www.ams.org/mathscinet-getitem?mr=3434981
http://www.ams.org/mathscinet-getitem?mr=1316109
http://www.ams.org/mathscinet-getitem?mr=0179470
http://www.ams.org/mathscinet-getitem?mr=0799929
http://www.ams.org/mathscinet-getitem?mr=3495686
http://www.ams.org/mathscinet-getitem?mr=3433576
http://www.ams.org/mathscinet-getitem?mr=3687248
http://www.ams.org/mathscinet-getitem?mr=3652413
http://www.ams.org/mathscinet-getitem?mr=2892959
http://www.ams.org/mathscinet-getitem?mr=2197105
http://www.ams.org/mathscinet-getitem?mr=2572169
http://www.ams.org/mathscinet-getitem?mr=0745449
http://www.ams.org/mathscinet-getitem?mr=0058896
http://www.ams.org/mathscinet-getitem?mr=2480553
http://www.ams.org/mathscinet-getitem?mr=2744876
http://www.ams.org/mathscinet-getitem?mr=3485390
http://www.ams.org/mathscinet-getitem?mr=3222416


1948 C. CHONG AND P. KEVEI

[21] MARINELLI, C. and RÖCKNER, M. (2014). On maximal inequalities for purely discontinuous
martingales in infinite dimensions. In Séminaire de Probabilités XLVI. Lecture Notes in
Math. 2123 293–315. Springer, Cham. MR3330821

[22] MUELLER, C. (1991). On the support of solutions to the heat equation with noise. Stoch. Stoch.
Rep. 37 225–245. MR1149348

[23] SAINT LOUBERT BIÉ, E. (1998). Étude d’une EDPS conduite par un bruit poissonnien.
Probab. Theory Related Fields 111 287–321. MR1633586

[24] SHIRYAEV, A. N. (1996). Probability, 2nd ed. Graduate Texts in Mathematics 95. Springer,
New York. Translated from the first (1980) Russian edition by R. P. Boas. MR1368405

[25] VERAAR, M. C. (2006). Stochastic integration in Banach spaces and applications to parabolic
evolution equations. Ph.D. thesis, Technical Univ. Delft.

[26] WALSH, J. B. (1986). An introduction to stochastic partial differential equations. In École
D’été de Probabilités de Saint-Flour, XIV—1984. Lecture Notes in Math. 1180 265–439.
Springer, Berlin. MR0876085

CENTER FOR MATHEMATICAL SCIENCES

TECHNICAL UNIVERSITY OF MUNICH

BOLTZMANNSTRASSE 3
85748 GARCHING

GERMANY

E-MAIL: carsten.chong@tum.de

MTA-SZTE ANALYSIS AND STOCHASTICS

RESEARCH GROUP

BOLYAI INSTITUTE

UNIVERSITY OF SZEGED

ARADI VÉRTANÚK TERE 1
6720 SZEGED

HUNGARY

E-MAIL: kevei@math.u-szeged.hu

http://www.ams.org/mathscinet-getitem?mr=3330821
http://www.ams.org/mathscinet-getitem?mr=1149348
http://www.ams.org/mathscinet-getitem?mr=1633586
http://www.ams.org/mathscinet-getitem?mr=1368405
http://www.ams.org/mathscinet-getitem?mr=0876085
mailto:carsten.chong@tum.de
mailto:kevei@math.u-szeged.hu

	Introduction
	Review of literature
	Summary of results

	Intermittency upper bounds
	Intermittency lower bounds
	High moments
	The martingale case
	Noise with positive or negative drift

	Asymptotics of intermittency exponents
	Proofs
	Proofs for Section 2
	Proofs for Section 3
	Proofs for Section 4

	Acknowledgments
	References
	Author's Addresses

