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BOUNDARY REGULARITY OF STOCHASTIC PDES

BY MÁTÉ GERENCSÉR

IST Austria

The boundary behaviour of solutions of stochastic PDEs with Dirichlet
boundary conditions can be surprisingly—and in a sense, arbitrarily—bad: as
shown by Krylov [SIAM J. Math. Anal. 34 (2003) 1167–1182], for any α >

0 one can find a simple 1-dimensional constant coefficient linear equation
whose solution at the boundary is not α-Hölder continuous.

We obtain a positive counterpart of this: under some mild regularity as-
sumptions on the coefficients, solutions of semilinear SPDEs on C1 domains
are proved to be α-Hölder continuous up to the boundary with some α > 0.

1. Introduction. We consider semilinear stochastic partial differential equa-
tions (SPDEs) on domains (where the assumptions and precise understanding of
the equation is postponed to Section 2) of the type

(1)

du = (
aijDiDju+ f (u,∇u)

)
dt + (

σ ikDiu+ gk(u)
)
dWk

t on R+ ×G,

u = 0 on R+ × ∂G,

u0 = ψ on G,

with the Einstein summation in place. The well-posedness in the variational sense
of a large class of such equations has been known since the 1970s ([18, 24]), and
interior regularity (at least for the linear ones) results are available from the 1990s,
starting from [10], which initiated a series of works; see, among others, [7, 8, 16,
17, 21, 23]. See also [3] for another approach. Concerning boundary regularity,
while the above works give some partial results, the theory is much less satisfac-
tory. Even in the linear case, the rather natural question whether the solution is
continuous up to the boundary (and, therefore, whether the boundary condition
is actually satisfied in the classical sense) has remained in general unanswered,
no matter how smooth the coefficients and the boundary of the domain are, “[be-
coming] a major challenge for the theory” according to Krylov [9]. Part of the
reason why analysing solutions near the boundary is problematic is the fact that
the boundary behaviour is indeed quite bad, as illustrated by the following result.
Recall that if in the formulation below the coefficient in the noise were greater than√

2, then the equation would become ill-posed.
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THEOREM 1.1 ([13]). There exists a λ0 > 0 such that if 0 < λ < λ0, ψ ∈
C∞

0 (R+) is nonidentically 0, and u denotes the solution of

du = D2udt +√
2 − λDudWt on R+ ×R+,

u = 0 on R+ × {0},
u0 = ψ on R+,

then almost surely there exists a dense subset S ⊂ R+ such that for all s ∈ S and

α > e− 1
2λ

lim
x↓0

us(x)x−α =∞.

The main goal of the present article is to prove that solutions of (1) are Hölder-
continuous up to the boundary, with some exponent. In light of the above, this
exponent of course has to depend on the equation itself, and as we will see, this
dependence is in fact only on through a few parameters of the linear part of the
equation. Since the precise statement requires a bit of technical setup, we postpone
it to the next section; see Theorem 2.6. Our proof is inspired by [14], where the
particular case of d = 1, f = g =∇a =∇σ = 0, was treated. Importantly, unlike
the above mentioned “partial” results, its approach relied neither on a “smallness”
nor on a “compatibility” condition on σ .

To our best knowledge, the most general well-posedness results for (1) use the
variational theory, which however strongly restricts the growth of f . We prove a
more general existence and uniqueness result in Theorem 3.2. That itself requires
no growth assumption at all on f (u,∇u) in u, and this allows us to state also
Theorem 2.6 under mild (arbitrary polynomial) growth conditions.

The article is organised as follows. In the following section, after setting up most
of the notation, the main result is stated, which is followed by the aforementioned
solvability result in Section 3, and the rest of the paper is devoted to the proof
of Theorem 2.6. The proof has four main components: reducing the problem to
equations with linear structure and more regular data, transforming the simplified
equation to a PDE with random coefficients on a random domain, establishing cer-
tain geometric properties of this random domain and finally using these properties
to prove the appropriate decay at the boundary. Section 4 is structured according
to these steps.

2. Formulation. Fix a complete filtered probability space (�, (Ft )t≥0,P )

carrying an infinite sequence of independent Wiener processes (Wk
t )k∈N,t≥0. The

predictable σ -algebra on � × R+ is denoted by P . Whenever expectations are
taken with respect to a different probability measure P̂ , it will be denoted by

E
P̂ . Let us also fix T > 0. Given a d-dimensional stochastic differential equation

(SDE),

(2) dXi
t = αi(Xt) dt + βik(Xt) dWk

t , i = 1,2, . . . , d
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driven by W , the corresponding stochastic flow on [0, T ] is a continuous random
field (Xs,t (x))0≤s≤t≤T ,x∈Rd such that for all s and x, the process (Xs,t (x))s≤t≤T is
a solution of equation (2) with initial condition Xs,s(x) = x, and that furthermore
almost surely for all 0 ≤ s ≤ t ≤ v ≤ T and x ∈ R

d , the identity Xt,v(Xs,t (x)) =
Xs,v(x) holds. When the stochastic differential in (2) is replaced by the backward

Itô differential d
←−
W t , then one can correspondingly talk about the backward flow

(Xt,s(x))0≤s≤t≤T ,x∈Rd . Often it turns out that for any 0 ≤ s ≤ t ≤ T , Xs,t (·) is a
diffeomorphism from R

d to itself, in which case one can talk about the inverse
flow (X−1

s,t (x))0≤s≤t≤T ,x∈Rd .
By Br(x), we understand the d-dimensional ball of radius r ≥ 0 around x ∈R

d ,
and for x = 0 the x argument is often dropped. We denote by 〈·, ·〉 the scalar prod-
uct in R

d . The distance between two closed sets A and B is denoted by d(A,B).
The Borel σ -algebra on R

n is denoted by B(Rn).
We fix a bounded C1-domain G ⊂R

d (as defined in, e.g., [8]), denote Gc =R
d \

G, Q = [0, T ] × G, G+ = G + B1 := {x ∈ R
d : ∃x1 ∈ G,x2 ∈ B1 : x = x1 + x2},

Q+ = [0, T ] × G+ and for T0 ≥ 0, QT0 = [T0, T ] × G. Fix a C∞ function 	

defined on G such that for all x ∈ G,

d(x, ∂G) ≤ N	(x) ≤ N ′d(x, ∂G), d(x, ∂G)|k|
∣∣Dk∇	(x)

∣∣ ≤ N(k)

for some constants N , N ′, (N(k)), k running over all possible multiindices. For
the existence of such function see, for example, [22].

Derivatives in the direction of the ith unit direction in R
d are denoted by Di . By

∇ , we denote the gradient, with the convention that for f : Rd → R
k , (∇f )ij =

Djf
i .

For γ ∈R and p ≥ 1, by H
γ
p = H

γ
p (G) we mean the usual Sobolev spaces; see,

for example, [26]. By Ḣ
γ
p , we mean the closure of C∞

0 (G) in the H
γ
p norm. For

γ, θ ∈R and p ≥ 1, by H
γ
p,θ = H

γ
p,θ (G) we understand weighted Sobolev spaces.

An easily accessible definition of them is to first set for γ = n ∈N,

(3) ‖u‖p

H
γ
p,θ

:=
n∑

i=0

∑
|α|=i

∫
G
|Dα1 · · ·Dαi

u|p(x)d(x, ∂G)θ−d+ip dx,

and then extend this scale of spaces to noninteger and nonnegative values of γ by
interpolation and duality, respectively; see [22] and [11] for more details, and also
for a more intrinsic equivalent definition of these spaces.

Hölder spaces Cα(A) on some set A ⊂ R
n for α ∈ (0,1] are defined with the

norm

‖u‖Cα(A) := sup
x∈A

∣∣u(x)
∣∣ + sup

x �=y∈A

|u(x)− u(y)|
|x − y|α .

For α > 0, u ∈ Cα if all of its kth derivatives, |k| < �α�, belong to Cα+1−�α�.
All of the above spaces can easily be extended to l2-valued (or (l2)

n-valued,
for that matter) functions, by taking the appropriate operations coordinatewise and
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replace the absolute value by the l2-norm. Hence the dimension of the function
spaces will not always be detailed; for example, the reader understands that requir-
ing the coefficient β of an equation like (2) to be of class C1 is to require it to be
an element of C1(Rd, (l2)

d).
The understanding of the solution of (1) is the following.

DEFINITION 2.1. A solution of (1) is a continuous adapted L2-valued process
u that furthermore belongs to L∞(Q)∩L2([0, T ], Ḣ 1

2 (G)) almost surely, such that
for all ϕ ∈ C∞

0 (G) the identity

(4)

(ut , ϕ) = (ψ,ϕ)

+
∫ t

0

(−Djus, a
ij
s Diϕ

) + (
fs(us,∇us)− (

Dia
ij
s

)
Djus,ϕ

)
ds

+
∫ t

0

(
σ ik

s Dius + gk
s (us), ϕ

)
dWk

s

holds almost surely for all t ∈ [0, T ], where (·, ·) denotes the L2-inner product.

Our assumptions for the main result are as follows (in particular, they are more
than sufficient to guarantee that all expressions in (4) make sense).

ASSUMPTION 2.2. There exists a κ > 0 such that for all (t,ω, x) ∈ [0, T ] ×
�× (G+B1/2),

ā := a − 1

2
σσ ∗ ≥ κI

holds in the sense of positive semidefinite matrices.

ASSUMPTION 2.3. (a) The coefficients a and σ are P ⊗ B(Rd)-measurable
functions that vanish outside G+. There exist constants K > 0 and ν ∈ (0,1) such
that for all t and ω,

∥∥at (·)(ω)
∥∥
C2+ν(Rd ) +

∥∥σt (·)(ω)
∥∥
C3+ν(Rd ) ≤ K.

(b) There exists a random variable H with finite moments of all order such that
for all ω,

∥∥σ·(·)(ω)
∥∥
Cν([0,T ],L∞(Rd )) ≤ H(ω).

ASSUMPTION 2.4. (a) The function f (u,∇u) takes the form f (u,∇u) =
f̄ (u) + ∇ · (f̂ (u)), with f̂ (0) = 0. The functions f̄ , f̂ and g are P ⊗ B(Rd) ⊗
B(R)-measurable, with values in R, Rd and l2, respectively, that vanish outside
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G+. The real-valued function ψ is F0 ⊗ B(Rd)-measurable and vanishes out-
side G+. The function f̄t (x, y)(ω) is continuous in y ∈ R uniformly in t, x,ω

and there exists a constant K > 0 such that(
y − y′)(f̄t (x, y)(ω) − f̄t

(
x, y′)(ω)

) ≤ K
∣∣y − y′∣∣2,

∣∣f̂t (x, y)(ω) − f̂t

(
x, y′)(ω)

∣∣ ≤ K
∣∣y − y′∣∣,∣∣gt (x, y)(ω)− gt

(
x, y′)(ω)

∣∣ ≤ K
∣∣y − y′∣∣

for all t, x, y, y′,ω.
(b) There exists a constant m > 0 such that for all t, x, y,ω,∣∣f̄t (x, y)(ω) − f̄t (x,0)(ω)

∣∣ ≤ K|y|m.

ASSUMPTION 2.5. The functions ψ , f 0 = f 0
t (x) := f̄t (x,0) and g0 :=

gt (x) = gt (x,0) satisfy, for some ν̄ > 0 and for all p ∈ [2,∞)

E
(‖ψ‖Hν̄

p
+ ∥∥f 0∥∥

Ld+4([0,T ],H−1+ν̄
d+4 )

+ ∥∥f 0∥∥
Lp([0,T ],H−2+ν̄

p,d−2+2p)

+ ∥∥g0∥∥
Ld+4([0,T ],H ν̄

d+4,d−1/2)
+ ∥∥g0∥∥

Lp([0,T ],H−1+ν̄
p,d−2+p)

)2
< ∞.

Let us finally denote d1 := inf{k ∈N : σ il
t (x)(ω) ≡ 0 ∀l > k}.

These assumptions, unless one assumes further control of the growth of f̄ in
u, are not quite enough to fit in the L2-theory ([18, 24]), and in fact as far as the
author is aware, no result on well-posedness in this scope is known. In the next
section, we prove some existence and uniqueness results that well cover the above
setting. The main result of the paper then reads as follows.

THEOREM 2.6. Let Assumptions 2.2 and 2.3 hold and suppose d1 < ∞. Then
there exists an α = α(κ,K, ν̄, d, d1) > 0 such that for any T0 > 0 and ψ,f,g

satisfying Assumptions 2.4 and 2.5, a unique solution u of (1) exists and almost
surely

sup
(t,x)∈QT0

∣∣u(t, x)
∣∣d(x, ∂G)−α < ∞.

Moreover, for fixed K, ν̄, d, d1, there exists a c0 such that for sufficiently small κ

one has α > e−c0/κ .

REMARK 2.7. Since ψ is not assumed to vanish at the boundary, one can in
general not take T0 = 0. Concerning the assumption d1 < ∞, one could actually
do slightly better with essentially the same argument; see Remark 4.13 below.

REMARK 2.8. Assumption 2.5 is somewhat cumbersome. A stronger, but per-
haps more tractable condition would be

(5) E
(‖ψ‖

Hν̃
p̃
+ ∥∥f 0∥∥

L∞([0,T ],H−1+ν̃
p̃

)
+ ∥∥	−1/(2(d+4))g0∥∥

L∞([0,T ],H ν̃
p̃
)

)2
< ∞
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with some fixed ν̃ > 0, p̃ > d/ν̃. As one can see from the basic properties of
weighted Sobolev spaces (which we recall in Section 4.1), (5) implies Assump-
tion 2.5, with ν̄ = ν̃ − d/p̃. One reason why one would not want to impose (5),
however, is that it assumes some pointwise decay at the boundary from g0, while
Assumption 2.5 does not.

Combining Theorem 2.6 and some interior regularity, one easily gets the fol-
lowing corollary, which is proved in Section 4.1.

COROLLARY 2.9. Assume the setting of Theorem 2.6 and let α̂ satisfy

0 < α̂ <
αν̄

3(α + ν̄)
.

Then for any T0 > 0, the solution u of (1) belongs to Cα̂(QT0) almost surely.

3. Existence and uniqueness of the solution. First we state the existence re-
sult under some reduced regularity and growth assumptions. Note that we momen-
tarily switch to equations in divergence form, but since in the rest of the article the
regularity condition Assumption 2.3 on the coefficients will be in place, switch-
ing between divergence and nondivergence form equations is harmless. We also
remark that for Theorem 3.2 one in fact only needs G to be a Lipschitz domain.

ASSUMPTION 3.1. The functions ψ , f 0, and g0 satisfy, for some μ > 0,

K0 := ‖ψ‖L∞(G) +
∥∥f 0∥∥

Ld+2+μ([0,T ],H−1
d+2+μ)

+ ∥∥g0∥∥
Ld+2+μ(Q) < ∞

almost surely.

Define also

K1 := ‖ψ‖L2(G) +
∥∥f 0∥∥

L2([0,T ],H−1
2 )

+ ∥∥g0∥∥
L2(Q).

THEOREM 3.2. Let Assumptions 2.2, 2.4(a) and 3.1 hold and assume that
a and σ are P ⊗ B(Rd)-measurable functions bounded by K . Then there exists
a unique continuous L2-valued adapted process u that furthermore belongs to
L∞(Q) ∩L2([0, T ], Ḣ 1

2 (G)) such that for all ϕ ∈ C∞
0 (G) the identity

(6)
(ut , ϕ) = (ψ,ϕ)+

∫ t

0

(−Djus, a
ij
s Diϕ

) + (
fs(us,∇us), ϕ

)
ds

+
∫ t

0

(
σ ikDius + gk

s (us), ϕ
)
dWk

s

holds almost surely for all t ∈ [0, T ]. Finally, the estimates

E‖u‖p
L∞(Q) ≤ N(κ,K,μ,T , d,G,p)EKp

0 ,

E‖u‖2
L2([0,T ],H 1

2 (G))
≤ N(κ,K,T , d,G)EK2

1

hold with any p ∈ (0,∞).
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PROOF. The proof closely follows those of Theorems 2.1–5.2 in [1] and (as,
in fact, indicated therein) one needs only make sure that the nonlinear terms do not
change anything essential. We therefore do not aim to repeat the whole argument,
but rather will only detail the verification of this.

Define for n,m ∈N,

f̄
(n,m)
t (x, y) := f̄t (x,−n∨ y ∧ m), f (n,m)(u,∇u) = f̄ (n,m)(u)+∇ · (f̂ (u)

)
.

Since f̄ (n,m) has linear growth, the results of [18] apply, and hence one has the
existence of a unique continuous L2 valued adapted process u(n,m) which further-
more belongs to L2([0, T ], Ḣ 1

2 (G)) and such that (6) holds with u(n,m) and f (n,m)

in place of u and f , respectively.
Applying Itô’s formula ([1], Lemma 3.2) to ‖u(n,m)

t ‖p
Lp(G), p ≥ 2, one gets

(7)

∫
G

∣∣u(n,m)
t

∣∣p dx

=
∫
G
|ψ |p dx

+
∫ t

0

∫
G

p
∣∣u(n,m)

s

∣∣p−2
u(n,m)

s

(
σ ik

s Diu
(n,m)
s + gk

s

(
u(n,m)

s

))
dx dWk

s

+
∫ t

0

∫
G
−p(p − 1)

∣∣u(n,m)
s

∣∣p−2
Diu

(n,m)
s aij

s Dju
(n,m)
s

+ p
∣∣u(n,m)

s

∣∣p−2
u(n,m)

s f̄ (n,m)
s

(
u(n,m)

s

)

− p(p − 1)
∣∣u(n,m)

s

∣∣p−2∇u(n,m)
s · f̂ (n,m)

s

(
u(n,m)

s

)

+ (1/2)p(p − 1)
∣∣u(n,m)

s

∣∣p−2∣∣σ ik
s Diu

(n,m)
s + gk

s

(
u(n,m)

s

)∣∣2
l2

dx ds.

Looking at the contribution of the nonlinear terms, we can write, by Assump-
tion 2.4(a)

u(n,m)
s f̄ (n,m)

s

(
u(n,m)

s

) ≤ K
∣∣u(n,m)

s

∣∣2 + u(n,m)
s f 0

s .

Recall that by Assumption 3.1, f 0 = h̄0 + ∇ · ĥ0, where h̄0, ĥ0 ∈ Ld+2+μ(Q)

and ‖h̄0‖Ld+2+μ(Q) +‖ĥ0‖Ld+2+μ(Q) ≤ 2K0 < ∞. Therefore, by the above bounds,
integration by parts, and Young’s inequality we have, for any ε > 0,∫

G
p

∣∣u(n,m)
s

∣∣p−2
u(n,m)

s f̄ (n,m)
s

(
u(n,m)

s

)
dx

≤
∫
G

p2∣∣u(n,m)
s

∣∣p−2

× (
K

∣∣u(n,m)
s

∣∣2 + ε
∣∣∇u(n,m)

s

∣∣2 + ∣∣u(n,m)
s

∣∣∣∣h̄0
s

∣∣ +C(ε)
∣∣ĥ0

s

∣∣2)
dx

for some constant C(ε) depending only on ε and K . Next, we have∣∣∇u(n,m)
s · f̂ (n,m)

s

(
u(n,m)

s

)∣∣ ≤ ε
∣∣∇u(n,m)

s

∣∣2 + C(ε)
∣∣u(n,m)

s

∣∣2,
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allowing one to bound the second to last term in (7) As for the contribution of g,
one simply has(

2σ ik
s Diu

(n,m)
s + gk

s

(
u(n,m)

s

))
gk

s

(
u(n,m)

s

)
= (

2σ ik
s Diu

(n,m)
s

+ (
gk

s

(
u(n,m)

s

) − (
g0

s

)k) + (
g0

s

)k)((
gk

s

(
u(n,m)

s

) − (
g0

s

)k) + (
g0

s

)k)
.

Therefore, by Assumption 2.4(a) we have, for any ε > 0,
∑
k≥0

∫
G
(1/2)p(p − 1)

∣∣u(n,m)
s

∣∣p−2(
2σ ik

s Diu
(n,m)
s + gk

s

(
u(n,m)

s

))
gk

s

(
u(n,m)

s

)
dx

≤ p2
∫
G

C(ε)
∣∣u(n,m)

s

∣∣p + C(ε)
∣∣u(n,m)

s

∣∣p−2∣∣g0∣∣2 + ε
∣∣u(n,m)

s

∣∣2∣∣∇u(n,m)
s

∣∣2 dx.

All of these are of precisely the same order as the contributions coming from the
lower order linear terms in [1]. Note also that the constants on the right-hand sides
do not depend on n and m. The resulting energy estimates are therefore virtually
identical to the ones in the linear case, and thus so is Moser’s iteration. One there-
fore obtains the bounds

(8) E
∥∥u(n,m)

∥∥p
L∞(Q) ≤ NEKp

0

with N depending on κ , K , μ, T , d , G, p but not on n and m. Also, applying Itô’s
formula for ‖us‖2

L2(G), by the above and Assumption 2.2 one gets
∫
G

∣∣u(n,m)
T

∣∣2 dx ≤
∫
G
|ψ |2 dx + MT − 2κ

∫ T

0

∫
G

∣∣∇u(n,m)
s

∣∣2 dx ds

+
∫ T

0

∫
G

C(ε)
(∣∣u(n,m)

s

∣∣2 + ∣∣h̄0
s

∣∣2 + ∣∣ĥ0
s

∣∣2 + ∣∣g0
s

∣∣2)

+ ε
∣∣∇u(n,m)

s

∣∣2 dx ds

with some martingale M . Hence one obtains

(9) E
∥∥u(n,m)

s

∥∥2
L2([0,T ],H 1

2 (G))
≤ NEK2

1

with N having the same dependencies as before, except for μ and p.
Now we let n → ∞. By the comparison principle [2], Theorem 3.3, one has

that u(n,m) ≤ u(n′,m) for n′ ≥ n, which, thanks to (8), implies that u(n,m) not only
converges as n → ∞, but is in fact constant in n after an index N = N(ω). This
implies that the limit u(∞,m) is a solution of (6) with f replaced by

f (∞,m)(u,∇u) = f̄ (∞,m)(u)+∇ · (f̂ (u)
)
, f̄

(∞,m)
t (x, y) := f̄t (x, y ∧ m),

and moreover, u
(∞,m)
s also satisfies the bounds (8)–(9). One then passes to the

m → ∞ limit similarly, and the limit u := u(∞,∞) is indeed the solution claimed
in the theorem.
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As for the uniqueness, take two solutions u and v and write Itô’s formula for
‖e‖2

L2(G) := ‖u − v‖2
L2(G):∫

G
|et |2 dx =

∫ t

0

∫
G
−2̄aij

s DiesDjes + (us − vs)
(
fs(us,∇us) − fs(vs,∇vs)

)

+ 2σ ik
s Di(us − vs)

(
gk

s (us)− gk
s (vs)

) + ∣∣gs(us) − gs(vs)
∣∣2 dx ds

+mt

with some martingale m. By Assumption 2.4(a), one has

(u− v)
(
f (u,∇u)− f (v,∇v)

) ≤ K|u− v|2 + (u− v)∇(
f̂ (u)− f̂ (v)

)
.

After integration by parts, using simply the bound |g(u)− g(v)| ≤ K|u− v| in the
terms involving g, and by Assumption 2.2, we get∫

G
|et |2 ≤

∫ t

0

∫
G
−2κ|∇es |2 +C|es |2 +C′|es ||∇es |dx ds +mt

with some constants C,C′ depending on K . Hence, Young’s inequality, taking ex-
pectations, and Gronwall’s lemma yields (E‖et‖2

L2(G))t∈[0,T ] ≡ 0. Since e is con-
tinuous in L2(G), (et )t∈[0,T ] ≡ 0 almost surely, as required. �

4. Proof of Theorem 2.6.

4.1. Simplifying. As a first step, we reduce the statement to a version where
the equation is linear, f is regular and g is simply not present. To do that, however,
we need to derive some further properties of the solution of (1), based on Lp-
theory, and so we recall some notation from it.

We somewhat deviate from the standard convention of the literature in terms
of the spaces used, in that the integration exponent in time and in ω may
differ (in fact the latter will mostly be 2), hence the slightly different nota-
tion. Set U

γ
p,θ,(q) = Lq(�,F0,	

1−2/pH
γ−2/p
p,θ ) and let Hγ

p,θ,(q) be the space of

P ⊗ B(G)-measurable functions belonging to Lq(�,Lp([0, T ],Hγ
p,θ )). Let fur-

thermore H
γ
p,θ,(q) ⊂ 	H

γ
p,θ,(q) consist of functions u for which there exists a

ψ ∈ U
γ
p,θ,(q), f ∈ 	−1

H
γ−2
p,θ,(q), and g ∈ H

γ−1
p,θ,(q), such that for all ϕ ∈ C∞

0 (G)

the identity

(
ut (·), ϕ) = (ψ,ϕ)+

∫ t

0

(
fs(·), ϕ)

ds +
∫ t

0

(
gk

s (·), ϕ
)
dWk

s

holds almost surely for all t ∈ [0, T ]. We use the norm

‖u‖Hγ
p,θ,(q)

= ∥∥	−1u
∥∥
H

γ
p,θ,(q)

+ ‖ψ‖U
γ
p,γ,(q)

+ ‖	f ‖
H

γ−2
p,θ,(q)

+ ‖g‖
H

γ−1
p,θ,(q)

.

Let us recall some useful properties of these spaces. First of all, 	−α is an iso-
morphism from H

γ
p,θ to H

γ
p,θ+αp . The following property, while we did not find
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explicitly stated elsewhere, follows easily from the definition (3), interpolation,
and duality:

(10)
H

γ
p,θ ⊂ Hγ

p if θ ≤ d − (γ ∨ 0)p,

Hγ
p ⊂ H

γ
p,θ if θ ≥ d − (γ ∧ 0)p.

Finally, invoke from [11], Theorem 4.7, that for any r ′ ≥ r ≥ 2, κ ∈ [0,1],
2/r < β ≤ 1, q ∈ [0, r], θ ∈R and γ ∈R, one has the continuous embedding

(11) H
γ
p,θ,(q) ⊂ 	1−γ+(d−θ)/pLq

(
�,Cα/2−1/p([0, T ],Cγ−β−d/p(G)

))
,

provided

2/p < α < β ≤ 1, γ − β − d/p ∈ (0,1).

The following is a particular case of the of the quite general Lp-theory for
SPDEs on domains from [8], Theorem 2.9.

THEOREM 4.1. Let Assumption 2.3(a) hold and assume that f and g do not
depend on u or ∇u. Suppose furthermore that for some c ∈ (0,1], Assumption 2.2
hold with κ = cK and fix p ≥ 2 and θ ∈R that satisfy

(12) d − 1 + p

[
1 − 1

p(1 − c) + c

]
< θ < d − 1 + p.

Let q ∈ [0,p], γ ∈ [0,4], and assume ψ ∈ U
γ
p,θ,(q), f 0 ∈ 	−1

H
γ−2
p,θ,(q), and g ∈

H
γ−1
p,θ,(q). Then the solution u of (1) belongs to H

γ
p,θ,(q)

‖u‖Hγ
p,θ,(q)

≤ N
(‖ψ‖U

γ
p,θ,(q)

+ ‖	f ‖
H

γ−2
p,θ,(q)

+ ‖g‖
H

γ−1
p,θ,(q)

)
,

where N depends on κ , K , d , T , G, θ , p and q .

REMARK 4.2. Notice that (12) is always satisfied if d−2+p ≤ θ < d−1+p.

REMARK 4.3. Both (11) and Theorem 4.1 are actually only stated in the ref-
erences for the q = p case. However, one can easily deduce the q < p case using
Lenglart’s inequality; see [25], Proposition IV.4.7.

THEOREM 4.4. Let Assumptions 2.2, 2.3(a), 2.4 and 2.5 hold and let u

be the solution of (1) obtained from Theorem 3.2. Then for any p ∈ [2,∞),
u ∈Hν̄

p,d−2+p,(2), and in particular u is a continuous random field in Q.

PROOF. By Theorem 3.2, and (10), one has, for any p ∈ [2,∞),

∇ · f̂ (u) ∈ L2
(
�,Lp

([0, T ],H−1
p

)) ⊂ L2
(
�,Lp

([0, T ],H−1
p,d+p

))

⊂ L2
(
�,Lp

([0, T ],	−1H−1
p,d−2+p

))

⊂ 	−1
H

−2+ν̄
p,d−2+p,(2).
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By similar reasoning and Assumption 2.4(b),(
f̄ (u)− f 0) ∈ L2

(
�,Lp

([0, T ],Lp

))
⊂ L2

(
�,Lp

([0, T ],H 0
p,d

)) ⊂H
−1+ν̄
p,d−2+p,(2).

Invoking also Assumption 2.5, one can therefore conclude that f (u,∇u) ∈
	−1

H
−2+ν̄
p,d−2+p,(2). A similar (in fact, easier) argument shows that g(u) ∈

H
−1+ν̄
p,d−2+p,(2). Also,

ψ ∈ L2
(
�,H ν̄

p

) ⊂ Uν̄
p̄,d−2+p̄,(2)

by Assumption 2.5 and (10). Viewing f (u,∇u) and g(u) as fixed free terms, we
can apply Theorem 4.1, with ν̄ in place of γ , and 2 in place of q , to obtain u ∈
Hν̄

p,d−2+p,(2) as claimed. The second claim in the theorem follows by simply using
(11). �

Now that the basic interior regularity is quantified, we can prove Corollary 2.9.

PROOF OF COROLLARY 2.9. Let (t, x), (s, y) ∈ QT0 and denote |(t, x) −
(s, y)| = ε, d(x, ∂G)∨ d(y, ∂G) = δ. From Theorem 4.4 and (11), we can deduce
that for any ᾱ < ν̄/3 one has∣∣ut (x) − us(y)

∣∣ ≤ η0δ
−ν̄εᾱ

with some random variable η0. Theorem 2.6, on the other hand, yields that∣∣ut(x) − us(y)
∣∣ ≤ η1δ

α

with some random variable η1. If δ ≥ ε, then this already gives the desired Hölder
estimate. Otherwise set λ = α/(α + ν̄) ∈ (0,1), and note that combining the two
above bounds give ∣∣ut(x) − us(y)

∣∣ ≤ ηλ
0η1−λ

1 ελᾱ,

as required. �

Introduce for T0 ≥ 0, α ≥ 0, the spaces L∞,α(QT0), of functions u ∈ L∞(QT0)

such that

‖u‖L∞,α(QT0 ) := sup
(t,x)∈QT0

∣∣u(t, x)
∣∣d(x, ∂G)−α < ∞.

It is easy to check that under the complex interpolation [·, ·]θ (for its definition see,
e.g., [26]) these spaces behave as expected.

PROPOSITION 4.5. Let α �= α′, θ ∈ (0,1), and T0 ≥ 0. Then

L∞,(1−θ)α+θα′(QT0) =
[
L∞,α(QT0),L∞,α′(QT0)

]
θ .
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PROOF. Denote by lα∞(L∞) the set of sequences with elements from L∞(QT0)

such that ∥∥(fn)n≥0
∥∥
lα∞(L∞) = sup

n≥0
2αn‖fn‖L∞(QT0 ) < ∞.

Then the linear operators S : L∞,α(QT0) → lα∞(L∞), R : lα∞(L∞) → L∞,α(QT0)

(Su)n(t, x) := 1d(x,∂G)∈[2−n−1,2−n]·diam(G)ut (x),
(
R(f )

)
t (x) := ∑

n≥0

fn(t, x)

are bounded and satisfy RS = id. The interpolation properties of the spaces
lα∞(L∞) (see [26], Theorem 1.18.2) then imply the claim, by [26], Theorem 1.2.4.

�

The setting of the aforementioned simpler version of Theorem 2.6 is then as
follows.

ASSUMPTION 4.6. The function f does not depend on u and ∇u, g = 0, and
almost surely

K2 := ‖ψ‖H 1
d+3

+ ∥∥f 0∥∥
L∞([0,T ],H 1

d+3)
< ∞.

THEOREM 4.7. Let Assumptions 2.2 and 2.3 hold and suppose d1 < ∞. Then
there exists an α = α(κ,K,d, d1) > 0 such that for any T0 > 0 there exists an
almost surely finite random variable ηT0 such that for all ψ,f,g satisfying As-
sumption 4.6, the unique solution u of (1) belongs to L∞,α(QT0), and one has the
bound

‖u‖L∞,α(QT0 ) ≤ ηT0K2.

Moreover, for fixed K,d, d1, there exists a c0 such that for sufficiently small κ one
has α > e−c0/κ .

LEMMA 4.8. Theorem 4.7 implies Theorem 2.6.

PROOF. We only detail that the existence of the positive decay exponent α in
Theorem 4.7 implies the corresponding statement in Theorem 2.6, the analogous
implication concerning the exponential lower bound follows very similarly.

Fix T0 > 0 and set, for c ∈ [0,∞], �c := {ηT0 ≤ c}. Let, for C ≥ 1 and c ∈
[0,∞], denote by SC

c (ψ̄, f̄ , ḡ) the random field v1�c , where v solves

dv = (
CaijDiDjv + f̄

)
dt + (

σ ikDiv + ḡk)dWk
t on R+ × G,

v = 0 on R+ × ∂G,

v0 = ψ̄ on G.

When C = 1 and/or c =∞, the corresponding index will be dropped.
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Theorem 4.7 implies that for any c < ∞, Sc(ψ̄, f̄ ,0) is bounded as an operator

from L∞
(
�,H 1

d+3
) × L∞

(
�,L∞

([0, T ],H 1
d+3

))
to L∞

(
�,L∞,α(QT0)

)
.

Theorem 3.2 implies that S(ψ̄, f̄ ,0) [and hence obviously also Sc(ψ̄, f̄ ,0) for
any c < ∞] is bounded

from Lp

(
�,L∞(G)

) ×Lp

(
�,Ld+3

([0, T ],H−1
d+3

))
to Lp

(
�,L∞,0(QT0)

)
,

for any p ∈ (0,∞). Hence, by interpolation, Sc(ψ̄, f̄ ,0) is also bounded

from L2
(
�,H

γ
d+4

) ×L2
(
�,Ld+4

([0, T ],H−1+γ
d+4

))
to L2

(
�,L∞,α′(QT0)

)
,

where γ ≤ ν̄ ∧ 1/(4(d + 4)), α′ > 0 depends only on α, ν̄ and d . Note now that
one has the identity

(13) Sc(ψ̄, f̄ , ḡ) = Sc

(
ψ̄, f̄ + (C − 1)aijDiDj

(
SC(0,0, ḡ)

)
,0

) + SC
c (0,0, ḡ).

By Theorem 4.1, for sufficiently large C = C(d), SC(0,0, ḡ) is bounded

from H
γ
d+4,d−1/2,(2) to H

1+γ
d+4,d−1/2,(2).

Notice that

H
1+γ
d+4,d−1/2,(2) ⊂ 	H

1+γ
d+4,d−1/2,(2) =H

1+γ
d+4,−4−1/2,(2)

⊂ L2
(
�,Ld+4

([0, T ],H 1+γ
d+4

))
,

where for the last inclusion we used (10) and the condition on γ . It is known (see
[22], Theorem 3.1) that aijDiDj maps H

1+γ
d+4 to H

−1+γ
d+4 . Therefore, the first term

in (13) is bounded

(14)
from L2

(
�,H

γ
d+4

) × L2
(
�,Ld+4

([0, T ],H−1+γ
d+4

)) ×H
γ
d+4,d−1/2,(2)

to L2
(
�,L∞,α′(QT0)

)
.

Finally, (11) implies that for a sufficiently small ε = ε(d, γ ) > 0, H1+γ
d+4,d−1/2,(2) is

embedded into 	εL2(�,L∞(Q)), and thus (possibly after lowering the value of
α′) the whole solution map Sc(ψ̄, f̄ , ḡ) has boundedness in property in (14).

Since on �c, u = S(ψ,f (u,∇u), g(u)), and by assumption ψ ∈ L2(�,H
γ
d+4),

it suffices to check that

(15) f (u,∇u) ∈ L2
(
�,Ld+4

([0, T ],H−1+γ
d+4 (G)

))
, g(u) ∈H

γ
d+4,d−1/2,(2).

The first of these inclusions already follows from Theorem 3.2: by assumption,
f 0 ∈ L2(�,Ld+4([0, T ],H−1+γ

d+4 (G))), we have already seen that |f̄ (u) − f 0| ≤
K|u|m ∈ L2(�,L∞(Q)), and note that

∇ · f̂ (u) ∈ L2
(
�,L2(Q)

) ∩ L2
(
�,L∞

([0, T ],H−1∞ (G)
))

implies, by interpolation, ∇ · f̂ (u) ∈ L2(�,Ld+4([0, T ],H−1+γ
d+4 (G))). The sec-

ond inclusion on (15) is a consequence of the Lipschitz continuity in u of g(u), the
assumption g0 ∈H

γ
d+4,d−1/2,(2), and that by Theorem 4.4,

u ∈H
γ
d+4,d−2+d+4,(2) ⊂H

γ
d+4,d−2,(2). �



BOUNDARY REGULARITY OF SPDES 817

4.2. An Itô–Wentzell formula. In light of Lemma 4.8, we consider

dut (x) = (
a

ij
t (x)DiDjut (x) + ft (x)

)
dt

+ σ ik
t (x)Diut (x) dWk

t on R+ × G,

ut(x) = 0 on R+ × ∂G,

u0(x) = ψ(x) on G.

Consider the flow (Xt(x))(t,x)∈Q+ given by the SDE

(16) dXt =−σk
t (Xt ) dWk

t ,

which exists under Assumption 2.3(a) by the general theory of stochastic flows;
see, for example, [19], Theorem II.3.1. Here and below σk stands for the column
vector (σ 1k, . . . , σ dk). Since the coefficients are assumed to vanish outside G+,
the flow X, and in fact any flow appearing below that is built from the coefficients
a and σ , are trivial outside G+. Formally applying the Itô–Wentzell formula, the
field vt (x) := ut(Xt(x)) is expected to satisfy

(17)

∂tvt (x) = ā
ij
t

(
Xt(x)

)
(DiDjut )

(
Xt(x)

) − (
σ ik

t Diσ
jk
t

)(
Xt(x)

)
(Djut )

(
Xt(x)

)
+ ft

(
Xt(x)

)

= α
ij
t (x)DiDjvt (x) + βi

t (x)Divt (x) + ϕt(x),

on the (random) domain

Q̃ := {
(t, x) : t ∈ (0, T ],Xt(x) ∈ G

}
,

where here and in the following we use the notation

αt(x) = αt(x)(ω) = (∇Xt(x)
)−1

āt

(
Xt(x)

)((∇Xt(x)
)∗)−1

,

βt (x) = βt(x)(ω) = (∇Xt(x)
)−1(

�t

(
Xt(x)

) −∇2(
Xt(x)

)
αt(x)

)
,

ϕt (x) = ϕt(x)(ω) = ft

(
Xt(x)

)
,

�t (x) = (∇σt (x)
)
σ ∗

t (x).

Unfortunately, no version of the Itô–Wentzell formula known to the author is ac-
tually applicable here, so we should confirm that the above formal computation is
correct. It is worth noting that (again due to [19], Theorem II.3.1) the coefficients
α and β are both almost surely uniformly (in t) bounded in C2+ν/2 and C1+ν/2,
respectively.

LEMMA 4.9. Let Assumptions 2.2, 2.3(a) and 4.6 hold. Then with the above
notation, for almost all ω ∈ �, the function (vt (x))

(t,x)∈Q̃(ω)
(ω) is the probabilistic

solution of (17) on Q̃(ω), with initial condition ψ and boundary condition 0.
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PROOF. Recall a Feynman–Kac formula for SPDEs with Dirichlet boundary
conditions from [5]. Let (Br

t )r=1,...,d,t≥0 be the canonical d-dimensional Wiener
process on the standard Wiener space (�̂, (F̂t )t≥0, P̂ ). Fix for now and for the
rest of the paper ρ to be a C2+ν(G) square root of 2ā. Introducing the flow
Y given by the SDE given on the completion of the probability space (� × �̂,

(Ft ⊗ F̂t )t≥0,P ⊗ P̂ ),

dYt = (
σ ik

t Diσ
k
t + ρir

t Diρ
r
t

)
(Yt ) dt − σk

t (Yt ) dWk
t − ρr

t (Yt ) dBr
t

and the exit time of the inverse characteristics

γt,x = sup
{
s ∈ [0, t] : (s, Y−1

s,t (x)
)

/∈ (0, T ] ×G
}
,

one has by [5], Theorem 2.1, for all t ∈ [0, T ], dx ⊗ dP -almost everywhere

ut(x) = E
P̂

(
ψ

(
Y−1

0,t (x)
)
1γt,x=0 +

∫ t

γt,x

fs

(
Y−1

s,t (x)
)
ds

)
.

For a fixed s ∈ [0, T ], consider w = (w(1), . . . ,w(d)), the solution of the (system
of) fully degenerate SPDEs

dw
(l)
t (x) = a

ij
t (x)DiDjw

(l)
t (x) dt + σ ik

t (x)Diw
(l)
t (x) dWk

t

+ ρir
t (x)Diw

(l)
t (x) dBr

t

on [s, T ]×R
d , with initial condition w

(l)
s (x) = xl , l = 1, . . . , d , which exists and is

unique by [6]. Now we may apply the Itô–Wentzell formula [15], Theorem 1.1, and
verify that the differential of w

(l)
t (Ys,t (x)) is 0, and hence w

(l)
t (x) := (Y−1

s,t (x))l .

Applying the Itô–Wentzell formula again, one sees that z
(l)
t (x) := w

(l)
t (Xt (x)) sat-

isfies, with the notation ρ̄t (x) = (∇Xt(x))−1ρt (Xt(x)),

(18)

dz
(l)
t (x) = [

ā
ij
t

(
Xt(x)

)
DiDjw

(l)
t

(
Xt(x)

)

− (
σ ik

t Diσ
jk
t

)(
Xt(x)

)
Djw

(l)
t

(
Xt(x)

)]
dt

+ ρir
t

(
Xt(x)

)
Diw

(l)
t

(
Xt(x)

)
dBr

t

= [
α

ij
t (x)DiDjz

(l)
t (x) + βi

t (x)Diz
(l)
t (x)

]
dt + ρ̄ir

t (x)Diz
(l)
t (x) dBr

t

on [s, T ]×R
d with initial condition z

(l)
s (x) = Xl

s(x). Note that (due to again [19],
Theorem II.3.1) the coefficients α, β , ρ̄ are almost surely bounded processes in
C2+ν/2, C1+ν/2, and C2+ν/2, respectively. So (see, e.g., [12]) one can find processes
β[m] and ρ̄[m] which are step functions in the sense that they are of the form

k∑
i=1

li∑
j=1

1[ti−1,ti )1Ai
j
hi,j
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with some k = k(m), li = li(m), some partition 0 = t0 < t1 < · · · < tk = T , some
Fti−1 -measurable events Ai

j , and some deterministic smooth functions hi,j , and
such that furthermore

(19)
∥∥(

β[m] − β
)∥∥

C1+ν/3 + ∥∥(
ρ̄[m] − ρ̄

)∥∥
C2+ν/3 → 0

as m → 0 in measure with respect to dt ⊗ dP . One can of course also assume that
the left-hand side above never exceeds 1. Denote by z[m] the solution of (18) with
α = ρ̄ρ̄∗, β and ρ̄ replaced by ρ̄[m](ρ̄[m])∗, β[m] and ρ̄[m], respectively. If we set
τn := inf{t ≥ 0 : |(∇Xt(x))−1| + |DkXt(x)| ≤ n,∀|k| ≤ 3} ∧ T , then up to τn, the
coefficients are bounded in the appropriate spaces, and the existence an uniqueness
of such solution on [0, τn] follows again from [6], along with the fact that

(20)
∥∥z[m] − z

∥∥
Lq(�0,τn�,H 1

p) → 0

as m →∞, for any p,q ∈ [2,∞).
Now introduce the flow Z[m] given by the SDE on the probability space (� ×

�̂, (Ft ⊗ F̂t )t≥0,P ⊗ P̂ )

(21) dZ
[m]
t = (−β

[m]
t + ρ̄

[m],ir
t Diρ̄

[m],r
t

)(
Z

[m]
t

)
dt − ρ̄

[m],r
t

(
Z

[m]
t

)
dBr

t .

For almost all fixed ω, Z[m](ω), as a function of ω̂, s, t , x, is the flow given by
the SDE (21) on the probability space (�̂, (F̂t )t≥0, P̂ ), with “deterministic” coef-
ficients β[m](ω), ρ̄[m](ω). Moreover, the convergence (19) (at least along a subse-
quence) holds for almost all ω in measure with respect to dt . So by the limit the-
orems of flows (see, e.g., [20]), the limit Z := limZ[m] exists (e.g., in Cν/4(Q+)),
and is on the one hand the flow corresponding to the equation

(22) dZt = (−βt + ρ̄ir
t Diρ̄

r
t

)
(Zt ) dt − ρ̄r

t (Zt ) dBr
t

on (�× �̂, (Ft ⊗ F̂t )t≥0,P ⊗ P̂ ), and on the other hand, also on (�̂, (F̂t )t≥0, P̂ ),
for almost all ω ∈ �. One more application of the Itô–Wentzell formula then yields
that the differential of z

[m]
t (Z

[m]
s,t (x)) is 0, that is, z

[m]
t (Z

[m]
s,t (x)) = Xs(x). After

passing to the limit using (20), and using the fact that both sides are continuous in
all arguments, we therefore obtain that almost surely for all 0 ≤ s ≤ t ≤ T , x ∈R

d ,

Y−1
s,t

(
Xt

(
Zs,t (x)

)) = Xs(x), or, Y−1
s,t

(
Xt(x)

) = Xs

(
Z−1

s,t (x)
)
.

By [19], Theorem II.6.1, for each fixed ω the inverse flow of Z(ω) can be given
explicitly: Z−1

s,t (ω) = Ut,s(ω), where the flow U = U(ω) goes backwards in time
and is given by the SDE (parametrized by ω ∈ �)

(23) dUt = βt(Ut ) dt + ρ̄r
t (Ut ) d

←−
B r

t .

Furthermore, almost surely

τt,x := γt,Xt (x) = sup
{
s ∈ [0, t] : (s,Xs

(
Z−1

s,t (x)
))

/∈ (0, T ] × G
}

= sup
{
s ∈ [0, t] : (s,Z−1

s,t (x)
)

/∈ Q̃
}

= sup
{
s ∈ [0, t] : (s,Ut,s(x)

)
/∈ Q̃

}
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is indeed the exit time of U from Q̃. Hence

vt (x) = ut

(
Xt(x)

)

= E
P̂

(
ψ

(
Y−1

t

(
Xt(x)

))
1γt,Xt (x)=0 +

∫ t

γt,Xt (x)

fs

(
Y−1

s,t

(
Xt(x)

))
ds

)

= E
P̂

(
ψ

(
Ut,0(x)

)
1τt,x=0 +

∫ t

τt,x

ϕs(Ut,s) ds

)
,

and the right-hand side is indeed the probabilistic solution of (17) with initial con-
dition ψ and boundary condition 0. While the above equality is a priori only justi-
fied for all t ∈ [0, T ], dx⊗dP -almost everywhere, since both sides are continuous
in (t, x) ∈ Q̃, the equality holds P -almost surely for all (t, x) ∈ Q̃. �

4.3. Krylov’s square root law for inverse flows. Define, for (xt )t∈[0,T ] ∈
C([0, T ],V ), where V is some normed vector space, for c ∈ (0,∞), and t ∈ [0, T ]
the quantity

Nn(x·, c, t) = #
{
k = 0, . . . , n : osc

[t−2−k,t]
x· > c2−k/2

}
,

where the convention xt = x0 for t ∈ [−1,0) is used. We will need a generalization
of the following square root law.

THEOREM 4.10 ([14]). Let (wt )t≥0 be a 1-dimensional Wiener process. Then
for all c, T ∈ (0,∞), almost surely

lim sup
n→∞

sup
t∈[0,T ]

1

n+ 1
Nn(w·, c, t) = π(c)

with a deterministic function π(c) that converges to 0 as c →∞.

First we prove the following auxiliary lemma. For deterministic σ , similar es-
timates often appear in rough path theory, but we could not find a version that
implies this form. We therefore provide a proof (using in fact less regularity re-
quirement on σ than in, e.g., [4], Proposition 8.3).

LEMMA 4.11. Let λ ∈ (0,1/2). Let σ be a bounded predictable process with
values in C1(Rd) that vanishes outside G+ and such that ‖σ‖Cλ([0,T ],L∞(Rd )) has
finite moments of any order. Then with the flow X given by (16), any ε > 0 and
p ≥ 0,

E

(
sup

s,t∈[0,T ];y∈G+

|Xt(y) −Xs(y) + σk
s (Xs(y))(Wk

t −Wk
s )|

|t − s|(1+2λ)/2−2ε

)p

≤ N

for a constant N depending on p, λ, ε, d , T , G and the bounds on σ .
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PROOF. We apply Lemma A.15 with V = C(G+,Rd),

Ds,t = Xt(·) −Xs(·) + σk
s

(
Xs(·))(Wk

t −Wk
s

)
,

Es,s′,t,t ′ = (
σk

s

(
Xs(·)) − σk

s′
(
Xs′(·)))(Wk

t − Wk
t ′
)
.

Condition (37) is clearly satisfied. As for the bounds (38), first, using also the usual
version of the Kolmogorov continuity theorem, we can write, for any p ≥ 1 (up to
constants depending on p, d and G)

(24)

E|Ds,t |p = E

∣∣∣∣ sup
y∈G+

∫ t

s
σ k

r

(
Xr(y)

) − σk
s

(
Xs(y)

)
dWk

r

∣∣∣∣
p

≤ E

∣∣∣∣
∫ t

s
σ k

r

(
Xr(y0)

) − σk
s

(
Xs(y0)

)
dWk

r

∣∣∣∣
p

+ sup
y,y′∈G+

E| ∫ t
s σ k

r (Xr(y))− σk
r (Xr(y

′)) − σk
s (Xs(y))+ σk

s (Xs(y
′)) dWk

r |p
|y − y ′|d+1

≤ E

∣∣∣∣
∫ t

s

∣∣σr

(
Xr(y0)

) − σs

(
Xs(y0)

)∣∣2 dr

∣∣∣∣
p/2

+ sup
y,y′∈G+

E
∣∣ ∫ t

s |σr(Xr(y))− σr(Xr(y
′))− σs(Xs(y))+ σs(Xs(y

′))
∣∣2 dr|p/2

|y − y ′|d+1 ,

where y0 ∈ G+ is arbitrary. Fix ε′ ∈ (0,1/2 − λ) and denote

K = ‖σ‖L∞(�×[0,T ],C1(Rd )),

η1 = ‖σ‖Cλ([0,T ],C1(Rd )), η2 = ‖X‖C1/2−ε′ ([0,T ],C1−ε′ (G+))
.

The latter random variable has finite moments of any order due to [19], Theo-
rem II.2.1. One has

(25)

∣∣σr

(
Xr(y0)

) − σs

(
Xs(y0)

)∣∣ ≤ η1|r − s|λ + ∣∣σs

(
Xr(y0)

) − σs

(
Xs(y0)

)∣∣
≤ η1|r − s|λ +K

∣∣Xr(y0) −Xs(y0)
∣∣

≤ η1|r − s|λ +Kη2|r − s|1/2−ε′

≤ (η1 +KT η2)|r − s|λ.
As for the other term, first, using the same bound as above, with y0 replaced by y

and y′,∣∣σr

(
Xr(y)

) − σs

(
Xs(y)

)∣∣ + ∣∣σs

(
Xs

(
y′)) − σr

(
Xr

(
y′))∣∣ ≤ 2(η1 +KT η2)|r − s|λ.

On the other hand, one also has∣∣σr

(
Xr(y)

) − σr

(
Xr

(
y′))∣∣ + ∣∣σs

(
Xs(y)

) − σs

(
Xs

(
y′))∣∣ ≤ 2Kη2

∣∣y − y′∣∣1−ε′
.

Therefore, we also have

(26)

∣∣σr

(
Xr(y)

) − σr

(
Xr

(
y′)) − σs

(
Xs(y)

) + σs

(
Xs

(
y′))∣∣

≤ η3|r − s|λ(1−ε)
∣∣y − y′∣∣(1−ε′)ε
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with some random variable η3 with finite moments of any order. Choosing p large
enough so that p(1 − ε′)ε ≥ d + 1, the second term on the right-hand side of (24)
is bounded by a constant times

|s − t |p(1/2+λ(1−ε)),

and hence, combining this with (25), we get

E|Ds,t |p ≤ C|s − t |p(1/2+λ(1−ε))

uniformly in s and t . Moving to the second bound in (38), we have

E|Es,s′,t,t ′ |p ≤ ∣∣t − t ′
∣∣p/2

E
1/2 sup

y∈G+

∣∣σs

(
Xs(y)

) − σs′
(
Xs′(y)

)∣∣2p
.

The second component on the right-hand side can be estimated exactly as above:
the only difference is that since one does not integrate in time, there is no factor
|s − s′|p/2 appearing. One hence has

E|Es,s′,t,t ′ |p ≤ C
∣∣t − t ′

∣∣p/2∣∣s − s′
∣∣pλ(1−ε)

,

and so one can set γ = (1 + 2λ)/2 − ε in Lemma A.15: for large enough p, the
conditions on the exponents are satisfied and we get the claim. �

We can now prove the desired square root law.

LEMMA 4.12. Let σ satisfy Assumption 2.3 and assume d1 < ∞. Then, with
the flow X given by (16), for all c ∈ (0,∞), almost surely

lim sup
n→∞

sup
t∈[0,T ]

1

n+ 1
Nn

((∇X−1
t

)−1
X−1· , c, t

) ≤ π̂ (c)

with a deterministic function π̂ (c), that depends only on K and d1, and that con-
verges to 0 as c → ∞, where for each t , (∇X−1

t )−1X−1· is viewed as a process
with values in C(G+,Rd).

PROOF. First note that

As,t : = sup
y∈G+

∣∣Xs(y) − Xt(y)
∣∣

≤ K|Wt −Ws |
+ |t − s|(1+ν)/2

× sup
s′,t ′∈[0,T ];y∈G+

|Xt ′(y) − Xs′(y) + σs′(Xs′(y))(Wt ′ − Ws′)|
|t ′ − s′|(1+ν)/2 .
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Denote the second term on the right-hand side by Bs,t , and let

Si
t (c) =

{
n ∈N : osc

[t−2−n,t]
Wi· > c2−n/2

}
, i = 1, . . . , d1,

S0
t (c) =

{
n ∈N : sup

s∈[t−2−n,t]
Bs,t > c2−n/2

}
.

Since, due to Lemma 4.11, Bs,t ≤ |t − s|(1+ν)/2η for all s, t ∈ [0, T ] with a fi-
nite random variable η, the quantity supt∈[0,T ] #S0

t (c) is also a.s. finite. By Theo-
rem 4.10,

lim sup
n→∞

sup
t∈[0,T ]

1

n+ 1
#
(
Si

t (c) ∩ [0, n]) = π(c).

Note that one has

X−1
t (x) − X−1

s (x) = X−1
t

(
Xs

(
X−1

s (x)
)) −X−1

t

(
Xt

(
X−1

s (x)
))

=∇X−1
t (x)

(
Xs

(
X−1

s (x)
) −Xt

(
X−1

s (x)
)) + Cs,t ,

where one has the estimates∣∣(Xs

(
X−1

s (x)
) −Xt

(
X−1

s (x)
))∣∣ ≤ As,t ,

|Cs,t | ≤ sup
(t,x)∈Q+

∣∣∇2X−1
t (x)

∣∣∣∣Xs

(
X−1

s (x)
) − Xt

(
X−1

s (x)
)∣∣2

≤ A2
s,t sup

(t,x)∈Q+

∣∣∇2X−1
t (x)

∣∣.
Hence, for all t ∈ [0, T ],

sup
s∈[t−2−n,t]

sup
x∈G+

∣∣(∇X−1
t (x)

)−1(
X−1

t (x) −X−1
s (x)

)∣∣ ≤ sup
s∈[t−2−n,t]

(
As,t +A2

s,t ξ
)

with some finite random variable ξ . So whenever n /∈ ⋃d1
i=0 Si

t (c) and c2−n/2 ≤
1/ξ , the right-hand side above is bounded by 2(Kd1 + 1)c2−n/2 for all s ∈
[t − 2−n, t], and so setting π̂(c) = d1π(c/(4Kd1 + 4)) completes the proof of
the lemma. �

REMARK 4.13. The square root law above is the only instance in the proof
where the assumption d1 < ∞ is used. As mentioned in Remark 2.7, a slight ex-
tension is available: for any sequence (ci)i∈N, if n /∈ St := ⋃∞

i=1 Si
t (ci), then one

has

sup
s∈[t−2−n,t]

|As,t −Bs,t | ≤ 2−n/2 sup
x∈G+

∞∑
i=1

σ i
t

(
Xt(x)

)
ci.

If c̃i → ∞ sufficiently fast so that
∑∞

i=1 π(c̃i) < ∞, then the upper density of
St with the choice ci = Cc̃i can be made arbitrarily small by choosing C to be
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sufficiently large. Hence if the decay of σ i is so fast that
∑∞

i=1 σ i c̃i < ∞ uniformly
over all choice of arguments, then we obtain the square root law as before. Note
however that this decay condition is far stronger than requiring σ to be in l2, or
even l1.

Our final lemma, which will essentially allow us to utilize the above square root
law, is the following estimate for hitting probabilities.

LEMMA 4.14. Let p ≥ 0 be an integer, (B̄t )t≥0 be a d-dimensional Wiener
process on a filtered probability space (�̄, (F̄t )t≥0, P̄ ), and let

ξs =
∫ s

0
bs′ ds′ +

∫ s

0
as′ dB̄s′

with at and bt being bounded predictable processes with values in R
d×d and R

d ,
respectively. Fix c ≥ 1, r ≥ 7c, denote Q

p
r := [0,2−p] ×B2−p/2r , fix (t, x) ∈ Q

p+1
r

and assume that on {(s,ω) : (t + s, x + ξs) ∈ Q
p
r } the bounds |bs(ω)| ≤ C2p/2 and

δI ≤ as(ω)a∗
s (ω) ≤ �I

hold, the latter in the sense of positive semidefinite matrices, with some
C,δ,� > 0. Let furthermore n ∈ R

d be a unit vector, and A ⊂ Q
p
r be a closed

set such that {(s, y) : 〈y,n〉 ≥ c2−p/2} ∩Q
p
r ⊂ A. Finally, set

τt,x = inf
{
s > 0 : (t + s, x + ξs) ∈ A ∪ ∂Qp

r

}
.

Then one has

(27) P
(
(t + τt,x, x + ξτt,x ) /∈ A

) ≤ γ (c, r, d, δ,�,C) < 1

for some function γ , depending only on the indicated parameters. Moreover, for
fixed c, r, d,�, there exists a c0 such that for sufficiently small δ one has 1 − γ >

e−c0/δ .

PROOF. By rotational symmetry, we may assume that n = (−1,0, . . . ,0) and
by Brownian rescaling we may assume p = 0. It is also clear that if A is replaced
by Ãc ∩ Q̄0

r , where

Ãc = {
(s, y) : y ∈ Ac

} := {
(s, y) : y1 ≤−c

}
,

both in the definition of τ and on the left-hand side of (27), then the left-hand side
of (27) increases, so it suffices to prove the statement for A = Ãc ∩ Q̄0

r . One can
also trivially assume x /∈ intAc, since otherwise the left-hand side of (27) is just 0.

Let ϕ,ψ be smooth functions on R such that

for |a| ≤ 5/7r, ϕ(a) = 1

c +√
r2 − a2

, ψ(a) = c;

for |a| ≥ 6/7r, ϕ(a) = 1, ψ(a) = c + 1;

for |a| ∈ [5/7r,6/7r], ϕ(a) ∈
[

1

c +√
r2 − a2

,1
]
, ψ(a) ∈ [c, c + 1].
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Denote ỹ := (y2, . . . , yd), and introduce the function f (y) = ϕ(|ỹ|)(y1 +ψ(|ỹ|)),
the process

ξ̂s := f (x) +
∫ s

0
b̂s′ ds′ +

∫ s

0
âs′ dB̄s′ := f (x + ξs),

and the stopping time

τ̂ := inf
{
s > 0 : (t + s, ξ̂s) ∈ [0,1] × {0,1} ∪ {1} × [0,1]}.

By construction, on Br \ intAc, f is nonnegative, and on {y : |y| = r, y1 ≥ −c},
one has f (y) ≥ 1. Therefore,

(28)
{
(t + τt,x, x + ξτt,x ) /∈ Ãc ∩ Q̄0

r

} ⊂ {
(t + τ̂ , ξ̂τ̂ ) /∈ [0,1] × {0}}.

Note also that
∣∣∇f (y)

∣∣ ≥ ∣∣D1f (y)
∣∣ ≥ inf

a∈Rϕ(a) = 1

c + r
,

and so |â|2 is bounded from below δ
(r+c)2 . It is also clear from Itô’s formula that

there exists a Ĉ = Ĉ(r, c, d) such that sups∈[0,1] |b̂s | ≤ Ĉ(C + �). Next, we claim
that there exists an m = m(r, c) < 1 such that for y ∈ B2−1/2 , f (y) ≤ m. Indeed,
we can write

max
y2

1+|ỹ|2≤r2/2
f (y) = max

y2
1+|ỹ|2≤r2/2

y1 + c

c +
√

r2 − |ỹ|2

= max
y2

1+|ỹ|2=r2/2

y1 + c

c +
√

r2 − |ỹ|2

= max
y2

1≤r2/2

y1 + c

c +
√

r2/2 + y2
1

=: max
y2

1≤r2/2
g(y1).

Trivially, limy1→±∞ g(y1) =±1, so it suffices to show that g′ > 0. Direct calcula-
tion shows

(29) g′(y1) =
c
√

r2/2 + y2
1 − cy1 + r2/2√

r2/2 + y2
1(

√
r2/2 + y2

1 + c)2
.

If the numerator were 0 for some y1, that would imply

c2(
r2/2 + y2

1
) = c2y2

1 − cr2y1 + r4/4,

which gives y1 = r2/4−c2/2
c

, but since substituting this back to (29) gives a positive
quantity, we get the claim.

Let us now set t0 = (1 −m)/(2Ĉ(C +�)), so that one has

sup
s∈[0,t0]

∣∣∣∣
∫ s

0
b̂s′ ds′

∣∣∣∣ ≤ (1 − m)/2.
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Define

ξ̃s : = f (x)+
∫ s

0
âs′ dB̄s′,

τ̃ : = inf
{
s > 0 : (t + s, ξ̃s) ∈ [0, t + t0] ×

{
−1 −m

2
,

1 +m

2

}
∪ {t + t0} × [0,1]

}

and notice that

(30)
{
(t + τ̂ , ξ̂τ̂ ) /∈ [0,1] × {0}} ⊂

{
(t + τ̃ , ξ̃τ̃ ) /∈ [0, t + t0] ×

{
−1 −m

2

}}
.

The latter event is now in the scope of [14], Lemma 3.7: the process whose hitting
time we are considering is a 1-dimensional continuous martingale with quadratic
variation uniformly bounded from below, and the starting point (t, f (x)) is strictly
separated from the right boundary [0,1] × {1+m

2 }. From (28), (30) and the appli-
cation of [14], Lemma 3.7, one thus has

1 − P
(
(t + τt,x, x + ξτt,x ) /∈ A

) ≥ P
(

sup
t∈[0,t̃0]

wt ≤ aδ−1/2, inf
t∈[0,t̃0]

wt ≤ bδ−1/2
)
,

where w is a 1-dimensional Wiener process, and the numbers t̃0, a,−b > 0 depend
on r, c, d,�,C. The right-hand side is clearly positive and the lower bound e−c0/δ

bound follows from standard properties of the Wiener process. �

4.4. Proof of Theorem 4.7. Throughout the proof, we work with a fixed
ω ∈ �. By linearity, we can assume that ψ,f ≥ 0, and hence also u, v ≥ 0. We
will throughout the proof often use the shorthand z = (t, x).

Define vε as the probabilistic solution of (17) on

Q̃ε := {
z : t ∈ [0, T ], (

ζε3 ∗X·(x)
)
t ∈ (G+Bε)

}
,

with initial condition ψ and boundary condition 0, where ζ ∈ C∞
0 (R+) and

ζε(s) = ε−1ζ(ε−1s). Simply by the uniform in x 1/2-Hölder-continuity in time
of X, there exists an ε0 = ε0(ω) such that for all 0 < ε < ε0, one has Q̃ ⊂ Q̃ε

and, therefore, v ≤ vε . Moreover, vε agrees with the classical solution of (17)
with the same initial-boundary conditions and, therefore, it is continuously differ-
entiable in time and twice continuously differentiable in space on the closure of
{z : t ∈ [T0/2, T ], x ∈ Q̃ε

t }, where Q̃ε
t = {x : (t, x) ∈ Q̃ε}.

Using Lemma 4.12 and the notation in Lemma 4.14, fix a c0 such that
1/2 > π̂(c0) =: 1 − π̂ and a r0 ≥ 7(21/4c0 + 1), and set γ := γ (21/4c0 + 1,

r0, d, κ21/2,K21/2,1) ∨ (1/2) < 1. Since M(z) := ∇Xt(x) is uniformly contin-
uous and separated away from zero, there exists a δ0 = δ0(ω) > 0 such that when-
ever |z − z′| ≤ δ0,

2−1/4I ≤ M(z)M−1(
z′

) ≤ 21/4I.
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Take any t̄ ∈ [T0, T ]. Let p1,p2 . . . , be the nonnegative integers such that

(31) sup
x∈G+

sup
s,t∈[t̄−2−pi ,t̄]

∣∣M(
t̄ ,X−1

t̄
(x)

)(
X−1

t (x) −X−1
s (x)

)∣∣ ≤ c02−pi/2,

and introduce, for integers j ≥− log2(1 ∧ (T0/2)),

S(j) := {
z : t ∈ [

t̄ − 2−j , t̄
]
, x ∈ Q̃t , d

(
M(z)x,M(z)∂Q̃t̄

) ≤ r02−j/2}
and Mε(j) := supSj

|vε|, where for brevity we suppress the t̄-dependence of these
objects. Of course, (Mε(j)) is a decreasing sequence. Suppose now that there
exists t̄-independent indices j0 = j0(ω) and j1 = j1(ε,ω) such that j1 → ∞ as
ε → 0 almost surely and that for all j1 ≥ pi ≥ j0

(32) Mε(pi+1) ≤ 2−piK2 + γMε(pi).

By iterating the above, we get

Mε(pi+1) ≤ γ iK2 + γMε(pi) ≤ γ i−j0
(
iK2 +Mε(0)

) ≤ Cγ̄ iK2(2 + T )

with γ̄ = γ /2+ 1/2 and some C = C(γ,ω). Denote by j2 = j2(ω) the index such
that for all j ≥ j2,

(33) #{i : pi ≤ j} ≥ j π̂/2,

which exists and does not depend on t̄ by the definition of π̂ . We therefore obtain,
for j1 ≥ j ≥ j2,

Mε(j) ≤Mε(pjπ̂/2) ≤ C(2 + T )K2
(
γ̄ π̂/2)j

.

Denote Ĉ = C(2 + T ), γ̂ = γ̄ π̂/2. Note that for any x ∈ G, with

μ̄ := sup
z,z′∈Q+

∣∣M(z)
∣∣∣∣M−1(z′)

∣∣,
one has the trivial bound

d
(
M

(
t̄ ,X−1

t̄
(x)

)
X−1

t̄
(x),M

(
t̄ ,X−1

t̄
(x)

)
∂Q̃t̄

) ≤ d(x, ∂G)μ̄

= r02−[2 log2(
r0

d(x,∂G)μ̄
)]/2

.

If 2 log2(
r0

d(x,∂G)μ̄
) > j2, choose ε ≤ ε0 such that j1(ε) ≥ 2 log2(

r0
d(x,∂G)μ̄

), so that
we can write

ut̄ (x) = vt̄

(
X−1

t̄
(x)

) ≤ vε
t̄

(
X−1

t̄
(x)

) ≤Mε

(⌊
2 log2

(
r0

d(x, ∂G)μ̄

)⌋)

≤ ĈK2γ̂
�2 log2(

r0
d(x,∂G)μ̄

) 

≤ ĈK2γ̂
2 log2

r0
μ̄
−2

d(x, ∂G)−2 log2 γ̂ .

Note that—as claimed in the theorem—the exponent α := −2 log2 γ̂ > 0 of
the decay depends only on κ,K,d, d1. Moreover, the exponential (in 1/κ)
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lower bound on α follows from the corresponding statement of Lemma 4.14. If
2 log2(

r0
d(x,∂G)μ̄

) ≤ j2 we can use the trivial bound

ut̄ (x) ≤ sup
Q̃

v ≤K2(T + 1) ≤K2(T + 1)

(
2j2/2μ̄

r0

)α

d(x, ∂G)α.

Since t̄ was arbitrary, this yields the claim, so it would suffice to prove (32). By
virtually the same argument, it is also enough (and will be more convenient) to
prove

(34) Mε(pi+2) ≤ 2−piK2 + γMε(pi−1).

Recall that for any bounded C1 domain there exists a function εG(α) : (0,1) →
(0,∞) such that for any α ∈ (0,1) and x ∈ ∂G one has BεG(α)(x) ∩ {y :
〈 y−x
|y−x| , nx〉 ≥ α} ⊂ Gc, where nx is the normal derivative of ∂G at x. Let then

j0 be the smallest integer such that for all j ≥ j0:

(a) 2r02−j/2μ̃ ≤ 1/(32r0), where μ̃ = supz,z′∈Q+ |∇2Xt(x)||M−1(z)|2,
(b) 2μ̄r02̄−j/2 ≤ εG(1/16r0),
(c) 2−j + sup|s−t |≤2−j+1 supy∈Rd |X−1

t Xsy − y| + μ̄r02−j/2 ≤ δ0,
(d) μ̄ sup

(t,x)∈Q̃+ |βt(x)| ≤ 2−j/2.

That is of course equivalent to saying that j0 is the smallest integer that satisfies
(a)–(d). Clearly, j0 has no dependence on t̄ .

Fix now i such that pi ≥ j0 as well as 0 < ε < ε0 and fix also z0 = (t0, x0) ∈
S(pi+2). Let z′ = (t̄ , x′), where x′ ∈ ∂Q̃t̄ is a minimizer of the distance between
M(z0)x0 and M(z0)∂Q̃t̄ . Recall the definition of the flow U from (23) and intro-
duce, with M0 := M(z′),

Q0 := {
z : t ∈ [

t0 − 2−pi , t0
]
, d

(
M0x,M0x

′) ≤ r02−pi/2}
,

A0 := Q0 \ Q̃ε, τ0 := sup
{
s < t0 : (s,Ut0,s(x0)

) ∈ A0 ∪ ∂Q0
}
.

One has z0 ∈ Q0, in fact, even

(35)
∣∣M0x0−M0x

′∣∣ ≤ 21/4∣∣M(z0)x0−M(z0)x
′∣∣ ≤ r02−pi+2/2+1/4 ≤ r02−(pi+1)/2.

Since vε is sufficiently smooth on the closure of Q0 ∩ Q̃ε , by Itô’s formula one
has

vε
t0
(x0) = E

P̂

(∫ t0

τ0

ϕs

(
Ut0,s(x0)

)
ds + vε

τ0

(
Ut0,τ0(x0)

))
.

If zτ0 := (τ0,Ut0,τ0(x0)) ∈ A0, then vε(zτ0) = 0. If however zτ0 /∈ A0, then we
claim that zτ0 ∈ S(pi−1). Indeed, first note that since one cannot exit Q̃ without
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exiting Q̃ε first, if zτ0 /∈ A0, then one has Ut0,τ0(x0) ∈ Q̃τ0 . Next, by property (c)
of j0, one has |zτ0 − z′| ≤ δ0, and hence

d
(
M(zτ0)Ut0,τ0(x0),M(zτ0)∂Q̃t̄

) ≤ 21/4d
(
M0Ut0,τ0(x0),M0∂Q̃t̄

)
≤ 21/4∣∣M0Ut0,τ0(x0) −M0x

′∣∣
≤ 21/4r02−pi/2 ≤ r02−pi−1/2.

As for the time-coordinate, one simply has

τ0 ≥ t0 − 2−pi ≥ t̄ − 2−pi − 2−pi ≥ t̄ − 2−pi−1,

as required. Hence,

vε
t0
(x0) ≤ 2−piK2 + P̂

((
τ0,Ut0,τ0(x0)

)
/∈ A0

)
Mε(pi−1).

We now want to estimate the probability appearing on the right-hand side by γ ,
which is indeed enough to infer (34). First let us transform the whole space by M0:

Q1 := (id,M0)Q0, A1 := (id,M0)A0,

and note that τ0 = sup{s < t0 : (s,M0Ut0,s(x0)) ∈ A1 ∪ ∂Q1}.
Let us now apply Lemma 4.14 with the following choice of parameters:

• p = pi, r = r0, c = 21/4c0 + 1;
• (B̄t )t≥0 = (Bt0−t −Bt0)t≥0, (�̄, (F̄t )t≥0, P̄ ) = (�̂, σ ((B̄s)s∈[0,t])t≥0, P̂ );
• A = {(t, x) : (−t, x) ∈ A1 − (t0,M0x

′)}, n = nXt̄ (x
′);

• (t, x) = (0,M0x0 −M0x
′);

• ξs = M0Ut0,t0−s(x0) −M0x0

=
∫ s

0
M0βt0−s′

(
Ut0,t0−s′(x0)

)
ds′ +

∫ s

0
M0ρ̄t0−s′

(
Ut0,t0−s′(x0)

)
dB̄s′ ;

• δ = κ21/2,� = K21/2.

Let us verify the assumptions of Lemma 4.14. The measurability conditions are
satisfied by construction. The bound on the drift is satisfied due to property (d) of
j0. Concerning the bounds on the diffusion, first note that as seen above, property
(c) of j0 implies that whenever (s,Ut0,s(x0)) ∈ Q0, |z′ − (s,Ut0,s(x0))| ≤ δ0, and
so

M0ρ̄s

(
Ut0,s(x0)

) = M0
(∇Xs

(
Ut0,s(x0)

))−1
ρs

(
Xs

(
Ut0,s(x0)

))
= M

(
z′

)
M−1((

s,Ut0,s(x0)
))

ρs

(
Xs

(
Ut0,s(x0)

))
,

and the definition of δ0 along with the assumed bounds on 2ā = ρρ∗ implies the
claimed bounds. The condition on (t, x) is straightforward and follows from (35).
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As for the condition on A, first note that with denoting x̄ := Xt̄(x
′) ∈ ∂G,

R : = {
y : 〈y −M0x

′, n
〉 ≥ 2−pi/2−1} ∩ B2r02−pi/2

(
M0x

′)

⊂
{
y :

〈
y −M0x

′

|y −M0x′| , n
〉
≥ 1/(4r0)

}
∩ B2r02−pi/2

(
M0x

′)

=
{
y :

〈
y −M0X

−1
t̄

x̄

|y −M0X
−1
t̄

x̄| , n
〉
≥ 1/(4r0)

}
∩ B2r02−pi/2

(
M0X

−1
t̄

x̄
)
.

Denoting further x̃ := M0X
−1
t̄

x̄, since one has ∇(Xt̄M
−1
0 )(x̃) = I , each y in the

latter set satisfies

Xt̄M
−1
0 y − x̄ = y − x̃ + e,

where

|e| ≤ |y − x̃|2μ̃ ≤ |y − x̃|2r02−pi/2μ̃ ≤ |y − x̃|/(32r0)

by property (a) of j0. In particular, a very crude application of this bound implies

|y − x̃|/2 ≤ |y − x̃ + e| ≤ 2|y − x̃|,
and hence 〈

Xt̄M
−1
0 y − x̄

|Xt̄M
−1
0 y − x̄| , n

〉
≥

〈
y − x̃

|y − x̃ + e| , n
〉
− |e|

|y − x̃ + e|

≥ 1

2

〈
y − x̃

|y − x̃| , n
〉
− 1

16r0
≥ 1

16r0
.

Hence we can write

R⊂ M0X
−1
t̄

({
y :

〈
y − x̄

|y − x̄| , n
〉
≥ (1/16r0)

}
∩ B2μ̄r02−pi/2(x̄)

)

⊂ M0X
−1
t̄

(
Gc),

where for the last inclusion we used property (b) of j0. Let us now take an arbitrary

y∗ ∈ {
y : 〈y − M0x

′, n
〉 ≥ (

21/4c0 + 1/2
)
2−pi/2} ∩ B(r0+1)2−pi/2

(
M0x

′)

and an s ∈ [t0 − 2−pi , t0]. Denote ȳ := XsM
−1
0 y∗ and ỹ := M0X

−1
t̄

ȳ. Then one
has

(36)
ỹ − y∗ = M0

(
X−1

t̄
ȳ −X−1

s ȳ
)

= M0M
−1(

t̄ ,X−1
t̄

ȳ
)
M

(
t̄ ,X−1

t̄
ȳ
)(

X−1
t̄

ȳ −X−1
s ȳ

)
.

We have ∣∣X−1
t̄

ȳ − x′∣∣ ≤ ∣∣X−1
t̄

XsM
−1
0 y∗ −M−1

0 y∗∣∣ + ∣∣M−1
0 y∗ − x′∣∣

≤ sup
y∈Rd

∣∣X−1
t̄

Xsy − y
∣∣ + μ̄r02−pi/2 ≤ δ0
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by property (c) of j0. Hence, using the defining property (31) of pi , from (36) we
get ∣∣ỹ − y∗∣∣ ≤ 21/4c02−pi/2.

It follows that ỹ ∈R⊂ M0X
−1
t̄

(Gc) = M0Q̃
c
t̄
, and so

y∗ = M0X
−1
s Xt̄M

−1
0 ỹ ∈ M0Q̃

c
s .

Hence[
t0 − 2−pi , t0

]({
y : 〈y −M0x

′, n
〉 ≥ (

21/4c0 + 1/2
)
2−pi/2}∩B(r0+1)2−pi/2

(
M0x

′))

⊂ (id,M0)Q̃
c.

Let now j1 = j1(ε,ω) be the largest integer such that the Hausdorff distance be-
tween Q̃ and Q̃ε is smaller than 2−j1−1. Then if pi ≤ j1, we get

[
t0 − 2−pi , t0

]({
y : 〈y −M0x

′, n
〉 ≥ (

21/4c0 + 1
)
2−pi/2}∩Br02−pi/2

(
M0x

′))

⊂ (id,M0)
(
Q0 \ Q̃ε).

By a simple translation and reflection, we get the desired property of A. Also notice
that τt,x = t0 − τ0 and{(

τ0,Ut0,τ0(x0)
)

/∈ A0
} = {(

τ0,M0Ut0,τ0(x0)
)

/∈ A1
} = {

(τt,x, x + ξτt,x ) /∈ A
}
.

Applying Lemma 4.14 therefore yields

P̂
((

τ0,Ut0,τ0(x0)
)

/∈ A0
) ≤ γ

as claimed and the proof is concluded. �

APPENDIX

The following lemma is a variation on Kolmogorov’s Hölder-estimate, with the
difference being that the two-parameter family we estimate here is not necessarily
represented as increments of a (one-parameter) function.

LEMMA A.15. Let (V , | · |) be a normed vector space and let (Ds,t )s,t∈[0,T ]
and (Es,s′,t,t ′)s,s′,t,t ′∈[0,T ] be two families of V -valued random variables, satisfying

(37)
|Ds,t | ≤ |Ds,r | + |Dr,t | + |Es,r,r,t |,

|Es1,s2,s3,s4 | ≤
(|Es1,t,s3,s4 | + |Et,s2,s3,s4 |

) ∧ (|Es1,s2,s3,t | + |Et,s2,t,s4 |
)

for all choice of arguments. Suppose furthermore that D is almost surely continu-
ous in both arguments and that for some p ≥ 1, C > 0, α,α1, α2 > 0 the bounds

(38)
E|Ds,t |p ≤ C|s − t |α,

E|Es,s′,t,t ′ |p ≤ C
∣∣s − s′

∣∣α1
∣∣t − t ′

∣∣α2
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hold uniformly in s, s′, t, t ′. Then, if 0 < pγ < (α − 1) ∧ (α1 + α2 − 2), then

(39) E

(
sup

s �=t∈[0,T ]
|s − t |−γ |Ds,t |

)p ≤ CN(T ,γ,α,α1, α2,p).

PROOF. We assume without loss of generality T = 1. Introduce the notation
Dk = 2−k

Z∩ [0,1] and D = ⋃∞
k=0 Dk for the dyadic numbers and note that due to

the continuity of D, it suffices to take supremum over s, t ∈ D in (39). For fixed
s, t ∈D, let n ∈N be such that 2−n−1 ≤ |s − t | ≤ 2−n. Let (sk)k≥n and (tk)k≥n be
two sequences such that sk, tk ∈ Dk , |sn − tn| ≤ 2−n, |sk+1 − sk| ∨ |tk+1 − tk| ≤
2k+1, and that for some large enough N , |sk − s| ∨ |tk − t | = 0 for all k ≥ N . One
then has, due to (37),

|Ds,t | ≤ |Ds,sn | + |Dsn,tn | + |Dtn,t | + |Es,sn,sn,t | + |Esn,tn,tn,t |

≤
N∑

k=n

|Dsk+1,sk | +
N∑

k=n

|Es,sk+1,sk+1,sk | + |Dsn,tn |

+
N∑

k=n

|Dtk,tk+1 | +
N∑

k=n

|Etk,tk+1,tk+1,t | + |Es,sn,sn,t | + |Esn,tn,tn,t |

=:
7∑

i=1

Ii .

Clearly, each of I1, I3 and I4 is bounded (up to a universal constant) by

2−γ n sup
k≥0

sup
r∈Dk

|Dr,r+2−k |2γ k =: 2−γ nA.

Choose γ1, γ2 > 0 such that γ1 + γ2 = γ and pγi < αi − 1 for i = 1,2. Then each
of I2, I5, I6 and I7 is bounded (up to a universal constant) by

2−γ n sup
k,k′≥0

sup
r∈Dk

r ′∈Dk′

|E
r,r+2−k,r ′,r ′+2−k′ |2γ1k2γ2k

′ =: 2−γ nB.

This can be easily seen, for example, in the case of I2 (the other terms can be
treated similarly), from

I2 ≤
N∑

k=n

N∑
k′=k+1

|Esk′+1,sk′ ,sk+1,sk | ≤ B

∞∑
k=n

∞∑
k′=k+1

2−k′γ12−kγ2 ≤ B2−n(γ1+γ2).

Therefore,

E

(
sup

s �=t∈[0,T ]
|s − t |−γ |Ds,t |

)p ≤ 7p
E(A ∨B)p,
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and it remains to bound E(A ∨ B)p . Using the bounds (38) and the conditions on
the exponents, one has, up to constants depending on p and the exponents,

E(A ∨ B)p ≤ E sup
k,k′≥0

sup
r∈Dk

r ′∈Dk′

|Dr,r+2−k |p2γ kp + |E
r,r+2−k,r ′,r ′+2−k′ |p2γ1kp2γ2k

′p

≤ ∑
k≥0

∑
r∈Dk

E|Dr,r+2−k |p2γ kp

+ ∑
k,k′≥0

∑
r∈Dk

r ′∈Dk′

E|E
r,r+2−k,r ′,r ′+2−k′ |p2γ1kp2γ2k

′p

≤ C
∑
k≥0

2k2−αk2γ kp + C
∑

k,k′≥0

2k+k′2−α1k2−α2k
′
2γ1kp2γ2k

′p ≤ C.
�
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