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REGULARIZATION BY NOISE AND FLOWS OF SOLUTIONS FOR
A STOCHASTIC HEAT EQUATION

BY OLEG BUTKOVSKY1 AND LEONID MYTNIK2

Technion—Israel Institute of Technology

Motivated by the regularization by noise phenomenon for SDEs, we
prove existence and uniqueness of the flow of solutions for the non-Lipschitz
stochastic heat equation

∂u

∂t
= 1

2

∂2u

∂z2 + b
(
u(t, z)

) + Ẇ (t, z),

where Ẇ is a space-time white noise on R+ × R and b is a bounded mea-
surable function on R. As a byproduct of our proof, we also establish the
so-called path-by-path uniqueness for any initial condition in a certain class
on the same set of probability one. To obtain these results, we develop a new
approach that extends Davie’s method (2007) to the context of stochastic par-
tial differential equations.

1. Introduction. This work deals with the uniqueness theory for stochastic
heat equations of the following form:

∂u

∂t
= 1

2

∂2u

∂z2 + b
(
u(t, z)

) + Ẇ (t, z), t ≥ 0, z ∈R,

u(0, z) = q(z),

(1.1)

where Ẇ is a Gaussian space-time white noise on R+ × R, b is a bounded Borel
measurable function on R and q is a Borel measurable function on R satisfying
certain growth conditions. To be more precise, we are going to construct the flow
of solutions to (1.1), which is indexed by initial conditions q; we will establish
uniqueness of the flow and show that in fact the flow can be constructed in a PDE
sense on a set of full probability measure.

Equation (1.1) has been extensively studied in the SPDE literature. The strong
existence and uniqueness (in a probability sense) to that equation has been shown
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by Gyöngy and Pardoux in [12] for bounded b and in [13] for some locally un-
bounded b. Later, in [1], the results were extended to the equations with the multi-
plicative noise. Note that in the above references the equations are defined for the
spatial variable z ∈ [0,1], but the results could be easily extended to our setting of
z ∈R.

The strong uniqueness for (1.1) represents a phenomenon that is called “regu-
larization by noise.” This is the property that roughly speaking can be formulated
as follows: deterministic equation without noise might not have uniqueness or ex-
istence property; however, whenever the equation is perturbed by noise it has a
unique solution; see the related discussion in a recent book of Flandoli [8]. This
is the situation with (1.1): clearly, one cannot make a general claim that equa-
tion (1.1) without noise at the right-hand side has a unique solution whenever b is
not Lipschitz, whereas, as we mentioned above, with the noise, uniqueness holds
for a large class of drifts b. Note that whenever we say that there exists a unique
strong solution to (1.1) we mean by this that on some filtered probability space
(�,F, (Ft )t≥0,P) there exists a unique adapted strong solution to that equation.
That, in fact, implies that regularization by noise phenomenon happens in proba-
bility sense, as a regularization for Itô–Walsh stochastic equation.

On the other hand, one can ask the question whether the regularization effect
takes place in a purely PDE setting. That is, one is interested whether it is possible
to find a set �′ ⊂ � of full probability such that for almost every ω ∈ �′, given the
path

(t, z) �→ V (t, z,ω) :=
∫ t

0

∫
R

pt−t ′
(
z − z′)W (

dt ′, dz′,ω
)

(see the discussion in the beginning of Section 2 for the precise definition of V )
equation (1.1) in the integral, or so-called, mild form (see equation (2.1) below),
has a unique solution. Due to Flandoli’s definition, we will call the uniqueness of
such kind the path-by-path uniqueness; see [8], Definition 1.5 and the discussion
in [8], Section 1.3.3.

The problem of path-by-path uniqueness is interesting in itself; however, it is
closely related to another interesting question: existence and uniqueness of the
flow of solutions indexed by initial conditions q of the equation. To the best of
our knowledge, not much is known about existence and uniqueness of flows for
SPDEs. Even if the drift and diffusion are very smooth functions, only the local
flow property was established in [14], Corollary 1.10. If the drift is Lipschitz and
the diffusion coefficient is linear, the flow property was proved in [11]; see also
[4] for related results. Linear systems were considered earlier by Flandoli [7]. We
are not aware of any results in the literature concerning the case of non-Lipschitz
coefficients; in the current paper, we study an SPDE with a non-Lipschitz drift and
an additive noise.

The question of regularization by noise for SDEs has been studied much more
extensively. In particular, the following SDE has been thoroughly investigated:

(1.2) dXt = b(Xt) dt + dBt ,



REGULARIZATION BY NOISE 167

where b is a measurable function and B is a d-dimensional Brownian motion de-
fined on a filtered probability space (�,F, (Ft )t≥0,P). First, it was derived by
Zvonkin in [27] for d = 1, that the above equation has a unique strong solution for
a bounded measurable b. Then this result was generalized by Veretennikov in [23]
for the multidimensional case, and later it was extended by Krylov and Röckner
in [17] for the case of locally unbounded b under some integrability condition.
The flow property of solutions to (1.2) was also established under essentially the
same integrability condition; see [6, 9] and [26] for the case of nonconstant diffu-
sion coefficients. Note that the definition of stochastic flow in the above references
requires that the solution {Xt, t ≥ 0} is adapted with respect to the filtration Ft .
In particular, the strong uniqueness, is by definition, the uniqueness among the
adapted solutions. All the proofs use a Zvonkin-type transformation [27] that al-
lows either to eliminate the “nonregular” drift or to make it more regular. For the
related recent interesting works on flows of SDEs, see also [19, 21].

If one asks the path-by-path uniqueness for (1.2), then the first result in this
direction has been achieved by Davie in [5], who showed it for a fixed initial
condition x. Later the result has been generalized by Shaposhnikov in [22], who
established path-by-path uniqueness of solutions simultaneously for all initial con-
ditions. Shaposhnikov also developed a new method that is based on the flow con-
struction of Fedrizzi and Flandoli [6]. Recently, the regularization by noise has
been constructed also for equations driven by other types of noises, for example,
Lévy noises: see Priola [20], where Shaposhnikov’s method is used. We would also
like to mention a paper by Catellier and Gubinelli [3] where a number of very inter-
esting results concerning regularization by noise and path-by-path uniqueness for
ODEs were achieved. Recently, some results related to path-by-path uniqueness
for Hilbert space-valued SDEs were obtained in [25] for fixed initial conditions;
however, the flow property is not obtained in that paper.

Now if we get back to our SPDE setting, we can say outright that we do not have
the luxury of having a convenient Zvonkin-type transformation. That is why we, in
a sense, use the reverse argument: we first show path-by-path uniqueness together
with some continuity with respect to initial conditions and based on this we show
existence and uniqueness of the flow. To push the argument through, we develop
a new method that extends Davie’s approach to the infinite-dimensional case. We
believe that our method of proving existence of the flow is of independent interest.

In the next section, we will present the main results of the paper.

2. Main results. We study a one-dimensional stochastic heat equation on R

with a drift (1.1). Let (�,F, (Ft )t≥0,P) be a probability space. Let Ẇ be a space-
time white noise on this space adapted to the filtration. Let p be a standard heat
kernel

pt(z) = 1√
2πt

exp
(−z2/2t

)
, t > 0, z ∈ R,
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and V be a convolution of the heat kernel p with the white noise Ẇ (·, ·,ω), that
is,

V (s, t, z,ω) :=
∫ t

s

∫
R

pt−t ′
(
z − z′)W (

dt ′, dz′), t ≥ 0, s ∈ [0, t], z ∈R.

In case s = 0 for brevity, we drop the first index and write V (t, z,ω) :=
V (0, t, z,ω). Further, we will frequently omit ω from the notation. Later on, in
Lemma 4.7 we will show existence of a modification of V that is almost surely
jointly continuous in (s, t, z); with some abuse of notation this modification will
be denoted by the same symbol V . As usual, here and in the sequel we use the
convention that

∫
p0(x − y)f (y) dy := f (x) for any measurable function f .

We say that a random function u solves (1.1) in the path-by-path sense if
u(0, z) = q(z) and for P-almost surely ω the following holds for any t > 0, z ∈ R:

u(t, z,ω) =
∫
R

pt

(
z − z′)q(

z′)dz′

+
∫ t

0

∫
R

pt−t ′
(
z − z′)b(

u
(
t ′, z′,ω

))
dz′dt ′

+ V (0, t, z,ω).

(2.1)

We will also consider a stochastic heat equation that starts with the initial condition
q at time s ≥ 0:

u(t, z,ω) =
∫
R

pt−s

(
z − z′)q(

z′,ω
)
dz′

+
∫ t

s

∫
R

pt−t ′
(
z − z′)b(

u
(
t ′, z′,ω

))
dz′dt ′

+ V (s, t, z,ω), t > s, z ∈ R,

u(s, z,ω) = q(z,ω), z ∈ R.

(2.2)

Sometimes when there is an ambiguity we denote a solution to (2.2) by us,q(t, z,

ω), thus emphasizing the initial conditions. We see that for s = 0 (2.2) is just (2.1).
We have to analyze us,q for s ≥ 0 (rather than just at s = 0) in order to prove the
existence of the flow; see the proof of Theorem 2.2(a) below.

Note that the difference between the definition given above and the standard one
(see, e.g., [16], Definition 6.3) is that we do not require adaptiveness of the solu-
tion u to the filtration generated by Ẇ . Instead of it, for each fixed ω ∈ � we treat
equation (2.2) separately as a deterministic PDE with a forcing term V (s, ·, ·,ω).

Let us now present the main results of the paper. First we define a class of
functions that we take as initial conditions to (1.1).

DEFINITION 2.1.

1) Let μ ≥ 0. We say that a measurable function f : R → R belongs to the class
B(μ), if there exists a constant C > 0 such that |f (z)| ≤ C(|z|μ ∨ 1) for z ∈ R.
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2) We say that a function f : R → R belongs to the class B(0+), if f belongs to
the class B(ε) for all ε > 0.

For brevity, the class B(0) of measurable bounded functions on R will be de-
noted just by B. If f ∈ B, we define ‖f ‖∞ := supz∈R |f (z)|.

Our first result proves existence and path-by-path uniqueness (see brief discus-
sion on this concept in the Introduction) of solutions to (1.1) on some “good” set
of full probability measure simultaneously for all initial conditions in B(0+) and
all starting times s ≥ 0.

THEOREM 2.1. Let b ∈ B. There exists a set �′ = �′(b) ⊂ � with the follow-
ing properties:

1) P(�′) = 1.
2) Let ω ∈ �′. Then for any initial condition q ∈ B(0+) and any s ≥ 0 equation

(2.2) has a unique solution. This solution us,q(t, ·) ∈ B(0+) for any t ≥ s.
3) Let ω ∈ �′ and q1, q2 ∈ B(0+) be two initial conditions. If we have q1(z) =

q2(z) Lebesgue–almost everywhere in z, then us,q1(t, z,ω) = us,q2(t, z,ω) for
any s ≥ 0, t > s, z ∈R.

Note that as a class of initial conditions we chose B(0+) (rather than, e.g., B),
since us,q(t, ·) ∈ B(0+). Thus, if one starts equation (2.2) from an initial condition
in B(0+), then at any t ≥ 0 the solution to this equation remains in the same class.

SKETCH OF THE PROOF OF THEOREM 2.1. The proof consists of three inde-
pendent parts. First, in Section 4 we establish a number of useful regularity prop-
erties of V (on a certain “good” set) and prove that a certain auxiliary operator is
continuous.

Then in Section 5.1 we prove existence of a solution to (2.2). Let C0(R) be the
space of all continuous functions R → R vanishing at infinity equipped with the
standard sup-norm. Recall that it follows from Gyöngy and Pardoux [12] that for
any s ≥ 0, q ∈ C0(R) there exists a set �s,q of probability measure 1 such that on
�s,q equation (2.2) has a solution that starts with the initial condition q at time s.
More precisely, although in [12] the equation is considered on (t, z) ∈ R+ ×[0,1],
the methods that are used in that paper work exactly in the same way for (t, z) ∈
R+ ×R. Our goal is to show that this “good” set �s,q can be chosen to be the same
for all s ≥ 0, q ∈ B(0+).

To carry out this plan, we fix a countable dense subset � of C0(R) and a count-
able dense subset � of R+. Since both � and � are countable, we see that [12] im-
plies that there exists a set �E of probability measure 1 such that for any ω ∈ �E ,
s ∈ �, q ∈ � equation (2.2) has a solution that starts with the initial condition q at
time s. Using continuity of a certain integral operator (Lemma 4.10), we will show
that there exists a set of full measure �′ ⊂ �E such that for any ω ∈ �′, s ≥ 0,
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q ∈ B(0+) equation (2.2) has a solution that starts with the initial condition q at
time s.

Finally, in Section 5.2 we prove uniqueness of a solution to (2.2). The proof
extensively used smoothing properties of an integral operator involving white noise
(Theorem 2.3 and Lemma 5.6). We develop a new approach motivated by the ideas
of Davie [5]. �

The next theorem shows that there exists a unique flow of solutions to equation
(1.1) and that this flow is continuous. We will see that this is a direct corollary of
existence and path-by-path uniqueness of solutions to (1.1).

THEOREM 2.2. Let b ∈ B. Let �′ ⊂ � be from Theorem 2.1.

(a) [Existence of the flow.] There exists a mapping

(s, t, q,ω) �→ ϕ(s, t, q,ω)

with values in B(0+) defined for 0 ≤ s ≤ t , q ∈ B(0+), ω ∈ �′ such that:
1. For any s ≥ 0, q ∈ B(0+), ω ∈ �′ the function us,q(t, ·) := ϕ(s, t, q,ω) is

a unique solution to (2.2) that starts from the initial condition q at time s;
2. We have on �′ for 0 ≤ r < s < t

ϕ(r, t, q,ω) = ϕ
(
s, t, ϕ(r, s, q,ω),ω

);
(b) [Continuity of the flow.] Let ϕ be the mapping defined in Part (a) of the the-

orem. Let (qn)n∈Z+ be a sequence of functions from B(0+), that converges
Lebesgue–almost everywhere to q ∈ B(0+). Assume that there exist constants
C > 0, μ > 0 such that for any n ∈ Z+ one has∣∣qn(z)

∣∣ ≤ C
(|z|μ ∨ 1

)
, z ∈ R.

Then on �′ we have for 0 ≤ s < t , z ∈ R

lim
n→∞ϕ(s, t, qn,ω)(z) = ϕ(s, t, q,ω)(z).

PROOF OF THEOREM 2.2(a). By Theorem 2.1, for any ω ∈ �′, q ∈ B(0+),
s ≥ 0 equation (2.2) has a unique solution us,q that starts with initial condition q

at time s.
Now for 0 ≤ s ≤ t , q ∈ B(0+), ω ∈ �′ define

ϕ(s, t, q,ω) := us,q(t, ·,ω).

Let us check that ϕ satisfies all the properties of the flow formulated in The-
orem 2.2(a). The first property is obvious. To check the second property, we fix
any ω ∈ �′, 0 ≤ r < s, q ∈ B(0+). For t ≥ s, put u1(t, ·) := ϕ(r, t, q,ω) and
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u2(t, ·) := ϕ(s, t, ϕ(r, s, q,ω),ω). Note that both u1 and u2 are solutions to equa-
tion (2.2) that starts with initial condition ϕ(r, s, q,ω) at time s. The initial condi-
tion ϕ(r, s, q,ω) = ur,q(s, ·,ω) is in B(0+) by Theorem 2.1. Therefore, by Theo-
rem 2.1 the solutions u1 and u2 coincide. Thus,

ϕ(r, t, q,ω) = ϕ
(
s, t, ϕ(r, s, q,ω),ω

)
,

and ϕ is a flow of solutions to (2.2). �

The proof of Theorem 2.2(b) is given in Section 5.3.
The next theorem describes smoothing properties of the noise V that are crucial

for the proof of Theorems 2.1 and 2.2. We are interested in the regularity properties
of the mapping

(2.3) (x, t, z) �→
∫ t

0
b
(
V (r, z) + f (r, z) + x

)
dr,

where f belongs to a certain class of weighted Hölder functions with singularities
defined below.

DEFINITION 2.2.

1) Let h,γ ∈ [0,1], T ,M,μ ≥ 0. We say that a measurable function f : (0, T ] ×
R→R is in the space Ch

(0,T ](γ,μ,M) if∣∣f (t, z) − f (s, z)
∣∣ ≤ M|t − s|hs−γ (|z|μ ∨ 1

)
, 0 < s < t ≤ T , z ∈ R

and |f (t, z)| ≤ M(|z|μ ∨ 1) for z ∈ R, t ∈ (0, T ].
2) We say that a function f : (0, T ] × R → R is in the space Ch−

(0,T ](γ,0+) if for
any ε > 0 there exists M > 0 such that f ∈ Ch−ε

(0,T ](γ, ε,M).

If there is no ambiguity in time interval, we will frequently drop the subscript
(0, T ] and write Ch instead of Ch

(0,T ].

THEOREM 2.3. Let b ∈ B. There exists a set �′′ = �′′(b) ⊂ � with the fol-
lowing properties:

1) P(�′′) = 1.
2) Let ω ∈ �′′. Then for any 0 < ε < 3/4, T > 0, h ∈ (1/2,1], M > 0 there exists

a constant Kb = Kb(b,ω, ε, T ,M,h) < ∞ such that for any γ ∈ [0,1], μ > 0,
f ∈ Ch

(0,T ](γ,μ,M), x, y, z ∈ R, 0 ≤ t1 ≤ t2 ≤ T , s ∈ [0, T ] we have∣∣∣∣∫ t2

t1

(
b
(
V (t + s, z) + f (t, z) + x

) − b
(
V (t + s, z) + f (t, z) + y

))
dt

∣∣∣∣
≤ Kb(ω)|x−y|(t2− t1)

1−(
γ

4h−1 ∨ 1
4 )−ε(|x|∨|y|∨ 1

)1+ε(|z|3μ+ε∨1
)
.

(2.4)

Furthermore, EKb ≤ ‖b‖∞C(ε,T ,M,h) for some function C that does not
depend on b.
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If the function b were a Lipschitz function, then the left-hand side of (2.4) would
be bounded by |t1 − t2||x − y|. In our case, when b is just a bounded function, the
left-hand side of (2.4) is obviously bounded by |t1 − t2|. Theorem 2.3 implies that
one can trade the regularity in t to gain the regularity in x. In particular, we see
from the above theorem that P–almost surely the function

x �→
∫ t2

t1

b
(
V (t, z) + x

)
dt, x ∈ R,

is Lipschitz in x. Moreover, we have very good local control on coefficients.

SKETCH OF THE PROOF OF THEOREM 2.3. The proof is based on an appli-
cation of a suitable version of Kolmogorov continuity theorem to a corresponding
moment bound. This is done in Section 3. The calculation of the moment bound
turned out to be rather complicated and it involves a number of technical estimates.
We do it thoroughly in Section 6 utilizing some ideas from [3]. �

REMARK 2.4. We would like to note that while the good set �′ in Theo-
rems 2.1 and 2.2 can be chosen independently of the initial condition q , �′ as well
as �′′ from Theorem 2.3 might still depend on the drift function b.

It is interesting to compare smoothing properties of operator (2.3) to the smooth-
ing properties of a similar operator with a Brownian motion B in place of V ; see
[8], Corollary 2.2 and also [5], Lemmas 3.1 and 3.2. We see that since V in the
time variable is less regular than the Brownian motion, Theorem 2.3 guarantees a
better smoothing.

The function f appears in (2.3) due to the presence of the drift in our main
equation (2.2). Note that in the original Davie’s paper [5] the smoothing is consid-
ered without the drift term (this corresponds to the case f ≡ 0). That was possible
due to the use of the Girsanov transformation for eliminating the drift. In other
words, the “good” set �′′ in [5] depends on the drift f and the initial condition.
Since we are aimed at establishing the flow property for (2.2), we have to prove
path-by-path uniqueness simultaneously for all initial conditions; see the proof of
Theorem 2.2(a). Thus we have to prove that smoothing in Theorem 2.3 occurs
simultaneously for all drifts f and this cannot be achieved with Girsanov’s trans-
formation.

The rest of the paper is devoted to the proofs of the main results and is orga-
nized as follows. In Section 3, we prove Theorem 2.3. The proof of Theorem 2.1 is
rather large and is split into two parts for the convenience of the reader. Namely, in
Section 4 we establish a number of auxiliary lemmas and present the main part of
the proof in Section 5. Theorem 2.2 is also proved in Section 5. An important mo-
ment bound that is exploited for the proof of Theorem 2.3 is derived in Section 6.
A technical lemma that is applied to prove smoothing properties of the noise is
established in Section 7. Finally, a number of technical estimates concerning the
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Gaussian kernel and related functions as well as the proof of a global version of
the Kolmogorov continuity theorem are put in the Supplementary Material [2].

Convention on constants. Throughout the paper, C denotes a positive constant
whose value may change from line to line. K denotes a random constant whose
value might depend on ω ∈ �.

3. Proof of Theorem 2.3. We start proving the main results by presenting a
proof of Theorem 2.3. First we give here a version of the Kolmogorov theorem on
a noncompact set (global version) that will be extensively used in this and other
proofs in the paper.

Define for w = (w1,w2) ∈R
2, a = (a1, a2) ∈ (0,1]2 a weighted norm da

(3.1) da(w) := |w1|a1 + |w2|a2 .

LEMMA 3.1 (Kolmogorov continuity theorem). Let X(x, y), x ∈ R, y ∈ R
2,

be a continuous random field with values in R. Assume that there exist nonnegative
constants a = (a1, a2) ∈ (0,1]2, α, β1, β2, C such that the inequalities

E
∣∣X(x1, y1) − X(x1, y2) − X(x2, y1) + X(x2, y2)

∣∣α
≤ C|x1 − x2|β1da(y1 − y2)

β2,

E
∣∣X(x1, y1) − X(x2, y1)

∣∣α ≤ C|x1 − x2|β1(3.2)

hold for any x1, x2 ∈ R, y1, y2 ∈ R
2, |x1 − x2| ≤ 1, |y1 − y2| ≤ 1.

Then for any γ1 ∈ (0, (β1 − 1)/α) and γ2 ∈ (0, (β2 − 1/a1 − 1/a2)/α) there
exist a set �∗ ⊂ � with P(�∗) = 1 and a random variable K with EK(ω)α ≤ C1
such that for any ω ∈ �′, x1, x2 ∈ R, y1, y2 ∈ R

2, |x1 − x2| ≤ 1, |y1 − y2| ≤ 1 we
have ∣∣X(x1, y1) − X(x1, y2) − X(x2, y1) + X(x2, y2)

∣∣
≤ K(ω)

(|x1| ∨ |y1| ∨ 1
)3/α|x1 − x2|γ1da(y1 − y2)

γ2

(3.3)

and

(3.4)
∣∣X(x1, y1) − X(x2, y1)

∣∣ ≤ K(ω)
(|x1| ∨ |y1| ∨ 1

)3/α|x1 − x2|γ1,

where the constant C1 > 0 depends on the field X only through a, α, βi , γi , C.

The proof of the lemma uses a local version of the Kolmogorov continuity the-
orem (see, e.g., [18], Theorem 1.4.4, [15], Theorem 3.1 and [24], Corollary 1.2)
and is given in the Supplementary Material [2], Section 1.

The proof of Theorem 2.3 is based on the above mentioned version of the Kol-
mogorov theorem and the following moment bound.
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PROPOSITION 3.2. Let b : R → R be a bounded differentiable function with
bounded derivative. Then for any 0 ≤ t1 ≤ t2 ≤ T , z, z1, z2, x, y ∈ R, |z1 − z2| ≤ 1,
δ ∈ (0,1), δ′ ∈ (0, δ), p > 1 we have

E

∣∣∣∣∫ t2

t1

(
b′(V (t, z1) + x

) − b′(V (t, z2) + y
))

dt

∣∣∣∣p
≤ C(t2 − t1)

p(3/4−δ/4)(|z1 − z2|pδ′/2 + |x − y|pδ);
(3.5)

E

∣∣∣∣∫ t2

t1

b′(V (t, z)
)
dt

∣∣∣∣p ≤ C(t2 − t1)
p(3/4−δ).(3.6)

for some constant C = C(p,T , δ, δ′,‖b‖∞) > 0.

It is important to stress that the constant C from Proposition 3.2 depends only
on ‖b‖∞ but not on the function b itself and not on its derivative. The proof of
Proposition 3.2 is postponed to Section 6.

Finally, we need a technical estimate.

LEMMA 3.3. Let U ⊂ R and assume that U has a Lebesgue measure 0. Then
there exists a set �(U) ⊂ � such that P(�(U)) = 1 and for any ω ∈ �(U), h >

1/2, T > 0, M > 0, μ > 0, f ∈ Ch
(0,T ](1,μ,M), z ∈ R, s ∈ [0, T ] we have∫ T

0
1U

(
V (t + s, z,ω) + f (t, z)

)
dt = 0.

This lemma is proved in Section 7.

PROOF OF THE THEOREM 2.3. First we consider the case when b is
a bounded differentiable function with a continuous bounded derivative and
‖b‖∞ = 1. In this case, we apply a version of the Kolmogorov continuity theo-
rem (Lemma 3.1) to the random field

X
(
t, (z, x)

) :=
∫ t

0
b′(V (r, z) + x

)
dr.

Fix arbitrary T > 0. It follows from Proposition 3.2 and Lemma 3.1 that for any
δ ∈ (0,1), ε > 0 there exist a set �T,δ,ε ⊂ � with P(�T,δ,ε) = 1 and a random
variable K(ω) such that for all z1, z2, x, y ∈ R with |z1 − z2| + |x − y| ≤ 1 and
0 ≤ t1 ≤ t2 ≤ 2T , ω ∈ �T,δ,ε one has∣∣∣∣∫ t2

t1

(
b′(V (t, z1) + x

) − b′(V (t, z2) + y
))

dt

∣∣∣∣
≤ K(ω)(t2 − t1)

(3/4−δ/4−ε)(|z1 − z2|δ/2 + |x − y|δ)1−ε

× (|x|ε ∨ |y|ε ∨ 1
)(|z1|ε ∨ |z2|ε ∨ 1

)
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and EK ≤ C, where the constant C = C(T , δ, ε) does not depend on the func-
tion b.

We apply now the above inequality to z1 = z2 = z and arbitrary x, y ∈ R. That
is, if |x − y| ≤ N we apply the above inequality N times. We get that on �T,δ,ε

for all x, y, z ∈R, 0 ≤ t1 ≤ t2 ≤ T , s ∈ [0, T ],

(3.7)
∣∣∣∣ ∫ t2

t1

(
b′(V (t + s, z) + x

) − b′(V (t + s, z) + y
))

dt

∣∣∣∣
≤ K1(ω)

(|x|1+ε∨|y|1+ε∨1
)(|z|ε∨1

)
(t2−t1)

3/4−δ/4−ε|x−y|δ(1−ε),

where we have also applied change of variables t → t + s in the integral. Here
EK1 ≤ C = C(T , δ, ε).

In a similar way, inequality (3.4) and Proposition 3.2 yield that for any
ε ∈ (0,3/4) there exists a set �̃T ,ε and a random variable K2(ω) such that for
any ω ∈ �̃T ,ε , z ∈R, 0 ≤ t1 ≤ t2 ≤ T , s ∈ [0, T ] we have

(3.8)
∣∣∣∣∫ t2

t1

b′(V (t + s, z)
)
dt

∣∣∣∣ ≤ K2(ω)
(|z|ε ∨ 1

)
(t2 − t1)

3/4−ε.

Again, EK2 ≤ C = C(T , ε).
This allows us to proceed to the next step. Fix M > 0 and take any function

f ∈ Ch
(0,T ](γ,μ,M). Fix 0 ≤ t1 ≤ t2 ≤ T . Consider the following binary partition

of the interval [t1, t2]:
t in := t1 + (t2 − t1)i2

−n, n ∈ Z+, i = 0,1, . . . ,2n.

Let fn be the following piecewise-constant approximation of f :

fn(t, z) :=
2n−1∑
i=0

1(t ∈ (
t in, t

i+1
n ])f (

t i+1
n , z

)
, t ∈ [t1, t2], z ∈ R.

Clearly, the sequence of functions fn converges pointwise to f on [t1, t2]. Thus,
for arbitrary s ∈ [0, T ], ω ∈ �, x, y, z ∈R we derive∣∣∣∣∫ t2

t1

(
b
(
V (t + s, z) + f (t, z) + x

) − b
(
V (t + s, z) + f (t, z) + y

))
dt

∣∣∣∣
=

∣∣∣∣∫ y

x

∫ t2

t1

b′(V (t + s, z) + f (t, z) + r
)
dt dr

∣∣∣∣
≤

∣∣∣∣∫ y

x

∫ t2

t1

b′(V (t + s, z) + f0(t, z) + r
)
dt dr

∣∣∣∣ + ∞∑
k=0

J (k, t1, t2)

=: I +
∞∑

k=0

J (k, t1, t2),

(3.9)
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where in the first identity we have used Fubini’s theorem (recall that we have as-
sumed boundedness of the function b′) and denoted for k ∈ Z+ and l1, l2 ∈ [t1, t2],
J (k, l1, l2)

:=
∣∣∣∣∫ y

x

∫ l2

l1

(
b′(V (t+s, z)+fk+1(t, z)+r

)−b′(V (t+s, z)+fk(t, z)+r
))

dtdr

∣∣∣∣.
It turns out that we need to apply (3.7) with different δ to estimate I and J (k, t1, t2).
Since, by definition, the function f0 is constant on [t1, t2], we see that (3.7) with
δ = ε together with (3.8) yield for ω ∈ �̃T ,ε ∩ �T,ε,ε

I ≤
∣∣∣∣∫ y

x

∫ t2

t1

b′(V (t + s, z) + f0(t, z) + r
) − b′(V (t + s, z)

)
dt dr

∣∣∣∣
+

∣∣∣∣∫ y

x

∫ t2

t1

b′(V (t + s, z)
)
dt dr

∣∣∣∣
≤ K3(ω)

(|x| ∨ |y| ∨ 1
)1+2ε(|z|2μ+ε ∨ 1

)
(t2 − t1)

3/4−2ε|x − y|

(3.10)

and EK3 ≤ C(T , ε,M).
Recall that each function fk is a piecewise constant function in t . Therefore, to

estimate J (k, t1, t2) we split the integral over [t1, t2] into integrals over intervals
(t ik, t

2i+1
k+1 ], i = 0,1, . . . ,2k − 1, where fk and fk+1 are constant in t , and apply

estimate (3.7) to each of these integrals. Note that fk = fk+1 on the complement
of the union of these intervals. Thus, for any k ∈ Z+, i = 0,1, . . . ,2k −1 we obtain
on �T,δ,ε

J
(
k, t ik, t

i+1
k

)
≤ J

(
k, t ik, t

2i+1
k+1

) + J
(
k, t2i+1

k+1 , t i+1
k

)
=

∣∣∣∣∫ y

x

∫ t2i+1
k+1

t ik

(
b′(V (t+s, z)+f

(
t2i+1
k+1 ,z

)+r
)−b′(V (t+s, z)+f

(
t i+1
k , z

)+r
))

dtdr

∣∣∣∣
+

∣∣∣∣∫ y

x

∫ t i+1
k

t2i+1
k+1

(
b′(V (t+s, z)+f

(
t i+1
k ,z

)+r
)−b′(V (t+s, z)+f

(
t i+1
k , z

)+r
))

dtdr

∣∣∣∣
≤ CK1(ω)

(|x| ∨ |y| ∨ 1
)1+ε(|z|2μ+ε ∨ 1

)
(t2 − t1)

3/4−δ/4−ε

× 2−(3/4−δ/4−ε)k
∣∣f (

t2i+1
k+1 , z

) − f i+1
k , z)

∣∣δ−ε|x − y|
≤ CK1(ω)

(|x| ∨ |y| ∨ 1
)1+ε(|z|3μ+ε ∨ 1

)
(t2 − t1)

3/4+δ(h−1/4−γ )−2ε

× 2−k(3/4−δ(1/4−h+γ )−3ε)(i + 1/2)−γ δ|x − y|,
where in the last line we used the fact that f ∈ Ch

(0,T ](γ,μ,M) and the constant
C = C(T , ε,M) does not depend on i and k. By summing the obtained inequality
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over all k ∈ Z+ and i ∈ [0,2k − 1], we deduce on �T,δ,ε

∞∑
k=0

J (k, t1, t2) =
∞∑

k=0

2k−1∑
i=0

J
(
k, t ik, t

i+1
k

)
≤ CK1(ω)

(|x| ∨ |y| ∨ 1
)1+ε(|z|3μ+ε ∨ 1

)
× (t2 − t1)

3/4+δ(h−1/4−γ )−2ε|x − y|

×
∞∑

k=0

2k(1/4−δ(h−1/4)+3ε).

(3.11)

Again, C = C(T , δ, ε,M). We see that in order for the sum in the right-hand side
of (3.11) to be convergent we must necessarily have

δ(h − 1/4) > 1/4 + 3ε.

We must also have δ < 1. Recall that by assumption of the theorem h > 1/2. Thus
one can take δ := 1/(4h − 1) + 24ε. If, additionally, γ ≤ h − 1/4, then combining
(3.9), (3.10), (3.11), we finally obtain for ε > 0 on �∗

T ,ε,h := �̃T ,ε ∩ �T,ε,ε ∩
�T,1/(4h−1)+24ε,ε∣∣∣∣∫ t2

t1

(
b
(
V (t + s, z) + f (t, z) + x

) − b
(
V (t + s, z) + f (t, z) + y

))
dt

∣∣∣∣
≤ K4(ω)|x − y|(|x| ∨ |y| ∨ 1

)1+2ε(|z|3μ+ε ∨ 1
)
(t2 − t1)

3/4−2ε.

In case γ > h − 1/4, we obtain on �∗
T ,ε,h:∣∣∣∣∫ t2

t1

(
b
(
V (t + s, z) + f (t, z) + x

) − b
(
V (t + s, z) + f (t, z) + y

))
dt

∣∣∣∣
≤ K4(ω)|x − y|(|x| ∨ |y| ∨ 1

)1+2ε(|z|3μ+ε ∨ 1
)
(t2 − t1)

1−γ /(4h−1)−24ε.

Note that in both cases we have EK4(ω) ≤ C(T , ε,M,h). Now we set �∗ :=⋂
�∗

T ,ε,h where the intersection is taken over all rational T > 0, ε > 0, h ∈
(1/2,1]. We see that on �∗ the statement of the theorem holds. This concludes
the proof of the theorem for the case where b is a bounded differentiable function
with a continuous bounded derivative and ‖b‖∞ = 1.

If ‖b‖∞ = 0, then there is nothing to prove. If b is a bounded differentiable
function with a continuous bounded derivative but ‖b‖∞ �= 1, ‖b‖∞ > 0, then the
statement of the theorem also holds. Indeed, we can renormalize b and consider
b1(x) := b(x)/‖b‖∞.

Finally, to prove the theorem in the general case (for bounded but not necessarily
differentiable b with arbitrarily ‖b‖∞) we use approximations. It follows from
Lusin’s theorem that there exists a sequence (bn)n∈Z+ of bounded differentiable
function with continuous bounded derivatives such that

lim
n→∞bn(x) = b(x) Lebesgue-almost everywhere in x; x ∈ R
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and supn ‖bn‖∞ ≤ 2‖b‖∞. Put U := {x ∈ R : limn→∞ bn(x) �= b(x)}, b̃(x) :=
limn→∞ bn(x). We see that the set U is of Lebesgue measure 0.

Let �n be the “good” set for the function bn (i.e., the set such that the statement
of the theorem is satisfied for the function bn). By above, P(�n) = 1. Take

�∞ :=
∞⋂

n=1

�n ∩ �(U),

where the set �(U) is defined in Lemma 3.3. Clearly, P(�∞) = 1. Take arbitrary
T > 0, M > 0, h > 1/2, 0 < ε < 3/4. By the dominated convergence theorem
and Lemma 3.3, we have on �∞ for any γ ∈ [0,1], μ > 0, f ∈ Ch

(0,T ](γ,μ,M),
x, y, z ∈R, 0 ≤ t1 ≤ t2 ≤ T , s ∈ [0, T ]∣∣∣∣∫ t2

t1

(
b
(
V (t + s, z) + f (t, z) + x

) − b
(
V (t + s, z) + f (t, z) + y

))
dt

∣∣∣∣
≤

∣∣∣∣∫ t2

t1

(
b̃
(
V (t + s, z) + f (t, z) + x

) − b̃
(
V (t + s, z) + f (t, z) + y

))
dt

∣∣∣∣
+ 3

∫ t2

t1

1U

(
V (t + s, z) + f (t, z) + x

)
dt

+ 3
∫ t2

t1

1U

(
V (t + s, z) + f (t, z) + y

)
dt

= lim inf
n→∞

∣∣∣∣∫ t2

t1

(
bn

(
V (t+s, z)+f (t, z)+x

)−bn

(
V (t+s, z)+f (t, z)+y

))
dt

∣∣∣∣
≤ |x − y|(|x|∨|y| ∨1

)1+ε(|z|3μ+ε∨1
)
(t2 − t1)

1−1/4(
γ

h−1/4 ∨1)−ε lim inf
n→∞ Kbn(ω),

where Kbn is the corresponding constant from Theorem 2.3. For ω ∈ �∞, put
Kb(ω) := lim infn→∞ Kbn(ω). By Fatou’s lemma,

EKb(ω) ≤ lim inf
n→∞ EKbn(ω) ≤ C(ε,T ,M,h) sup

n
‖bn‖∞.

Thus the random variable Kb(ω) has a finite expectation. Hence there exists a set
�′′ ⊂ �∞ such that P(�′′) = 1 and on �′′ we have Kb(ω) < ∞. This together
with the above estimate concludes the proof of the theorem. �

4. Preparation steps for proving Theorem 2.1. In this section, we prepare
for the proof of our main result, that is, Theorem 2.1. In particular, we will select
a specific “good” set �′ of full probability measure and in the next section we will
prove that equation (2.2) indeed has a unique solution on �′.

First we need to introduce approximation operator in the following way. Let
f : [0,1] → R be a continuous function. We define a piecewise-constant approxi-
mation of f as follows. For n ∈ Z+, put

(4.1) λn(f )(t) :=
2n−1∑
i=0

1(i2−n,(i+1)2−n](t)f
(
(i + 1)2−n)

.
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In other words, λn(f ) is a piecewise-constant function that takes constant values
on intervals of length 2−n.

Many times in the proofs of the theorems it will be convenient to work with a
shifted solution to (2.2). Thus we define

(4.2) u∗
s,q(t, ·) := us,q(t + s, ·), t ≥ 0,

where we recall that us,q stands for the solution to (2.2) that starts from the initial
condition q at times s. It is easy to see that u∗

s,q satisfies the following equation for
any t > 0, z ∈ R:

u∗
s,q(t, z,ω) =

∫
R

pt(z−z′)q
(
z′,ω

)
dz′

+
∫ t

0

∫
R

pt−t ′(z−z′)b
(
u∗

s,q

(
t ′, z′,ω

))
dz′dt ′+V (s, t+s, z,ω),

u∗
s,q(0, z,ω) = q(z,ω).

(4.3)

REMARK 4.1. Clearly, equation (2.2) has a unique solution if and only if
equation (4.3) has a unique solution.

We introduce also the notation for the difference between two Gaussian kernels
by setting

(4.4) �pt(z1, z2) := pt(z1) − pt(z2), t > 0, z1, z2 ∈R.

Further, we will need to consider weighted norms. So for δ ≥ 0 we define weight
function

(4.5) �δ(x) := exxδ, x ≥ 0.

Consider also a class of globally Lipschitz functions.

DEFINITION 4.1. We say that a function f ∈ B belongs to the class Cb
Lip,

if there exists a constant C > 0 such that |f (z1) − f (z2)| ≤ C|z1 − z2| for any
z1, z2 ∈ R.

Finally, we will also need the following process:

(4.6) V(r, s, t, z) :=
∫ s

r

∫
R

pt−t ′
(
z − z′)W (

dt ′, dz′), 0 ≤ r ≤ s ≤ t, z ∈R.

We see that, by definition, V (s, t, z) = V(s, t, t, z).
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4.1. Estimates involving Gaussian density. First let us give a number of very
simple lemmas involving the Gaussian kernel. Their proofs are standard; for the
sake of completeness, we provide their proofs in the Supplementary Material [2],
Section 2.

LEMMA 4.2. For any δ1, δ2 ∈ [0,1], there exists C = C(δ1, δ2) such that for
any a1, a2 ∈ R, t > 0 we have the following bounds:∫

R

∣∣pt(x + a1) − pt(x)
∣∣dx ≤ C|a1|δ1 t−δ1/2;(4.7) ∫

R

∣∣∣∣∂pt

∂x
(x + a1) − ∂pt

∂x
(x)

∣∣∣∣dx ≤ C|a1|δ1 t−(1+δ1)/2;(4.8) ∫
R

∣∣∣∣∂pt

∂x
(x + a1 + a2) − ∂pt

∂x
(x + a1) − ∂pt

∂x
(x + a2) + ∂pt

∂x
(x)

∣∣∣∣dx

≤ C|a1|δ1 |a2|δ2 t−(1+δ1+δ2)/2.

(4.9)

LEMMA 4.3. For any T > 0, δ ≥ 0, there exists C = C(T , δ) > 0 such that
for any s, t ∈ [0, T ], we have∫

R

∣∣pt(z) − ps(z)
∣∣(|z|δ ∨ 1

)
dz ≤ C| log t − log s|.

LEMMA 4.4. For any δ ∈ (0,1/6), T > 0, there exists C = C(T , δ) > 0 such
that for any 0 < t1 < t2 < t , z1, z2, z ∈ R we have∫

R

pt

(
z − z′)�δ

(∣∣z′∣∣ ∨ 1
)
dz′ ≤ C�δ

(|z| ∨ 1
);(4.10) ∫

R

∫ t2

t1

∣∣∣∣ ∂

∂t ′
pt−t ′

(
z − z′)∣∣∣∣(t2 − t ′

)2/3−δ
�δ

(∣∣z′∣∣ ∨ 1
)
dt ′ dz′

≤ C|t2 − t1|2/3−δ�δ

(|z| ∨ 1
);

(4.11)

∫
R

∣∣pt

(
z1 − z′) − pt

(
z2 − z′)∣∣�δ

(∣∣z′∣∣ ∨ 1
)
dz′

≤ Ct−1/2|z1 − z2|�δ

(|z1| ∨ |z2| ∨ 1
);

(4.12)

∫
R

∫ t2

t1

∣∣∣∣ ∂

∂t ′
(
pt−t ′

(
z1−z′)− pt−t ′

(
z2−z′))∣∣∣∣(t2−t ′

)2/3−δ
�δ

(∣∣z′∣∣∨1
)
dt ′dz′

≤ C(t2 − t1)
2/3−δ(t − t1)

−1/2|z1 − z2|�δ

(|z1| ∨ |z2| ∨ 1
)
.

(4.13)

LEMMA 4.5. Let f : [0,∞) × R → R be a bounded measurable function.
Define

h(t, z) :=
∫ t

0

∫
R

pt−t ′
(
z − z′)f (

t ′, z′)dz′ dt ′, z ∈ R, t ≥ 0.
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Then for any T > 0, δ > 0, there exists a constant C = C(T , δ) such that for any
t1, t2 ∈ [0, T ], z1, z2 ∈ R we have

(4.14)
∣∣h(t1, z1) − h(t2, z2)

∣∣ ≤ C‖f ‖∞
(|z1 − z2| + |t1 − t2|1−δ).

LEMMA 4.6. Let μ ≥ 0 and let q ∈ B(μ), that is, for some M > 0 we have
|q(z)| ≤ M(|z|μ ∨ 1), z ∈ R. Then for any T > 0 there exists a constant C =
C(T ,μ) such that function

h(t, z) :=
∫
R

pt

(
z − z′)q(

z′)dz′, z ∈ R, t ∈ [0, T ]

belongs to the class C1
(0,T ](1,μ,CM). The constant C does not depend on the

function q .
Further, if q ∈ Cb

Lip, then there exists a constant C1 = C1(T , q) such that for any
t1, t2 ∈ [0, T ], z1, z2 ∈ R we have∣∣h(t1, z1) − h(t2, z2)

∣∣ ≤ C1
(|z1 − z2| + |t1 − t2|1/2)

.

4.2. Existence of a regular version of V and its properties. The next lemma
establishes the global regularity properties of the noise process V (recall the def-
inition of V given in (4.6)). The proof of the lemma is technical and follows the
usual line of argument. We provide it in the Supplementary Material [2], Sec-
tion 3.

LEMMA 4.7. There exists a set �V ⊂ � with the following properties:

1) P(�V ) = 1.
2) Let ω ∈ �V . Then the functions (s, t, z) �→ V (s, t, z,ω) and (r, s, t, z) �→

V(r, s, t, z,ω) are continuous. Furthermore, for any T > 0, ε ∈ (0,1/2), p > 0
there exists K(ω) = K(ω,p,T , ε) such that for any 0 ≤ s ≤ t ≤ T , 0 ≤ s <

t1 < t2 ≤ T , z, z1, z2 ∈R we have∣∣V(0, s, t, z1) − V(0, s, t, z2)
∣∣

≤ K(ω)|z1 − z2|1/2−ε(|z1|2ε ∨ |z2|2ε ∨ 1
);

(4.15)

∣∣V(0, s, t1, z) − V(0, s, t2, z)
∣∣ ≤ K(ω)|t1 − t2|(t1 − s)−1(|z|ε ∨ 1

);(4.16) ∣∣V (s, t, z)
∣∣ ≤ K(ω)

(|z|ε ∨ 1
)
.(4.17)

Moreover, ω �→ K(ω) is a random variable with EK(ω)p < ∞.

Let us emphasize that the result is of course not surprising: it is well known that
the convolution of the white noise with the heat kernel is locally Hölder (1/2 − ε)

continuous in space and Hölder (1/4 − ε) continuous in time (see, e.g., [16], Exer-
cise 6.9). The lemma gives uniform global control on Hölder coefficients. As one
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can expect, the price to pay is that Hölder coefficients are no longer bounded but
grow as |z|ε if z → ∞ (in other words, the convolution of the white noise with the
heat kernel is not a globally Hölder function).

The next lemma provides some useful simple bounds for the variance of V . Its
proof is very standard and straightforward; thus we also put it in the Supplementary
Material [2], Section 3.

LEMMA 4.8. For any δ ∈ [0,1], there exists a constant C = C(δ) > 0 such
that for any 0 ≤ r < s ≤ t , z, z1, z2 ∈ R we have

VarV(r, s, t, z) ≤ C(s − r)(t − r)−1/2;(4.18)

Var
(
V(r, s, t, z1) − V(r, s, t, z2)

) ≤ C|z1 − z2|δ(s − r)(t − s)−1/2−δ/2;(4.19)

Var
(
V(r, s, t, z1) − V(r, s, t, z2)

) ≤ C|z1 − z2|.(4.20)

4.3. Continuity lemmas. As we mentioned before, in order to prove Theo-
rem 2.1 we approximate the drift in equation (2.2) by a sequence of piecewise
continuous functions and pass to the limit (see the proof of Lemma 5.9 below).
If the function b were continuous, this would not require any additional clarifica-
tions. However, in our case, when we assume that b is just a measurable bounded
function we need to explain why the passage to the limit is justified here.

Recall the definition of the approximation operator λn given in (4.1).

LEMMA 4.9. For any ε > 0, M > 0, h > 1/2, N ∈ N, T > 0, μ > 0, there ex-
ists δ > 0 such that for each open set U ⊂R with |U | ≤ δ we have with probability
greater or equal than 1 − ε

(4.21)
∫ T

0
1U

(
V (t + s, z,ω) + f1(t, z) + λr(f2)(t, z)

)
dt ≤ ε

simultaneously for all z ∈ [−N,N], r ∈ N, s ∈ [0, T ] and all f1, f2 ∈ Ch
(0,T ](1,

μ,M).

The proof of the lemma is given in Section 7.

LEMMA 4.10. Let b ∈ B. Then there exists a set �C ⊂ � with the following
properties:

1) P(�C) = 1.
2) Let ω ∈ �C . Then for any T > 0, h > 1/2, M > 0, μ > 0, 0 ≤ t1 ≤ t2 ≤ T ,

z ∈ R, θ ∈ B, function ψ ∈ Ch
(0,T ](1,μ,M), any sequence (sn)n∈Z+ , sn ∈ [0, T ]
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converging to s and any sequence of functions fn ∈ C(0,T ](h,1,μ,M) converg-
ing pointwise on (0, T ] ×R to a limit f we have

lim
n→∞

∫ t2

t1

θ(t)b
(
V (t + sn, z,ω) + fn(t, z) + λn(ψ)(t, z)

)
dt

=
∫ t2

t1

θ(t)b
(
V (t + s, z,ω) + f (t, z) + ψ(t, z)

)
dt.

PROOF. The proof is based on the ideas from the proofs of [5], Lemmas 3.3,
3.4. Fix h > 1/2, μ > 0 and integers N,M,T > 0. Take arbitrary ε > 0. Then
there exists δ > 0 such that statement of Lemma 4.9 is satisfied.

By Lusin’s theorem, there exists a continuous bounded function b̃ : R →R and
an open set U such that |U | < δ, ‖b̃‖∞ ≤ 2‖b‖∞ and b(x) = b̃(x) for all x /∈ U .
Thus we have the bound

(4.22)
∣∣b(x) − b̃(x)

∣∣ = 1(x ∈ U)
∣∣b(x) − b̃(x)

∣∣ ≤ 3‖b‖∞ 1(x ∈ U).

Further, by Lemma 4.9, there exists a set �ε with P(�ε) ≥ 1−ε such that bound
(4.21) holds on �ε . Take now any ω ∈ �ε , 0 ≤ t1 ≤ t2 ≤ T , s, sn ∈ [0, T ], sn → s,
z ∈ [−N,N], θ ∈ B, a function ψ ∈ Ch

(0,T ](1,μ,M) and any sequence of functions

fn ∈ Ch
(0,T ](1,μ,M) converging pointwise to a limit f ∈ Ch

(0,T ](1,μ,M). Taking
into account (4.22), we have

lim sup
n→∞

∫ t2

t1

θ(t)b
(
V (t + sn, z,ω) + fn(t, z) + λn(ψ)(t, z)

)
dt

≤
∫ t2

t1

θ(t)b̃
(
V (t + s, z,ω) + f (t, z) + ψ(t, z)

)
dt

+3‖b‖∞‖θ‖∞ lim sup
n→∞

∫ t2

t1

1U

(
V (t+sn, z,ω)+fn(t, z)+λn(ψ)(t, z)

)
dt

≤
∫ t2

t1

θ(t)b̃
(
V (t + s, z,ω) + f (t, z) + ψ(t, z)

)
dt + 3‖b‖∞‖θ‖∞ε

≤
∫ t2

t1

θ(t)b
(
V (t + s, z,ω) + f (t, z) + ψ(t, z)

)
dt + 3‖b‖∞‖θ‖∞ε

+ 3‖b‖∞‖θ‖∞
∫ t2

t1

1U

(
V (t + s, z,ω) + f (t, z) + ψ(t, z)

)
dt

≤
∫ t2

t1

θ(t)b
(
V (t + s, z,ω) + f (t, z) + ψ(t, z)

)
dt + 6‖b‖∞‖θ‖∞ε,

where the second and the last inequalities follow from Lemma 4.9.
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By a similar argument, we have on �ε

lim inf
n→∞

∫ t2

t1

θ(t)b
(
V (t + sn, z,ω) + fn(t, z) + λn(ψ)(t, z)

)
dt

≥
∫ t2

t1

θ(t)b
(
V (t + s, z,ω) + f (t, z) + ψ(t, z)

)
dt − 6‖b‖∞‖θ‖∞ε.

Since ε was arbitrary, and since P(�ε) ≥ 1 − ε we see that there exists a set
�(N,M,T ,h,μ) such that P(�(N,M,T ,h,μ)) = 1 and

lim
n→∞

∫ t2

t1

θ(t)b
(
V (t + sn, z,ω) + fn(t, z) + λn(ψ)(t, z)

)
dt

=
∫ t2

t1

θ(t)b
(
V (t + s, z,ω) + f (t, z) + ψ(t, z)

)
dt

for any ω ∈ �(N,M,T ,h,μ), 0 ≤ t1 ≤ t2 ≤ T , s, sn ∈ [0, T ], sn → s, θ ∈ B,
function ψ ∈ Ch

(0,T ](1,μ,M), z ∈ [−N,N] and any sequence of functions fn ∈
Ch

(0,T ](1,μ,M) converging pointwise to a limit f ∈ Ch
(0,T ](1,μ,M).

To complete the proof of the lemma, it remains to take

�C := ⋂
�(N,M,T ,h,μ),

where the intersection is over all positive integers N,M,T and rational h > 1/2,
μ > 0. �

5. Proofs of Theorem 2.1 and Theorem 2.2(b). Most of the section is de-
voted to the proof of Theorem 2.1. Fix a bounded measurable function b. Without
loss of generality and to ease the notation, we assume in this section that ‖b‖∞ ≤ 1.
Now with such b at hand we take for the rest of the section

(5.1) �′ := �E ∩ �′′ ∩ �V ∩ �C ⊂ �,

where the set �E is defined in the sketch of the proof of Theorem 2.1 in Sec-
tion 2, �′′ is from Theorem 2.3, �V is from regularity Lemma 4.7 and �C is from
Lemma 4.10. Thus, on �′ the statements of the aforementioned theorems and lem-
mas are satisfied and P(�′) = 1.

We begin this section with an easy observation.

PROPOSITION 5.1. Let s ≥ 0, q ∈ B(0+). Let us,q be any solution to (2.2)
that starts with initial condition q at time s. Then us,q(t, ·,ω) ∈ B(0+) for any
ω ∈ �′, t ≥ s.

PROOF. This statement immediately follows from equation (2.2) and estimate
(4.17). �
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5.1. Existence part of Theorem 2.1. In this subsection, we present the proof of
the existence part of Theorem 2.1. Our main tool is the following lemma that es-
tablishes continuity of solution to (2.2) with respect to the initial condition. Recall
that the set �′ is defined in (5.1).

LEMMA 5.2. Let ω ∈ �′. Let (sn)n∈Z+ , sn ≥ 0 be a sequence that converges
to s, as n → ∞. Let (qn)n∈Z+ be a sequence of measurable functions R→R such
that qn(z) → q(z) as n → ∞ Lebesgue–almost everywhere in z. Assume that there
exist C > 0, μ > 0 such that for any n ∈ Z+ one has∣∣qn(z)

∣∣ ≤ C
(|z|μ ∨ 1

)
, z ∈ R.

For each n ∈ Z+ let usn,qn(·, ·,ω) be a solution to (2.2) that starts with the initial
condition qn at time sn.

Then there exists a solution us,q(·, ·,ω) to (2.2) that starts with the initial con-
dition q at time s. Moreover, there exists a subsequence (nk)k∈Z+ such that for any
t > 0, z ∈ R we have

usnk
,qnk

(snk
+ t, z,ω) → us,q(s + t, z,ω) as k → ∞.

This lemma implies that for any ω ∈ �′ a sequence of solutions to equation
(2.2) that start at time sn from the initial condition qn has a subsequence that con-
verges pointwise to a solution of equation (2.2) that starts at time s from the initial
condition q .

PROOF. Fix ω ∈ �′, the sequences (sn)n∈Z+ , (qn)n∈Z+ as in the lemma and
also any T > 0. By the definition of u∗

sn,qn
(recall equation (4.2)), we have for any

t ∈ (0, T ], z ∈ R,

u∗
sn,qn

(t, z) =
∫
R

pt

(
z−z′)qn

(
z′)dz′ +

∫ t

0

∫
R

pt−t ′
(
z−z′)b(

u∗
sn,qn

(
t ′, z′))dz′dt ′

+ V (sn, t + sn, z)

and u∗
sn,qn

(0, z) = qn(z). For n ∈ Z+, set

hn(t, z) :=
∫ t

0

∫
R

pt−t ′
(
z − z′)b(

u∗
sn,qn

(
t ′, z′))dz′ dt ′, t ∈ [0, T ], z ∈ R.

Clearly, the sequence (hn)n∈Z+ is uniformly bounded. Indeed, for any n ∈ Z+ we
have ‖hn‖∞ ≤ T ‖b‖∞. Further, it follows from Lemma 4.5 that for any t1, t2 ∈
[0, T ], z1, z2 ∈ R,

(5.2)
∣∣hn(t1, z1) − hn(t2, z2)

∣∣ ≤ C‖b‖∞
(|z2 − z1| + |t2 − t1|3/4)

for some C = C(T ) > 0 that is independent of n. Hence the Arzelà–Ascoli theo-
rem for locally compact metric spaces (see, e.g., [10], Theorem 4.44) implies that
there exists a subsequence (nk)k∈Z+ , such that hnk

converges pointwise to some
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function h. We simplify the notation by assuming that we have already started
with such a subsequence and that nk = k. Hence, (5.2) yields for any t1, t2 ∈ [0, T ]
and z1, z2 ∈ R∣∣h(t1, z1) − h(t2, z2)

∣∣ ≤ C‖b‖∞
(|z2 − z1| + |t2 − t1|3/4)

.

For t ∈ (0, T ], z ∈ R put

u∗
s,q(t, z) :=

∫
R

pt

(
z − z′)q(

z′)dz′ + h(t, z) + V (s, t + s, z),

u∗
s,q(0, z) := q(z).

(5.3)

We claim now that u∗
s,q is a solution to (4.3) on [0, T ]. Indeed, we observe that

u∗
sn,qn

can be written as follows:

u∗
sn,qn

(t, z) = V (t + sn, z) + gn(t, z), t ∈ [0, T ], z ∈R,

where for t ∈ [0, T ], z ∈ R we defined

(5.4) gn(t, z) :=
∫
R

pt

(
z − z′)qn

(
z′)dz′ + hn(t, z) − V(0, sn, t + sn, z).

It follows from Lemma 4.6, Lemma 4.7 and inequality (5.2) that there exists M > 0
such that for any n ∈ Z+ the function gn ∈ C3/4

(0,T ](1,μ,M). By our assumptions
and the dominated convergence theorem, the first term at the right-hand side of
(5.4) converges pointwise to

∫
R

pt(z − z′)q(z′) dz′ for (t, z) ∈ (0, T ] × R. By
Lemma 4.7, V(0, sn, t +sn, z) → V(0, s, t +s, z) as n → ∞ for (t, z) ∈ [0, T ]×R.
This together with hn converging pointwise to h implies that

lim
n→∞gn(t, z) =

∫
R

pt

(
z − z′)q(

z′)dz′ + h(t, z) − V(0, s, t + s, z)

=: g(t, z), t ∈ (0, T ], z ∈ R.

On the other hand,

h(t, z) = lim
n→∞hn(t, z)

= lim
n→∞

∫
R

∫ t

0
pt−t ′

(
z − z′)b(

u∗
sn,qn

(
t ′, z′))dt ′ dz′

= lim
n→∞

∫
R

∫ t

0
pt−t ′

(
z − z′)b(

V (t + sn, z) + gn(t, z)
)
dt ′ dz′.

Note that the function b is not necessarily continuous so we cannot pass to the
limit directly. Therefore, to pass to the limit we employ Lemma 4.10 with the
following set of parameters: fn ← gn, f ← g, ψ ← 0, θ ← pt−·(z − z′), t2 ← t ,
t1 ← 0. Since gn ∈ HT (3/4,1,μ,M) and since for fixed t , z �= z′ the function t ′ �→
pt−t ′(z − z′) is bounded, we see that all conditions of Lemma 4.10 are satisfied.
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We apply the dominated convergence theorem (this is possible due to the fact that
b is bounded) and continue the identity above as follows:

h(t, z) =
∫
R

∫ t

0
pt−t ′

(
z − z′)b(

V (t + s, z) + g(t, z)
)
dt ′ dz′

=
∫
R

∫ t

0
pt−t ′

(
z − z′)b(

u∗
s,q

(
t ′, z′))dt ′ dz′,

(5.5)

where we also used that by (5.3) u∗
s,q(t, z) = V (t + s, z) + g(t, z). Obtained iden-

tity (5.5), combined with (5.3), implies that u∗
s,q is indeed a solution to (4.3). Hence

the function us,q(t, ·) := u∗
s,q(t + s, ·) solves equation (2.2) that starts with the ini-

tial condition q at time s.
We note that the convergence of gn to g and continuity of V imply that

(5.6) lim
n→∞usn,qn(sn + t, z) = lim

n→∞u∗
sn,qn

(t, z) = u∗
s,q(t, z) = us,q(s + t, z)

for any t ∈ (0, T ], z ∈ R. Finally, by the standard diagonalization argument, we
see that there exists a subsequence (nk) such that identity (5.6) is valid for any
t ∈ (0,∞). �

PROOF OF EXISTENCE PART OF THEOREM 2.1. We recall that we have al-
ready fixed �, a countable dense subset of C0(R), and �, a countable dense subset
of R+ (see the sketch of the proof of Theorem 2.1 in Section 2). Since �′ ⊂ �E ,
we see that for any ω ∈ �′, s ∈ �, q ∈ � equation (2.2) has a solution that starts
with the initial condition q at time s.

Fix any ω ∈ �′. Let q now be an arbitrary element of B(0+), let s ∈ R. Let
(qn)n∈Z+ be a sequence of elements in � that converge Lebesgue–almost every-
where to q and such that for some C > 0, μ > 0 one has qn(z) ≤ C(|z| ∨ 1)μ uni-
formly over all n. The existence of such a sequence is clear and can be shown by
the standard argument. Let (sn)n∈Z+ be a sequence of elements in � that converges
to s. By above, equation (2.2) has a solution that starts with the initial condition qn

at time sn. Hence, by Lemma 5.2, equation (2.2) has a solution that starts with the
initial condition q at time s.

Since q and s were arbitrary elements of B(0+) and R+, respectively, this con-
cludes the proof of the existence part of Theorem 2.1. �

5.2. Uniqueness part of Theorem 2.1. Recall that by Remark 4.1 it is sufficient
to show that on �′ equation (4.3) has a unique solution. This will straightforwardly
imply that the original equation (2.2) has also a unique solution on �′.

Until the end of this section, we fix arbitrary ω ∈ �′, s ≥ 0, q ∈ B(0+). Without
loss of generality, we assume s ∈ [0,1]. Let v and w be any two solutions to (4.3)
with the initial condition q for our fixed ω, s. To prove the theorem, it is sufficient
to show that v(t, z) = w(t, z) for z ∈ R, t ∈ [0, T ] for any T > 0. We will verify
this statement for T = 1; the proof for other values of T is exactly the same.
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We observe that for t ∈ [0,1], z ∈ R we have

v(t, z) − w(t, z) =
∫ t

0

∫
R

pt−t ′
(
z − z′)(b(

v
(
t ′, z′)) − b

(
w

(
t ′, z′)))dz′ dt ′.

We denote ψ(t, z) := v(t, z) − w(t, z) and rewrite the above equation in the fol-
lowing form:

ψ(t, z) =
∫ t

0

∫
R

pt−t ′
(
z − z′)(b(

w
(
t ′, z′) + ψ

(
t ′, z

)) − b
(
w

(
t ′, z′)))dz′ dt ′,

where t ∈ [0,1], z ∈ R. It is easy to check, that for any r ∈ [0,1] the function ψ

satisfies also a more general equation

ψ(t, z) =
∫
R

pt−r

(
z − z′)ψ(

r, z′)dz′

+
∫
R

∫ t

r
pt−t ′

(
z−z′)(b

(
w

(
t ′, z′)+ψ

(
t ′, z′))−b

(
w

(
t ′, z′)))dt ′dz′,

ψ(0, z) =φ(z),

(5.7)

where t ∈ [r,1], z ∈ R.
Our goal is to prove that the only solution to this equation with the initial con-

dition φ(z) = 0 is identically zero (this would immediately imply uniqueness of
solution to (4.3)). To show this, we have to analyze equation (5.7) with a more
general class of initial conditions. Namely, we assume that the function φ ∈ Cb

Lip

(recall that the class Cb
Lip is introduced in Definition 4.1). Note also that the func-

tions ψ , v, w depend also on fixed ω, s, q . In order not to overcrowd the notation,
we write ψ(t, z) for ψ(t, z,ω, s, q) and so on.

To show that equation (5.7) has only a trivial solution, we will need to control
the norm of ψ(t, ·). We will work with a weighted Hölder norm. The use of a
weighted norm is natural here since we work with functions defined on a noncom-
pact space R. Thus, for a function f : R →R we put

‖f ‖0,w = sup
z∈R

∣∣f (z)
∣∣e−|z|.

For δ > 0, consider a weighted Lipschitz coefficient of f ,

[f ]1,δ := sup
z1 �=z2

|f (z1) − f (z2)|
|z1 − z2|�δ(|z1| ∨ |z2| ∨ 1)

.

Recall that the function �δ was defined in (4.5).
Finally, define a weighted Lipschitz norm of f by

‖f ‖1,δ := ‖f ‖0,w + [f ]1,δ.

We have to use the additional factor zδ in the weight of the Lipschitz coefficient
because this factor appears in the right-hand side of our main bound (2.4) in The-
orem 2.3 (see also Lemma 5.6 below).
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The function w can be represented as w(t, z) = V (t + s, z) + g(t, z), where

g(t, z) :=
∫
R

pt

(
z − z′)q(

z′)dz′ +
∫ t

0

∫
R

pt−t ′
(
z − z′)b(

w
(
t ′, z′))dz′ dt ′

− V(0, s, t + s, z), t ∈ [0,1], z ∈ R,

(5.8)

and V was defined in (4.6). We used here the identity

V (s, t + s, z) = V(s, t + s, t + s, z) = V(0, t + s, t + s, z) − V(0, s, t + s, z).

The next two lemmas establish useful properties of the functions g and ψ .

LEMMA 5.3. The function g defined in (5.8) belongs to C1−(1,0+).

PROOF. The lemma follows immediately from Lemmas 4.5, 4.6, 4.7. �

REMARK 5.4. Note that at any time t > s a solution to (2.2), us,q(t, ·), is
much more regular than its initial condition q ∈ B(0+). Namely, us,q(t, ·) is a
Hölder function with exponent 1/2−. If one starts with such a “regular” initial
condition q (Hölder with exponent 1/2−), then it is possible to show that g is more
regular than it is shown in Lemma 5.3. Namely, g ∈ C1−(3/4,0+). However, we
will not use this improvement of regularity of g in our proof and will continue to
consider solutions to (2.2) that start from the initial condition q ∈ B(0+).

We will need to obtain the bounds on the norm of ψ both in the weighted and
in the standard Hölder spaces. As one might expect, there is a certain trade-off
between having a singular weight and a better regularity.

LEMMA 5.5. Assume that φ ∈ Cb
Lip. Then any solution ψ to (5.7) belongs to

C1−(1,0). Further, there exists a constant C = C(φ) such that

sup
t∈[0,1]
z∈R

∣∣ψ(t, z)
∣∣ ≤ C;(5.9)

sup
t1,t2∈[0,1]
z1,z2∈R

|ψ(t1, z1) − ψ(t2, z2)|
|t1 − t2|1/2 + |z1 − z2| ≤ C.(5.10)

That is, ψ is a bounded function on [0,1] × R, which is Lipschitz in space and
Hölder in time with exponent 1/2. In particular, ψ(t, ·) ∈ Cb

Lip for any t ∈ [0,1].

PROOF. Take in (5.7) r = 0. Then, by Lemmas 4.5 and 4.6, ψ ∈ C1−(1,0).
Bound (5.9) obviously follows from boundedness of the functions b and φ. Esti-
mate (5.10) is obtained by a straightforward application of Lemmas 4.5 and 4.6.

�
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The next lemma establishes “smoothing” properties of the operator(
x(·), s, t, z) �→

∫
R

∫ s

0
pt−t ′

(
z−z′)b(

V
(
t ′+s, z′)+f

(
t ′, z′)+x

(
z′))dt ′dz′,(5.11)

where x ∈ B and 0 ≤ s ≤ t , simultaneously for all f ∈ C1−(1,0+). To simplify the
notation, further we will denote the sum of V and the function f : [0,1] ×R→R

(that will correspond to the drift term) by

(5.12) Vf,s(t, z) := V (t + s, z) + f (t, z), t ∈ [0,1], z ∈ R.

Recall the definition of the difference of two Gaussian kernels �pt from (4.4).

LEMMA 5.6. For any δ ∈ (0,1/6), N > 0, and any function f ∈ C1−(1,0+)

there exists a constant C = C(ω,N,f, δ) < ∞ such that for any s ∈ [0,1], 0 ≤
t1 ≤ t2 ≤ t ≤ 1, z, z1, z2 ∈ R and any x, y ∈ B with ‖x‖∞,‖y‖∞ ≤ N we have∫

R

∣∣∣∣∫ t2

t1

pt−t ′
(
z−z′)(b(

Vf,s

(
t ′, z′)+x

(
z′))−b

(
Vf,s

(
t ′, z′)+ y

(
z′)))dt ′

∣∣∣∣dz′

≤ C‖x − y‖0,w|t2 − t1|2/3−δ�δ

(|z| ∨ 1
);

(5.13)

∫
R

∣∣∣∣∫ t2

t1

�pt−t ′
(
z1 − z′, z2 − z′)

× (
b
(
Vf,s

(
t ′, z′) + x

(
z′)) − b

(
Vf,s

(
t ′, z′) + y

(
z′)))dt ′

∣∣∣∣dz′

≤ C‖x − y‖0,w(t − t1)
−1/2|t2 − t1|2/3−δ|z1 − z2|�δ

(|z1|∨|z2|∨1
)
.

(5.14)

REMARK 5.7. If f ∈ C1−(3/4,0+) (see Remark 5.4 where it is explained
why this is relevant), then the operator (5.11) is more regular in time. Namely, the
term |t2 − t1| in the right-hand side of (5.13) and (5.14) has the exponent 3/4 − δ

instead of 2/3 − δ.

PROOF OF LEMMA 5.6. Fix δ ∈ (0,1/6), N > 0 and a function f ∈
C1−(1,0+). Consider a function

B(r1, r2, s, α,β, z) :=
∫ r2

r1

(
b
(
Vf,s

(
t ′, z

) + α
) − b

(
Vf,s

(
t ′, z

) + β
))

dt ′,

defined for α,β, z ∈ R, 0 ≤ r1 ≤ r2 ≤ 1, s ∈ [0,1].
It follows from Theorem 2.3 that there exists a constant C(ω,N,f, δ) such that

for any α,β, z ∈ R, |α|, |β| ≤ N , 0 ≤ r1 ≤ r2 ≤ 1, s ∈ [0,1] we have

(5.15)
∣∣B(r1, r2, s, α,β, z)

∣∣ ≤ C(ω,N,f, δ)|r2 − r1|2/3−δ|α − β|(|z|δ ∨ 1
)
.

To simplify the notation, for the rest of the proof we drop the variables ω, N , f , δ

and write C instead of C(ω,N,f, δ).
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Fix 0 ≤ t1 ≤ t2 ≤ 1. Let (t ′, z′) �→ h(t ′, z′), t ′ ∈ [t1, t2], z′ ∈R be a continuously
differentiable function in t ′ for z′ ∈ R \ E, where the Lebesgue measure of E is 0.
Then for any α,β ∈ R, z′ ∈ R \ E integration by parts gives∫ t2

t1

h
(
t ′, z′)(b(

Vf,s

(
t ′, z′) + α

) − b
(
Vf,s

(
t ′, z′) + β

))
dt ′

= −
∫ t2

t1

h
(
t ′, z′)dt ′B

(
t ′, t2, s, α,β, z′)

= h
(
t1, z

′)B(
t1, t2, s, α,β, z′) +

∫ t2

t1

B
(
t ′, t2, s, α,β, z′) ∂h

∂t ′
(
t ′, z′)dt ′.

We integrate over z′ and apply estimate (5.15) to derive for any x, y ∈ B,∫
R

∫ t2

t1

h
(
t ′, z′)(b(

Vf,s

(
t ′, z′) + x

(
z′)) − b

(
Vf,s

(
t ′, z′) + y

(
z′)))dt ′

≤ C‖x − y‖0,w|t2 − t1|2/3−δ
∫
R

∣∣h(
t1, z

′)∣∣�δ

(∣∣z′∣∣ ∨ 1
)
dz′

+ C‖x − y‖0,w

∫
R

∫ t2

t1

∣∣∣∣ ∂h

∂t ′
(
t ′, z′)∣∣∣∣∣∣t2 − t ′

∣∣2/3−δ
�δ

(∣∣z′∣∣∨1
)
dt ′dz′.

(5.16)

For any t ≥ t2, z ∈ R, we can apply this formula to the function h(t ′, z′) :=
pt−t ′(z − z′) (indeed, for z′ ∈ R \ z this function is continuously differentiable
in t ′). Using estimates (4.10) and (4.11) from Lemma 4.4, we get (5.13). In
a similar way, for t ≥ t2, z1, z2 ∈ R we apply formula (5.16) to the function
h(t ′, z′) := pt−t ′(z1 − z′) − pt−t ′(z2 − z′). Using estimates (4.12) and (4.13) from
Lemma 4.4, we obtain (5.14). �

REMARK 5.8. Let us explain how Lemmas 5.3, 5.5 and 5.6 will be used in the
proof. Fix initial condition φ ∈ Cb

Lip. It follows from Lemma 5.5 that there exists a
constant C1 = C1(φ) such that inequalities (5.9) and (5.10) hold. Recall again that
the solution w can be represented as

(5.17) w(t, z) = V (t + s, z) + g(t, z),

where g was defined in (5.8). By Lemma 5.3, g ∈ C1−(1,0+). Thus we can apply
Lemma 5.6 with f ← g and N ← C1. We see that there exists a constant C2 =
C2(C1, φ) such that the estimates (5.13) and (5.14) are satisfied with C2 instead of
C. We will use further the constant Cφ := max(1,C1,C2).

Now, we apply Lemma 5.6 to analyze the behavior of ψ on a small interval
[k2−m, (k+1)2−m]. More precisely, for any t ∈ [k2−m, (k+1)2−m] we will derive
bounds on ‖ψ(t, ·)‖1,δ in terms of ‖ψ(k2−m, ·)‖1,δ . This lemma will be crucial
for the whole argument. Namely, we will just apply the bound from Lemma 5.9
consecutively 2m times to prove later the uniqueness part of Theorem 2.1.
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LEMMA 5.9. For any δ ∈ (0,1/6) and any initial condition φ ∈ Cb
Lip, there

exist constants C = C(δ,φ), m0 = m0(δ,φ) such that for any integers m > m0,
r ∈ [0,2m − 1] we have the following estimate:

(5.18) sup
t∈[ r

2m , r+1
2m ]

∥∥ψ(t, ·)∥∥1,δ ≤ C
∥∥∥ψ( r

2m
, ·

)∥∥∥
1,δ

+ Ce−2m/(2δ)

.

In particular,

(5.19)
∥∥∥ψ(r + 1

2m
, ·

)∥∥∥
1,δ

≤ C
∥∥∥ψ( r

2m
, ·

)∥∥∥
1,δ

+ Ce−2m/(2δ)

.

PROOF. Fix δ ∈ (0,1/6), the initial condition φ and integer m > 0. All the
constants that will appear in the proof will depend only on δ and φ but not on m

or r .
To simplify the notation, we will show (5.18) for r = 0. The proof for other

values of r = 1,2, . . . ,2m − 1 is exactly the same.
Recall that we already know from Lemma 5.5 and Remark 5.8 that

(5.20) sup
t1,t2∈[0,2−m]

z∈R

|ψ(t1, z) − ψ(t2, z)|
|t1 − t2|1/2 ≤ Cφ.

This bound is rather rough; our goal is to obtain a much finer bound that we can
later iterate over r . We will show in the proof that if ‖ψ(0, ·)‖1,δ is small, then the
left-hand side of (5.20) is also very small. This would imply (5.18).

Our proof strategy consists of three steps. First, following a standard tech-
nique (see, e.g., [5], proof of Lemma 3.1), we show that it is sufficient to esti-
mate the supremum in the left-hand side of (5.20) only for those t1, t2 ∈ [0,2−m]
that are dyadic neighbors. This would imply a corresponding bound for any
t1, t2 ∈ [0,2−m]. As is common in the PDE literature, to get a “time” bound we
need to obtain first a “space” bound. This is done in the second step using approx-
imation technique and estimate (5.14). Finally, using again approximation tech-
nique and estimate (5.13) we get the required “time” bound (5.20) with a much
smaller constant.

In the proof of the theorem, we will be working with binomial partitions of the
interval [0,1]. So, for integers n ≥ 0, k ∈ [0,2n] put

(5.21) tkn := k2−n; Lipk
n := [

ψ
(
tkn , ·)]1,δ.

By Lemma 5.5, Lipk
n are finite for any n ≥ 0, k ∈ [0,2n].

As explained above, we will consider the differences |ψ(t1, z) − ψ(t2, z)|,
t1, t2 ∈ [0,2−m], where t1 and t2 are dyadic neighbors. Thus we define α as the
smallest number such that for any integers n ≥ m, k ∈ [0,2n−m − 1] we have

(5.22)
∥∥∥ψ(k + 1

2n
, ·

)
− ψ

( k

2n
, ·

)∥∥∥
0,w

≤ α2−n/2.
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Note that such an α exists and is finite. Indeed thanks to Remark 5.8, the left-hand
side of (5.22) is bounded by Cφ2−n/2.

Consider a binary notation of k2−n, where k ∈ [0,2n−m − 1]. We have k2−n =∑n
i=m+1 di2−i , where each di equals 0 or 1. Define approximations of k2−n by

km := 0, kj :=
j∑

i=m+1

di2
−i , j ∈ [m + 1, n].

It follows from the definition that either kj = kj−1 or kj = kj−1 + 2−j . Therefore,
we can apply estimate (5.22) n − m times to derive∥∥∥ψ( k

2n
, ·

)
− ψ(0, ·)

∥∥∥
0,w

≤
n∑

j=m+1

∥∥ψ(kj , ·) − ψ(kj−1, ·)
∥∥

0,w ≤ α

n∑
j=m+1

2−j/2.

Hence, for any n ≥ m and 0 ≤ k ≤ 2n−m − 1 we get∥∥∥ψ( k

2n
, ·

)∥∥∥
0,w

≤ ∥∥ψ(0, ·)∥∥0,w + 3α2−m/2.

Since the function ψ is continuous, we get the following bound for any t ∈
[0,2−m]:
(5.23)

∥∥ψ(t, ·)∥∥0,w ≤ ∥∥ψ(0, ·)∥∥0,w + 3α2−m/2.

Thus we can effectively bound ‖ψ(t, ·)‖0,w for any t ∈ [0,2−m].
To approximate the solutions to (5.7), we consider piecewise approximations

defined above in (4.1). Namely, we introduce a sequence of piecewise-constant (in
time) functions

ψn(·, z) := λn

(
ψ(·, z)), z ∈R,

where n ≥ m. We see that ψn(t, z) is equal to ψ((k + 1)2−n, z) whenever
t ∈ (k2−n, (k + 1)2−n], k = 0,1, . . . ,2n−m −1. In particular, the function ψm(t, z)

is constant in t on the interval (0,2−m].
We start with an estimation of the weighted Lipschitz coefficient (with respect

to the space variable) of the function ψ . We want to do it in all binary points of our
initial interval [0,2−m], that is, in all points of the form tkn = k2−n. Here, n ≥ m,
0 ≤ k ≤ 2n−m−1. Recall the definition of the function g and the process Vg,s given
at (5.8) and (5.12). respectively. Taking into account (5.17), we derive from (5.7)

(5.24) ψ
(
tk+1
n , z1

) − ψ
(
tk+1
n , z2

) = I1 + I2,

where

I1 :=
∫
R

p2−n

(
z′)(ψ(

tkn , z1 − z′) − ψ
(
tkn , z2 − z′))dz′

and

I2 :=
∫
R

∫ tk+1
n

tkn

�p
tk+1
n −t

(
z1 −z′,z2 −z′)(b(

Vg,s

(
t,z′)+ψ

(
t,z′))−b

(
Vg,s

(
t,z′)))dtdz′.
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First let us bound I1. By definition of Lipk
n [see (5.21)], we have

|I1| ≤ Lipk
n|z1 − z2|

∫
R

p2−n

(
z′)�δ

(∣∣z1 − z′∣∣ ∨ ∣∣z2 − z′∣∣ ∨ 1
)
dz′

≤ Lipk
n|z1 − z2|�δ

(|z1| ∨ |z2| ∨ 1
) ∫

R

p2−n

(
z′)e|z′|(∣∣z′∣∣δ + 1

)
dz′

≤ Lipk
n|z1 − z2|�δ

(|z1| ∨ |z2| ∨ 1
)
e2−n/2(

1 + C2−nδ/2)
,

(5.25)

where in the second inequality we also used the fact that the function � is increas-
ing and |z1 − z′| ∨ |z2 − z′| ∨ 1 ≤ (|z1| ∨ |z2| ∨ 1) + |z′|.

To handle I2, we apply Lemma 4.10 with the following set of parameters: fn ←
g, f ← g, ψ ← ψ , θ ← �p

tk+1
n −·(z1 − z′, z2 − z′), sn ← s, t2 ← tk+1

n , t1 ← tkn .

Since ψ,g ∈ C1−(1,0+) (see Lemmas 5.3 and 5.5), and since for fixed z′ �= z1, z2
the function �p

tk+1
n −·(z1 − z′, z2 − z′) is bounded, we see that all the conditions

of Lemma 4.10 are satisfied. Since the function b is also bounded, we can apply
dominated convergence theorem to obtain

I2 = lim
l→∞

∫
R

∫ tk+1
n

tkn

�p
tk+1
n −t

(
z1 − z′, z2 − z′)

× (
b
(
Vg,s

(
t, z′) + ψl

(
t, z′)) − b

(
Vg,s

(
t, z′)))dt dz′

=
∫
R

∫ tk+1
n

tkn

�p
tk+1
n −t

(
z1 − z′, z2 − z′)

× (
b
(
Vg,s

(
t, z′) + ψn

(
t, z′)) − b

(
Vg,s

(
t, z′)))dt dz′

+
∞∑
l=n

I22(l)

=: I21 +
∞∑
l=n

I22(l),

(5.26)

where we denoted

I22(l) :=
∫
R

∫ tk+1
n

tkn

�p
tk+1
n −t

(
z1 − z′, z2 − z′)

× (
b
(
Vg,s

(
t, z′) + ψl+1

(
t, z′)) − b

(
Vg,s

(
t, z′) + ψl

(
t, z′)))dt dz′.

Thus Lemma 4.10 allowed us to pass from continuous function ψ to its
piecewise-constant approximations ψl . This is crucial due to the fact that our main
tool, Lemma 5.6, works only for constant in t functions x and y.

Estimation of I21 is straightforward. It follows from the definition of approx-
imation ψn, that ψn(t, z) = ψ(tk+1

n , z) for any t ∈ (tkn, tk+1
n ], z ∈ R. Taking into
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account Remark 5.8, we make use of the bounds in (5.14) and (5.23) to obtain

|I21| ≤ Cφ|z1 − z2|2−(1/6−δ)n
∥∥ψ(

tk+1
n , ·)∥∥0,w�δ

(|z1| ∨ |z2| ∨ 1
)

≤ CCφ|z1−z2|2−(1/6−δ)n�δ

(|z1|∨|z2|∨1
)(∥∥ψ(0, ·)∥∥0,w+α2−m/2)

.

(5.27)

Now let us do the most tricky part and work with term I22(l) in (5.24). As
mentioned above, the functions ψl and ψl+1 are piecewise-constant. Thus we split
the integral over (tkn, tk+1

n ] into 2l−n integrals over smaller subintervals (t il , t
i+1
l ],

k2l−n ≤ i < (k+1)2l−n. On each such subinterval function, ψl is constant in t and
is equal to ψ(ti+1

l , z). The function ψl+1 also equal to the same value ψ(ti+1
l , z)

for t ∈ (t
i+1/2
l , t i+1

l ] and to ψ(t
i+1/2
l , z) for t ∈ (t il , t

i+1/2
l ]. Thus we get

I22(l) =
(k+1)2l−n−1∑

i=k2l−n

∫
R

∫ t i+1
l

t il

�p
tk+1
n −t

(
z1 − z′, z2 − z′)

× (
b
(
Vg,s

(
t, z′) + ψl+1

(
t, z′)) − b

(
Vg,s

(
t, z′) + ψl

(
t, z′)))dt dz′

=
(k+1)2l−n−1∑

i=k2l−n

∫
R

∫ t
i+1/2
l

t il

�p
tk+1
n −t

(
z1 − z′, z2 − z′)

× (
b
(
Vg,s

(
t, z′) + ψ

(
t
i+1/2
l , z′)) − b

(
Vg,s

(
t, z′) + ψ

(
t i+1
l , z

)))
dt dz′.

We apply our main estimate (5.14) and assumption (5.22) to this identity. We de-
rive∣∣I22(l)

∣∣ ≤ Cφ|z1 − z2|�δ

(|z1| ∨ |z2| ∨ 1
)
2−l(2/3−δ)

×
(k+1)2l−n−1∑

i=k2l−n

(
tk+1
n − t il

)−1/2∥∥ψ(
t i+1
l , ·) − ψ

(
t
i+1/2
l , ·)∥∥0,w

≤ Cφ|z1−z2|�δ

(|z1|∨|z2|∨1
)
α2−l(2/3−δ)

(k+1)2l−n−1∑
i=k2l−n

(
(k+1)2l−n−i

)−1/2

≤ CCφ|z1 − z2|�δ

(|z1| ∨ |z2| ∨ 1
)
α2−l(1/6−δ)2−n/2.

Therefore,

(5.28)
∞∑
l=n

I22(l) ≤ CCφα|z1 − z2|�δ

(|z1| ∨ |z2| ∨ 1
)
2−n(2/3−δ).

Combining (5.24), (5.25), (5.26), (5.27) and (5.28), we finally obtain

Lipk+1
n ≤ e2−n/2(

1 + C2−nδ/2)
Lipk

n + CCφ2−n(1/6−δ)(∥∥ψ(0, ·)∥∥0,w + α2−m/2)
+ CCφα2−n(2/3−δ)

=: anLipk
n + bn.
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We consider again binary approximations to tkn and employ again the same argu-
ment as we used in the proof of (5.23). We get

Lipk+1
n ≤

(
n∏

i=m+1

ai

)(
Lip0

m +
n∑

i=m+1

bi

)
.

Since
n∏

i=m+1

ai =
n∏

i=m+1

e2−i/2(
1 + C2−iδ/2) ≤ exp

(
n∑

i=m+1

(
2−i/2 + C2−iδ/2))

is bounded uniformly in n, we derive

Lipk
n ≤ CCφ

∥∥ψ(0, ·)∥∥1,δ + CCφα2−m(2/3−δ), n ≥ m,k ∈ [
0,2n−m − 1

]
.

Using again continuity of the function ψ and the fact that the constants C, Cφ in
the bound above do not depend on k, n, we arrive to the bound

(5.29)
[
ψ(t, ·)]1,δ ≤ CCφ

∥∥ψ(0, ·)∥∥1,δ + CCφα2−m(2/3−δ), t ∈ [
0,2−m]

.

Now we return to the main line of the proof. Recall that our aim is to estimate
left-hand side of (5.22) and bound α. We treat large |z| and small |z| differently.
Therefore, we fix a large threshold M > 1. The precise value of M will depend on
m and will be chosen later.

If |z| is large enough, we use very rough estimates from Lemma 5.5:

(5.30) sup
|z|≥M

e−|z|∣∣(ψ(
tk+1
n , z

) − ψ
(
tkn , z

))∣∣ ≤ Cφe−M2−n/2.

For small z, we estimate the same quantity more precisely. Arguing similarly
to (5.26) and using (5.7) and Lemma 4.10, we obtain for any z ∈ R, and integers
n ≥ m, k ∈ [0,2n−m − 1],

ψ
(
tk+1
n , z

) − ψ
(
tkn , z

)
=

∫
R

p2−n

(
z′)(ψ(

tkn , z − z′) − ψ
(
tkn , z

))
dz′

+
∫
R

∫ tk+1
n

tkn

p
tk+1
n −t

(
z − z′)

× (
b
(
Vg,s

(
t, z′) + ψn

(
t, z′)) − b

(
Vg,s

(
t, z′)))dt dz′

+
∞∑
l=n

∫
R

∫ tk+1
n

tkn

p
tk+1
n −t

(
z − z′)

× (
b
(
Vg,s(t, z)+ψl+1(t, z)

)−b
(
Vg,s(t, z)+ψl(t, z)

))
dtdz′

=: J1(k, z) + J2(k, z) + J3(k, z).

(5.31)
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By the definition of Lipk
n and (5.29), we have

sup
|z|≤M

e−|z|∣∣J1(k, z)
∣∣ ≤ CLipk

nM
δ2−n/2

≤ CCφMδ2−n/2(∥∥ψ(0, ·)∥∥1,δ + α2−m(2/3−δ)).
(5.32)

To bound e−|z|J2(k, z), we apply estimate (5.13). We get

sup
|z|≤M

e−|z|∣∣J2(k, z)
∣∣

= sup
|z|≤M

e−|z|
∣∣∣∣∫

R

∫ tk+1
n

tkn

p
tk+1
n −t

(
z − z′)

× (
b
(
Vg,s

(
t, z′) + ψ

(
tk+1
n , z′)) − b

(
Vg,s

(
t, z′)))dt dz′

∣∣∣∣
≤ CφMδ

∥∥ψ(
tk+1
n , ·)∥∥0,w2−n(2/3−δ).

Hence, by (5.23) we have

(5.33) sup
|z|≤M

e−|z|∣∣J2(k, z)
∣∣ ≤ CCφ2−n(2/3−δ)Mδ(∥∥ψ(0, ·)∥∥0,w + α2−m/2)

.

Finally, let us work with J3. We estimate it using (5.13) and (5.22). We derive
(similar to derivation of the bound on I22(l))

sup
|z|≤M

e−|z|∣∣J3(k, z)
∣∣

≤ CφMδ
∞∑
l=n

(k+1)2l−n−1∑
i=k2l−n

2−l(2/3−δ)
∥∥ψ(

t i+1
l , ·) − ψ

(
t
i+1/2
l , ·)∥∥0,w

≤ CφMδα

∞∑
l=n

2−n2−l(1/6−δ)

≤ CCφMδα2−n(7/6−δ).

(5.34)

Thus it remains just to combine (5.30) and the obtained estimates of terms in
the right-hand side of (5.31) (we use (5.32), (5.33) and (5.34)) to obtain for any
integers n ≥ m, k ∈ [0,2n−m − 1],∥∥ψ(

tk+1
n , ·) − ψ

(
tkn , ·)∥∥0,w ≤ CCφ2−n/2Mδ(∥∥ψ(0, ·)∥∥1,δ + α2−m(2/3−δ))

+ Cφe−M2−n/2.

Comparing this with (5.22) and using the definition of α, we get

α ≤ CCφMδ(∥∥ψ(0, ·)∥∥1,δ + α2−m(2/3−δ)) + Cφe−M.
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Now we pick M = 2m/(2δ) and rewrite the obtained bound

α ≤ CCφ2−m(1/6−δ)α + CCφ2m/2∥∥ψ(0, ·)∥∥1,δ + Cφe−2m/(2δ)

.

Recall that the constants C, Cφ do not depend on m. Thus, if we choose now m0 =
m0(δ,φ) large enough such that CCφ2−m0(1/6−δ) < 1/2, then for any m ≥ m0 we
finally deduce

(5.35) α ≤ CCφ2m/2∥∥ψ(0, ·)∥∥1,δ + CCφe−2m/(2δ)

.

Let us stress once again, that the constants that appear in the right-hand side of the
above equation (C, Cφ , m0) depend only on δ and φ, but not on r (r was assumed
to be equal to 0 in the beginning of the proof). The proof for other values of r is
exactly the same with exactly the same final constants C, Cφ , m0.

To complete the proof, it remains just to substitute the obtained estimate of α

(5.35) into estimates (5.23) and (5.29). Thus we get the following final bound on
the Hölder norm of ψ(t, ·):∥∥ψ(t, ·)∥∥1,δ = ∥∥ψ(t, ·)∥∥0,w + [

ψ(t, ·)]1,δ ≤ CCφ

∥∥ψ(0, ·)∥∥1,δ + CCφe−2m/(2δ)

,

valid for all t ∈ [0,2−m]. This proves (5.18). Estimate (5.19) is an immediate corol-
lary of (5.18). �

Now we can straightforwardly estimate the behavior of ψ on bigger intervals
and give a proof of uniqueness part of Theorem 2.1.

PROOF OF UNIQUENESS PART OF THEOREM 2.1. We apply Lemma 5.9 with
δ = 1/10 and zero initial condition φ = 0. For large enough m ≥ m0, we apply
bound (5.19) consequently 2m times. We get that there exists a constant C > 0
such that for any integer k ∈ [0,2m],∥∥ψ(

k2−m, ·)∥∥1,δ ≤ C2m

exp
(−2m/(2δ)).

Note that the constant C does not depend on m or k. Therefore, by letting m → ∞
we get ‖ψ(t, ·)‖1,δ = 0 for any dyadic t ∈ [0,1]. By the continuity of ψ , we see
that ‖ψ(t, ·)‖1,δ = 0 for any t ∈ [0,1], which implies that ψ is identically 0 on
[0,1] ×R.

Thus equation (5.7) has only the trivial solution and, therefore, on �′ equation
(2.2) has a unique solution. This solution is in B(0+) by Proposition 5.1.

Finally, let us prove the last part of the theorem. Let q1, q2 ∈ B(0+) be two ini-
tial conditions and q1(z) = q2(z) Lebesgue–almost everywhere. Let us,q1 and us,q2

be the solutions to (2.2) that start with initial conditions q1 and q2 correspondingly.
Note that for t ∈ (0,1], z ∈ R we have

(5.36)
∫
R

pt

(
z − z′)q1

(
z′)dz′ =

∫
R

pt

(
z − z′)q2

(
z′)dz′.
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Consider now the function v(t, z) := us,q2(t, z,ω) for t ∈ (0,1], z ∈ R and
v(0, z) := q1(z), z ∈ R. Identity (5.36) implies that v is another solution to (2.2)
that start with initial condition q1 at time s. By uniqueness, v = us,q1 . Thus
us,q1(t, z) = us,q2(t, z) for t ∈ (0,1], z ∈R. �

5.3. Proof of Theorem 2.2(b): Continuity of the flow.

PROOF OF THEOREM 2.2(b). Fix ω ∈ �′, s ≥ 0, t > s, z ∈ R and the initial
conditions (qn)n∈Z+ satisfying the assumptions of the theorem. It follows from the
definition of ϕ in Part (a) of the theorem that ϕ(s, ·, qn,ω) is a solution to (2.2)
that starts at time s with the condition qn. Since all the assumptions of Lemma 5.2
are met, we see that there exist a subsequence (nk)k∈Z+ such that

lim
k→∞ϕ(s, t, qnk

,ω)(z) = ũ(t, z,ω)

for some ũ and ũ(·, ·,ω) solves (2.2) that starts at time s with the initial condi-
tion q . On the other hand, ϕ(s, ·, q,ω) is also a solution to (2.2) that starts at time
s with the initial condition q . Therefore, by Theorem 2.1, these solutions coincide
and ũ(t, z,ω) = ϕ(s, t, q,ω)(z).

Thus (ϕ(s, t, qn,ω)(z))n∈Z+ is a sequence of real numbers such that each sub-
sequence of it has a converging sub-subsequence. Since all the limiting points
coincide (and equal to ϕ(s, t, q,ω)(z)), we see by the standard argument that

lim
n→∞ϕ(s, t, qn,ω)(z) = ϕ(s, t, q,ω)(z). �

6. Proof of Proposition 3.2 (moment bound). The proof of this proposition
is long and tedious. Note that all the difficulties come from the fact that the function
t �→ V (t, z) is not a semimartingale; if this were the case, then an application of
Itô’s lemma would imply the required bound. In our proof, we were inspired by
the ideas from [3], Section 4.

We begin by observing that the process (V (·, z))z∈R is stationary. Hence for any
z1, z2 ∈ R

(6.1) Law
(
V (·, z1),V (·, z2)

) = Law
(
V (·, z1 − z2),V (·,0)

)
.

Therefore, it will be sufficient to establish inequality (3.5) in Proposition 3.2 only
for z1 = z, z2 = 0, z ∈ R. Since we have assumed that |z1 − z2| ≤ 1, it is enough
to prove (3.5) for z1 = z, z2 = 0, |z| ≤ 1.

To present the proof, we need to introduce a number of new objects. We fix
T > 0, the function b that appears in the statement of Proposition 3.2 and consider
the random function

(6.2) H(t, z,α,β):= b′(V (t, z)+α
)−b′(V (t,0)+β

)
, t ∈ [0, T ], z, α,β ∈ R.
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Recall that it is assumed that b is a bounded differentiable function with
bounded derivative. Without loss of generality, we suppose that

(6.3) ‖b‖∞ ≤ 1

(otherwise we consider the function b̃ := b/‖b‖∞ instead of b). All constants that
appear in this section do not depend on the function b (satisfying condition (6.3)).

Fix z ∈ [−1,1], α,β ∈R, t1, t2 ∈ [0, T ], t1 < t2 and define a martingale Mt1,t2 =
(M

t1,t2
t )t1≤t≤t2 , where

(6.4) M
t1,t2
t := E

[∫ t2

t1

H(r, z,α,β) dr
∣∣∣Ft

]
, t1 ≤ t ≤ t2.

Recall that (Ft )t≥0 is the filtration associated with Ẇ . By definition, for any z ∈
[−1,1], 0 ≤ s ≤ t the random variable V (s, t, z,ω) is Ft -measurable.

Using the new notation and taking into account formula (6.1), we can rewrite
the left-hand side of inequality (3.5) in Proposition 3.2 as E|Mt1,t2

t2
|p . We clearly

have

(6.5) E
∣∣Mt1,t2

t2

∣∣p ≤ CE
∣∣Mt1,t2

t1

∣∣p + CE
∣∣Mt1,t2

t2
− M

t1,t2
t1

∣∣p.

The first term in the right-hand side of (6.5) is easy to bound. Namely, we first
estimate E[H(r, z,α,β)|Ft1] for r ∈ [t1, t2] (this is done in Lemma 6.2) and then
apply the integral Minkowski inequality.

To estimate the second term in the right-hand side of (6.5), we first calculate
the quadratic variation of the martingale Mt1,t2 (i.e., [Mt1,t2]t ) and then apply the
Burkholder–Davis–Gundy inequality.

Let us briefly explain how we estimate [Mt1,t2]t . To simplify the notation, if
there is no ambiguity, further we drop the superindex (t1, t2) and write Mt instead
of M

t1,t2
t . Recall that for continuous martingales quadratic variation [·]t equals pre-

dictable quadratic variation 〈·〉t . To calculate 〈M〉t , we use the following identity
valid for t1 ≤ r ≤ s ≤ t2:

Ms − Mr =
∫ t2

t1

E
([

H(t, z,α,β)|Fs

] − E
[
H(t, z,α,β)|Fr

])
dt

=
∫ t2

s
E

([
H(t, z,α,β)|Fs

] − E
[
H(t, z,α,β)|Fr

])
dt

+
∫ s

r
H(t, z, α,β) dt −

∫ s

r
E

[
H(t, z,α,β)|Fr

]
dt

=: I1(r, s, t2) + I2(r, s) − I3(r, s).

(6.6)

Note that the terms I1, I2, I3 depend also on α,β, z. To simplify the notation, we
omit this dependence.

Thus we can bound the term E((Ms − Mr)
2|Fr ), which is the main ingredient

of 〈M〉t , as follows:

E
(
(Ms − Mr)

2|Fr

) ≤ CE
(
I1(r, s, t2)

2|Fr

) + CE
(
I2(r, s)

2|Fr

) + CI3(r, s)
2,
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where we have also used Fr -measurability of I3(r, s). The corresponding bounds
for the terms in right-hand side of the above inequality are obtained in Lem-
mas 6.2–6.4. We combine all these bounds together in Lemma 6.5.

To prove that the martingale M is continuous, we split it into two parts M :=
L + N , where

Lt := I2(t1, t) =
∫ t

t1

H(r, z,α,β) dr, t1 ≤ t ≤ t2;(6.7)

Nt := E
[∫ t2

t
H(r, z,α,β) dr

∣∣∣Ft

]
, t1 ≤ r ≤ t2.(6.8)

Since H is bounded, the process L is obviously continuous. To prove that N

is also continuous, we employ the Kolmogorov continuity theorem. We use the
identity Ns − Nr = I1(r, s, t2) − I3(r, s) valid for t1 ≤ r ≤ s ≤ t2. This is done in
Lemma 6.6.

Finally, we calculate quadratic variation [M]t , which, by the continuity of M ,
is equal to 〈M〉t . This is done also in Lemma 6.6. At the end of the section, we
combine the obtained estimates and prove Proposition 3.2.

We begin with the following simple estimate.

LEMMA 6.1. Let b be a bounded differentiable function with bounded deriva-
tive and ‖b‖∞ ≤ 1. Then for any δ1, δ2, δ3 ∈ [0,1], there exists a constant C =
C(δ1, δ2, δ3) such that for any a0, a1, a2, a3 ∈ R and any Gaussian random vari-
able X with zero mean and variance VarX = σ 2 we have the following bounds:∣∣E(

b′(X + a0 + a1) − b′(X + a0)
)∣∣ ≤ Cσ−1−δ1 |a1|δ1;(6.9) ∣∣E(

b′(X+a0+a1+a2)−b′(X+a0+a1)−b′(X+a0+a2)+b′(X+a0)
)∣∣

≤ Cσ−1−δ1−δ2 |a1|δ1 |a2|δ2;
(6.10)

∣∣E(
b′(X+a0+a1+a2)−b′(X+a0+a3)−b′(X+a0+a2)+b′(X+a0)

)∣∣
≤ Cσ−1−δ3 |a1 − a3|δ3 + Cσ−1−δ1−δ2 |a1|δ1 |a2|δ2 .

(6.11)

PROOF. First we establish bound (6.10). Fix arbitrary δ1, δ2 ∈ [0,1]. We use
integration by parts and rewrite the left-hand side of (6.10) in the following form:∣∣E(

b′(X+a0+a1+a2)−b′(X+a0+a1)−b′(X+a0+a2)+b′(X+a0)
)∣∣

=
∣∣∣∣∫

R

(
b(x+a0+a1+a2)−b(x+a0+a2)−b(x+a0+a1)+b(x+a0)

)
p′

σ 2(x)dx

∣∣∣∣
=

∣∣∣∣∫
R

b(x + a0)
(
p′

σ 2(x − a1 − a2) − p′
σ 2(x − a2) − p′

σ 2(x − a1) + p′
σ 2(x)

)
dx

∣∣∣∣
≤ Cσ−1−δ1−δ2 |a1|δ1 |a2|δ2,
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where for the last inequality we used boundedness of the function b and
Lemma 4.2. Estimate (6.9) is derived by the same argument. Estimate (6.11) is
a direct corollary of (6.9) and (6.10). �

Now we are moving on to calculating the quadratic variation of the martin-
gale M . In the next three lemmas, we will obtain a moment bound on I1 (recall
its definition in (6.6)). Recall also the definition of V and H in (4.6) and (6.2),
respectively.

LEMMA 6.2. Let δ ∈ [0,1]. There exists C = C(T , δ) such that for any 0 ≤
r ≤ s ≤ t ≤ T , z,α,β ∈ R we have∣∣E[

H(t, z,α,β)|Fs

] − E
[
H(t, z,α,β)|Fr

]∣∣
≤ C(t − s)−1/2∣∣V(r, s, t, z) − V(r, s, t,0)

∣∣
+ C(t − s)−1/2−δ/4(∣∣V(0, r, t, z) − V(0, r, t,0)

∣∣δ + |α − β|δ)
× (

E
∣∣V(r, s, t,0)

∣∣ + ∣∣V(r, s, t,0)
∣∣);

(6.12)

∣∣E[
H(t, z,α,β)|Fs

]∣∣
≤ C(t − s)−(1+δ)/4(∣∣V(0, s, t, z) − V(0, s, t,0)

∣∣δ + |α − β|δ).
(6.13)

PROOF. We start with the proof of inequality (6.12). Fix 0 ≤ r ≤ s ≤ t ≤ T ,
z,α,β ∈ R. For i = 1,2, introduce the following random variables:

Xi := V(0, r, t, zi); Yi := V(r, s, t, zi); Zi := V(s, t, t, zi),

where z1 := 0, z2 := z. We clearly have V (t, zi) = Xi + Yi + Zi , i = 1,2.
Note also that the random vectors (X1,X2), (Y1, Y2) and (Z1,Z2) are Gaus-
sian and independent. Additionally, Law(X1) = Law(X2), Law(Y1) = Law(Y2),
Law(Z1) = Law(Z2). Define for x, y ∈ R,

J (x, y) := E
(
b′(x + Z1) − b′(y + Z1)

)
.

With this notation in hand, we rewrite

E
[
H(t, z,α,β)|Fs

]
= E

[
b′(X1 + Y1 + Z1 + α) − b′(X2 + Y2 + Z2 + β)|X1,X2, Y1, Y2

]
= E

[
b′(X1 + Y1 + Z1 + α) − b′(X2 + Y2 + Z1 + β)|X1,X2, Y1, Y2

]
= J (X1 + Y1 + α,X2 + Y2 + β)

(6.14)
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and

E
[
H(t, z,α,β)|Fr

]
= E

[
b′(X1 + Y1 + Z1 + α) − b′(X2 + Y2 + Z2 + β)|X1,X2

]
= E

[
b′(X1 + Y1 + Z1 + α) − b′(X2 + Y1 + Z1 + β)|X1,X2

]
= [

EJ (x1 + Y1 + α,x2 + Y1 + β)
]∣∣

x1=X1
x2=X2

=
∫
R

J (X1 + y1 + α,X2 + y1 + β)pVarY1(y1) dy1.

(6.15)

Now take any c1, c2, d1, d2 ∈ R. We apply inequality (6.11) with the following
set of parameters: δ1 ← 1, δ2 ← δ, δ3 ← 1, a0 ← d2, a1 ← c1 − d1, a2 ← d1 − d2
and a3 ← c2 − d2. We obtain∣∣J (c1, c2) − J (d1, d2) ≤ C(t − s)−1/2|c1 − d1 − c2 + d2|

+ C(t − s)−1/2−δ/4|c1 − d1||d1 − d2|δ,
(6.16)

where we also used the fact that

(6.17) VarZ1 = VarV(s, t, t,0) = C(t − s)1/2.

Combining (6.14), (6.15) and (6.16), we deduce∣∣E[
H(t, z,α,β)

∣∣Fs

] − E
[
H(t, z,α,β)|Fr

]|
≤ C(t − s)−1/2|Y1 − Y2|

+ C(t − s)−1/2−δ/4(|Y1| + E|Y1|)(|X1 − X2|δ + |α − β|δ),
which is (6.12).

To establish inequality (6.13), we just note that for any c1, c2 ∈ R, δ ∈ [0,1] it
follows from (6.9) and (6.17) that∣∣J (c1, c2)

∣∣ ≤ C(VarZ1)
−1/2−δ/2|c1 − c2|δ ≤ C(t − s)−1/4−δ/4|c1 − c2|δ.

Combining this with (6.14), we come to (6.13). �

The next statement can be called the conditional integral Minkowski inequality.
This inequality is definitely not new; however, we were not able to find its proof in
the literature. So we provide it here for the completeness of the argument.

LEMMA 6.3. Let (ξ(t))t≥0 be a random process. Then for any σ -field G ⊂ F
and 0 ≤ a ≤ b we have

E
[(∫ b

a
ξ(t) dt

)2∣∣∣G]
≤

(∫ b

a

(
E

[
ξ(t)2|G])1/2

dt

)2
.
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PROOF. By the Fubini theorem, we have

E
[(∫ b

a
ξ(t) dt

)2∣∣∣G]
=

∫ b

a

∫ b

a
E

[
ξ(t)ξ(s)|G]

dt ds

≤
∫ b

a

∫ b

a

(
E

[
ξ(t)2|G])1/2(

E
[
ξ(s)2|G])1/2

dt ds

=
[∫ b

a

(
E

[
ξ(t)2|G])1/2

dt

]2
. �

The next lemma provides estimates on the moments of I1. Recall its definition
in (6.6).

LEMMA 6.4. Let p > 0, δ ∈ (0,1), δ′ ∈ (0, δ). Then there exist a random
variable K(ω) and a constant C = C(p,T , δ, δ′) > 0 such that EK(ω)p ≤ C and
for any 0 ≤ r ≤ s ≤ t ≤ T , z,α,β ∈ R, |z| ≤ 1 we have almost surely

(6.18) E
[
I1(r, s, t)

2|Fr

] ≤ K(ω)(s − r)(t − s)1/2−δ/2(|z|δ′ + |α − β|2δ).
We also have for δ ∈ (0,1/2)

(6.19) E
(
I1(r, s, t)

)4 ≤ C(s − r)2(t − s)1−δ(|z|2δ + |α − β|4δ).
PROOF. Fix p > 0, δ ∈ (0,1), δ′ ∈ (0, δ). We employ estimate (6.12) from

Lemma 6.2 and use the corresponding estimates from Lemma 4.7 and Lemma 4.8
to obtain that there exists a random variable K(ω) = K(ω,p,T , δ, δ′) > 0 and a
constant C = C(p,T , δ, δ′) such that EK(ω)p ≤ C and

E
[(

E
(
H

(
t ′, z, α,β

)|Fs

) − E
(
H

(
t ′, z, α,β

)|Fr

))2|Fr

]
≤ K(ω)

(
t ′ − s

)−3/2−δ/2
(s − r)

(|z|δ′ + |α − β|2δ)(6.20)

for any 0 ≤ r ≤ s ≤ t ′, z,α,β ∈ R, |z| ≤ 1. An application of the conditional inte-
gral Minkowski inequality (Lemma 6.3) to (6.20) leads to (6.18).

Similarly, to establish bound (6.19), we also use estimate (6.12) from Lemma 6.2
and Lemma 4.8. We get

E
(
E

(
H

(
t ′, z, α,β

)|Fs

) − E
(
H

(
t ′, z, α,β

)|Fr

))4

≤ C
(
t ′ − s

)−3−δ
(s − r)2(|z|2δ + |α − β|4δ).

The proof is competed by an application of the integral Minkowski inequality. �

We are almost ready to carry out the main goal of this subsection, that is, cal-
culating quadratic variation of the martingale Mt1,t2 (recall that this martingale is
defined in (6.4)). As mentioned before, a remaining technical step is to prove that
this martingale is continuous. Recall that to do it we have split M = Mt1,t2 into
two parts: M = N + L; see their definitions in (6.7) and (6.8).
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LEMMA 6.5. Let p > 0, δ ∈ (0,1), δ′ ∈ (0, δ). Then there exist a random
variable K(ω) > 0 and a constant C = C(p,T , δ, δ′) such that EK(ω)p ≤ C and
for any 0 ≤ t1 ≤ r ≤ s ≤ t2 ≤ T , z,α,β ∈R, |z| ≤ 1 we have

E
[
(Ms − Mr)

2|Fr

]
≤ K(ω)(s − r)(t2 − r)1/2−δ/2(|z|δ′ + |α − β|2δ) + 8

∥∥b′∥∥2
∞(s − r)2;

(6.21)

E(Ns − Nr)
4 ≤ C(s − r)2(

1 + |α − β|4δ + ∥∥b′∥∥4
∞

)
.(6.22)

PROOF. Recall that according to our definitions (see the beginning of this sec-
tion) we have

E
(
(Ms − Mr)

2|Fr

) ≤ CE
(
I1(r, s, t2)

2|Fr

) + CE
(
I2(r, s)

2|Fr

) + CI3(r, s)
2.

By Lemma 6.4,

E
[
I1(r, s, t2)

2|Fr

] ≤ K(ω)(s − r)(t2 − s)1/2−δ/2(|z|δ′ + |α − β|2δ).
Note that the terms I2 and I3 are of order s − r . Therefore, they will not impact
the quadratic variation. Thus we estimate them using a very rough estimate:

(6.23)
∣∣I2(r, s)

∣∣ ≤ 2
∥∥b′∥∥∞(s − r); ∣∣I3(r, s)

∣∣ ≤ 2
∥∥b′∥∥∞(s − r).

Hence

E
[
I2(r, s)

2|Fr

] + I3(r, s)
2 ≤ 8

∥∥b′∥∥2
∞(s − r)2.

Thus we have

E
[
(Ms − Mr)

2|Fr

]
≤ K(ω)(s − r)(t2 − s)1/2−δ/2(|z|δ′ + |α − β|2δ) + 8

∥∥b′∥∥2
∞(s − r)2,

from which (6.21) follows immediately.
In a similar manner,

E
[
(Ns − Nr)

4] = E
(
I1(r, s, t2) − I3(r, s)

)4

≤ C
(
EI1(r, s, t2)

4 + EI3(r, s)
4)

≤ C(s − r)2(t2 − s)1−δ(|z|2δ + |α − β|4δ) + C
∥∥b′∥∥4

∞(s − r)4,

where we have used (6.23) and estimate (6.19) from Lemma 6.4. This implies
(6.22). �

Now we have all the tools to bound the quadratic variation of Mt1,t2 .
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LEMMA 6.6. For any 0 ≤ t1 ≤ t2 ≤ T , z,α,β ∈ R, |z| ≤ 1, the martingale
Mt1,t2 defined in (6.4) is continuous. Moreover, for any δ ∈ (0,1), δ′ ∈ (0, δ)

and any p > 0 there exist a random variable K(ω) > 0 and a constant C =
C(p,T , δ, δ′) such that EK(ω)p ≤ C and

(6.24)
[
Mt1,t2,Mt1,t2

]
t2

≤ K(ω)
(|z|δ′ + |α − β|2δ)(t2 − t1)

3/2−δ/2.

PROOF. Fix 0 ≤ t1 ≤ t2 ≤ T , z,α,β ∈ R, |z| ≤ 1. First we prove that the mar-
tingale Mt1,t2 is continuous. We make use of Lemma 6.5 to obtain for r, s ∈ [t1, t2],

E(Ns − Nr)
4 ≤ C(T ,α,β, z)

(∥∥b′∥∥4
∞ ∨ 1

)
(s − r)2.

Hence, by the Kolmogorov continuity theorem, the process (Ns)t1≤s≤t2 is contin-
uous. The process (Ls)t1≤s≤t2 is also continuous since the function H is bounded.
Thus the martingale Mt1,t2 is continuous as a sum of two continuous processes.

We move on and calculate predictable quadratic variation of the martingale
Mt1,t2 . We employ Lemma 6.5 to get〈

Mt1,t2,Mt1,t2
〉
t2

= lim
n→∞

n−1∑
k=0

E
[(

M
t1,t2
t1+(k+1)(t2−t1)/n − M

t1,t2
t1+k(t2−t1)/n

)2|Ft1+k(t2−t1)/n

]

≤ K(ω)
(|z|δ′ + |α − β|2δ)(t2 − t1)

3/2−δ/2 lim
n→∞

∑n−1
k=0(n − k)1/2−δ/2

n3/2−δ/2

+ 8
∥∥b′∥∥2

∞(t2 − t1)
2 lim

n→∞n−1

≤ K(ω)
(|z|δ′ + |α − β|2δ)(t2 − t1)

3/2−δ/2.

By above, the martingale Mt1,t2 is continuous. Hence its quadratic variation equals
its predictable quadratic variation, that is, [Mt1,t2,Mt1,t2]t = 〈Mt1,t2,Mt1,t2〉t . This
proves (6.24). �

Finally, we can prove Proposition 3.2.

PROOF OF PROPOSITION 3.2. Fix p ≥ 1. As we already pointed out at the
beginning of this section, it is sufficient to show (3.5) only for z1 = z, z2 = 0,
where |z| ≤ 1. Note also that

E
(∫ t2

t1

(
b′(V (u, z) + α

) − b′(V (u,0) + β
))

du

)p

= E
∣∣Mt1,t2

t2

∣∣p.

It follows from the Burkholder–Davis–Gundy inequality and Lemma 6.6 that

E
∣∣Mt1,t2

t2
− M

t1,t2
t1

∣∣p ≤ CE
[
Mt1,t2,Mt1,t2

]p/2
t2

≤ C(t2 − t1)
p(3/4−δ/4)(|z|pδ′/2 + |α − β|pδ),

(6.25)
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where we have also used the finiteness of the p/2th moment of K(ω). By the
integral Minkowski inequality,

E
∣∣Mt1,t2

t1

∣∣p = ∥∥Mt1,t2
t1

∥∥p
p =

∥∥∥∥∫ t2

t1

E
[
H(t, z,α,β)|Ft1

]
dt

∥∥∥∥p

p

≤
(∫ t2

t1

∥∥E
[
H(t, z,α,β)|Ft1

]∥∥
p dt

)p

(6.26)

We employ estimate (6.13) from Lemma 6.2 and Lemma 4.8 to get∥∥E
[
H(t, z,α,β)|Ft1

]∥∥
p ≤ C(t − t1)

−(1+δ)/4(|z|δ/2 + |α − β|δ).
Combining this inequality with (6.26), we obtain

E
∣∣Mt1,t2

t1

∣∣p ≤ C(t2 − t1)
p(3/4−δ/4)(|z|pδ/2 + |α − β|pδ).

Inequality (3.5) follows now from this, (6.25) and the following simple observa-
tion:

E
∣∣Mt1,t2

t2

∣∣p ≤ C
(
E

∣∣Mt1,t2
t1

∣∣p + E
∣∣Mt1,t2

t2
− M

t1,t2
t1

∣∣p)
.

The second part of Proposition 3.2 (inequality (3.6)) is established along the same
lines as inequality (3.5). �

7. Proofs of Lemma 4.9 and Lemma 3.3.

PROOF OF LEMMA 4.9. The proof is based on Proposition 3.2 and the ideas
from the proofs of [5], Lemma 3.3 and [22], Lemma 3.4. Before we begin the
proof, let us just note that in the case f1 = const, f2 = const inequality (4.21) is
almost obvious; one should just calculate the corresponding expected value and
apply the Chebyshev inequality, see inequality (7.1) below. If f1 and f2 are piece-
wise constant functions, establishing (4.21) is also not very difficult. Thus, to prove
(4.21) for the general case, we first establish it for a suitable piecewise-continuous
approximations of f1, f2 and then pass to the limit. Let us carry out this plan.

Fix ε > 0, M > 0, N ∈ N, h > 1/2 and take sufficiently small δ. Without loss
of generality and to simplify the notation, we assume T = 1, μ = 1; the proof for
other values of T , μ is exactly the same. We will choose a specific δ later. Let
U be any set such that |U | ≤ δ. Let us verify that inequality (4.21) holds on a
large enough set for all z ∈ [−N,N], r ∈ N, f1, f2 ∈ Ch(1,1,M). Note that by
definition of the class Ch, we have

sup
z∈[−N,N]

t∈[0,1]

∣∣fi(t, z)
∣∣ ≤ NM, i = 1,2.

The proof strategy relies on two observations. First we note that the random
variable V (t, z) has a Gaussian distribution with mean 0 and variance

√
t/π , see
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(4.18). Hence for any x ∈ R, z ∈R, 0 ≤ t1 < t2 ≤ 2 we have

E
∫ t2

t1

1U

(
V (t, z) + x

)
dt =

∫ t2

t1

∫
R

1U(y + x)p√
t/π (y) dy dt

≤ C1

(∫
R

1U(y) dy

)1/2 ∫ t2

t1

t−1/8 dt

≤ C1
√

δ|t2 − t1|7/8.

(7.1)

We fix a large integer m (the precise value of m will be chosen later) and split
the interval [0,2] into 2m+1 smaller subintervals. For k ∈ [0,2m+1 − 1], consider
the event

Ak
m(ε, x, z) :=

{∫ (k+1)2−m

k2−m
1U

(
V (t, z) + x

)
dt < ε2−m

}
.

By the Chebyshev inequality, (7.1) implies P(Ak(x, ε, z)) ≥ 1 − C1
√

δε−12m/8.
Thus, for the event

Am(ε) :=
2m+1−1⋂

k=0

MN24m+1⋂
i=−MN24m+1

N28m⋂
j=−N28m

Ak
m

(
ε, i2−4m, j2−8m)

we have

P
(
Am(ε)

) ≥ 1 − C1MN2214m
√

δε−1.

Second, we fix ρ ∈ (1/2,1) and θ ∈ (0,1) such that

(7.2) ρ(h − 1/4) − 1/4 − θ > θ.

Since we have assumed that h > 1/2, we see that such ρ, θ exist. We derive
from Proposition 3.2 and the Kolmogorov continuity theorem that for x, y ∈
[−2MN,2MN], z1, z2 ∈ [−N,N], 0 ≤ t1 < t2 ≤ 2 we have∣∣∣∣∫ t2

t1

(
1U

(
V (t, z1) + x

) − 1U

(
V (t, z2) + y

))
dt

∣∣∣∣
≤ K(ω)(t2 − t1)

3/4−ρ/4−θ (|x − y|ρ + |z1 − z2|ρ/2)
,

where EK(ω) ≤ C2. Define for κ > 0 an event

B(κ) := {
K(ω) ≤ κ

}
.

The Chebyshev inequality implies that P(B(κ)) ≥ 1 − C2κ
−1. Therefore,

(7.3) P
(
Am(ε) ∩ B(κ)

) ≥ 1 − C1MN2214m
√

δε−1 − C2κ
−1.

We choose now large κ such that C2κ
−1 ≤ ε/2.



REGULARIZATION BY NOISE 209

It follows from the above definitions and a change of variables t ′ := t + s in the
integral that on event Am(ε) ∩ B(κ) we have

(7.4)
∫ (k+1)2−m

k2−m
1U

(
V (t + s, z) + x

)
dt ≤ 2 · 2−m(

ε + κ2−m)
for all x ∈ [−2MN,2MN], s ∈ [0,1], z ∈ [−N,N], 0 ≤ k ≤ 2m − 1.

Now we fix r ∈ N, s ∈ [0,1], z ∈ [−N,N], f1, f2 ∈ Ch(1,1,M). Put

f (t, z) := f1(t, z) + λr(f2)(t, z).

It follows from Fatou’s lemma and the fact that the set U is open∫ 1

0
1U

(
V (t+s, z)+f (t, z)

)
dt ≤ lim inf

n→∞

∫ 1

0
1U

(
V (t+s, z)+λn(f )(t, z)

)
dt

=: lim inf
n→∞ In.

(7.5)

On the other hand, for any n ≥ m we have

(7.6) In ≤ Im +
n−1∑
l=m

|Il+1 − Il|.

The function λm(f ) is constant on time intervals [k2−m, (k + 1)2−m). Moreover,
since f1, f2 ∈ Ch(1,1,M), we see that |λm(f )(t, z)| ≤ 2NM for t ∈ [0,1], z ∈
[−N,N]. Therefore, (7.4) yields that on Am(ε) ∩ B(κ),∫ 1

0
1U

(
V (t + s, z) + λm(f )(t, z)

)
dt ≤ 2ε + κ2−m+1.

In a similar way, we estimate the second term in the right-hand side of (7.6).
It follows from the definition of the approximation operator λ that if l ≥ r ,
then λr(f2)((i + 1)2−l , z) = λr(f2)((i + 1/2)2−l , z) for any i = 0,1, . . . ,2l − 1;
further, if l < r , then λr(f2)((i + 1)2−l , z) = f2((i + 1)2−l , z) and we have
λr(f2)((i + 1/2)2−l , z) = f2((i + 1/2)2−l , z). This observation, the definition of
the set B(κ) and a change of variables t ′ := t + s in the integral imply that for
l ∈ Z+ on Am(ε) ∩ B(κ),

|Il+1 − Il| ≤ κ2−l(3/4−ρ/4−θ)
2l−1∑
i=0

∣∣f (
(i + 1)2−l , z

) − f
(
(i + 1/2)2−l , z

)∣∣ρ

≤ κMN2−l(3/4−5ρ/4+hρ−θ)
2l−1∑
i=0

(i + 1/2)−ρ

≤ 2(1 − ρ)−1κMN2−l(ρ(h−1/4)−1/4−θ)

≤ 2(1 − ρ)−1κMN2−lθ ,
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where in the last inequality we took into the account that ρ and θ were chosen
according to (7.2). Combining this with the previous estimate and (7.6), we finally
get on Am(ε) ∩ B(κ) for any n ≥ m,∫ 1

0
1U

(
V (t + s, z) + λn(f )(t, z)

)
dt

≤ 2ε + κ2−m+1 + 2(1 − ρ)−1κMN2−mθ (
1 − 2−θ )−1

.

Recall that we have already chosen κ , ρ, θ . Now we choose large m such that the
right-hand side of the above inequality is less than 3ε. Finally, we choose small δ

such than the right-hand side of (7.3) is bigger than 1 − ε.
Thus we got that on the set D := Am(ε) ∩ B(κ) we have for any n ≥ m∫ 1

0
1U

(
V (t + s, z) + λn(f )(t, z)

)
dt ≤ 3ε

and P(D) ≥ 1 − ε. This inequality together with (7.5) yields the statement of the
lemma. �

PROOF OF LEMMA 3.3. The lemma is proved by a straightforward application
of Lemma 4.9. �
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SUPPLEMENTARY MATERIAL

Supplement to “Regularization by noise and flows of solutions for a
stochastic heat equation” (DOI: 10.1214/18-AOP1259SUPP; .pdf). The supple-
mentary material provides proofs of auxiliary results related to the properties of
the heat kernel.

REFERENCES

[1] BALLY, V., GYÖNGY, I. and PARDOUX, É. (1994). White noise driven parabolic SPDEs with
measurable drift. J. Funct. Anal. 120 484–510. MR1266318

[2] BUTKOVSKY, O. and MYTNIK, L. (2019). Supplement to “Regularization by noise and flows
of solutions for a stochastic heat equation.” DOI:10.1214/18-AOP1259SUPP.

[3] CATELLIER, R. and GUBINELLI, M. (2016). Averaging along irregular curves and regularisa-
tion of ODEs. Stochastic Process. Appl. 126 2323–2366. MR3505229

[4] CERRAI, S. (2003). Stochastic reaction–diffusion systems with multiplicative noise and non-
Lipschitz reaction term. Probab. Theory Related Fields 125 271–304. MR1961346

[5] DAVIE, A. M. (2007). Uniqueness of solutions of stochastic differential equations. Int. Math.
Res. Not. IMRN 2007 Art. ID rnm124, 26. MR2377011

https://doi.org/10.1214/18-AOP1259SUPP
http://www.ams.org/mathscinet-getitem?mr=1266318
https://doi.org/10.1214/18-AOP1259SUPP
http://www.ams.org/mathscinet-getitem?mr=3505229
http://www.ams.org/mathscinet-getitem?mr=1961346
http://www.ams.org/mathscinet-getitem?mr=2377011


REGULARIZATION BY NOISE 211

[6] FEDRIZZI, E. and FLANDOLI, F. (2013). Hölder flow and differentiability for SDEs with non-
regular drift. Stoch. Anal. Appl. 31 708–736. MR3175794

[7] FLANDOLI, F. (1995). Regularity Theory and Stochastic Flows for Parabolic SPDEs. Stochas-
tics Monographs 9. Gordon and Breach Science Publishers, Yverdon. MR1347450

[8] FLANDOLI, F. (2011). Random Perturbation of PDEs and Fluid Dynamic Models. Lecture
Notes in Math. 2015. Springer, Heidelberg. MR2796837

[9] FLANDOLI, F., GUBINELLI, M. and PRIOLA, E. (2010). Well-posedness of the transport equa-
tion by stochastic perturbation. Invent. Math. 180 1–53. MR2593276

[10] FOLLAND, G. B. (1999). Real Analysis: Modern Techniques and Their Applications, 2nd ed.
Wiley, New York. MR1681462

[11] GOLDYS, B. and ZHANG, X. (2011). Stochastic flows for nonlinear SPDEs driven by lin-
ear multiplicative space-time white noises. In Stochastic Analysis with Financial Ap-
plications. Progress in Probability 65 83–97. Birkhäuser/Springer Basel AG, Basel.
MR3050785

[12] GYÖNGY, I. and PARDOUX, É. (1993). On quasi-linear stochastic partial differential equations.
Probab. Theory Related Fields 94 413–425. MR1201552

[13] GYÖNGY, I. and PARDOUX, É. (1993). On the regularization effect of space-time white noise
on quasi-linear parabolic partial differential equations. Probab. Theory Related Fields 97
211–229. MR1240724

[14] HAIRER, M. and PARDOUX, É. (2015). A Wong–Zakai theorem for stochastic PDEs. J. Math.
Soc. Japan 67 1551–1604. MR3417505

[15] HU, Y. and LE, K. (2013). A multiparameter Garsia–Rodemich–Rumsey inequality and some
applications. Stochastic Process. Appl. 123 3359–3377. MR3071383

[16] KHOSHNEVISAN, D. (2009). A primer on stochastic partial differential equations. In A Mini-
course on Stochastic Partial Differential Equations. Lecture Notes in Math. 1962 1–38.
Springer, Berlin. MR2508772

[17] KRYLOV, N. V. and RÖCKNER, M. (2005). Strong solutions of stochastic equations with sin-
gular time dependent drift. Probab. Theory Related Fields 131 154–196. MR2117951

[18] KUNITA, H. (1997). Stochastic Flows and Stochastic Differential Equations. Cambridge Stud-
ies in Advanced Mathematics 24. Cambridge Univ. Press, Cambridge. MR1472487

[19] MOHAMMED, S.-E. A., NILSSEN, T. K. and PROSKE, F. N. (2015). Sobolev differentiable
stochastic flows for SDEs with singular coefficients: Applications to the transport equa-
tion. Ann. Probab. 43 1535–1576. MR3342670

[20] PRIOLA, E. (2018). Davie’s type uniqueness for a class of SDEs with jumps. Ann. Inst.
H. Poincaré Probab. Statist. 54 694–725. MR3795063

[21] REZAKHANLOU, F. (2014). Regular flows for diffusions with rough drifts. Preprint. Available
at arXiv:1405.5856.

[22] SHAPOSHNIKOV, A. V. (2016). Some remarks on Davie’s uniqueness theorem. Proc. Edinb.
Math. Soc. (2) 59 1019–1035. MR3570126

[23] VERETENNIKOV, A. J. (1980). Strong solutions and explicit formulas for solutions of stochas-
tic integral equations. Mat. Sb. (N.S.) 111(153) 434–452, 480. MR0568986

[24] WALSH, J. B. (1986). An introduction to stochastic partial differential equations. In École
D’été de Probabilités de Saint-Flour, XIV—1984. Lecture Notes in Math. 1180 265–439.
Springer, Berlin. MR0876085

[25] WRESCH, L. (2017). Path-by-path uniqueness of infinite-dimensional stochastic differential
equations. Preprint. Available at arXiv:1706.07720.

[26] ZHANG, X. (2011). Stochastic homeomorphism flows of SDEs with singular drifts and Sobolev
diffusion coefficients. Electron. J. Probab. 16 1096–1116. MR2820071

[27] ZVONKIN, A. K. (1974). A transformation of the phase space of a diffusion process that will
remove the drift. Mat. Sb. (N.S.) 93(135) 129–149, 152. MR0336813

http://www.ams.org/mathscinet-getitem?mr=3175794
http://www.ams.org/mathscinet-getitem?mr=1347450
http://www.ams.org/mathscinet-getitem?mr=2796837
http://www.ams.org/mathscinet-getitem?mr=2593276
http://www.ams.org/mathscinet-getitem?mr=1681462
http://www.ams.org/mathscinet-getitem?mr=3050785
http://www.ams.org/mathscinet-getitem?mr=1201552
http://www.ams.org/mathscinet-getitem?mr=1240724
http://www.ams.org/mathscinet-getitem?mr=3417505
http://www.ams.org/mathscinet-getitem?mr=3071383
http://www.ams.org/mathscinet-getitem?mr=2508772
http://www.ams.org/mathscinet-getitem?mr=2117951
http://www.ams.org/mathscinet-getitem?mr=1472487
http://www.ams.org/mathscinet-getitem?mr=3342670
http://www.ams.org/mathscinet-getitem?mr=3795063
http://arxiv.org/abs/arXiv:1405.5856
http://www.ams.org/mathscinet-getitem?mr=3570126
http://www.ams.org/mathscinet-getitem?mr=0568986
http://www.ams.org/mathscinet-getitem?mr=0876085
http://arxiv.org/abs/arXiv:1706.07720
http://www.ams.org/mathscinet-getitem?mr=2820071
http://www.ams.org/mathscinet-getitem?mr=0336813


212 O. BUTKOVSKY AND L. MYTNIK

FACULTY OF INDUSTRIAL ENGINEERING AND MANAGEMENT

TECHNION—ISRAEL INSTITUTE OF TECHNOLOGY

HAIFA 3200003
ISRAEL

E-MAIL: oleg.butkovskiy@gmail.com
leonid@technion.ac.il

mailto:oleg.butkovskiy@gmail.com
mailto:leonid@technion.ac.il

	Introduction
	Main results
	Proof of Theorem 2.3
	Preparation steps for proving Theorem 2.1
	Estimates involving Gaussian density
	Existence of a regular version of V and its properties
	Continuity lemmas

	Proofs of Theorem 2.1 and Theorem 2.2(b)
	Existence part of Theorem 2.1
	Uniqueness part of Theorem 2.1
	Proof of Theorem 2.2(b): Continuity of the ﬂow

	Proof of Proposition 3.2 (moment bound)
	Proofs of Lemma 4.9 and Lemma 3.3
	Acknowledgments
	Supplementary Material
	References
	Author's Addresses

