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Abstract. This paper considers the parabolic Anderson equation

∂u

∂t
= 1

2
�u + u

∂d+1WH

∂t∂x1 · · · ∂xd

generated by a (d + 1)-dimensional fractional noise with the Hurst parameter H = (H0,H1, . . . ,Hd). The existence/uniqueness,
Feynman–Kac’s moment formula and the precise intermittency exponents are formulated in the case when some of H1, . . . ,Hd are
less than one half, and in the case when the Dalang’s condition

d −
n∑

k=1

Hj < 1 is replaced by d −
n∑

k=1

Hj = 1.

Some partial result is also achieved for the case when H0 < 1/2 which brings insight on what to expect as the Gaussian noise is
rough in time.

Résumé. Cet article s’intéresse à l’équation d’Anderson parabolique

∂u

∂t
= 1

2
�u + u

∂d+1WH

∂t∂x1 · · · ∂xd

engendrée par un bruit fractionnaire de dimension (d +1) et de paramètre de Hurst H = (H0,H1, . . . ,Hd). L’existence et l’unicité,
la formule des moments de Feynman–Kac et les exposants précis d’intermittence sont formulés dans le cas où l’un des paramètres
H1, . . . ,Hd est inférieur à un demi, et dans le cas où la condition de Dalang

d −
n∑

k=1

Hj < 1 est remplacée par d −
n∑

k=1

Hj = 1.

Des résultats partiels sont aussi obtenus dans la cas H0 < 1/2, ce qui donne une intuition de ce qui doit être attendu dans le cas où
le bruit Gaussien est rugueux en temps.
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1. Introduction

In this paper we consider the parabolic Anderson equation{
∂u
∂t

(t, x) = 1
2�u(t, x) + θẆH(t, x) � u(t, x), (t, x) ∈R

+ ×R
d,

u(0, x) = u0(x), x ∈ R
d

(1.1)

with the fractional Gaussian noise

ẆH(t, x) = ∂d+1WH

∂t∂x1 · · ·∂xd

(t, x1, . . . , xd), where x = (x1, . . . , xd) (1.2)

given as the formal derivative of a fractional Brownian sheet WH(t, x) ((t, x) ∈ R
+ × R

d ) with the Hurst index
H = (H0,H1, . . . ,Hd) (0 < H0, . . . ,Hd < 1), which is defined as a mean zero Gaussian field with the covariance
function

E
{
WH(s, x)WH(t, y)

} = RH0(s, t)

d∏
j=1

RHj
(xj , yj ),

where

RHj
(u, v) = 1

2

{|u|2Hj + |v|2Hj − |u − v|2Hj
}
, u, v ∈R, j = 0,1, . . . , d.

In (1.1), θ > 0 is a given constant and the notation “�” represents the Wick product.
Throughout the paper, the equation is interpreted in the sense given in the following definition.

Definition 1.1. An adapted random field {u(t, x); (t, x) ∈ R
+ × R

d} is a solution to the equation (1.1), if for any
(t, x) ∈ R

+ ×R
d , u(t, x) ∈ L2(�,A,P), the process{

pt−s(x − y)u(s, y)1[0,t](s); (s, y) ∈R
+ ×R

d
}

is Skorokhod integrable with respect to the Gaussian differential WH(δs, δy), and u(t, x) satisfies

u(t, x) = pt ∗ u0(x) +
∫ t

0

∫
Rd

pt−s(x − y)u(s, y)WH(δs, δy), (t, x) ∈R
+ ×R

d, (1.3)

where ps(y) ((s, y) ∈R
+ ×R

d ) is the Brownian semi-group and the differential notation “W(δs, δy)” is used for the
Skorokhod integral.

u(t, x) is said to be a local solution to the equation (1.1) if there is a t0 > 0 such that u(t, x) is defined and satisfies
all requests given above for (t, x) ∈ [0, t0) ×R

d .

The definition of the Wick product, the Skorokhod integration and the notion of some other material on Malliavin
calculus needed in this paper are briefly recalled in the next section.

The parabolic Anderson equation with Gaussian noise has been studied extensively in literature. For the purpose of
comparison, we recall the most notable formulation known as Dalang’s condition. Given a mean-zero Gaussian noise
Ẇ (t, x) with the covariance function of the form

Cov
(
Ẇ (t, x), Ẇ (s, y)

) = γ0(t − s)γ (x − y), (t, x), (s, y) ∈R
+ ×R

d . (1.4)

By the Bochner’s theorem, the non-negative definite functions γ0(·) and γ (·) yield the spectral representation

γ0(u) =
∫
R

eiλuμ0(dλ) and γ (x) =
∫
Rd

eiξ ·xμ(dξ) (1.5)

with the tempered measures μ0 and μ (known as the spectral measures) on R and R
d , respectively.
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In the case when the noise Ẇ (t, x) is white in time (i.e., γ0(·) = δ0(·)) and γ (·) ≥ 0, Dalang [8] points out that the
condition (known as Dalang’s condition)∫

Rd

1

1 + |ξ |2 μ(dξ) < ∞ (1.6)

is sufficient and necessary for the solvability of the parabolic Anderson equation with the Gaussian noise Ẇ (t, x).
In a general setting of Gaussian noise, Hu, Huang, Nualart and Tindel [14] shows that the Dalang’s condition is also
sufficient for the solvability whenever γ0(·) is locally integrable and γ (·) ≥ 0.

Return to the setting of the fractional noise WH given in (1.2). In connection to (1.5),

μ0(dλ) = Ĉ0|λ|1−2H0 dλ and μ(dξ) =
d∏

j=1

Ĉj |ξj |1−2Hj dξ
(
ξ = (ξ1, . . . , ξd)

)
, (1.7)

where

Ĉj = 
(2Hj + 1) sin(πHj )

2π
> 0, j = 0,1, . . . , d.

It is easy to see from (1.7) that the Dalang’s condition is equivalent to

d −
d∑

j=1

Hj < 1 (1.8)

in the setting of fractional Gaussian noise Ẇ = ẆH.
Notice that

γ (x) =
d∏

j=1

Ĉj

∫ ∞

−∞
eiξxj |ξ |1−2Hj dξ =

d∏
j=1

γj (xj ) (say). (1.9)

For a 0 ≤ j ≤ d with Hj ≥ 1/2, the correspondent covariance function has the explicit representation

γj (x) = Ĉj

∫ ∞

−∞
eiξxj |ξ |1−2Hj dξ =

{
CHj

|x|−(2−2Hj ), Hj > 1/2,

δ0(x), Hj = 1/2
(1.10)

for x ∈R, where CHj
= Hj(2Hj − 1).

Consequently, γ0(·) and γ (·) (as the tensor product of γ1(·), . . . , γd(·)) are non-negative and local integrable as
H0, . . . ,Hd ≥ 1/2. By Theorem 3.6 in [14], therefore, the Parabolic Anderson equation (1.1) has an unique solution
in the sense of Definition 1.1 under the condition (1.8).

In this work, we are particularly interested in the case when Hj < 1/2 for some 0 ≤ j ≤ d . The fractional Gaussian
noise WH given in (1.2) is said to be rough if Hj < 1/2 for some 0 ≤ j ≤ d , to be rough in time if H0 < 1/2, to
be rough in space if Hj < 1/2 for some 1 ≤ j ≤ d , and to be rough in the j th (1 ≤ j ≤ d) component if Hj < 1/2.
When WH is rough, either γ0(·) or γ (·) formally given in (1.5) is not point-wisely defined, nor is it non-negative in
any reasonable sense, despite of being non-negative definite as co-variance function, for its Fourier transform given in
(1.7) is no longer non-negative definite.

Despite of extensive literature in Parabolic Anderson models – particularly in the most interesting setting of the
fractional noise, very little has been known about how the roughness impacts the system (1.1). Investigation started in
recent years. The reader is referred to the references [1,5,9,13,15] and [17] where the model is (1 + 1)-dimensional
with H = (H0,H) satisfying H0 ≥ 1/2 and H < 1/2. In the work [1] and [13], for example, it is shown that when
H0 = 1/2 and H < 1/2, the system is solvable under the extra condition H > 1/4 which is very likely to be necessary.
This example shows that in the presence of roughness, the Dalang’s condition is no longer sufficient as it is automatic
in d = 1.
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In a more recent work [17], Huang, Lê and Nualart consider the system rough in space but color in time. Specif-
ically, they solve the parabolic Anderson equation with a time-fractional (H0 > 1/2) and space-rough (H < 1/2)
fractional noise under the same condition “H > 1/4”. With respect to [17], we shall see (Theorem 1.2) that the
condition “H > 1/4” is not sharp as H0 > 1/2 and should be replaced by H0 + H > 3/4.

We are concerned with the system (1.1) in the case when the fractional noise is rough in time or space. More specif-
ically, we are interested in the following problems naturally raised from the study of parabolic Anderson models.

1. Given that Dalang’s condition (1.8) (or (1.6) in more general setting) does not contain the information on the
time component of the Gaussian noise, a natural question is whether or not the singularity of the time component
(measured by H0 in our model) of the fractional noise impacts the solvability in the presence of space roughness.
If so, how?

2. The model of fractional noise that is possibly multi-dimensional and rough in space. A key problem in this regard
is how to separate the rough components from the non-rough components as they alternate the system solvability
in different ways.

3. Perhaps, the most interesting and challenging case related to the rough noise is when the noise is rough in time
(i.e., H0 < 1/2). To the best of our knowledge, the system (1.1) has never been solved for any Hurst parameter
H = (H0,H1, . . . ,Hd) as far as H0 < 1/2. In other words, it was not clear if the noise is even allowed to be rough
in time. Unfortunately, we are not able to solve this problem completely in this paper. See Proposition 1.4 below
for a partial result.

4. What can we say when the noise is critical in space in the sense that the Dalang’s condition (1.8) is replaced by its
critical version

d −
d∑

j=1

Hj = 1? (1.11)

In this case, we say that the fractional noise ẆH is critical (to the Dalang’s condition).
The motive behind “4” comes partially from the investigation of the parabolic Anderson equation with space-

time white noise (i.e., the case when H0 = · · · = Hd = 1/2) which is of special interest due to its close connection to
the KPZ equation [12]. The (1 + 1)-dimension is the only setting that is solvable in the sense of Definition 1.1. The
case of (1 + 2)-dimension is critical in the sense of (1.11). A critical setting investigated by Hairer and Labbé [11]
is the case of time independent white noise Ẇ (x) (x ∈ R

2). Given that the time-independence reduces singularity
of the Gaussian noise and therefore increases the solvability of the system, our concern is on the degree of the
singularity in time that the equation (1.1) can tolerate in the setting of criticality. Theorem 1.2 below applies to the
models with (1 + 2)-dimensional Gaussian noises fractional in time and white in space (i.e., H = (H0,1/2,1/2)

with H0 > 1/2).
5. The precise moment asymptotics such as intermittency and high moment asymtotics (see Theorem 1.5 below). It

is worth of mentioning that the roughness in Gaussian noise posts some substantial challenges, as we shall see in
the later development.

For the sake of simplicity, we assume throughout the paper that the initial value u0(x) in (1.1) satisfies the condition

0 < inf
x∈Rd

u0(x) ≤ sup
x∈Rd

u0(x) < ∞. (1.12)

Set J∗ = {1 ≤ j ≤ d;Hj < 1/2}, J ∗ = {1 ≤ j ≤ d;Hj ≥ 1/2}, d∗ = #{J∗}, d∗ = #{J ∗},

H∗ =
∑
j∈J∗

Hj , H ∗ =
∑
j∈J ∗

Hj , H = H∗ + H ∗ =
d∑

j=1

Hj .

Theorem 1.2. Let H0 > 1/2 and write α0 = 2 − 2H0. Under the assumption{
d − H < 1,

4(1 − H0) + 2(d − H) + (d∗ − 2H∗) < 4
(1.13)
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the parabolic Anderson equation (1.1) admits a unique mild global solution u(t, x) in the sense of Definition 1.1.
Further, u(t, x) satisfies the Feynman–Kac moment representation

Eum(t, x) = Ex

[
exp

{
CH0θ

2
∑

1≤j<k≤m

∫ t

0

∫ t

0

γ (Bj (s) − Bk(r))

|s − r|α0
dr ds

} m∏
j=1

u0
(
Bj (t)

)]
(1.14)

for m = 2,3, . . . , where CH0 = H0(2H0 − 1), B1(t), . . . ,Bm(t) are independent d-dimensional Brownian motions
and the notation “Ex” (x ∈ R

d ) is for the Brownian expectation with B1(0) = · · · = Bm(0) = x.
When the assumption (1.13) is replaced by{

d − H = 1,

4(1 − H0) + (d∗ − 2H∗) < 2
(1.15)

the parabolic Anderson equation (1.1) admits a unique mild local solution u(t, x) in the sense of Definition 1.1.
Further, u(t, x) satisfies the Feynman–Kac moment representation (1.14) for m = 2 and 0 < t < t0 where t0 > 0 is the
critical exponent given in Definition 1.1.

Since γ (·) is not defined pointwisely in the presence of roughness, the time integral appearing in the moment
formula (1.14) and the time integrals appearing in (1.17), Theorem 1.3 below may not be directly defined. They are
defined by a procedure of approximation. See (2.10) and (2.11) below.

When the fractional noise is not rough in space, the assumption (1.13) becomes the Dalang’s condition and is
H0-independent. This explains why Dalang’s condition accurate even when the noise is colored in time (H0 > 1/2)
as far as γ (·) ≥ 0. When ẆH is rough in space, on the other hand, the assumption (1.13) becomes H0-dependent.
For example, the condition for solvability in the (1 + 1)-dimension H = (H0,H) with H0 > 1/2 and H < 1/2 is now
given as H0 + H > 3/4 instead of H > 1/4 [17].

Theorem 1.2 claims a local solution for (1.1) as H = (H0,1/2,1/2) for any H0 > 1/2. Can the local solution be
extended into a global solution in a space larger than L2(�) (such as L1(�), for example)? We leave this question to
the future study.

Theorem 1.3. Let H0 = 1/2. Under the assumption

2(d − H) + (d∗ − 2H∗) < 2 (1.16)

the parabolic Anderson equation (1.1) admits a unique global mild solution u(t, x) in the sense of Definition 1.1.
Further, we have the Feynman–Kac moment representation

Eum(t, x) = Ex

[
exp

{
θ2

∑
1≤j<k≤m

∫ t

0
γ
(
Bj (s) − Bk(s)

)
ds

} m∏
j=1

u0
(
Bj (t)

)]
(1.17)

for m = 2,3, . . . .

Notice that the condition (1.16) does not allow d − H = 1. In particular, the setting of (1 + 2) dimensional time-
space white noise (i.e., H = (1/2,1/2,1/2)) is excluded by Theorem 1.3. In view of the moment representation (1.17),
it seems hopeless to expect the solvability in terms of Definition 1.1, as the Brownian local time∫ t

0
δ0

(
B(s) − B̃(s)

)
ds

can not be defined properly for 2-dimensional Brownian motions.
Perhaps, the biggest challenge comes from the setting when the fractional noise ẆH is rough in time, i.e., the case

when H0 < 1/2 with the time covariance function γ0(·) being formally defined in (1.5). Unlike the setting H0 > 1/2
where γ0(·) is a constant multiple of the well-defined and non-negative function | · |−(2−2H0), the time covariance
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function γ0(·) can not be defined point-wise as H0 < 1/2. In the recent work [2], Chen, Hu, Kalbasi and Nualart
investigate the parabolic Anderson equation with the time-derivative Gaussian noise in the form of

∂

∂t
WH(t, x),

which allows H0 < 1/2. It should be pointed that taking no differential to the space variable eliminates the spatial
singularity and makes the situation easier than the setting posted in this paper. Another relevant literature existence
is the work by Deya (2016) (Theorem 1.2, [9]) where the equation is (1 + 1)-dimensional with a fractional Gaussian
noise that is allowed to be rough in time or in space. Neverthless, the solution in [9] takes a meaning different from
Definition 1.1. Such difference often leads to different conclusions when it comes to the issue of solvability. In the
setting H0 > 1/2, for instance, the condition for solvability given in Deya (Theorem 1.2, (i), [9]) is “2H0 + H > 2”,
versus to “H0 + H > 3/4” obtained in Theorem 1.2 with d = 1. To the author’s best knowledge, nothing substantial
has been discovered by far when the noise is rough in time and when the system (1.1) is interpreted in Definition 1.1.
Unfortunately, solving the equation (1.1) for H0 < 1/2 is out of our capability at this time. Instead, we establish a
partial result which casts insight on what to expect when H0 < 1/2.

To see the relevance of the next result, let us mention the fact that the solvability of the system (1.1) rests on the
exponential integrability of the time integral∫ t

0

∫ t

0
γ0(s − r)γ

(
B(s) − B̃(r)

)
dr ds (1.18)

defined by approximation (see (2.10) and (2.11) below), where B(t) and B̃(t) are two independent d-dimensional
Brownian motions. By Taylor expansion, a sharp bound for the integral moment of the time integral in (1.18) is
needed. To the author’s best knowledge, the only result existing in literature is obtained by Hu and Nualart [16] where
it is proved that the the time integral in (1.18) has all finite positive moments when H = (H0,1/2) with 3/8 < H0 <

1/2. The following proposition fortifies Hu–Nualart’s result and provides for the first time a quantified bound to the
moments of the time integral in (1.18).

Proposition 1.4. Let 1/4 < H0 < 1/2. Under the assumption

4(1 − 2H0) + 2(d − H) + (d∗ − 2H∗) < 2 (1.19)

we have

E0

[∫ t

0

∫ t

0
γ0(s − r)γ

(
B(s) − B̃(r)

)
dr ds

]n

≤ (n!)(d−H)+(2−2H0)Cntn(H+2H0−d) (1.20)

for any t > 0 and n = 1,2, . . . , where C > 0 is a constant independent of n and t .

Unfortunately, the moment bound in (1.20) is not strong enough for the exponential integrability required by the
solvability of (1.1), since (d − H) + (2 − 2H0) > 1 under our condition. On the other hand, it does provide some
insight on the condition for solving (1.1) when H0 < 1/2. Further, we shall provide some evidence (Remark 5.2
below) indicating that the bound (1.20) can be improved. Finally, we conjecture that under (1.19), the correct bound
should be

E0

[∫ t

0

∫ t

0
γ0(s − r)γ

(
B(s) − B̃(r)

)
dr ds

]n

≤ (n!)(d−H)+(1−2H0)Cntn(H+2H0−d) (1.21)

instead of (1.20). By the fact that (d −H)+ (1 − 2H0) < 1 under the assumption (1.19), the bound (1.21) is sufficient
for the exponential integrability that is required by the solvability of the system (1.1). We leave this problem to the
future investigation.
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We now move to the intermittency and moment asymptotics for the solution of (1.1). By Lemma 5.1 and
Lemma 5.2, [4], the variations

E = sup
g∈Fd

{∫
Rd×Rd

γ (x − y)g2(x)g2(y) dx dy − 1

2

∫
Rd

∣∣∇g(x)
∣∣2

dx

}
(1.22)

and

E(H0) = sup
g∈Ad

{∫ 1

0

∫ 1

0

∫
Rd×Rd

γ (x − y)

|s − r|2−2H0
g2(s, x)g2(r, y) dx dy dr ds

− 1

2

∫ 1

0

∫
Rd

∣∣∇xg(s, x)
∣∣2

x ds

}
(H0 > 1/2) (1.23)

are finite under the Dalang’s condition “d − H < 1”, where Fd and Ad are the function classes defined as

Fd =
{
g ∈ W 1,2(

R
d
);∫

Rd

∣∣g(x)
∣∣2

dx = 1

}
(1.24)

and

Ad = {
g;g(s, ·) ∈Fd ∀0 ≤ s ≤ 1

}
. (1.25)

Theorem 1.5. Set α = 2d − 2H and α0 = 2 − 2H0. In the assumption of Theorem 1.2

lim
t→∞ t−

4−α−2α0
2−α logEup(t, x) = p

(
CH0θ

2(p − 1)

2

) 2
2−α

E(H0), p ≥ 2, (1.26)

lim
m→∞m− 4−α

2−α logEum(t, x) =
(

CH0θ
2

2

) 2
2−α

t
4−α−2α0

2−α E(H0) ∀t > 0 (1.27)

for every x ∈ R
d and t > 0, where E(H0) is given in (1.23) and CH0 = H0(2H0 − 1).

In the assumption of Theorem 1.3,

lim
m→∞m− 4−α

2−α logEum(t, x) =
(

θ2

2

) 2
2−α

tE ∀t > 0 (1.28)

for every x ∈ R
d and t > 0, where E is given in (1.22).

In [4], (1.26) and (1.27) are established when the fractional noise is not rough in space. The roughness posts a
substantial challenge which will be addressed later. The intermittency with white-time noise are not fully understood
even in the non-rough setting, we refer [4] for some related discussion.

Finally, we outline the rest of the paper and highlight some of the key points appearing in our approach. Some
mathematical background such as Malliavin calculus and Feynman–Kac formula is briefly reviewed in Section 2.
In particular, solving the equation (1.1) is reduced to the problem of the exponential integrability for the Brown-
ian Hamiltonian in (1.18). Theorem 1.2, Theorem 1.3 and Proposition 1.4 are proved in Section 3, Section 4 and
Section 5, respectively. The central problem in the proof is the moment estimate for the Brownian Hamiltonian in
(1.18). New ideas developed here include the technique of the variable separation which allows us separate the time
component from space component, and the rough space components from the non-rough space components. An-
other tool substantial to our argument is time-exponentiation which requires some innovative treatment (Lemma 5.1)
in the presence of roughness. Theorem 1.5 is proved in Section 6. The moment asymptotics in (1.26) and (1.27)
is obtained in [4] in the non-rough setting. The treatment of compactification by folding, which is essential to the
proof in [4], is no longer working in the presence of roughness. The argument we adopt here is partially inspired
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by the recent paper of Huang, Lê and Nualart [17] where the compactification is installed by a comparison between
Brownian and Ornstein–Uhlenbeck Hamiltonians, an idea goes back at least to Donsker–Varahdan [10]. Finally, the
hyper-contractivity inequality by Lê [18] allows us to obtain (1.26) for the possibly non-integer moments.

2. Malliavin calculus and Feynman–Kac representation

In this section we provide a mathematical construction for the parabolic Anderson equation (1.1) in the Itô–Skorokhod
sense by briefly recalling some basics in Malliavin calculus that is related to the development of this work. The material
in this section is essentially known (see, e.g., [14]) and is collected here for the reader’s convenience. For possible
future reference, the Gaussian noise ẆH(t, x) appearing in (1.1) is replaced by a more general time-space Gaussian
noise Ẇ (t, x) with the time and space covariance functions γ0(·) and γ (·) given as in (1.4).

In connection to (1.4), Ẇ is viewed as a mean zero Gaussian field W(φ) (φ ∈ S(R+ × R
d)) with the covariance

function

Cov
(
W(ϕ),W(ψ)

) =
∫

(R+×Rd )2
γ0(s − t)γ (x − y)ϕ(s, x)ψ(t, y) dx dy ds dt,

where S(R+ ×R
d) is the Schwartz space of the infinitely differentiable and rapidly decreasing (at ∞) functions om

R
+ ×R

d .
Let L2(�,A,P) be the space of square integrable random variables spanned by the Gaussian field W(φ) (φ ∈

S(R+ × R
d)). The linear isometry W(·) between the inner product space {W(φ);ϕ ∈ S(R+ × R

d)} with the inner
product defined by the covariance function in (2.1) and Schwartz space S(R+ ×R

d) endowed with the inner product

〈φ,ψ〉H =
∫

(R+×Rd )2
γ0(s − t)γ (x − y)ϕ(s, x)ψ(t, y) dx dy ds dt (2.1)

is extended to a linear isometry between L2(�,A,P) and the Hilbert space H, the closure of Sd(R+ ×R
d) under the

above inner product, and is denoted as

W(ϕ) =
∫
R+×Rd

ϕ(t, x)W(dt dx), ϕ ∈H. (2.2)

The Malliavin derivative D(F) (F ∈ L2(�)) is defined in the way of approximation. First we consider the random
variable F of the form F = f (W(φ1), . . . ,W(φn)) (φ1, . . . , φn ∈ H) with sufficiently smooth function f on R

n and
define

D(F) =
n∑

j=1

∂f

∂xj

(
W(φ1), . . . ,W(φn)

)
φj .

The operator D is then extended on D
1,2, the Sobolev space as the closure of the space of the smooth and cylindrical

random variables under the norm∥∥D(F)
∥∥

1,2 =
√
EF 2 +E

∥∥D(F)
∥∥2
H.

In this way, the derivative D becomes a linear operator from D
1,2 ⊂ L2(�) to the Hilbert space L2(�,H), the space

of the H-valued random variables η with E‖η‖2
H < ∞.

The Skorokhod integral is defined as the dual operator of the differential operator in the spirit of “integration by
parts”: We denote by δ: L2(�,H) −→ L2(�,A,P) the adjoint operator of the derivative D: For any h ∈ L2(�,H),
δ(h) is uniquely determined by

E
[
δ(h)F

] = E〈DF,h〉H, F ∈ D
1,2. (2.3)
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The operator δ is also called Skorokhod integral in the notation

δ(h) =
∫
R+×Rd

h(t, x)W(δt, δx). (2.4)

Given a random field h(t, x) in the probability space (�,A,P) generated by the Gaussian noise Ẇ , by definition
h is Skorohod integrable means that h ∈ L2(�,H), or

E‖h‖2
H = E

∫
(R+×Rd )2

γ0(s − t)γ (x − y)h(s, x)h(t, y) dx dy ds dt < ∞. (2.5)

The notion of Skorokhod integration coincides with the Gaussian integration given in (2.2) when acting on a
deterministic field h ∈ H. Indeed, for any ϕ ∈ H take F = W(ϕ) (so D(F) = ϕ) in (2.3) we have

E
[
δ(h)W(ϕ)

] = 〈ϕ,h〉H, ϕ ∈H.

This leads to δ(h) = W(h).
For any h ∈ H and F ∈ D

1,2, Fh is Skorokhod integrable. The Wick product between F and W(h) is defined as
following:

F � W(h) = δ(Fh). (2.6)

With the definition of the Wick product, the use of the notation u � Ẇ in the parabolic Anderson equation (1.1) is
interpreted as the symbolic limit of the Skorokhod integral

u � W
(
hε(· − t, · − x)

) =
∫
R+×Rd

hε(s − t, y − x)u(s, y)W(δs, δy)

as ε → 0+, where hε(s, y) = ε−(d+1)h(ε−1s, ε−1y) with a sufficiently regular probability density function h(s, y) on
R

+ ×R
d .

The solution of the Parabolic Anderson equation (1.1) (with ẆH being generalized into Ẇ ) in the sense of Defini-
tion 1.1 is uniquely given in the form of the following Wiener-chaos expansion

u(t, x) =
∞∑

n=0

In

(
fn(·, t, x)

)
, (t, x) ∈ [0, t0) ×R

d . (2.7)

which comes essentially from the iteration of the integral equation (1.3), where for each n, In(fn(·, t, x)) is formally
given as a n-multiple Skorokhod integral with the symmetrified integrand

fn(s1, x1, . . . , sn, xn; t, x)

= 1

n!pt−sσ(n)
(x − xσ(n))

(
n−1∏
k=1

psσ(k+1)−sσ(k)
(xσ(k+1) − xσ(k))

)
(psσ(1)

∗ u0)(xσ(1))1[0,t]n(s), (2.8)

where σ denotes the permutation on {1, . . . , n} determined by the order 0 < sσ(1) < · · · < sσ(n) < t . By the L2-
orthogonality of the expansion, the system (1.1) (or (1.3), more precisely) is uniquely solvable in the sense of Defini-
tion 1.1 whenever

Eu2(t, x) =
∞∑

n=0

n!∥∥fn(·, t, x)
∥∥2
H⊗n < ∞, (t, x) ∈R

+ ×R
d (2.9)

and is locally solvable with uniqueness if (2.9) holds for (t, x) ∈ [0, t0)×R
d with t0 > 0 being given in Definition 1.1.
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The right hand side of (2.9) can be represented in terms of Feynman–Kac moment of the Brownian motions. To
this end, let B(t) and B̃(t) be two independent d-dimensional Brownian motions. The time integrals appearing in our
main theorems are defined as the moment-limit∫ t

0

∫ t̃

0
γ0(s − r)γ

(
B(s) − B̃(r)

)
dr ds

≡ lim
ε,δ→0+

∫ t

0

∫ t̃

0
γ δ

0 (s − r)γ ε
(
B(s) − B̃(r)

)
dr ds, t, t̃ > 0 (2.10)

in connection to the colored-time noise, and∫ t

0
γ
(
B(s) − B̃(s)

)
ds ≡ lim

ε→0+

∫ t

0
γ ε

(
B(s) − B̃(s)

)
ds, t > 0 (2.11)

in connection to the white-time noise, whenever the limits exist, where γ δ
0 (·) and γ ε(·) are the properly smoothized

versions of the covariance functions γ0(·) and γ (·), respectively.
Let μδ

0(·) and με(·) be the spectral measures of γ δ
0 (·) and γ ε(·), respectively. For each integer n ≥ 1, by Fourier

transform one can show that

E0

[∫ t

0

∫ t̃

0
γ δ

0 (s − r)γ ε
(
B(s) − B̃(r)

)
dr ds

]n

=
∫

(Rd+1)n
μδ

0(dλ)με(dξ)

∣∣∣∣∣
∫

[0,t]n

(
E0

n∏
k=1

ei(λksk+ξk ·B(sk))

)
ds

∣∣∣∣∣
2

,

E0

[∫ t

0
γ ε

(
B(s) − B̃(s)

)
ds

]n

=
∫

(Rd )n
με(dξ)

∫
[0,t]n

(
E0

n∏
k=1

eiξk ·(B(sk)−B̃(sk))

)
ds.

Here and elsewhere in the remaining of the paper, we use the conventions such that

μ(dξ) =
n∏

k=1

μ(dξk) and ds = ds1 · · ·dsn

for the product measures whenever applied to the context of n-multiple integrations.
Let μ0 and μ be the spectral measures of γ0(·) and γ (·) (resp.) given in (1.5). Notice that μδ

0 and με are dominated
by and converge to (as δ, ε → 0) μ0 and μ, respectively. Hence, the existences of the Ln(�,A,P)-limits in in (2.10)
and (2.11) are the consequences of the moment integrabilities

∫
(Rd+1)n

μ0(dλ)μ(dξ)

∣∣∣∣∣
∫

[0,t]n
E0

n∏
k=1

ei(λksk+ξk ·B(sk)) ds

∣∣∣∣∣
2

< ∞ (2.12)

and ∫
(Rd )n

μ(dξ)

∫
[0,t]n

E0

n∏
k=1

eiξk ·(B(sk)−B̃(sk)) ds < ∞, (2.13)

respectively. Under (2.12) and (2.13), respectively,

E0

[∫ t

0

∫ t

0
γ0(s − r)γ

(
B(s) − B̃(r)

)
dr ds

]n

=
∫

(Rd+1)n
μ0(dλ)μ(dξ)

∣∣∣∣∣
∫

[0,t]n

(
E0

n∏
k=1

ei(λksk+ξk ·B(sk))

)
ds

∣∣∣∣∣
2

(2.14)
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and

E0

[∫ t

0
γ
(
B(s) − B̃(s)

)
ds

]n

=
∫

(Rd )n
μ(dξ)

∫
[0,t]n

(
E0

n∏
k=1

eiξk ·(B(sk)−B̃(sk))

)
ds. (2.15)

In connection to (2.9),

∥∥In

(
fn(·, t, x)

)∥∥2
H⊗n = 1

(n!)2
Ex

{[∫ t

0

∫ t

0
γ0(s − r)γ

(
B(s) − B̃(r)

)
dr ds

]n

u0
(
B(t)

)
u0

(
B̃(t)

)}
.

By Taylor’s expansion, we have the identity

∞∑
n=0

n!∥∥fn(·, t, x)
∥∥2
H⊗n

= Ex

[
exp

{∫ t

0

∫ t

0
γ0(s − r)γ

(
B(s) − B̃(r)

)
dr ds

}
u0

(
B(t)

)
u0

(
B̃(t)

)]
(2.16)

in the sense that both sides are finite or infinite together.
In particular,

∞∑
n=0

n!∥∥fn(·, t, x)
∥∥2
H⊗n = Ex

[
exp

{∫ t

0
γ
(
B(s) − B̃(s)

)
ds

}
u0

(
B(t)

)
u0

(
B̃(t)

)]
, (2.17)

when the noise Ẇ (t, x) is white in time.
Under the initial condition (1.12), therefore, the solvability (i.e., existence and uniqueness) claims made in Theo-

rem 1.2 and Theorem 1.3 are reduced to the verification of the exponential integrabilities

E0 exp

{
θ

∫ t

0

∫ t

0
γ0(s − r)γ

(
B(s) − B̃(r)

)
dr ds

}
< ∞ (2.18)

and

E0 exp

{
θ

∫ t

0
γ
(
B(s) − B̃(s)

)
ds

}
< ∞, (2.19)

respectively, for every t > 0. Similarly, the local solvability defined in Definition 1.1 is implied by the exponential
integrability in (2.18) or (2.19) for t < t0.

By a standard procedure known as replica, we have the Feynman–Kac moment representations

Eum(t, x) = Ex

[
exp

{ ∑
1≤j<k≤m

∫ t

0

∫ t

0
γ0(s − r)γ

(
Bj (s) − Bk(r)

)
dr ds

} m∏
j=1

u0
(
Bj (t)

)]
(2.20)

(m = 2,3, . . .) and in particular

Eum(t, x) = Ex

[
exp

{ ∑
1≤j<k≤m

∫ t

0
γ
(
Bj (s) − Bk(s)

)
ds

} m∏
j=1

u0
(
Bj (t)

)]
(2.21)

(m = 2,3, . . .) when the noise is white in time, as soon as the exponential moments are finite. Consequently, (2.18)
and (2.19) for all t > 0 lead to these representations for all t ; and (2.18) and (2.19) for t < t0 imply the representations
for m = 2 and t < t0.
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3. Proof of Theorem 1.2

First, we claim that the bound

∫
(Rd+1)n

μ0(dλ)μ(dξ)

∣∣∣∣∣
∫

[0,t]n

(
E0

n∏
k=1

ei(λksk+ξk ·B(sk))

)
ds

∣∣∣∣∣
2

≤ Cn(n!)d−H t(H+2H0−d)n (3.1)

is sufficient for the proof of Theorem 1.2, where the constant C > 0 is independent of t > 0, and n = 1,2, . . . . Here
we recall our convention that

μ(dξ) =
n∏

k=1

μ(dξk), μ0(dλ) =
n∏

k=1

μ0(dλk) and ds = ds1 · · ·dsn.

Indeed, (3.1) validates (through (2.12)) the definition of the Brownian time integral in (2.10). By the relation (2.14)
and Taylor’s expansion, (3.1) leads to the exponential integrability (2.18) for all t > 0 when d − H < 1, and for
some t > 0 when d − H = 1. The remaining of Theorem 1.2 follows as the direct consequences of the exponential
integrability (2.18), according to the discussion in Section 2.

We now start to prove (3.1). By the Brownian scaling and the homogeneity of the spectral measures μ0(dλ) and
μ(dξ),

∫
(Rd+1)n

μ0(dλ)μ(dξ)

∣∣∣∣∣
∫

[0,t]n

(
E0

n∏
k=1

ei(λksk+ξk ·B(sk))

)
ds

∣∣∣∣∣
2

= t (H+2H0−d)n

∫
(Rd+1)n

μ0(dλ)μ(dξ)

∣∣∣∣∣
∫

[0,1]n

(
E0

n∏
k=1

ei(λksk+ξk ·B(sk))

)
ds

∣∣∣∣∣
2

.

Hence, we only need to consider the case t = 1, i.e., to establish the bound

∫
(Rd+1)n

μ0(dλ)μ(dξ)

∣∣∣∣∣
∫

[0,1]n

(
E0

n∏
k=1

ei(λksk+ξk ·B(sk))

)
ds

∣∣∣∣∣
2

≤ Cn(n!)d−H , n = 1,2, . . . . (3.2)

To simplify our notation, we will use the same “C” for possibly different positive constants independent of n =
1,2, . . . .

The first step is to separate the time and space components by Hölder inequality. Set α0 ≡ 2 − 2H0 and recall the
relation (1.10)

|u|−α0 = C

∫
R

eiλuμ0(dλ).

So we have

∫
(Rd+1)n

μ0(dλ)μ(dξ)

∣∣∣∣∣
∫

[0,1]n

(
E0

n∏
k=1

ei(λksk+ξk ·B(sk))

)
ds

∣∣∣∣∣
2

= Cn

∫
(Rd )n

μ(dξ)

∫
[0,1]2n

(
n∏

k=1

|sk − rk|−α0

)(
E0

n∏
k=1

eiξk ·B(sk)

)

×
(
E0

n∏
k=1

e−iξk ·B(rk)

)
dr ds. (3.3)
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The rigorous justification of the above identity may need a standard procedure of approximation which is omitted
here.

Notice that α0 < 1. Under the assumption (1.13) there is a β > 1 such that

2(d − H) + (d∗ − 2H∗)
2

< 1 + β−1 < 2 − α0.

Let β̄ > 1 be the conjugate of of β . We have that β̄α0 < 1.
Let β be fixed in the following argument. By Hölder’s inequality, for any (s1, . . . , sn) ∈ [0,1]n,∫

[0,1]n

(
n∏

k=1

|sk − rk|−α0

)(
E0

n∏
k=1

e−iξk ·B(rk)

)
dr

≤
{∫

[0,1]n

(
n∏

k=1

|sk − rk|−β̄α0

)
dr

}1/β̄{∫
[0,1]n

(
E0

n∏
k=1

e−iξk ·B(rk)

)β

dr

}1/β

≤
(

n∏
k=1

∫ 1

0
|sk − r|−β̄α0 dr

)1/β̄{∫
[0,1]n

(
E0

n∏
k=1

e−iξk ·B(rk)

)
dr

}1/β

.

Here we have used the fact that

0 < E0

n∏
k=1

e−iξk ·B(rk) ≤ 1. (3.4)

Notice that

sup
u∈R

∫ 1

0
|u − r|−β̄α0 dr < ∞.

So we have the bound∫
[0,1]n

(
n∏

k=1

|sk − rk|−α0

)(
E0

n∏
k=1

e−iξk ·B(rk)

)
dr

≤ Cn

{∫
[0,1]n

(
E0

n∏
k=1

e−iξk ·B(rk)

)
dr

}1/β

.

Summarizing our argument since (3.3),

∫
(Rd+1)n

μ0(dλ)μ(dξ)

∣∣∣∣∣
∫

[0,1]n

(
E0

n∏
k=1

ei(λksk+ξk ·B(sk))

)
ds

∣∣∣∣∣
2

≤ Cn

∫
(Rd )n

μ(dξ)

[∫
[0,1]n

(
E0

n∏
k=1

eiξk ·B(sk)

)
ds

]1+β−1

. (3.5)

Set

In(t, t̃) =
∫

(Rd )n
μ(dξ)

[∫
[0,t]n

(
E0

n∏
k=1

eiξk ·B(sk)

)
ds

] 1+β−1

2
[∫

[0,t̃]n

(
E0

n∏
k=1

eiξk ·B(sk)

)
ds

] 1+β−1

2

,

where t, t̃ > 0. All we need is the bound In(1,1) ≤ (n!)d−H Cn. To this end, our second step is time exponentiation.
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In view of (3.4), In(t, t̃) is non-decreasing in both t and t̃ . By the Brownian scaling and space homogeneity,

In(t, t) = tn(1+β−1−(d−H))In(1,1), t > 0. (3.6)

Let τ and τ̃ be independent exponential times with parameter 1. We have that τ ∧ τ̃ is exponential with parameter 2.
Therefore,

2
∫ ∞

0
e−2t In(t, t) dt = EIn(τ ∧ τ̃ , τ ∧ τ̃ )

≤ EIn(τ, τ̃ ) =
∫ ∞

0

∫ ∞

0
In(t, t̃ )e

−t−t̃ dt dt̃

≤
∫

(Rd )n
μ(dξ)

[∫ ∞

0
dt e−t

∫
[0,t]n

(
E0

n∏
k=1

eiξk ·B(sk)

)
ds1 · · ·dsn

]1+β−1

,

where the last step follows from Jensen’s inequality, the fact that 2−1(1 + β−1) < 1, and (3.4).
Let �n be the set of permutations on {1, . . . , n} and write

[0, t]n< = {
(s1, . . . , sn) ∈ [0, t]n; s1 < · · · < sn

}
.

We have∫
[0,t]n

(
E0

n∏
k=1

eiξk ·B(sk)

)
ds1 · · ·dsn =

∑
σ∈�n

∫
[0,t]n<

(
E0

n∏
k=1

eiξσ(k)·B(sk)

)
ds1 · · · dsn

=
∑

σ∈�n

∫
[0,t]n<

E0 exp

{
i

n∑
k=1

(
n∑

j=k

ξσ(j)

)(
B(sk) − B(sk−1)

)}
ds1 · · · dsn

=
∑

σ∈�n

∫
[0,t]n<

n∏
k=1

exp

{
−1

2

∣∣∣∣∣
n∑

j=k

ξσ(j)

∣∣∣∣∣
2

(sk − sk−1)

}
ds1 · · · dsn.

Here we adopt the convention s0 = 0. By Lemma 2.2.7, p. 39, [3], therefore,∫ ∞

0
dt e−t

∫
[0,t]n

(
E0

n∏
k=1

eiξk ·B(sk)

)
ds1 · · · dsn =

∑
σ∈�n

n∏
k=1

∫ ∞

0
e−t exp

{
−1

2

∣∣∣∣∣
n∑

j=k

ξσ(j)

∣∣∣∣∣
2

t

}
dt

=
∑

σ∈�n

n∏
k=1

{
1 + 1

2

∣∣∣∣∣
n∑

j=k

ξσ(j)

∣∣∣∣∣
2}−1

. (3.7)

Therefore, we have

2
∫ ∞

0
e−2t In(t, t) dt ≤

∫
(Rd )n

μ(dξ)

[ ∑
σ∈�n

n∏
k=1

{
1 + 1

2

∣∣∣∣∣
n∑

j=k

ξσ(j)

∣∣∣∣∣
2}−1]1+β−1

≤ (n!)β−1
∫

(Rd )n
μ(dξ)

∑
σ∈�n

n∏
k=1

{
1 + 1

2

∣∣∣∣∣
n∑

j=k

ξσ(j)

∣∣∣∣∣
2}−(1+β−1)

= (n!)1+β−1
∫

(Rd )n
μ(dξ)

n∏
k=1

{
1 + 1

2

∣∣∣∣∣
n∑

j=k

ξj

∣∣∣∣∣
2}−(1+β−1)

≤ (n!)1+β−1
Cn, (3.8)
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where the second inequality follows from Jensen’s inequality and the last step follows from Lemma 3.2 below.
On the other hand, by (3.6)

2
∫ ∞

0
e−2t In(t, t) dt = 2In(1,1)

∫ ∞

0
tn(1+β−1−(d−H))e2t dt

= In(1,1)

(
1

2

)n(1+β−1−(d−H))


(1 + n
(
1 + β−1 − (d − H)

)
.

By Stirling formula, we have established the bound

In(1,1) ≤ Cn(n!)d−H .

Finally, the desired (3.2) follows from (3.5).
In remaining of this section, we validate the last step in (3.8) by introducing two analytic lemmas. As the last step

of our argument for Theorem 1.2, we achieve that by separating the rough and non-rough space components.

Lemma 3.1. Let f (ξ) and g(ξ) be two non-negative definite functions on R
d . Then for any ξ ∈R

d ,∫
Rd

f (η)g(η − ξ) dη ≤
∫
Rd

f (η)g(η)dη,

whenever the right hand side is finite.

Proof. Let μf (dx) and μg(dx) be the spectral measures of f and g, respectively. By a standard procedure of ap-
proximation, we may assume that μf (dx) and μg(dx) are absolutely continuous. Assume μf (dx) = f̂ (x) dx and
μg(dx) = ĝ(x) dx for some f̂ , ĝ ≥ 0.∫

Rd

f (η)g(η − ξ) dη =
∫
Rd

eiξ ·xf̂ (x)ĝ(x) dx ≤
∫
Rd

f̂ (x)ĝ(x) dx =
∫
Rd

f (η)g(η)dη. �

Lemma 3.2. For any

κ >
2(d − H) + (d∗ − 2H∗)

2
(3.9)

there is a constant C > 0 such that

∫
(Rd )n

n∏
k=1

(
1 + 1

2

∣∣∣∣∣
n∑

k=j

ξk

∣∣∣∣∣
2)−κ

μ(dξ) ≤ Cn, n = 1,2, . . . . (3.10)

Proof. Notice that the right hand side of (3.9) is less than 2 and left hand side of (3.10) is non-increasing in κ . So we
may assume that κ ≤ 2 in the following proof.

Recall that J ∗ = {1 ≤ j ≤ d;Hj ≥ 1/2} and J∗ = {1 ≤ j ≤ d;Hj < 1/2}. In the notation ξk = (ξk,1, . . . , ξk,d ),
ξ+
k = (ξk,j )j∈J ∗ and ξ−

k = (ξk,j )j∈J∗

μ(dξ) = Cn
n∏

k=1

(
d∏

j=1

|ξk,j |1−2Hj

)
dξk = Cn

n∏
k=1

( ∏
j∈J ∗

|ξk,j |1−2Hj

)( ∏
j∈J∗

|ξk,j |1−2Hj

)
dξk

= Cn
n∏

k=1

q∗(ξ+
k

)
q∗

(
ξ−
k

)
dξ+

k dξ−
k (say). (3.11)
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By translation,

∫
(Rd )n

n∏
k=1

(
1 + 1

2

∣∣∣∣∣
n∑

k=j

ξk

∣∣∣∣∣
2)−κ

μ(dξ)

= Cn

∫
(RJ∗×RJ∗

)n

{
n∏

k=1

(
1 + 1

2

∣∣ξ−
k

∣∣2 + 1

2

∣∣ξ+
k

∣∣2
)−κ

}
n∏

k=1

q∗(ξ+
k − ξ+

k−1

)
q∗

(
ξ−
k − ξ−

k−1

)
dξ+

k dξ−
k

≤ Cn

∫
(RJ∗×RJ∗

)n

{
n∏

k=1

((
1 + ∣∣ξ−

k

∣∣2)κ/2 + ∣∣ξ+
k

∣∣κ)−2

}
n∏

k=1

q∗(ξ+
k − ξ+

k−1

)
q∗

(
ξ−
k − ξ−

k−1

)
dξ+

k dξ−
k , (3.12)

where the last step follows from the bound(
1 + a2

2
+ b2

2

)κ/2

≥ C−1{(1 + a)κ/2 + bκ
}

uniformly over a, b > 0.
In addition, notice that the function q∗(η) (η ∈ R

J ∗
) is non-negative definite with spectral density that appears to

be the constant multiple of∏
j∈J ∗

|xj |−(2−2Hj ), x = (xj )j∈J ∗ ∈ R
J ∗

.

We now claim for any a > 0, f (η) = (a + |η|κ)−1 (η ∈ R
J ∗

) is non-negative definite. Indeed, let Xt (t ≥ 0) be a
d∗-dimensional κ-stable Lévy process (recall that d∗ = #(J ∗) and 0 < κ ≤ 2) with the characteristic function

E exp{iη · Xt } = e−|η|κ , η ∈R
J ∗

and let gt (x) be the density of Xt . One can see that the non-negative function

f̂ (x) =
∫ ∞

0
e−atgt (x) dt, x ∈R

J ∗

is the spectral density of f (η). Consequently, f 2(η) = (a + |η|κ)−2 (η ∈ R
J ∗

) is non-negative definite with the non-
negative spectral density f̂ ∗ f̂ .

By Lemma 3.1, for any ζ ∈ R
J ∗

∫
RJ∗

(
a + |η|κ)−2

q∗(η − ζ ) dη ≤
∫
RJ∗

(
a + |η|κ)−2

q∗(η) dη

= a−2+2κ−1(d∗−H ∗)
∫
RJ∗

(
1 + |η|κ)−2

q∗(η) dη.

Notice that under (3.9), κ + H ∗ > d∗ which leads to

C ≡
∫
RJ∗

(
1 + |η|κ)−2

q∗(η) dη =
∫
RJ∗

(
1 + |η|κ)−2 ∏

j∈J ∗
|ηj |1−2Hj dη < ∞.

Consequently, for any a1, . . . , an > 0,∫
(RJ∗

)n

(
n∏

k=1

(
ak + ∣∣ξ+

k

∣∣κ)−2

)
n∏

k=1

q∗(ξ+
k − ξ+

k−1

)
dξ+

k ≤ Cn
n∏

k=1

a
−2+2κ−1(d∗−H ∗)
k . (3.13)
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By Fubini’s theorem and (3.12),

∫
(Rd )n

n∏
k=1

(
1 + 1

2

∣∣∣∣∣
n∑

k=j

ξk

∣∣∣∣∣
2)−κ

μ(dξ)

≤ Cn

∫
(RJ∗ )n

(
n∏

k=1

(
1 + |ξk|2

)−κ+(d∗−H ∗)
)

n∏
k=1

q∗(ξk − ξk−1) dξk. (3.14)

Here we use ξk instead of ξ−
k on the right hand side for notation simplification.

Notice that

n∏
k=1

q∗(ξk − ξk−1) =
n∏

k=1

∏
j∈J∗

|ξk,j − ξk−1,j |1−2Hj ≤
n∏

k=1

∏
j∈J∗

(|ξk,j |1−2Hj + |ξk−1,j |1−2Hj
)

≤
∑

l

n∏
k=1

∏
j∈J∗

|ξk,j |l(k,j)(1−2Hj ),

where the summation is taken over all maps l: {1, . . . , n} × J∗ �−→ {0,1,2}. Notice that the number of the terms in
the summation is at most 3nd∗ ≤ 3nd .

In view of (3.14), therefore, all we need to prove is that∫
RJ∗

(
1 + |ξ |2)−κ+(d∗−H ∗) ∏

j∈J∗
|ξj |l(1−2Hj ) dξ < ∞, l = 0,1,2. (3.15)

Notice that 1 − 2Hj > 0 for each j ∈ J∗. Obviously, only the case l = 2 needs to be checked. Indeed, by spherical
substitution∫

RJ∗

(
1 + |ξ |2)−κ+(d∗−H ∗) ∏

j∈J∗
|ξj |2(1−2Hj ) dξ = C

∫ ∞

0

(
1 + ρ2)−κ+(d∗−H ∗)

ρ2(d∗−2H∗)ρd∗−1 dρ < ∞,

where the last step follows from the assumption (3.9). �

4. Proof of Theorem 1.3

By the discussion in Section 2, all we need is the exponential integrability given in (2.19). By Taylor expansion, (2.15)
and the Dalang’s condition d − H < 1, it suffices to establish the moment bound∫

(Rd )n
μ(dξ)

∫
[0,t]n

E0

n∏
k=1

eiξk ·(B(sk)−B̃(sk)) ds ≤ (n!)d−H Cntn(H+1−d), n = 1,2, . . . . (4.1)

By the independence between B and B̃ ,

∫
(Rd )n

μ(dξ)

∫
[0,t]n

(
E0

n∏
k=1

eiξk ·(B(sk)−B̃(sk))

)
ds =

∫
(Rd )n

μ(dξ)

∫
[0,t]n

(
E0

n∏
k=1

eiξk ·B(sk)

)2

ds

≤
∫

(Rd )n
μ(dξ)

∫
[0,t]n

(
E0

n∏
k=1

eiξk ·B(sk)

)
ds = tn(H+1−d)

∫
(Rd )n

μ(dξ)

∫
[0,1]n

(
E0

n∏
k=1

eiξk ·B(sk)

)
ds,
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where the last step follows from the Brownian scaling and homogeneity of the space covariance. Thus, it suffices to
establish the bound∫

(Rd )n
μ(dξ)

∫
[0,1]n

(
E0

n∏
k=1

eiξk ·B(sk)

)
ds ≤ (n!)d−H Cn, n = 1,2, . . . . (4.2)

Using the Brownian scaling again∫ ∞

0
dt e−t

∫
(Rd )n

μ(dξ)

∫
[0,t]n

E0

n∏
k=1

eiξk ·B(sk) ds

=
{∫

(Rd )n
μ(dξ)

∫
[0,1]n

(
E0

n∏
k=1

eiξk ·B(sk)

)
ds

}∫ ∞

0
tn(H+1−d)e−t dt

= 

(
1 + n(H + 1 − d)

)∫
(Rd )n

μ(dξ)

∫
[0,1]n

(
E0

n∏
k=1

eiξk ·B(sk)

)
ds. (4.3)

On the other hand, by (3.7)∫ ∞

0
dt e−t

∫
(Rd )n

μ(dξ)

∫
[0,t]n

(
E0

n∏
k=1

eiξk ·B(sk)

)
ds =

∑
σ∈�n

∫
(Rd )n

μ(dξ)

n∏
k=1

{
1 + 1

2

∣∣∣∣∣
n∑

j=k

ξσ(j)

∣∣∣∣∣
2}−1

= n!
∫

(Rd )n
μ(dξ)

n∏
k=1

{
1 + 1

2

∣∣∣∣∣
n∑

j=k

ξj

∣∣∣∣∣
2}−1

≤ n!Cn,

where the second step follows from permutation invariance and the last step from the bound given in Lemma 3.2 with
κ = 1.

Finally, (4.2) follows from (4.3) and Stirling formula.

5. Proof of Proposition 1.4

By the Cauchy–Schwartz’s inequality E| · |2k+1 ≤ (E| · |2k)1/2(E| · |2k+2)1/2, we only need to establish the bound
(1.20) for even and positive integers n. In view of the relation (2.14), (1.20) is equivalent to the proof of the bound∫

(Rd+1)n
μ0(dλ)μ(dξ)

∣∣∣∣∣
∫

[0,t]n

(
E0

n∏
k=1

ei(λksk+ξk ·B(sk))

)
ds

∣∣∣∣∣
2

≤ Cn(n!)(d−H)+(2−2H0)t (H+2H0−d)n, t > 0, n = 1,2, . . . . (5.1)

By the Brownian scaling and the homogeneity of the spectral measures μ0(dλ) and μ(dξ), the left hand side is equal
to

t (H+2H0−d)n

∫
(Rd+1)n

μ0(dλ)μ(dξ)

∣∣∣∣∣
∫

[0,1]n

(
E0

n∏
k=1

ei(λksk+ξk ·B(sk))

)
ds

∣∣∣∣∣
2

.

Thus, all we need is to show∫
(Rd+1)n

μ0(dλ)μ(dξ)

∣∣∣∣∣
∫

[0,1]n

(
E0

n∏
k=1

ei(λksk+ξk ·B(sk))

)
ds

∣∣∣∣∣
2

≤ Cn(n!)(d−H)+(2−2H0) (5.2)

for all even numbers n ≥ 2.
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Let n be even in the remaining of the proof. The implementation of time-exponentiation becomes more delicate,
due to the fact that the quantity∫

[0,t]n

(
E0

n∏
k=1

ei(λksk+ξk ·B(sk))

)
ds

is not monotonic in t . We carry it out in the following lemma.

Lemma 5.1. For all even numbers n ≥ 2,

2
∫ ∞

0
e−2t

∫
(Rd+1)n

μ0(dλ)μ(dξ)

∣∣∣∣∣
∫

[0,t]n

(
E0

n∏
k=1

ei(λksk+ξk ·B(sk))

)
ds

∣∣∣∣∣
2

dt (5.3)

≤ (1 + √
2)2n

∫
(Rd+1)n

μ0(dλ)μ(dξ)

∣∣∣∣∣
∫ ∞

0
dt e−t

∫
[0,t]n

(
E0

n∏
k=1

ei(λksk+ξk ·B(sk))

)
ds

∣∣∣∣∣
2

.

Proof. To justify some of the computations, a strict procedure is to establish (5.3) first with μ0(dλ) and μ(dξ) being
replaced by their smoothed versions

μδ
0(dλ) = e−δ|λ|2μ0(dλ) and με(dξ) = e−ε|ξ |2μ(dξ)

(and accordingly, γ0(·) and γ (·) being replaced by γ δ
0 (·) and γ ε(·)), respectively, and then to take the limit δ, ε → 0+

on the both sides of the inequality. To simplify the notation, we omit this procedure. For keeping rigorousness, the
reader can treat the notations μ0(dλ), μ(dξ), γ0(·) and γ (·) used in the proof as μδ

0(dλ), με(dξ), γ δ
0 (·) and γ ε(·),

respectively.
For any t, t̃ > 0, write

Q(t, t̃) =
∫ t

0

∫ t̃

0
γ0(s − r)γ

(
B(s) − B̃(r)

)
dr ds.

By Fourier transform,

E0Qn(t, t̃) =
∫

(Rd+1)n
μ0(dλ)μ(dξ)

[∫
[0,t]n

(
E0

n∏
k=1

ei(λksk+ξk ·B(sk))

)
ds

]

×
[∫

[0,t̃]n

(
E0

n∏
k=1

e−i(λksk+ξk ·B(sk))

)
ds

]
. (5.4)

Let τ, τ̃ be two independent exponential times with parameter 1 and independent of the Brownian motions B and B̃ .
We extend the expectation “E0” and the probability “P0” to the probability space that includes τ and τ̃ . In view of the
fact that t ∧ t̃ is exponential with parameter 2, the lemma can be restated as

E0Qn(τ ∧ τ̃ , τ ∧ τ̃ ) ≤ (1 + √
2)2n

E0Qn(τ, τ̃ ). (5.5)

Consider the decomposition

Q(τ, τ̃ ) =Q(τ ∧ τ̃ , τ ∧ τ̃ ) + 1{τ>τ̃ }
∫ τ

τ̃

∫ τ̃

0
γ0(r − s)γ (Br − B̃s) dr ds

+ 1{τ<τ̃ }
∫ τ

0

∫ τ̃

τ

γ0(r − s)γ (Br − B̃s) dr ds.
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By the fact that last two terms on the right hand side are identically distributed and by the triangle inequality

(
E0Qn(τ ∧ τ̃ , τ ∧ τ̃ )

)1/n ≤ (
E0Qn

ε,δ(τ, τ̃ )
)1/n

+ 2

(
E0

{[∫ τ

0

∫ τ̃

τ

γ0(s − r)γ
(
B(s) − B̃(r)

)
dr ds

]n

1{τ<τ̃ }
})1/n

. (5.6)

Besides,

E0

{[∫ τ

0

∫ τ̃

τ

γ0(s − r)γ
(
B(s) − B̃(r)

)
dr ds

]n

1{τ<τ̃ }
}

=
∫ ∞

0
e−t dt

∫ ∞

t

e−t̃ d t̃E0

[∫ t

0

∫ t̃

t

γ0(s − r)γ
(
B(s) − B̃(r)

)
dr ds

]n

=
∫ ∞

0
dt

∫ ∞

t

d t̃

∫
(Rd+1)n

μ0(dλ)μ(dξ)

[∫
[0,t]n

(
E0

n∏
k=1

ei(λksk+ξk ·B(sk))

)
ds

]

×
[
E0

∫
[t,t̃]n

(
n∏

k=1

e−i(λk+ξk ·B(sk))

)
ds

]
.

Write

∫
[t,t̃]n

(
n∏

k=1

e−i(λksk+ξk ·B(sk))

)
ds

= exp

{
−i

n∑
k=1

(
λkt + ξk · B(t)

)}∫
[0,t̃−t]n

(
n∏

k=1

e−i(λksk+ξk ·(B(t+sk)−B(t)))

)
ds.

By the increment independence of the Brownian motion

E0

∫
[t,t̃]n

(
n∏

k=1

e−i(λksk+ξk ·B(sk))

)
ds

= E0 exp

{
−i

n∑
k=1

(
λkt + ξk · B(t)

)}∫
[0,t̃−t]n

(
E0

n∏
k=1

ei(λksk+ξk ·B(sk))

)
ds.

Hence,

∣∣∣∣∣
∫ ∞

t

e−t̃

[
E0

∫
[t,t̃]n

(
n∏

k=1

e−i(λksk+ξk ·B(sk))

)
ds

]
dt̃

∣∣∣∣∣
≤ e−t

∣∣∣∣∣
∫ ∞

0
e−t̃ d t̃

∫
[0,t̃]n

(
E0

n∏
k=1

ei(λksk+ξk ·B(sk))

)
ds

∣∣∣∣∣.
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Summarizing our computation,

E0

{[∫ τ

0

∫ τ̃

τ

γ0(s − r)γ
(
B(s) − B̃(r)

)
dr ds

]n

1{τ<τ̃ }
}

≤
∫

(Rd+1)n
μ0(dλ)μ(dξ)

[∫ ∞

0
e−2t dt

∣∣∣∣∣
∫

[0,t]n

(
E0

n∏
k=1

ei(λksk+ξk ·B(sk))

)
ds

∣∣∣∣∣
]

×
∣∣∣∣∣
∫ ∞

0
e−t dt

∫
[0,t]n

(
E0

n∏
k=1

ei(λksk+ξk ·B(sk))

)
ds

∣∣∣∣∣
≤

{∫
(Rd+1)n

μ0(dλ)μ(dξ)

[∫ ∞

0
e−2t dt

∣∣∣∣∣
∫

[0,t]n

(
E0

n∏
k=1

ei(λksk+ξk ·B(sk))

)
ds

∣∣∣∣∣
]2}1/2

×
{∫

(Rd+1)n
μ0(dλ)μ(dξ)

∣∣∣∣∣
∫ ∞

0
e−t dt

∫
[0,t]n

(
E0

n∏
k=1

ei(λksk+ξk ·B(sk))

)
ds

∣∣∣∣∣
2}1/2

.

By (5.4),

∫
(Rd+1)n

μ0(dλ)μ(dξ)

∣∣∣∣∣
∫ ∞

0
e−t dt

∫
[0,t]n

(
E0

n∏
k=1

ei(λksk+ξk ·B(sk))

)
ds

∣∣∣∣∣
2

=
∫ ∞

0

∫ ∞

0
e−t−t ′

∫
(Rd+1)n

μ0(dλ)μ(dξ)

[∫
[0,t]n

(
E0

n∏
k=1

ei(λksk+ξk ·B(sk))

)
ds

]

×
[∫

[0,t̃]n

(
E0

n∏
k=1

e−i(λksk+ξk ·B(sk))

)
ds

]
dt dt̃

= E0Qn(τ, τ̃ ).

By Jensen’s inequality

∫
(Rd+1)n

μ0(dλ)μ(dξ)

(∫ ∞

0
e−2t dt

∣∣∣∣∣
∫

[0,t]n

(
E0

n∏
k=1

ei(λksk+ξk ·B(sk))

)
ds

∣∣∣∣∣
)2

≤ 1

2

∫
(Rd+1)n

μ0(dλ)μ(dξ)

∫ ∞

0
e−2t dt

∣∣∣∣∣
∫

[0,t]n

(
E0

n∏
k=1

ei(λksk+ξk ·B(sk))

)
ds

∣∣∣∣∣
2

.

Recall the elementary fact that τ ∧ τ̃ is an exponential time with parameter 2. Consequently, the right hand side of the
above inequality is equal to 4−1

E0Qn(τ ∧ τ̃ , τ ∧ τ̃ ).
Summarizing our steps since (5.6),(

E0Qn(τ ∧ τ̃ , τ ∧ τ̃ )
)1/n ≤ (

E0Qn(τ, τ̃ )
)1/n + 2

(
E0Qn(τ, τ̃ )

) 1
2n

(
E0Qn(τ ∧ τ̃ , τ ∧ τ̃ )

) 1
2n ,

which leads to (5.5). �

We now come to the proof of (5.2). A computation similar to (3.7) leads to

∫ ∞

0
dt e−t

∫
[0,t]n

(
E0

n∏
k=1

ei(λksk+ξk ·B(sk))

)
ds =

∑
σ∈�n

n∏
k=1

{
1 + 1

2

∣∣∣∣∣
n∑

j=k

ξσ(j)

∣∣∣∣∣
2

− i

(
n∑

j=k

λσ(j)

)}−1

.
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Applying this to the right hand side of (5.3),

∫
(Rd+1)n

μ0(dλ)μ(dξ)

∣∣∣∣∣
∫ ∞

0
dt e−t

∫
[0,t]n

(
E0

n∏
k=1

ei(λksk+ξk ·B(sk))

)
ds

∣∣∣∣∣
2

=
∫

(Rd+1)n
μ0(dλ)μ(dξ)

∣∣∣∣∣ ∑
σ∈�n

n∏
k=1

{
1 + 1

2

∣∣∣∣∣
n∑

j=k

ξσ(j)

∣∣∣∣∣
2

− i

(
n∑

j=k

λσ(j)

)}−1∣∣∣∣∣
2

≤ (n!)2
∫

(Rd+1)n
μ0(dλ)μ(dξ)

n∏
k=1

∣∣∣∣∣1 + 1

2

∣∣∣∣∣
n∑

j=k

ξj

∣∣∣∣∣
2

− i

(
n∑

j=k

λj

)
}
∣∣∣∣∣
−2

= (n!)2
∫

(Rd+1)n
μ0(dλ)μ(dξ)

n∏
k=1

{(
1 + 1

2

∣∣∣∣∣
n∑

j=k

ξj

∣∣∣∣∣
2)2

+
(

n∑
j=k

λj

)2}−1

, (5.7)

where the second step follows from Jensen’s inequality and permutation invariance.
Let (ξ1, . . . , ξn) be fixed for a while and set

ak = 1 + 1

2

∣∣∣∣∣
n∑

j=k

ξj

∣∣∣∣∣
2

, k = 1, . . . , n.

Recall that in our notation

μ0(dλ) = Cn
n∏

k=1

|λk|1−2H0 dλk.

By the variable substitution, for any ak ≥ 1 (k = 1, . . . , n)

∫
Rn

n∏
k=1

{
a2
k +

(
n∑

j=k

λj

)2}−1

μ0(dλ)

= Cn

∫
Rn

(
n∏

k=1

{
a2
k + λ2

k

}−1

)
n∏

k=1

|λk − λk−1|1−2H0 dλk.

Here we adapt the convention λ0 = 0.
Notice that 0 < 1 − 2H0 < 1. By the triangle inequality

n∏
k=1

|λk − λk−1|1−2H0 ≤
n∏

k=1

{|λk|1−2H0 + |λk−1|1−2H0
} ≤

∑
l

n∏
k=1

|λk|lk(1−2H0),

where the summation is over all maps l: {1, . . . , n} �−→ {0,1,2}.
Noticing that the number of the terms in the summation of the right hand side is at most 3n,

∫
Rn

n∏
k=1

{
a2
k +

(
n∑

j=k

λj

)2}−1

μ0(dλ) ≤ Cn
∑

l

n∏
k=1

∫ ∞

−∞
|λ|lk(1−2H0)

a2
k + λ2

dλ

= Cn
∑

l

n∏
k=1

a
lk(1−2H0)−1
k ≤ Cn3n

n∏
k=1

a
−(4H0−1)
k ,
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where the second step follows from the identity∫ ∞

−∞
|λ|β

a2 + λ2
dλ = 1

a1−β

∫ ∞

−∞
|λ|β

1 + λ2
dλ (β < 1)

and the last step follows from the fact that ak ≥ 1.
By (5.7) and Fubini’s theorem, therefore,

∫
(Rd+1)n

μ0(dλ)μ(dξ)

∣∣∣∣∣
∫ ∞

0
dt et

∫
[0,t]n

(
E0

n∏
k=1

ei(λksk+ξk ·B(sk))

)
ds

∣∣∣∣∣
2

≤ (n!)2Cn

∫
(Rd )n

μ(dξ)

n∏
k=1

(
1 + 1

2

∣∣∣∣∣
n∑

j=k

ξj

∣∣∣∣∣
2)−(4H0−1)

≤ (n!)2Cn, (5.8)

where the last step follows from the assumption (1.19) and Lemma 3.2.
In connection to the left had side of the inequality (5.3), on the other hand, by the scaling property

2
∫ ∞

0
e−2t

∫
(Rd+1)n

μ0(dλ)μ(dξ)

∣∣∣∣∣
∫

[0,t]n
E0

n∏
k=1

ei(λksk+ξk ·B(sk)) ds

∣∣∣∣∣
2

dt

= 2
∫

(Rd+1)n
μ0(dλ)μ(dξ)

∣∣∣∣∣
∫

[0,1]n

(
E0

n∏
k=1

ei(λksk+ξk ·B(sk))

)
ds

∣∣∣∣∣
2 ∫ ∞

0
tn(H+2H0−d)e−t dt

=
(

1

2

)n(H+2H0−d)



(
1 + n(H + 2H0 − d)

)
×

∫
(Rd+1)n

μ0(dλ)μ(dξ)

∣∣∣∣∣
∫

[0,1]n

(
E0

n∏
k=1

ei(λksk+ξk ·B(sk))

)
ds

∣∣∣∣∣
2

.

Therefore, the desired bound (5.2) follows from (5.8) and Lemma 5.1 with a simple application of Stirling formula.

Remark 5.2. In the assumption of Theorem 1.2, the bound (5.1) can be obtained by a way essentially same as the one
used here. Clearly, this bound is substantially worse than (3.1). This comparison indicates that the bound produced by
the argument in this section might be not optimal for H0 < 1/2 either.

6. Proof of Theorem 1.5

First notice that u(t, x) is monotonic in the initial condition u0(x). By the assumption (1.12), therefore, u(t, x) ≥ 0
for all (t, x). By linearity, further, u(t, x) is between two possibly different constant multiples of the solution of (1.1)

with the initial condition u0(x) ≡ 1. Thus, we may assume u0(x) = 1 in our proof. Notice that u(t, x)
d= u(t,0) for

any x ∈ R
d when u0(x) = 1. So we take x = 0 in our proof.

The lower bounds for (1.26) and (1.27), i.e.,

lim inf
t→∞ t−

4−α−2α0
2−α logEup(t,0) ≥ p

(
p − 1

2

) 2
2−α

E(H0) ∀p > 1 (6.1)

and

lim inf
m→∞ m− 4−α

2−α logEum(t,0) ≥
(

1

2

) 2
2−α

t
4−α−2α0

2−α E(H0) ∀t > 0 (6.2)
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follow from the proof given in Section 3, [4] with the the integer n ≥ 2 being replaced by the real number p ≥ 2, with
V (t, x) = θẆH(t, x), and with the relation

sup
g∈Ad

{
θ

∫ 1

0

∫ 1

0

∫
Rd×Rd

γ (x − y)

|s − r|α0
g2(s, x)g2(r, y) dx dy dr ds − 1

2

∫ 1

0

∫
Rd

∣∣∇xg(s, x)
∣∣2

x ds

}
= θ

2
2−α E(H0) ∀θ > 0. (6.3)

We remark that the covariance function γ (·) is non-negative and p ≥ 2 is an integer in [4]. However, the argument of
the lower bounds given in Section 3, [4] does not require that γ (·) be non-negative or that p ≥ 2 be an integer.

On the other hand, the non-roughness assumption is essential to the proof of the upper bound given in [4]. Without
it, the compactification by folding performed in [4] can not get through. The treatment given below is partially inspired
by the recent work of Huang, Lê and Nualart (Proposition 5.1 in [17]), where the argument relies on a transition from
Brownian system to Ornstein–Uhlenbeck system, an idea originated by Donsker and Varadhan [10].

Another difference in approach from [4]) is that we treat the spectral measure μ(dξ) instead of the space covariance
function γ (·) for γ (·) is not defined pointwise in the presence of spatial roughness. First, we develop the following
sub-additive moment inequality.

6.1. Sub-additivity

Let ν(dξ) be a measure on R
d . Write

Ht =
∫
Rd

ν(dξ)

[∫ t

0
eiξ ·B(s) ds

][∫ t

0
e−iξ ·B̃(s) ds

]
.

Lemma 6.1. For any t1, t2 > 0 and θ > 0

E0 exp

{
θ

t1 + t2
Ht1+t2

}
≤ E0 exp

{
θ

t1
Ht1

}
E0 exp

{
θ

t2
Ht2

}
, (6.4)

whenever the right hand side is finite.

Proof. All we need is to show that for any integer n ≥ 1,

1

(t1 + t2)n
E0Hn

t1+t2
≤

n∑
l=0

(
n

l

)
1

t l1

1

tn−l
2

E0|Ht1 |lE0Hn−l
t2

. (6.5)

We start with the computation

E0Hn
t1+t2

=
∫

(Rd )n
ν(dξ)

∣∣∣∣∣E0

n∏
k=1

∫ t1+t2

0
eξk ·B(s) ds

∣∣∣∣∣
2

=
∫

(Rd )n
ν(dξ)

∣∣∣∣∣
2∑

j1,...,jn=1

E0

n∏
k=1

�jk
(ξk)

∣∣∣∣∣
2

,

where

�1(ξ) =
∫ t1

0
eiξ ·B(s) ds and �2(ξ) =

∫ t1+t2

t1

eiξ ·B(s) ds.

Write ∣∣∣∣∣
2∑

j1,...,jn=1

E0

n∏
k=1

�jk
(ξk)

∣∣∣∣∣
2

= (t1 + t2)
2n

∣∣∣∣∣
2∑

j1,...,jn=1

(
n∏

k=1

tjk

t1 + t2

)
E0

n∏
k=1

1

tjk

�jk
(ξk)

∣∣∣∣∣
2

.
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Notice that

2∑
j1,...,jn=1

(
n∏

k=1

tjk

t1 + t2

)
= 1.

By Jensen’s inequality,

∣∣∣∣∣
2∑

j1,...,jn=1

E0

n∏
k=1

�jk
(ξk)

∣∣∣∣∣
2

≤ (t1 + t2)
2n

2∑
j1,...,jn=1

(
n∏

k=1

tjk

t1 + t2

)∣∣∣∣∣E0

n∏
k=1

1

tjk

�jk
(ξk)

∣∣∣∣∣
2

= (t1 + t2)
n

2∑
j1,...,jn=1

(
n∏

k=1

1

tjk

)∣∣∣∣∣E0

n∏
k=1

�jk
(ξk)

∣∣∣∣∣
2

.

Hence,

1

(t1 + t2)n
E0Hn

1+t2
≤

2∑
j1,...,jn=1

(
n∏

k=1

1

tjk

)∫
(Rd )n

ν(dξ)

∣∣∣∣∣E0

n∏
k=1

�jk
(ξk)

∣∣∣∣∣
2

(6.6)

=
n∑

l=0

(
n

l

)
1

t l1

1

tn−l
2

∫
(Rd )n

ν(dξ)

∣∣∣∣∣E0

{(
l∏

k=1

�1(ξk)

)(
n∏

k=l+1

�2(ξk)

)}∣∣∣∣∣
2

,

where the last step follows from variable permutation.
Let 0 ≤ l ≤ n be fixed. By the increment independence,

E0

{(
l∏

k=1

�1(ξk)

)(
n∏

k=l+1

�2(ξk)

)}

=
{∫

[0,t2]n

(
E0

n∏
k=l+1

eiξk ·B(sk)

)
ds

}
E0

{(
l∏

k=1

�1(ξk)

)
exp

(
i

(
n∑

k=l+1

ξk

)
· B(t1)

)}
.

Hence,

∣∣∣∣∣E0

{(
l∏

k=1

�1(ξk)

)(
n∏

k=l+1

�2(ξk)

)}∣∣∣∣∣
2

=
∣∣∣∣∣
∫

[0,t2]n

(
E0

n∏
k=l+1

eiξk ·B(sk)

)
ds

∣∣∣∣∣
2

×E0

{(
l∏

k=1

�1(ξk)

)(
l∏

k=1

�̃1(−ξk)

)
exp

(
i

(
n∑

k=l+1

ξk

)
· (B(t1) − B̃(t1)

))}
.
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Integrating against the first l variables ξ1, . . . , ξl :∫
(Rd )l

ν(dξ)

∣∣∣∣∣E0

{(
l∏

k=1

�1(ξk)

)(
n∏

k=l+1

�2(ξk)

)}∣∣∣∣∣
2

=
∣∣∣∣∣
∫

[0,t2]n

(
E0

n∏
k=l+1

eiξk ·B(sk)

)
ds

∣∣∣∣∣
2

×E0

{
exp

(
i

(
n∑

k=l+1

ξk

)
· (B(t1) − B̃(t1)

))∫
(Rd )l

ν(dξ)

(
l∏

k=1

�1(ξk)

)(
l∏

k=1

�̃1(−ξk)

)}

=
∣∣∣∣∣
∫

[0,t2]n

(
E0

n∏
k=l+1

eiξk ·B(sk)

)
ds

∣∣∣∣∣
2

E0

{
exp

(
i

(
n∑

k=l+1

ξk

)
· (B(t1) − B̃(t1)

))
Hl

t1

}

≤
∣∣∣∣∣
∫

[0,t2]n

(
E0

n∏
k=l+1

eiξk ·B(sk)

)
ds

∣∣∣∣∣
2

E0|Ht1 |l .

Integrating against ξl+1, . . . , ξn,∫
(Rd )n

ν(dξ)

∣∣∣∣∣E0

{(
l∏

k=1

�1(ξk)

)(
n∏

k=l+1

�2(ξk)

)}∣∣∣∣∣
2

≤
{∫

(Rd )n−l

ν(dxi)

∣∣∣∣∣
∫

[0,t2]n

(
E0

n∏
k=l+1

eiξk ·B(sk)

)
ds

∣∣∣∣∣
2}

E0|Ht1 |l

= EHn−l
t2

·E0|Ht1 |l .
By (6.6), this leads to (6.5). �

6.2. Upper bound for (1.26) with p = 2

We start with the upper bound of (1.26) with p = 2, i.e.,

lim sup
t→∞

t−
4−α−2α0

2−α logEu2(t,0) ≤ 2

(
CH0θ

2

2

) 2
2−α

E(H0). (6.7)

In view of the relation (1.14) with m = 2, all we need is to show

lim sup
t→∞

t−
4−α−2α0

2 logE0 exp

{
CH0θ

2
∫ t

0

∫ t

0

γ (B(s) − B̃(r))

|s − r|α0
ds dr

}
≤ 2

(
CH0θ

2

2

) 2
2−α

E(H0).

By Brownian scaling,

E0 exp

{
CH0θ

2
∫ t

0

∫ t

0

γ (B(s) − B̃(r))

|s − r|α0
ds dr

}
= E0 exp

{
CH0θ

2

t̄

∫ t̄

0

∫ t̄

0

γ (B(s) − B̃(r))

|t̄−1(s − r)|α0
ds dr

}
with t̄ = t

4−α−2α0
2−α . By time-changing, and by replacing CH0θ

2 by θ , (6.7) is equivalent to the proof of

lim sup
t→∞

1

t
logE0 exp

{
θ

t

∫ t

0

∫ t

0

γ (B(s) − B̃(r))

|t−1(s − r)|α0
ds dr

}
≤ 2

(
θ

2

) 2
2−α

E(H0)

for every constant θ > 0.
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By Fourier transform,∫ t

0

∫ t

0

γ (B(s) − B̃(r))

|t−1(s − r)|α0
ds dr

= C−1
H0

∫
Rd+1

μ0(dλ)μ(dξ)

[∫ t

0
ei(t−1λs+ξ ·B(s)) ds

][∫ t

0
e−i(t−1λs+ξ ·B̃(s)) ds

]
= C−1

H0

∫
Rd+1

μ0(dλ)μ(dξ)ηt (λ, ξ)η̃t (λ, ξ),

where

ηt (λ, ξ) =
∫ t

0
ei(t−1λs+ξ ·B(s)) ds and η̃t (λ, ξ) =

∫ t

0
e−i(t−1λs+ξ ·B̃(s)) ds. (6.8)

Therefore, (6.7) is equivalent to

lim sup
t→∞

logE0 exp

{
θ

CH0 t

∫
Rd+1

μ0(dλ)μ(dξ)ηt (λ, ξ)η̃t (λ, ξ)

}
≤ 2

(
θ

2

) 2
2−α

E(H0). (6.9)

Given a small constant δ > 0, consider the decomposition∫
Rd+1

μ0(dλ)μ(dξ)ηt (λ, ξ)η̃t (λ, ξ)

=
∫
Rd+1

μδ
0(dλ)μδ(dξ)ηt (λ, ξ)η̃t (λ, ξ) +

∫
Rd+1

μ̄δ
0(dλ)μ(dξ)ηt (λ, ξ)η̃t (λ, ξ), (6.10)

where

μδ
0(dλ) =

∫
R

e−δ|λ|2μ0(dλ) and μ̄δ
0(dλ) =

∫
R

(
1 − e−δ|λ|2)μ0(dλ).

By Hölder inequality, for any two conjugate numbers β, β̄ > 1

E0 exp

{
θ

CH0 t

∫
Rd+1

μ0(dλ)μ(dξ)ηt (λ, ξ)η̃t (λ, ξ)

}

≤
(
E0 exp

{
βθ

CH0 t

∫
Rd+1

μδ
0(dλ)μ(dξ)ηt (λ, ξ)η̃t (λ, ξ)

})1/β

×
(
E0 exp

{
β̄θ

CH0 t

∫
Rd+1

μ̄δ
0(dλ)μ(dξ)ηt (λ, ξ)η̃t (λ, ξ)

})1/β̄

. (6.11)

Here we make β fixed but close to 1.
To show that the second exponential moment is negligible as δ is sufficiently small, we compute its moments.

Indeed,

E

[∫
Rd+1

μ̄δ
0(dλ)μ(dξ)ηt (λ, ξ)η̃t (λ, ξ)

]n

=
∫

(Rd+1)n
μ̄δ

0(dλ)μ(dξ)

∣∣∣∣∣E0

n∏
k=1

ηt (λk, ξk)

∣∣∣∣∣
2

≤ δ
ᾱ0−α0

2 n

∫
(Rd+1)n

μ̂0(dλ)μ(dξ)

∣∣∣∣∣E0

n∏
k=1

ηt (λk, ξk)

∣∣∣∣∣
2

,
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where α0 < ᾱ0 < 1,

μ̂0(dλ) = Cn

n∏
k=1

|λk|−(1−ᾱ0) dλk

for a constant C > 0 independent of n, δ and t , and the last step follows from

μ̄δ
0(dλ) ≤

∫
Rn

(
n∏

k=1

(
1 − e−δ|λk |2) ᾱ0−α0

2

)
μ0(dλ)

≤ δ
ᾱ0−α0

2 n

∫
Rn

(
n∏

k=1

|λk|ᾱ0−α0

)
μ0(dλ) = δ

ᾱ0−α0
2 nμ̂0(dλ) (say).

Let ᾱ0 be chosen by the constrain that H̄0 ≡ 2−1(2 − ᾱ0) satisfies the second inequality in (1.13), i.e.,

4(1 − H̄0) + 2(d − H) + (d∗ − 2H∗) < 4.

By the moment bound (3.1) with H0 being replaced by H̄0,∫
(Rd+1)n

μ̂0(dλ)μ(dξ)

∣∣∣∣∣
∫

[0,t]n

(
E0

n∏
k=1

eiλksk+ξk ·B(sk)

)
ds

∣∣∣∣∣
2

≤ Cn(n!)d−H t(H+2H̄0−d)n

or, by the Brownian scaling∫
(Rd+1)n

μ̂0(dλ)μ(dξ)

∣∣∣∣∣E0

n∏
k=1

ηt (λk, ξk)

∣∣∣∣∣
2

≤ Cn(n!)d−H t(2−(d−H))n.

Summarizing our computation,

E

[∫
(Rd+1)n

μ̄δ
0(dλ)μ(dξ)ηt (λ, ξ)η̃t (λ, ξ)

]n

≤ Cnδ
ᾱ0−α0

2 n(n!)d−H t(2−(d−H))n.

For even n, it gives the bound for E0| · |n. Further, the same bound for E0| · |n can be extended to odd number n = 2k+1
by the Cauchy–Schwartz inequality

E0| · |2k+1 ≤ (
E0[·]2k

)1/2(
E0[·]2k+2)1/2

.

By Stirling formula, the bound can be reformulated as

E0

∣∣∣∣∫
(Rd+1)n

μ̄δ
0(dλ)μ(dξ)ηt (λ, ξ)η̃t (λ, ξ)

∣∣∣∣ n
d−H ≤ Cnn!δn

ᾱ0−α0
2(d−H) tn

2−(d−H)
d−H

with C > 0 independent of δ, n and t . By Taylor expansion, for any δ > 0

sup
t≥1

E0 exp

{
1

2
C−1δ

− ᾱ0−α0
2(d−H) t−

2−(d−H)
d−H

∣∣∣∣∫
Rd+1

μ̄δ
0(dλ)μ(dξ)ηt (λ, ξ)η̃t (λ, ξ)

∣∣∣∣ 1
d−H

}
< ∞.

On the other hand, for any A ≥ 1

E0 exp

{
β̄θ

CH0 t

∫
Rd+1

μ̄δ
0(dλ)μ(dξ)ηt (λ, ξ)η̃t (λ, ξ)

}

≤ exp

{
θβ̄

CH0

A−1t

}
+E0 exp

{
β̄θ

CH0

A
1−(d−H)

d−H t−
2−(d−H)

d−H

∣∣∣∣∫
Rd+1

μ̄δ
0(dλ)μ(dξ)ηt (λ, ξ)η̃t (λ, ξ)

∣∣∣∣ 1
d−H

}
.
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Taking δ sufficiently small making the second term on the right hand side bounded in t , therefore,

lim sup
t→∞

1

t
logE0 exp

{
β̄θ

CH0 t

∫
Rd+1

μ̄δ
0(dλ)μ(dξ)ηt (λ, ξ)η̃t (λ, ξ)

}
≤ θβ̄

CH0

A−1.

The right hand side can be arbitrarily small if A is sufficiently large (it requires that δ be sufficiently small).
Since β > 1 can be made arbitrarily close to 1 in (6.11), we have reduced (6.9) to the proof of

lim sup
t→∞

logE0 exp

{
θ

CH0 t

∫
Rd+1

μδ
0(dλ)μ(dξ)ηt (λ, ξ)η̃t (λ, ξ)

}
≤ 2

(
θ

2

) 2
2−α

E(H0) (6.12)

for any δ > 0.
Truncating the space spectral measure μ(dξ) is a more delicate issue. Due to the reason that the bound (3.1) is

H -sensitive, applying the above procedure to the space component would decrease the space Hurst parameter H and
therefore produce a worse bound through (3.1). To prevent it from happening, we carry out a different approach. Let
δ > 0 be fixed. Given M ≥ 1, consider the decomposition∫

Rd+1
μδ

0(dλ)μ(dξ)ηt (λ, ξ)η̃t (λ, ξ)

=
∫
R×[−M,M]d

μδ
0(dλ)μ(dξ)ηt (λ, ξ)η̃t (λ, ξ) +

∫
R×([−M,M]d )c

μδ
0(dλ)μ(dξ)ηt (λ, ξ)η̃t (λ, ξ). (6.13)

Notice that for any integer n ≥ 1

E0

[∫
R×([−M,M]d )c

μ0(dλ)μ(dξ)ηt (λ, ξ)η̃t (λ, ξ)

]n

=
∫

(R×([−M,M]d )c)n
μδ

0(dλ)μ(dξ)

∣∣∣∣∣
∫

[0,t]n

(
n∏

k=1

eit−1λksk

)(
E0

n∏
k=1

eiξk ·B(sk)

)
ds

∣∣∣∣∣
2

≤ μδ
0(R)n

∫
(([−M,M]d )c)n

μ(dξ)

∣∣∣∣∣
∫

[0,t]n

(
E

n∏
k=1

eiξk ·B(sk)

)
ds

∣∣∣∣∣
2

= μδ
0(R)nE0Ht

(([−M,M]d)c)n
,

where

Ht (B) =
∫

B

μ(dξ)

[∫ t

0
eiξ ·B(s) ds

][∫ t

0
e−iξ ·B̃(s) ds

]
, B ⊂R

d

and the inequality follows from the fact that

E0

n∏
k=1

eiξk ·B(sk) > 0.

Hence, for any θ > 0,

E0 exp

{
θ

t

∫
R×([−M,M]d )c

μδ
0(dλ)μ(dξ)ηt (λ, ξ)η̃t (λ, ξ)

}
≤ E0 exp

{
μδ

0(R)
θ

t
Ht

(([−M,M]d)c)} ≤ (
E0 exp

{
μδ

0(R)θ
∣∣H1

(([−M,M]d)c)∣∣})t
, (6.14)

where the last step follows from Lemma 6.1.
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To complete our procedure of truncating space spectral measure μ(dξ), we claim that

lim
M→∞E0 exp

{
μδ

0(R)θ
∣∣H1

(([−M,M]d)c)∣∣} = 1. (6.15)

First notice that for any n ≥ 1, the nth moment

E0
[
H1(B)

]n =
∫

Bn

μ(dξ)

∣∣∣∣∣
∫

[0,1]n

(
E0

n∏
k=1

eiξk ·B(sk)

)
ds

∣∣∣∣∣
2

is monotonic in B ⊂R
d .

For the even n = 2k,

E0
∣∣H1

(([−M,M]d)c)∣∣n = E0
[
H1

(([−M,M]d)c)]n ≤ E0
[
H1

(
R

d
)]n

.

As for odd number n = 2k + 1, by Cauchy–Schwartz inequality,

E0
∣∣H1

(([−M,M]d)c)∣∣n ≤ (
E0

[
H1

(([−M,M]d)c)]2k)1/2(
E0

[
H1

(([−M,M]d)c)]2k+2)1/2

≤ (
E0

[
H1

(
R

d
)]2k)1/2(

E0
[
H1

(
R

d
)]2k+2)1/2

.

Notice the bound (3.1) can be extended easily to the case when H0 = 1 (i.e., the setting of time-independence). So
we have the bound

E0
[
H1

(
R

d
)]n ≤ Cn(n!)d−H , n = 1,2, . . . .

Thus, (6.15) follows from the dominated convergence. By (6.15) and (6.14)

lim sup
M→∞

lim sup
t→∞

1

t
logE0 exp

{
θ

t

∫
R×([−M,M]d )c

μδ
0(dλ)μ(dξ)ηt (λ, ξ)η̃t (λ, ξ)

}
= 0

for every θ > 0. In view of the decomposition (6.13), therefore, an exponential approximation by Hölder inequality
reduces (6.12) to the proof of

lim sup
t→∞

1

t
logE0 exp

{
θ

CH0 t

∫
R×[M,M]d

μδ
0(dλ)μ(dξ)ηt (λ, ξ)η̃t (λ, ξ)

}
≤ 2

(
θ

2

) 2
2−α

E(H0)

for any δ > 0 and M ≥ 1.
By the relation∫

R×[M,M]d
μδ

0(dλ)μ(dξ)ηt (λ, ξ)η̃t (λ, ξ)

≤ 1

2

{∫
R×[M,M]d

μδ
0(dλ)μ(dξ)

∣∣ηt (λ, ξ)
∣∣2 +

∫
R×[M,M]d

μδ
0(dλ)μ(dξ)

∣∣η̃t (λ, ξ)
∣∣2

}
and independence, the problem is further reduced to the proof of

lim sup
t→∞

1

t
logE0 exp

{
θ

2CH0 t

∫
R×[M,M]d

∣∣ηt (λ, ξ)
∣∣2

μδ
0(dλ)μ(dξ)

}
≤

(
θ

2

) 2
2−α

E(H0) (6.16)

for any δ > 0 and M ≥ 1.
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On the other hand, for each n ≥ 1,

E0

[∫
R×[M,M]d

∣∣ηt (λ, ξ)
∣∣2

μδ
0(dλ)μ(dξ)

]n

=
∫

(Rd )n
μ(dξ)

∫
[0,t]2n

(
n∏

k=1

γ δ
0

(
sk − rk

t

))(
E0

n∏
k=1

eiξk ·(B(sk)−B(rk))

)
ds dr

=
∫

(Rd )n
μ(dξ)

∫
[0,t]2n

(
n∏

k=1

γ δ
0

(
sk − rk

t

))
exp

{
−1

2
Var

(
n∑

k=1

ξk · (B(sk) − B(rk)
))}

ds dr. (6.17)

Given a small constant κ > 0, let Pκ and E
κ be the law and expectation, respectively, of an d-dimensional Ornstein–

Uhlenbeck process starting from 0 with the infinitesimal generator 2−1� − κx · ∇ . Whenever associated with P
κ or

E
κ , B(s) represents an Ornstein–Uhlenbeck process. By Girsanov’s theorem,

dPκ

dP0

∣∣∣∣[0,t]
= exp

{
−κ

∫ t

0
B(s) · dB(s) − κ2

2

∫ t

0

∣∣B(s)
∣∣2

ds

}

= exp

{
−κ

2

∣∣B(t)
∣∣2 + κd

2
t − κ2

2

∫ t

0

∣∣B(s)
∣∣2

ds

}
. (6.18)

In particular,

dPκ

dP0

∣∣∣∣[0,t]
≤ exp

{
κd

2
t

}
. (6.19)

Applying Lemma 3.9, [10] to the Gaussian laws Pκ |[0,t] and P0|[0,t], in connection to (6.17) we have

Var

(
n∑

k=1

ξk · (B(sk) − B(rk)
)) ≥ Varκ

(
n∑

k=1

ξk · (B(sk) − B(rk)
))

,

where Varκ(·) represents the variance under the law P
κ . Notice that (6.17) remains true when the Brownian motion

is replaced by the Ornstein–Uhlenbeck process (or, E0 and Var are replaced by E
κ and Varκ , resp.). By the fact that

γ δ
0 (·) ≥ 0,

E0

[∫
R×[M,M]d

∣∣ηt (λ, ξ)
∣∣2

μδ
0(dλ)μ(dξ)

]n

≤ E
κ

[∫
R×[M,M]d

∣∣ηt (λ, ξ)
∣∣2

μδ
0(dλ)μ(dξ)

]n

(6.20)

for n = 1,2, . . . .
By Taylor expansion again and parameter substitution, (6.16) is further reduced to the proof of

lim sup
κ→0+

lim sup
t→∞

1

t
logEκ exp

{
θ

t

∫
R×[−M,M]d

∣∣ηt (λ, ξ)
∣∣2

μδ
0(dλ)μ(dξ)

}
≤ (CH0θ)

2
2−α E(H0). (6.21)

To compute the limit “t → ∞”, let κ > 0 be fixed for a while. As a process with strong ergodicity, Ornstein–Uhlenbeck
process has much better property than Brownian motion in terms of the tightness. Indeed, by (6.18),

E
κ exp

{∫ t

0

∣∣B(s)
∣∣ds

}
≤ E0 exp

{∫ t

0

(∣∣B(s)
∣∣ − κ2

2

∣∣B(s)
∣∣2

)
ds + κd

2
t

}
≤ exp

{(
1

2κ2
+ κd

2

)
t

}
,
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where the last step follows from the elementary relation λ − 2−1κ2λ2 ≤ (2κ2)−1 (λ ∈ R). A standard application of
Chebyshev inequality shows that for any number l > 0 one can make R > 0 sufficiently large such that

P
κ

{
1

t

∫ t

0

∣∣B(s)
∣∣ds ≥ R

}
≤ e−lt ∀t > 0.

On the other hand, consider the decomposition

E
κ exp

{
θ

t

∫
R×[−M,M]d

∣∣ηt (λ, ξ)
∣∣2

μδ
0(dλ)μ(dξ)

}
= E

κ exp

{
θ

t

∫
R×[−M,M]d

∣∣ηt (λ, ξ)
∣∣2

μδ
0(dλ)μ(dξ)

}
1�t,R

+E
κ exp

{
θ

t

∫
R×[−M,M]d

∣∣ηt (λ, ξ)
∣∣2

μδ
0(dλ)μ(dξ)

}
1�c

t,R
,

where

�t,R =
{

1

t

∫ t

0

∣∣B(s)
∣∣ds ≤ R

}
.

For the first term on the right hand side, it is bounded by

exp
{
θtμδ

0

([−N,N ]c)μ([−M,M]d)}
E

κ exp

{
θ

t

∫
[−N,N ]×[−M,M]d

∣∣ηt (λ, ξ)
∣∣2

μ0(dλ)μ(dξ)

}
1�t,R

for any N > 0.
As for the second term, it is bounded by

exp
{
θtμδ

0(R)μ
([−M,M]d)}

P
κ

{
1

t

∫ t

0

∣∣B(s)
∣∣ds ≥ R

}
,

which is negligible in comparison to the first term as R is sufficiently large. Therefore

lim sup
t→∞

1

t
logEκ exp

{
θ

t

∫
R×[−M,M]d

∣∣ηt (λ, ξ)
∣∣2

μδ
0(dλ)μ(dξ)

}
≤ lim sup

t→∞
1

t
logEκ exp

{
θ

t

∫
[−N,N ]×[−M,M]d

∣∣ηt (λ, ξ)
∣∣2

μ0(dλ)μ(dξ)

}
1�t,R

+ θμδ
0

([−N,N ]c)μ([−M,M]d)
(6.22)

for sufficiently large R and N .
Let R and N be fixed. Consider the Hilbert space H of all possibly complex valued functions f (u, x) on [−N,N ]×

[−M,M]d such that f (−λ,−ξ) = h(λ, ξ) a.e. and that

‖h‖2
H ≡

∫
[−N,N ]×[−M,M]d

∣∣f (λ, ξ)
∣∣2

μ0(dλ)μ(dξ) < ∞.

Despite that the functions in H are allowed to take complex valued, H is a real space in the sense that for any real
numbers c1, c2, c1h1 + c2h2 ∈H as soon as h1, h2 ∈ H.

Notice that ‖h‖2
H ≥ −‖f ‖2

H + 2〈f,h〉H for any h,f ∈ H. Further, if the subspace H0 ⊂ H is dense in H, then

‖h‖2
H = sup

f ∈H0

{−‖f ‖2
H + 2〈f,h〉H

}
. (6.23)
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With ηt (·, ·) being viewed as a H-valued stochastic process, a crucial fact is that there is a compact set K ⊂H such
that t−1ηt ∈K on �t,R for every t ≥ 1. Indeed, by Arzelá–Ascoli theorem, the class

C =
{
h(·, ·) ∈H; sup

λ,ξ

∣∣h(λ, ξ)
∣∣ ≤ 1 and

∣∣h(λ1, ξ1) − h(λ2, ξ2)
∣∣ ≤ (1 + R)

∣∣(λ1, ξ1) − (λ2, ξ2)
∣∣

for any (λ1, ξ1), (λ2, ξ2) ∈ [−N,N ] × [−M,M]d
}

is relatively compact in C([−N,N ] × [−M,M]d) under the uniform topology. Consequently, C is also relatively
compact in H as the uniform convergence leads to the L2-convergence.

It is easy to see that for any t ≥ 1, t−1ηt ∈ C on �t,R . Therefore, one can take K as the closure of C in H.
Take H0 in (6.23) as all bounded functions in H. Given ε > 0, the sets

Of = {
h ∈ H; ‖h‖2

H < −‖f ‖2
H + 2〈f,h〉H + ε

}
f ∈ H0

form an open cover of H, and therefore of K. Let Of1, . . . ,Ofm be be a finite sub-cover of K. By the fact that
t−1ηt ∈K on �t,R ,∥∥t−1ηt

∥∥2
H < ε + max

1≤j≤m

{−‖fj‖2
H + 2〈fj ,Zt 〉H

}
on �t,R . Hence,

E
κ exp

{
θ

t
‖ηt‖2

H

}
1�t,R

≤ eθεt

m∑
j=1

e−θt‖fj ‖2
HE

κ exp
{
2θ〈fj , ηt 〉H

}
.

Consequently,

lim sup
t→∞

1

t
logEκ exp

{
θ

t
‖ηt‖2

H

}
1�t,R

≤ θε + max
1≤j≤m

{
−θ‖fj‖2

H + lim sup
t→∞

1

t
logEκ exp

{
2θ〈fj , ηt 〉H

}}
. (6.24)

Notice that

〈fj , ηt 〉H =
∫

[−N,N ]×[−M,M]d
fj (λ, ξ)ηt (λ, ξ)μ0(dλ)μ(dξ) =

∫ t

0
f̄j

(
s

t
,B(s)

)
ds,

where

f̄j (s, x) =
∫

[−N,N ]×[−M,M]d
f (λ, ξ) exp

{−i(λs + ξ · x)
}
μ0(dλ)μ(dξ)

is a real-valued function, thank to the symmetry fj (−λ,−ξ) = fj (λ, ξ).
In view of (6.19), therefore, we transform the problem from the Ornstein–Uhlenbeck system back to the Brownian

system:

E
κ exp

{
2θ〈fj ,Zt 〉H

} ≤ exp

{
κd

2
t

}
E0 exp

{
2θ

∫ t

0
f̄j

(
s

t
,B(s)

)
ds

}
. (6.25)

By the boundedness of fj (λ, ξ), the function f̄j (s, x) satisfies the regularities assumed in Proposition 3.1, [6]. Hence,

lim
t→∞

1

t
logE0 exp

{
2θ

∫ t

0
f̄j

(
s

t
,B(s)

)
ds

}
= sup

g∈Ad

{
2θ

∫ 1

0

∫
Rd

f̄j (s, x)g2(s, x) dx ds − 1

2

∫ 1

0

∫
Rd

∣∣∇xg(s, x)
∣∣2

dx ds

}
. (6.26)
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We point out here that in the variation,

∫ 1

0

∫
Rd

f̄j (s, x)g2(s, x) dx ds = 〈
fj ,F

(
g2)〉

H,

where

F
(
g2)(λ, ξ) =

∫ 1

0

∫
Rd

g2(s, x)ei(λs+ξ ·x) dx ds.

Summarizing the computation since (6.24),

lim sup
t→∞

1

t
logEκ exp

{
θ

t
‖ηt‖2

H

}
1�t,R

≤ θε + κd

2
+ max

1≤j≤m

{
−θ‖fj‖2

H + sup
g∈Ad

{
2θ

〈
fj ,F

(
g2)〉

H − 1

2

∫ 1

0

∫
Rd

∣∣∇xg(s, x)
∣∣2

dx ds

}}
.

Noticing that

−θ‖fj‖2
H + sup

g∈Ad

{
2θ

〈
fj ,F

(
g2)〉

H − 1

2

∫ 1

0

∫
Rd

∣∣∇xg(s, x)
∣∣2

dx ds

}

= sup
g∈Ad

{
θ
(−‖fj‖2

H + 2
〈
fj ,F

(
g2)〉

H
) − 1

2

∫ 1

0

∫
Rd

∣∣∇xg(s, x)
∣∣2

dx ds

}

≤ sup
g∈Ad

{
θ
∥∥F(

g2)∥∥2
H − 1

2

∫ 1

0

∫
Rd

∣∣∇xg(s, x)
∣∣2

dx ds

}

and that (1.10)

∥∥F(
g2)∥∥2

H =
∫

[−N,N ]×[−M,M]d
∣∣F(

g2)∣∣2
μ0(dλ)μ(dξ) ≤

∫
Rd+1

∣∣F(
g2)∣∣2

μ0(dλ)μ(dξ)

= CH0

∫ 1

0

∫ 1

0

∫
Rd×Rd

γ (x − y)

|s − r|α0
g2(s, x)g2(r, y) dx dy ds dr.

Therefore,

lim sup
t→∞

1

t
logEκ exp

{
θ

t
‖ηt‖2

H

}
1�t,R

≤ θε + κd

2
+ sup

g∈Ad

{
CH0θ

∫ 1

0

∫ 1

0

∫
Rd×Rd

γ (x − y)

|s − r|α0
g2(s, x)g2(r, y) dx dy ds dr

− 1

2

∫ 1

0

∫
Rd

∣∣∇xg(s, x)
∣∣2

dx ds

}
= θε + κd

2
+ (CH0θ)

2
2−α E(H0),

where the last step follows from the time-space homogeneity and the variational substitution

g(s, x) �→ (CH0θ)
d

2(2−α) g
(
s, (CH0θ)

1
2−α x

)
.
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By (6.22),

lim sup
t→∞

1

t
logEκ exp

{
θ

t

∫
R×[−M,M]d

∣∣ηt (λ, ξ)
∣∣2

μδ
0(dλ)μ(dξ)

}
≤ θε + κd

2
+ θμδ

0

([−N,N ]c)μ([−M,M]d) + (CH0θ)
2

2−α E(H0).

Letting ε → 0+ and N → ∞, the bound on the right hand side tends to

κd

2
+ (CH0θ)

2
2−α E(H0).

Thus, the desired upper bound (6.21) is obtained.

6.3. Upper bounds for (1.26) and (1.27)

Thank to a recent hypercontractivity inequality by Lê [18], the proof becomes a simple corollary of (6.7). To state
Lê’s result, we introduce the notation uλ(t, x) for the parabolic Anderson equation{

∂u
∂t

(t, x) = 1
2�u(t, x) + √

λẆ(t, x) � u(t, x), (t, x) ∈R
+ ×R

d,

u(0, x) = 1, x ∈R
d

(6.27)

for any λ > 0. As a special case of his result (Theorem 1, [18]) Lê proves that for any p ≥ 2,∥∥uλ(t, x)
∥∥
Lp(�)

≤ ∥∥u(p−1)λ(t, x)
∥∥
L2(�)

(t, x) ∈R
+ ×R

d, (6.28)

whenever the right hand side is finite.
In the setting of this paper (in particular, λ = θ2), therefore,

Eup(t, x) ≤
(
E0 exp

{
(p − 1)θ2CH0

∫ t

0

∫ t

0

γ (B(s) − B̃(r))

|s − r|α0
ds dr

})p/2

=
(
E0 exp

{
θ2CH0

∫ t (p−1)
2

4−α−2α0

0

∫ t (p−1)
2

4−α−2α0

0

γ (B(s) − B̃(r))

|s − r|α0
ds dr

})p/2

= (
Eu2(t (p − 1)

2
4−α−2α0 , x

))p/2
.

Thus, the upper bounds of (1.26) and (1.27) follow from (6.7).

6.4. Proof of (1.28)

Existing evidence shows that the hypercontractivity inequality (6.28) is no longer asymptotically sharp when comes to
the time-white setting. Besides, the large t intermittency is not fully understood even for the case p = 2. Differently,
(1.28) is given as a consequence of the free-energy problem studied in [7].

By a usual practice of Hölder inequality, one need only to evaluate the limit along the integers. By the Feynman–
Kac moment representation (1.17), therefore, the problem is to prove

lim
m→∞m− 4−α

2−α logE0 exp

{
θ2

∑
1≤j<k≤m

∫ t

0
γ
(
Bj (s) − Bk(s)

)
ds

}
=

(
θ2

2

) 2
2−α

E . (6.29)



976 X. Chen

Notice that (4.1) leads to exponential integrability described by (2.19). By Theorem 1.1, [7],

lim
m→∞

1

mtm
logE0 exp

{
θ2

m

∑
1≤j<k≤m

∫ tm

0
γ
(
Bj (s) − Bk(s)

)
ds

}

= sup
g∈Fd

{
θ2

2

∫
Rd×Rd

γ (x − y)g2(x)g2(y) dx dy − 1

2

∫
Rd

∣∣∇g(x)
∣∣2

dx

}

=
(

θ2

2

) 2
2−α

E (6.30)

for any positive sequence with tm → ∞, where the last step follows from homogeneity and suitable variable substitu-
tion.

Hence, (6.29) follows from the identity in law

∑
1≤j<k≤m

∫ t

0
γ (Bj (s) − Bk(s)

d= 1

m

∑
1≤j<k≤m

∫ tm
2

2−α

0
γ
(
Bj (s) − Bk(s)

)
ds

and (6.30) with tm = m
α

2−α .
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