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A GENERAL CONTINUOUS-STATE NONLINEAR BRANCHING
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BY PEI-SEN LI1, XU YANG2 AND XIAOWEN ZHOU3

Renmin University of China, North Minzu University and Concordia University

In this paper, we consider the unique nonnegative solution to the fol-
lowing generalized version of the stochastic differential equation for a
continuous-state branching process:

Xt = x +
∫ t

0
γ0(Xs)ds +

∫ t

0

∫ γ1(Xs−)

0
W(ds,du)

+
∫ t

0

∫ ∞
0

∫ γ2(Xs−)

0
zÑ(ds,dz,du),

where W(dt,du) and Ñ(ds,dz,du) denote a Gaussian white noise and an
independent compensated spectrally positive Poisson random measure, re-
spectively, and γ0, γ1 and γ2 are functions on R+ with both γ1 and γ2 taking
nonnegative values. Intuitively, this process can be identified as a continuous-
state branching process with population-size-dependent branching rates and
with competition. Using martingale techniques we find rather sharp condi-
tions on extinction, explosion and coming down from infinity behaviors of
the process. Some Foster–Lyapunov-type criteria are also developed for such
a process. More explicit results are obtained when γi , i = 0,1,2 are power
functions.

1. Introduction.

1.1. Continuous-state branching processes. Suppose that (�,F ,Ft ,P) is a
filtered probability space satisfying the usual hypotheses. Let Px be the law of a
process started at x, and denote by Ex the associated expectation. A continuous-
state branching process X = (Xt)t≥0 is a càdlàg [0,∞]-valued (Ft )-adapted pro-
cess satisfying the branching property, that is, for any x, y ≥ 0 and t, θ ≥ 0,

(1.1) Ex+y

[
e−θXt

] = Ex

[
e−θXt

]
Ey

[
e−θXt

]
.
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Consequently, its Laplace transform is determined by

Ex

[
e−θXt

] = e−xut (θ),

where the nonnegative function ut (θ) solves the differential equation

∂ut (θ)

∂t
+ ψ

(
ut(θ)

) = 0

with initial value u0(θ) = θ ≥ 0 and Laplace exponent

ψ(λ) = bλ + 1

2
σ 2λ2 +

∫ ∞
0

(
e−λx − 1 + λx

)
π(dx)

for b ∈ R, σ ≥ 0 and for σ -finite measure π on (0,∞) satisfying
∫ ∞

0 (z ∧
z2)π(dz) < ∞.

Via the Lamperti random time change, the continuous-state branching process
is associated to a spectrally positive Lévy process, which allows many semiex-
plicit expressions. In particular, extinction and explosion behaviors for continuous-
state branching processes were studied by Grey (1974) and Kawazu and Watan-
abe (1971), respectively, and the conditions for extinction and explosion were ex-
pressed in terms of the respective integral tests on the function ψ .

Bertoin and Le Gall (2006) and Dawson and Li (2006, 2012) noticed the follow-
ing alternative way of characterizing continuous-state branching processes through
stochastic differential equations (SDEs in short). Let {W(dt,du) : t, u ≥ 0} denote
an (Ft )-Gaussian white noise with density measure dt du on (0,∞)2. In this pa-
per, we always write π �= 0 for the σ -finite measure on (0,∞). Let {N(dt,dz,du) :
t, z, u > 0} denote an independent (Ft )-Poisson random measure with intensity
measure dtπ(dz)du on (0,∞)3 and let {Ñ(dt,dz,du) : t, z, u > 0} denote the cor-
responding compensated measure. Then the continuous-state branching process
is a pathwise unique nonnegative solution to the following SDE that is called a
Dawson–Li SDE in Pardoux (2016):

Xt = x + b

∫ t

0
Xs ds + σ

∫ t

0

∫ Xs−

0
W(ds,du)

+
∫ t

0

∫ ∞
0

∫ Xs−

0
zÑ(ds,dz,du).(1.2)

SDEs similar to (1.2) were studied by Dawson and Li (2006, 2012) and by Fu and
Li (2010). See also Bertoin and Le Gall (2003, 2005) for related work.

We refer to Kyprianou (2006), Li (2011, 2012) and Pardoux (2016) for reviews
and literature on continuous-state branching processes.

1.2. Continuous-state branching processes with nonlinear branching. Models
with interactions have gained interests in the study of branching processes. Athreya
and Ney (1972) introduced population-size-dependent Galton–Watson branching
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processes in which the reproduction mechanism depends on the population size;
see also Klebaner (1984) and Höpfner (1985) for previous work on population-
size-dependent Galton–Watson processes. Another class of interacting Galton–
Watson processes is the so-called controlled branching processes. For a controlled
branching process, the reproduction law is fixed. But before each branching time,
the population is regulated by a control function. Previous work on controlled
branching processes can be found in Sevast’yanov and Zubkov (1974) and refer-
ences therein. A discrete state, continuous time branching process with population
dependent branching rate can be found in Chen (1997). When the branching rate
function is a power function of the population, the extinction probability for such a
branching process was obtained in Chen (2002). When the branching rate is a gen-
eral positive nonlinear function, such a model called nonlinear Markov branching
process was studied in Pakes (2007).

The previous work on discrete-state interacting branching processes motivates
the study of their continuous-state counterparts. Some population-size-dependent
continuous-state branching processes arising as scaling limits of the corresponding
discrete-state branching processes can be found in Li (2006, 2009).

In this paper, we introduce a class of continuous-state branching processes
whose branching rates depend on their current population sizes. To this end, we
consider a nonnegative solution to the following modification of SDE (1.2):

Xt = x +
∫ t

0
γ0(Xs)ds +

∫ t

0

∫ γ1(Xs−)

0
W(ds,du)

+
∫ t

0

∫ ∞
0

∫ γ2(Xs−)

0
zÑ(ds,dz,du),(1.3)

where γ0, γ1 and γ2 are Borel functions on R+, and both γ1 and γ2 take nonnega-
tive values. The unique nonnegative solution to (1.3) up to the minimum of its first
time of hitting 0 and its explosion time can be treated as a continuous-state nonlin-
ear branching process, where γi(x)/x, i = 1,2 can be interpreted as population-
size-dependent branching rates and the drift term involving γ0 can be related to
either competition or population-size-dependent continuous immigration. We re-
fer to Duhalde et al. (2014) for work on continuous-state branching processes with
immigration. If γi(x) = cix for c1, c2 ≥ 0, then the solution to (1.3) reduces to the
classical continuous-state branching process and satisfies the branching property
(1.1). Observe that the solution X to (1.3) can also be treated as a continuous-state
controlled branching process.

For γ2 ≡ 0, γ1(z) = z and γ0 satisfying certain conditions, the SDE (1.3) was
studied in Pardoux and Wakolbinger (2015) and in Pardoux (2016) where the func-
tion γ0 models an impact of the current population size on the individuals’ repro-
duction dynamics. If the interaction is of the type of competition for rare resources,
then increasing the population size results in a reduction of the individuals’ birth
rate and/or increment of the death rate.



2526 P.-S. LI, X. YANG AND X. ZHOU

For γ1(z) = γ2(z) = z and γ0(z) = θz−γ z2 with positive constants θ and γ , the
solution to SDE (1.3) can be used to model the density dependence in population
dynamics of a large population with competition called logistic branching process,
and it was studied in detail by Lambert (2005). The quadratic regulatory term
has an ecological interpretation as it describes negative interactions between each
pair of individuals in the population. The extinction behavior and the probability
distribution of the extinction time were considered in Lambert (2005). A similar
model with more general function γ0 was considered in Le et al. (2013) with its
first passage times studied. The total mass for this model was also studied using
the Lamperti transform. Berestycki et al. (2018) gave a genealogical description
for the process based on interactive pruning of Lévy-trees, and established a Ray–
Knight representation result.

For γ0(z) = γ2(z) ≡ 0, the extinction/survival behaviors for process X as the
total mass process of a superprocess with mean field interaction were discussed
in Wang et al. (2017) by a martingale approach. More generally, for γ2(z) ≡ 0
the extinction, explosion and coming down from infinity behaviors for the diffu-
sion process X are associated to the classification of its boundaries at 0 and ∞,
respectively; see Karlin and Taylor (1981), page 229.

For γi(z) = ciz
r with r > 0, c0 ∈ R and ci ≥ 0 for i = 1,2, the solution to SDE

(1.3), called a continuous-state polynomial branching process, was studied by Li
(2018), where the parameter r describes the degree of interaction. The polynomial
branching process also arises as time-space scaling limit of discrete-state nonlinear
branching processes. Intuitively, the functions γ1 and γ2 are population-dependent
rates for branching events producing small and large amounts of children, respec-
tively. By solving the corresponding Kolmogorov equations, necessary and suffi-
cient conditions in terms of integral tests were obtained for extinction, explosion
and coming down from infinity, respectively. Expectations of the extinction time
and explosion time were also discussed in Li (2018), which generalizes those re-
sults in Chen (2002) for discrete-state processes to the corresponding continuous-
state processes. The nonlinear branching processes considered in this paper gener-
alize those in Li (2018) by allowing different rates for different branching events.

Note that if Ñ is the compensated measure of a one-sided α-stable random
measure with α ∈ (1,2), that is,

(1.4) π(dz) = α(α − 1)

�(2 − α)
1{z>0}z−1−α dz

for the Gamma function �, then on an enlarged probability space, SDE (1.3) can
be transformed into the following SDE:

Xt = x +
∫ t

0
γ0(Xs)ds +

∫ t

0

√
γ1(Xs−)dBs

+
∫ t

0
γ2(Xs−)1/α

∫ ∞
0

uM̃(ds,du),(1.5)
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where {Bt : t ≥ 0} is a Brownian motion and {M̃(dt,du) : t, u ≥ 0} is an inde-
pendent compensated Poisson random measure with intensity measure dtπ(du);
see Theorem 9.32 in Li (2011) for a similar result. Equation (1.5) has a pathwise
unique nonnegative strong solution if γ0(z) = a1z+a2, γ1(z) = zr1 and γ1(z) = zr2

for a1 ∈ R, a2 ≥ 0, r1 ∈ [1/2,1] and r2 ∈ (α − 1, α]; see Corollary 4.3 in Li and
Mytnik (2011). By Theorem 4.1.2 in Li (2012), one can also convert (1.3) to an-
other SDE:

Xt = x +
∫ t

0
γ0(Xs)ds +

∫ t

0

√
γ1(Xs−)dBs +

∫ t

0

∫ ∞
0

uM̃γ2(ds,du),

where M̃γ2(ds,du) is an optional compensated Poisson measure with predictable
compensator γ2(Xs−)dsπ(du).

Using the Lamperti transform for positive self-similar Markov processes,
Berestycki et al. (2015) found the extinction condition of solution to (1.5) for

γ0(z) = θzηf (z), γ1(z) ≡ 0, γ2(z) = zαβ and

π(dz) = α(α − 1)

�(2 − α)
1{z>0}z−1−α dz

with α ∈ (1,2), θ ≥ 0, β ∈ [1 − 1/α,1), η = 1 − α(1 − β) ∈ [0,1) and for certain
nonnegative Lipschitz continuous function f . In particular, for f ≡ 1 it is shown
that the extinction occurs within finite time with probability one for 0 ≤ θ < �(α)

and with probability 0 for θ ≥ �(α); see Theorems 1.1 and 1.4 of Berestycki et al.
(2015).

We refer to Lambert (2005), Berestycki et al. (2010), Bansaye et al. (2016)
and Li (2018) for previous studies of coming down from infinity for a branching
process with logistic growth, coalescents, birth and death processes and the poly-
nomial branching process, respectively.

Other than the above mentioned results, we are not aware of any previous results
on hitting probability and coming down from infinity for solutions to SDEs of type
(1.3). There is some literature on nonexplosion of solutions to general SDEs with
jumps; see Dong (2018) for a recent result. But we do not find any systematic
discussions on the explosion/nonexplosion dichotomy and the coming down from
infinity property of the solutions.

The main purpose of this paper is to investigate the extinction, explosion and
coming down from infinity behaviors of the continuous-state nonlinear branching
process as solution to (1.3) and specify the associated conditions on the functions
γi , i = 0,1,2.

For lack of negative jumps, the extinction behaviors depend on the asymptotic
behaviors of the function γi(x) as x → 0+. Intuitively, extinction can either be
caused by a large enough negative drift due to γ0 or large enough fluctuations due
to γ1 or γ2. Even when the process has a (small) positive drift near 0, it might still
die out because of relatively large fluctuations.
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We are also interested in the relations between the asymptotics of the functions
γi(x), i = 0,1,2 as x → ∞ and the explosion and the coming down from infinity
behaviors of the nonlinear branching processes as solutions to SDE (1.3).

When γi , i = 0,1,2 are not power functions with the same power, the approach
of Li (2018) fails to work. To overcome this difficulty, we adopt an alternative
martingale approach that appeared earlier in Wang et al. (2017). Such an approach
typically involves understanding how the process exits from consecutive intervals
near 0 with the interval lengths decreasing geometrically, or consecutive intervals
near ∞ with the interval lengths increasing geometrically. To this end, we con-
struct the corresponding martingale in each situation. These martingales allow to
obtain estimates on both the sequential exit probabilities and sequential exit times
via optional stopping, where the lack of negative jumps for process X comes in
handy. The desired results then follow from Borel–Cantelli-type arguments. Al-
though we focus on SDEs of type (1.3), we expect that this approach could also
adapted to study similar properties of solutions to other SDEs with more general
jump mechanism, and it remains to be checked how sharp the desired results can
be.

In addition, we show that the general nonlinear branching processes considered
in this paper are closed under a Lamperti type transform, which allows us to dis-
cuss the finiteness of a weighted occupation time until extinction or explosion of
the continuous-state nonlinear branching process via considering the extinction or
explosion behaviors of the time changed process.

We also find Foster–Lyapunov-type criteria to show the irreducibility of the
nonlinear continuous-state branching processes, which is of independent interest.
We refer to Chen (2004) and Meyn and Tweedie (1993) for the Foster–Lyapunov-
type criteria for explosion and stability of Markov chains.

This paper is structured as follows. After introductions in Sections 1.1 and 1.2
on the continuous-state branching processes, Section 2 summarizes the main re-
sults of this paper with an application and examples, where our results are com-
pared with the known results. In Section 3, we show that SDE (1.3) has a unique
strong solution up to the first time of reaching 0 or explosion given that the func-
tions γi, i = 0,1,2 are locally Lipschitz on (0,∞). Section 4 contains Foster–
Lyapunov criteria-type results that can be used to show the irreducibility of the
solution as a Markov process. Proofs of the main results in Section 2 are included
in Section 5.

2. Extinction, explosion and coming down from infinity. With the conven-
tion inf∅ := ∞, for y > 0 define

τ−
y ≡ τ−(y) := inf{t > 0 : Xt < y}, τ+

y ≡ τ+(y) := inf{t > 0 : Xt > y}
and

τ−
0 := inf{t > 0 : Xt = 0}.
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By a solution to SDE (1.3), we mean a càdlàg process X = (Xt)t≥0 satisfying
(1.3) up to time τn := τ−

1/n ∧ τ+
n for each n ≥ 1 and Xt = lim supn→∞ Xτn− for

t ≥ τ := limn→∞ τn. Then both of the boundary points 0 and ∞ are absorbing for
X by definition.

Throughout this subsection, we assume that SDE (1.3) allows a unique weak
solution denoted by X := (Xt)t≥0, and consequently the process X has the strong
Markov property. In Theorem 3.1 we are going to show that (1.3) allows a pathwise
unique solution if the coefficient functions γi, i = 0,1,2 are all locally Lipschitz.
We also assume that either γ1 �≡ 0 or γ2 �≡ 0 and that the functions γ0, γ1 and γ2
are all locally bounded on [0,∞).

In the following, we present our main results on extinction, explosion and com-
ing down from infinity properties of process X. Most of the proofs are deferred to
Section 5.

For a > 0 and u > 0, let

(2.1)

Ha(u) :=
∫ ∞

0

[(
1 + zu−1)1−a − 1 − (1 − a)zu−1]

π(dz)

= a(a − 1)u−2
∫ ∞

0
z2π(dz)

∫ 1

0

(
1 + zu−1v

)−1−a
(1 − v)dv,

where we use the following form of Taylor’s formula that is often needed in the
proofs of this paper; see, for example, Zorich ((2004), page 364) for its proof.

LEMMA 2.1. If function g has a bounded continuous second derivative on
[0,∞), then for any y, z > 0 we have

g(y + z) − g(y) − zg′(y) = z2
∫ 1

0
g′′(y + zv)(1 − v)dv.

Note that for π(dz) = cz−1−α with α ∈ (1,2) and c > 0,

(2.2) Ha(u) = a(a − 1)u−α
∫ ∞

0
cy1−α dy

∫ 1

0
(1 + yv)−1−a(1 − v)dv.

Put

(2.3) Ga(u) := (a − 1)γ0(u)u−1 − 2−1a(a − 1)u−2γ1(u) − γ2(u)Ha(u).

We choose the function Ga to be of the particular form in (2.3) so that, by Ito’s
formula, the process constructed in Lemma 5.1 can be shown to be a martingale,
which is key for the main proofs in Section 5. The martingale allows to obtain
estimates on exits times of the processes X via optional stopping. The conditions
for extinction, explosion and coming down from infinity for the process X can
be identified from the asymptotic behaviors of Ga(u) for u near 0 or near ∞.
An earlier version of Ga can be found in Wang et al. (2017) where it was also
used to construct a continuous martingale to study the extinction behavior for the
interacting super-Brownian motion.
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REMARK 2.2. Suppose that π �= 0 and u ∈ (0, c) for some constant c > 0.
One can see that:

• If there exists a constant α ∈ (1,2) so that

sup
0<y<c

yα−2
∫ y

0
z2π(dz) ≤ b and sup

0<y<c

yα−1
∫ ∞
y

zπ(dz) ≤ b,

then

Ha(u) ≤ (a − 1)(a + 2)

2
bu−α for a > 1.

• If there exists a constant α ∈ (1,2) so that

inf
0<y<c

yα−2
∫ y

0
z2π(dz) ≥ b′,

then

−Ha(u) ≥ a(1 − a)

2
b′u−α for 0 < a < 1.

2.1. Extinction behaviors. We first present the two main results on the extinc-
tion behaviors for X. Here, we only consider the case that the initial value of X

is small. In this way, we only have to impose conditions on function G(u) for
small positive values of u. These results, combined with Foster–Lyapunov criteria
(Lemmas 4.1 and 4.2), can be used to discuss the extinction behaviors for X with
arbitrary initial value.

THEOREM 2.3. (i) If there exist constants a > 1 and r < 1 so that Ga(u) ≥
−(lnu−1)r for all small enough u > 0, then Px{τ−

0 < ∞} = 0 for all x > 0.
(ii) If there exist constants 0 < a < 1 and r > 1 so that Ga(u) ≥ (lnu−1)r for

all small enough u > 0, then Px{τ−
0 < ∞} > 0 for all small enough x > 0.

The proof of Theorem 2.3 is deferred to Section 5.
The next results concern the first passage probabilities for which we need the

following condition.

CONDITION 2.4. (i) For any x and a with x > a > 0,

(2.4) Px

{
τ−
a < ∞}

> 0.

(ii) For any x and a with x > a > 0,

(2.5) Px

{
τ−
a < ∞} = 1.

The proof of the next corollary is deferred to Section 5.
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COROLLARY 2.5. Suppose that the assumption of Theorem 2.3(ii) holds.
Then:

• Px{τ−
0 < ∞} > 0 for all x > 0 if Condition 2.4(i) further holds;

• Px{τ−
0 < ∞} = 1 for all x > 0 if Condition 2.4(ii) further holds.

For a ≤ b, define

�(a,b) := inf
y∈[a,b]γ1(y) + inf

y∈[a,b]γ2(y)1{∫ 1
0 zπ(dz)=∞}.

We can show that (i) or (ii) of Condition 2.4 hold under certain conditions on
γi, i = 0,1,2.

PROPOSITION 2.6. (i) Given x > a > 0, condition (2.4) holds if �(a,b) > 0
and supa≤y≤b γ0(y) < ∞ for all b > a.

(ii) Given x > a > 0, suppose that �(a,b) > 0 for all b > a and that γ0(y) ≤ 0
for all large enough y. Then condition (2.5) holds.

(iii) If γ0(a) ≤ 0 and �(a,b) > 0 for all b ≥ a > 0, then for each x > 0, Px -a.s.
Xt → 0 as t → ∞. Further, by the strong Markov property either

Px{Xt = 0 for all t large enough} = 1

or

Px{Xt → 0, but Xt > 0 for all t} = 1,

and we say extinguishing occurs in the latter case.

The proof of Proposition 2.6 is deferred to Section 4 after Lemma 4.2.

REMARK 2.7. (i) Combining Proposition 2.6 and Theorem 2.3(ii) we find
conditions for extinction with probability one and extinguishing with probability
one, respectively.

(ii) If γ0 = γ2 ≡ 0, then the process X is the total mass of an interacting super-
Brownian motion and Theorem 2.3 generalizes Theorems 3.4 and 3.5 of Wang et
al. (2017).

2.2. Explosion behaviors. Let τ+∞ := limn→∞ τ+
n be the explosion time. The

solution X to SDE (1.3) explodes at a finite time if τ+∞ < ∞. We now present
results on the explosion behaviors for X in the following, and again, we only con-
sider the case of large initial values.

THEOREM 2.8. (i) If there exist constants 0 < a < 1 and r < 1 so that
Ga(u) ≥ −(lnu)r for all u large enough, then Px{τ+∞ < ∞} = 0 for all x > 0.

(ii) If there exist a > 1 and r > 1 so that Ga(u) ≥ (lnu)r for all u large enough,
then Px{τ+∞ < ∞} > 0 for all large x.
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The proof of Theorem 2.8 is deferred to Section 5.

CONDITION 2.9. For any x and b with b > x > 0,

(2.6) Px

{
τ+
b < ∞}

> 0.

Putting Theorem 2.8(ii) and the above condition together we reach the following
remark.

REMARK 2.10. If Condition 2.9 and the assumption in Theorem 2.8(ii) hold,
then Px{τ+∞ < ∞} > 0 for all x > 0.

The proof for the next result is deferred to the end of Section 4.

PROPOSITION 2.11. Given b > x > 0, if there exists a ∈ (0, x) so that

inf
y∈[a,b]γ1(y) + inf

y∈[a,b]γ2(y) > 0,

then (2.6) holds.

2.3. Coming down from infinity. We say that the process X comes down from
infinity if

(2.7) lim
b→∞ lim

x→∞Px

{
τ−
b < t

} = 1 for all t > 0,

and it stays infinite if

lim
x→∞Px

{
τ−
b < t

} = 0 for all b, t > 0.

We first present equivalent conditions for coming down from infinity. From the
proof, one can see that they hold for any real-valued Markov processes with no
downward jumps.

PROPOSITION 2.12. The following statements are equivalent:

(i) Process X comes down from infinity.
(ii) limx→∞Ex[τ−

b ] < ∞ for all large b.
(iii)

(2.8) lim
b→∞ lim

x→∞Ex

[
τ−
b

] = 0.

PROOF. For the proof that (i) implies (ii), we refer to the proof of Theorem
1.11 of Li (2018).

Suppose that (ii) holds. Then for any x′ > b, we have

(2.9) lim
x→∞Ex

[
τ−
b

] = lim
x→∞

(
Ex

[
τ−
x′

] +Ex′
[
τ−
b

])
.

First, letting x′ → ∞, and then letting b → ∞ in (2.9), we obtain (2.8); (iii) thus
holds.

(i) follows from (iii) by the Markov inequality. �
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THEOREM 2.13. (i) If there exist constants a > 1 and r < 1 such that

(2.10) Ga(u) ≥ −(lnu)r

for all u large, then process X stays infinite.
(ii) If there exist constants 0 < a < 1, r > 1 such that

(2.11) Ga(u) ≥ (lnu)r

for all u large enough, then process X comes down from infinity.

The proof of Theorem 2.13 is deferred to Section 5.

REMARK 2.14. More recently, for the process X with γ0 = γ1 = γ2, the
speeds of coming down from infinity are studied in details in Foucart et al.
(2019) for the cases that either the function γi is regularly varying at infinity
or γi(x) = g(x)eθx for θ > 0 and function g that is regularly varying at infin-
ity.

2.4. An application: Weighted total population. Let γ be a strictly positive
function defined on [0,∞) that is bounded on any bounded interval. In the follow-
ing, we consider the weighted occupation time, or the weighted total population of
X before explosion, defined as

S :=
∫ τ−

0 ∧τ+∞

0
γ (Xs)ds.

For t ≥ 0, define

Ut :=
∫ t∧τ−

0 ∧τ+∞

0
γ (Xs)ds and Vt := inf{s > 0 : Us > t}.

Define the process X̄ ≡ {X̄t : t ≥ 0} by X̄t := XVt for Vt < ∞ and X̄t := X∞ :=
lim supt→∞ Xt for Vt = ∞. Define stopping times τ̄−

0 and τ̄+∞ similarly to τ−
0 and

τ+∞, respectively, with X replaced by X̄.
We first observe that with the above mentioned Lamperti-type transform, a time

changed solution to the generalized Dawson–Li equation (1.3) remains a solution
to another generalized Dawson–Li equation.

We leave the proof of the next result to the interested readers.

THEOREM 2.15. For i = 0,1,2 and y > 0 define γ̄i(y) := γi(y)/γ (y). Then
there exist, on an extended probability space, a Gaussian white noise {W0(ds,du) :
s ≥ 0, u > 0} with intensity ds du and an independent compensated Poisson ran-
dom measure {Ñ0(ds,dz,du) : s ≥ 0, z > 0, u > 0} with intensity dsπ(dz)du so
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that {X̄t : t ≥ 0} solves the following SDE:

X̄t = x +
∫ t

0
γ̄0(X̄s)ds +

∫ t

0

∫ γ̄1(X̄s)

0
W0(ds,du)

+
∫ t

0

∫ ∞
0

∫ γ̄2(X̄s−)

0
zÑ0(ds,dz,du)(2.12)

for 0 ≤ t < τ̄−
0 ∧ τ̄+∞.

We leave the proof of the next key observation to interested readers.

PROPOSITION 2.16. We have S = τ̄−
0 ∧ τ̄+∞.

REMARK 2.17. By Proposition 2.16 and Theorem 2.15, the finiteness for S is
translated into extinction and explosion behaviors for the time changed process X̄

for which we can apply Theorems 2.3 and 2.8. More details can be found later in
Example 2.23 in Section 2.5. If γ (x) = γ1(x) = γ2(x) ≡ x and γ0 satisfies certain
interaction condition, then the behaviors for S have been studied in Theorems 4.3.1
and 4.3.2 of Le (2014).

2.5. Processes with power branching rate functions. To obtain more explicit
results, in this subsection we only consider processes with power function branch-
ing rates, that is,

γi(x) = bix
ri , x > 0, i = 0,1,2,

for r0, r1, r2 ≥ 0, b0 ∈ R, b1, b2 ≥ 0, b1 + b2 > 0. In addition, we assume that the
measure π is defined in (1.4) with 1 < α < 2. Then for a > 0, by (2.2) and (2.3)
we have

Ga(u) = (a − 1)u−1b0u
r0 − 2−1a(a − 1)u−2b1u

r1

− a(a − 1)u−αb2u
r2cα,a.

The constant cα,a can be computed explicitly:

cα,a = �(α + a − 1)

�(1 + a)
.

Then clearly cα,1 = �(α).

EXAMPLE 2.18. In order to apply Theorems 2.3, 2.8 and 2.13, we only need
to compare powers and coefficients of the three terms in the polynomial Ga(u)

for 0 < a < 1 or a > 1, respectively. To handle the critical case of r1 = r0 + 1 or
(and) r2 = r0 + α − 1 where some terms have the same power, we further choose
the value of a close enough to 1 to obtain the best possible results. For instance, if
both r1 = r0 + 1 and r2 = r0 + α − 1 hold, for b0 > b1/2 + cα,1b2, we choose the
constant a satisfying 1 < a < b0/(b1/2 + cα,ab2), and for b0 < b1/2 + cα,1b2, we
choose the constant a satisfying (b0/(b1/2 + cα,ab2)) ∨ 0 < a < 1.
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By Theorem 2.3 and Proposition 2.6, we can obtain explicit and very sharp
conditions of extinction/nonextinction for the process X in Example 2.18.

For nonextinction, we have Px{τ−
0 = ∞} = 1 for all x > 0 if one of the follow-

ing two sets of conditions holds:

(i) b0 ≤ 0 and all of the following hold:

(ia) if b0 < 0, then r0 ≥ 1;
(ib) if b1 > 0, then r1 ≥ 2;
(ic) if b2 > 0, then r2 ≥ α;

(ii) b0 > 0 and all of the following hold:

(iia) if b1 > 0, then r1 ≥ (r0 + 1) ∧ 2;
(iib) if b2 > 0, then r2 ≥ (r0 − 1 + α) ∧ α;
(iic)

b0 >
b1

2
1{r1=r0+1<2} + �(α)b21{r2=r0+α−1<α}.

In addition, under condition (i), for all x > 0

Px

{
τ−

0 = ∞ and Xt → 0 as t → ∞} = 1,

that is, extinguishing occurs.
For extinction with a positive probability, we have Px{τ−

0 < ∞} > 0 for all
x > 0 if one of the following two sets of conditions holds:

(i) b0 ≤ 0 and at least one of the following hold:

(ia) b0 < 0 and r0 < 1;
(ib) b1 > 0 and r1 < 2;
(ic) b2 > 0 and r2 < α.

(ii) b0 > 0 and at least one of the following hold:

(iia) b1 > 0 and r1 < (r0 + 1) ∧ 2;
(iib) b2 > 0 and r2 < (r0 + α − 1) ∧ α;
(iic)

b0 <
b1

2
1{r1=r0+1<2} + �(α)b21{r2=r0+α−1<α}.

In addition, Px{τ−
0 < ∞} = 1 for all x > 0 under condition (i).

REMARK 2.19. Note that the above Condition (iic) for Px{τ−
0 = ∞} = 1 and

the above Condition (iic) for Px{τ−
0 < ∞} > 0 agree with the corresponding re-

sults in Berestycki et al. (2015); see the corresponding comments in Section 1.2.
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By Theorem 2.8 and Proposition 2.11, we obtain rather sharp conditions of
explosion/nonexplosion for the process X in Example 2.18.

For nonexplosion we have Px{τ+∞ < ∞} = 0 for all x > 0 if either b0 ≤ 0 or at
least one of the following is true:

(i) b0 > 0 and r0 ≤ 1.
(ii) b0 > 0, r0 > 1 and at least one of the following hold:

(iia) b1 > 0 and r1 > r0 + 1;
(iib) b2 > 0 and r2 > r0 + α − 1;
(iic)

b0 <
b1

2
1{r1=r0+1} + �(α)b21{r2=r0+α−1}.

For explosion with a positive probability, we have Px{τ+∞ < ∞} > 0 for all
x > 0 if b0 > 0, r0 > 1 and all of the following hold:

(i) if b1 > 0, then r1 ≤ r0 + 1;
(ii) if b2 > 0, then r2 ≤ r0 + α − 1;

(iii)

b0 >
b1

2
1{r1=r0+1} + �(α)b21{r2=r0+α−1}.

Similarly, by Theorem 2.13 we obtain rather sharp conditions for coming down
from infinity.

The process X in Example 2.18 comes down from infinity if one of the follow-
ing holds:

(i) b0 ≤ 0 and at least one of the following hold:

(ia) b0 < 0 and r0 > 1;
(ib) b1 > 0 and r1 > 2;
(ic) b2 > 0 and r2 > α.

(ii) b0 > 0 and at least one of the following hold:

(iia) b1 > 0 and r1 > (r0 + 1) ∨ 2;
(iib) b2 > 0 and r2 > (r0 + α − 1) ∨ α;
(iic)

b0 <
b1

2
1{r1=r0+1>2} + �(α)b21{r2=r0+α−1>α}.

The process X in Example 2.18 stays infinite if at least one of the following
hold:

(i) b0 ≤ 0 and all of the following hold:

(ia) if b0 < 0, then r0 ≤ 1;
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(ib) if b1 > 0, then r1 ≤ 2;
(ic) if b2 > 0, then r2 ≤ α.

(ii) b0 > 0 and all of the following hold:

(iia) if b1 > 0, then r1 ≤ (r0 + 1) ∨ 2;
(iib) if b2 > 0, then r2 ≤ (r0 + α − 1) ∨ α;
(iic)

b0 >
b1

2
1{r1=r0+1>2} + �(α)b21{r2=r0+α−1>α}.

From the above example, we make the following observations.

REMARK 2.20. (i) There is no extinction if the process X has a small enough
negative drift together with small enough fluctuations near 0. If X has a positive
drift, then the requirements on the fluctuations are weaker. Extinction happens with
a positive probability if X has either a large enough negative drift or large enough
fluctuations near 0. Even if X has a small positive drift near 0, extinction can still
happen with a positive probability if the fluctuations are large enough.

(ii) The explosion is caused by a large enough drift associated with the function
γ0. The fluctuations of the process X associated with the functions γ1 and γ2 can-
not cause explosion. But large enough fluctuations can prevent the explosion from
happening.

(iii) A large enough negative drift or large enough fluctuations near infinity can
cause coming down from infinity. Even if the process X has a positive drift, large
enough fluctuations can still cause coming down from infinity. On the other hand,
the process X with a moderate negative drift and moderate fluctuations near infin-
ity stays infinite, and if it allows large fluctuations, with a large enough positive
drift it can still stay infinite.

REMARK 2.21. If b2 = 0, then X is a diffusion whose explosion behavior is
characterized by Feller’s criterion; see, for example, Corollary 4.4 of Cherny and
Engelbert (2005). One can check that the explosion/nonexplosion conditions in
Example 2.18 are consistent with it.

REMARK 2.22. Example 2.18 recovers, for the case with spectrally positive
stable Lévy measure specified in (1.4), the integral tests for extinction, explosion
and coming down from infinity in Theorems 1.7, 1.9 and 1.11 of Li (2018), which
were proved using a very different approach. Recall that the continuous-state poly-
nomial branching process in Li (2018) is the process X with power branching
rate functions satisfying ri = r , i = 0,1,2. By Example 2.18, we have for the
continuous-state polynomial branching process:

• Px{τ−
0 < ∞} > 0 for all x > 0, that is, extinction occurs if and only if

2 · 1{b1 �=0} + α · 1{b1=0,b2 �=0} > r;
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• Px{τ+∞ < ∞} > 0 for all x > 0, that is, explosion occurs if and only if b0 > 0
and r > 1;

• The process X comes down from infinity if and only if b0 ≤ 0 and

1{b0 �=0} + α · 1{b0=0,b2 �=0} + 2 · 1{b0=0,b1 �=0,b2=0} < r;
which agree the integral tests in Li (2018).

The next example is on the finiteness of the weighted total population S of X in-
troduced in Section 2.4. The next results follow from Remark 2.17, Theorem 2.15
and Example 2.18.

EXAMPLE 2.23. Let γ (x) = xr for 0 < r < min{r0, r1, r2} in Theorem 2.15.
Observe that Px{S = τ̄−

0 ∧ τ̄+∞ = ∞} = 1 if and only if Px{τ̄−
0 = ∞} = 1 and

Px{τ̄+∞ = ∞} = 1. The conditions for Px{S < ∞} = Px{τ̄−
0 ∧ τ̄+∞ < ∞} = 0 for

x > 0 can be found in Example 2.18.
Similarly, observe that Px{τ̄−

0 ∧ τ̄+∞ < ∞} > 0 if and only if Px{τ̄−
0 < ∞} > 0

or Px{τ̄+∞ < ∞} > 0. Then the conditions for Px{S < ∞} > 0 can also be found in
Example 2.18.

3. Existence and uniqueness of solutions. In this section, we find conditions
on the functions γi , i = 0,1,2 under which SDE (1.3) has a pathwise unique solu-
tion X, and consequently X is a Markov process. For this purpose, we only need
the functions γi , i = 0,1,2 to be locally Lipschitz because we only consider the
solutions up to the first time of hitting 0 or explosion.

THEOREM 3.1. Suppose that the functions γi , i = 0,1,2 are locally Lipschitz;
that is, for each closed interval A ⊂ (0,∞), there is a constant c(A) > 0 so that
for any x, y ∈ A,∣∣γ0(x) − γ0(y)

∣∣ + ∣∣γ1(x) − γ1(y)
∣∣ + ∣∣γ2(x) − γ2(y)

∣∣ ≤ c(A)|x − y|.
Then:

(i) For any initial value X0 = x ≥ 0, there exists a pathwise unique solution
(defined at the beginning of Section 2) to SDE (1.3).

(ii) If in addition, γ2 is an increasing function, then for any y ≥ x ∈ [0,∞)

and solutions Xx := (Xx
t )t≥0 and Xy := (X

y
t )t≥0 to SDE (1.3) with Xx

0 = x and
X

y
0 = y, we have

P
{
X

y
t ≥ Xx

t for all t ≥ 0
} = 1.

PROOF. (i) We prove the result by an approximation argument. For each n ≥ 1
and i = 0,1,2, define

γ n
i (x) :=

⎧⎪⎪⎨
⎪⎪⎩

γi(n), n < x < ∞,

γi(x), 1/n ≤ x ≤ n,

γi(1/n), 0 ≤ x < 1/n.
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By pages 245–246 in Ikeda and Watanabe (1989), for each n ≥ 1, there is a unique
strong solution (ξn

t )t≥0 to

ξn
t = x +

∫ t

0
γ n

0
(
ξn
s

)
ds +

∫ t

0

∫ γ n
1 (ξn

s )

0
W(ds,du)

+
∫ t

0

∫ ∞
0

∫ γ n
2 (ξn

s−)

0
zÑ(ds,dz,du).(3.1)

For m,n ≥ 1, define stopping time

τn
m := inf

{
t ≥ 0 : ξn

t ≥ m or ξn
t ≤ 1/m

}
.

Then we have ξn
t = ξm

t for t ∈ [0, τm∧n
m∧n ) and τn+i

n = τn
n , i = 1,2, . . . . Clearly, the

sequence of stopping times {τn
n } is increasing in n. Let τ := limn→∞ τn

n . We define
the process X := (Xt)t≥0 by Xt = ξn

t for t ∈ [0, τ n
n ) and Xt = lim supn→∞ ξn

τn
n

for
t ∈ [τ,∞). Then

τn
n := inf{t ≥ 0 : Xt ≥ n or Xt ≤ 1/n}

and X is a solution of (1.3). Since the pathwise uniqueness of the solution holds
for (3.1) in the time interval [0, τ n

n ) for each n ≥ 1, there exists a pathwise unique
solution to (1.3).

(ii) Let (ξx
n (t))t≥0 denote the solution of (3.1) to indicate its dependence on

the initial state. To apply Theorem 2.2 in Dawson and Li (2012), we identify the
notation in Dawson and Li (2012) with that in this paper in the following equations,
where the notation on the left-hand sides comes from Dawson and Li (2012) and
that on the right-and sides is from the present paper,

E = (0,∞), U0 = (0,∞)2, π(du) = du, g1(x, z, u) ≡ 0,

μ0(dz,du) = π(dz)du, Ñ0(ds,dz,du) = Ñ(ds,dz,du)

and

b(x) = b1(x) = γ n
0 (x), σ (x,u) = 1{u≤γ n

1 (x)}, g0(x, z, u) = z1{u≤γ n
2 (x)}.

Then conditions (2.a, b, c) in Dawson and Li (2012) are satisfied due to the Lips-
chitz properties of γ n

i for i = 0,1,2. Let

l0(x, y,u) := 1{u≤γ2(x)} − 1{u≤γ2(y)}.
Since the function γ2(x) is nondecreasing in x, then for x < y we have

I (x, y) :=
∫ ∞

0
du

∫ 1

0

l0(x, y,u)2(1 − t)1{|l0(x,y,u)|≤n}
|(x − y) + t l0(x, y,u)| dt

=
∫ γ2(y)

γ2(x)
du

∫ 1

0

1 − t

|(x − y) − t | dt

≤ (
γ2(y) − γ2(x)

)(
ln(y − x + 1) − ln(y − x)

)
< ∞.
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Similarly, I (x, y) < ∞ for all x ≥ y. Then condition (2.d) of Theorem 2.2 in Daw-
son and Li (2012) holds. Now for any y ≥ x ≥ 0, by Theorem 2.2 in Dawson and
Li (2012) we can show that ξ

y
n (t) ≥ ξx

n (t) a.s. for all n and t ≥ 0. Consequently,
X

y
t ≥ Xx

t a.s. for all t ≥ 0. �

Throughout the rest of this paper, we always assume that SDE (1.3) has a unique
weak solution which is a Markov process.

REMARK 3.2. The solution to SDE (1.3) also arises as the weak limit in the
Skorokhod space D([0,∞),R+) for a sequence of discrete-state and continuous-
time Markov chains that can be interpreted as discrete-state branching processes
with population dependent branching rates; see Li et al. (2018) for more details.

4. Foster–Lyapunov criteria for extinction and explosion. In this section,
we first present Foster–Lyapunov criteria-type results for the process X which gen-
eralize a similar result for Markov chains; see Chen (2004), page 84.

Let C2[0,∞) be the space of twice continuously differentiable functions on
[0,∞). Define the operator L on C2[0,∞) by

Lg(y) := γ0(y)g′(y) + 1

2
γ1(y)g′′(y)

+ γ2(y)

∫ ∞
0

(
g(y + z) − g(y) − zg′(y)

)
π(dz).

LEMMA 4.1. Given a ≥ 0, let g ∈ C2[0,∞) be a nonnegative function satis-
fying the following conditions:

(i) supy∈[a,b) |Lg(y)| < ∞ for all b > a, that is, Lg is locally bounded on
[a,∞);

(ii) supy∈[a,∞) g(y) < ∞;
(iii) g(a) > 0 and limy→∞ g(y) = 0;
(iv) For all b > a, there is a constant db > 0 so that Lg(y) ≥ dbg(y) for all

y ∈ (a, b).

Then for any x > a, we have

(4.1) Px

{
τ−
a < ∞} ≥ g(x)/g(a).

PROOF. For any b > x > a, by Itô’s formula and conditions (i) and (ii), we
have

g(Xt∧τ−
a ∧τ+

b
) = g(x) +

∫ t∧τ−
a ∧τ+

b

0
Lg(Xs)ds + mart.

Taking expectations on both sides, we have

Ex

[
g(Xt∧τ−

a ∧τ+
b
)
] = g(x) +

∫ t

0
Ex

[
Lg(Xs)1{s<τ−

a ∧τ+
b }

]
ds.
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By integration by parts,∫ ∞
0

e−dbtEx

[
Lg(Xt)1{t<τ−

a ∧τ+
b }

]
dt

=
∫ ∞

0
e−dbt dEx

[
g(Xt∧τ−

a ∧τ+
b
)
]

= db

∫ ∞
0

e−dbtEx

[
g(Xt∧τ−

a ∧τ+
b
)
]
dt − g(x).

Then by (iv),

db

∫ ∞
0

e−dbtEx

[
g(Xt∧τ−

a ∧τ+
b
)
]
dt − g(x)

≥ db

∫ ∞
0

e−dbtEx

[
g(Xt)1{t<τ−

a ∧τ+
b }

]
dt.

It follows that

g(x) ≤ db

∫ ∞
0

e−dbtEx

[
g(Xτ−

a ∧τ+
b
)1{t≥τ−

a ∧τ+
b }

]
dt

≤ g(a)Px

{
τ−
a < ∞} + sup

y≥b

g(y).

Inequality (4.1) thus follows by letting b → ∞ and (iii). �

The proof for the next lemma is similar to that of Lemma 4.1 and we omit it.

LEMMA 4.2. Given 0 < x < b, suppose there exist constants a ∈ [0, x), d > 0
and a function g ∈ C2[0,∞) satisfying the following conditions:

(i) supy∈[a,b] |Lg(y)| < ∞;
(ii) supy∈[a,b) |g(y)| < ∞;

(iii) g(a) = 0 and g(x) > 0;
(iv) Lg(y) ≥ dg(y) for all y ∈ [a, b].

Then we have Px{τ+
b < ∞} > 0.

As applications of Lemmas 4.1 and 4.2, we prove Propositions 2.6 and 2.11 in
this section.

PROOF OF PROPOSITION 2.6.. (i) Let g(y) = e−λy with λ > 0 large enough.
Note that g satisfies the conditions of Lemma 4.1. Then by Lemma 2.1, we have
uniformly for all a < y < b,

Lg(y) ≥ λe−λy

{
− sup

a≤z≤b

(
γ0(z) ∨ 0

) + λ

2
inf

a≤z≤b
γ1(z)

+ λ inf
a≤z≤b

γ2(z)

∫ ∞
0

z2π(dz)

∫ 1

0
e−λzu(1 − u)du

}
.(4.2)
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Observe that

λ

∫ ∞
0

z2π(dz)

∫ 1

0
e−λzu(1 − u)du

≥ 2−1λ

∫ ∞
0

z2π(dz)

∫ 1/2

0
e−λzu du

≥ 2−1
∫ ∞

0
z
(
1 − e−λz/2)

π(dz)

≥ 2−1(
1 − e−1/2) ∫ ∞

1/λ
zπ(dz)

converges to
∫ ∞

0 zπ(dz) = ∞ as λ → ∞. It then follows that for each b > a there
is a constant db(λ) > 0 so that

(4.3) Lg(y) ≥ db(λ)e−λy, a < y < b

as λ large enough. Thus by Lemma 4.1, for x > a and large enough λ,

(4.4) Px

{
τ−
a < ∞} ≥ e−λ(x−a) > 0,

which gives (2.4).
(ii) Suppose that there is a constant c > 0 so that γ0(y) ≤ 0 for all y ≥ c. Similar

to the argument in (4.2) and (4.3), given any λ > 0, uniformly for c ∨ a < y < b,
we have

Lg(y) ≥ λ2

2
γ1(y)e−λy + λ2γ2(y)e−λy

∫ ∞
0

z2π(dz)

∫ 1

0
e−λzu(1 − u)du

≥ d ′
b(λ)e−λy

for some constant d ′
b(λ) > 0. It follows again from Lemma 4.1 that for all λ > 0,

Px

{
τ−
l < ∞} ≥ e−λ(x−l) > 0, x > l ≥ c ∨ a.

Letting λ → 0, we have

(4.5) Px

{
τ−
l < ∞} = 1, x > l ≥ c ∨ a.

It follows from (4.4) that for large enough λ,

(4.6) Px

{
τ−
a < ∞} ≥ e−λ(x−a), x > a.

For any x > a > 0 and t > 0, combining (4.5) and (4.6), by the strong Markov
property, we have

Px

{
τ−
a < ∞}
= Px

{
τ−
a < t

} +
∫ c∨a

a
Px

{
t ≤ τ−

a < ∞, Xt ∈ dz
}
Pz

{
τ−
a < ∞}



NONLINEAR BRANCHING PROCESS 2543

+
∫ ∞
c∨a

Px

{
t ≤ τ−

a < ∞, Xt ∈ dz
}
Pz

{
τ−
a < ∞}

≥ Px

{
τ−
a < t

} +
∫ c∨a

a
Px

{
t ≤ τ−

a < ∞, Xt ∈ dz
}
Pc∨a

{
τ−
a < ∞}

+
∫ ∞
c∨a

Px

{
t ≤ τ−

a < ∞, Xt ∈ dz
}
Pc∨a

{
τ−
a < ∞}

≥ Px

{
τ−
a < t

} + e−λ(c∨a−a)(1 − Px

{
τ−
a < t

})
.(4.7)

Letting t → ∞ in (4.7), we have Px{τ−
a < ∞} = 1. The desired result then follows.

(iii) For any small enough ε > 0, let

An := {
τ−(

εn+1)
< ∞, τ+

ε ◦ θτ−(εn+1) < τ−(
εn+2) ◦ θτ−(εn+1)

}
, n ≥ 1.

Since γ0(y) ≤ 0 for all y ∈R, then (Xt)t≥0 is a supermartingale, which implies

εn+1 = Xτ−(εn+1) ≥ Eεn+1[Xτ+
ε ∧τ−(εn+2)] ≥ εPεn+1

{
τ+
ε < τ−

εn+2

}
by optional stopping. Thus,

Px{An} ≤ Ex

[
Pτ−(εn+1)

{
τ+
ε < τ−

εn+2

}] ≤ εn.

It follows from the Borel–Cantelli lemma that Px{An i.o.} = 0. Therefore, by
Proposition 2.6(ii), we have Px -a.s. Xt < ε for all t large enough and the desired
result follows. �

PROOF OF PROPOSITION 2.11. Observe that there is a constant b′ > 0 so that∫ b′
0 z2π(dz) > 0. Let

m0 := sup
y∈[a,b]

∣∣γ0(y)
∣∣ < ∞, m1 = inf

y∈[a,b]γ1(y) and m2 = inf
y∈[a,b]γ2(y).

Since m1 ∨ m2 > 0, there exists a large enough constant c > 0 so that

−cm0 + 1

2
c2m1 + 1

2
c2m2

∫ b′

0
z2π(dz) ≥ 1.

Let g be a convex function, that is, g′′(y) ≥ 0, satisfying g(y) = ecy − eca for
y ∈ [a, b + b′] and g′′(y) = 0 for y > b + b′ + 1. Then by Lemma 2.1, it is easy to
see that ∫ ∞

0

(
g(y + z) − g(y) − zg′(y)

)
π(dz)

=
∫ b+b′+1

0

(
g(y + z) − g(y) − zg′(y)

)
π(dz)

+
∫ ∞
b+b′+1

(
g(y + z) − g(y) − zg′(y)

)
π(dz)

≤ 1

2
sup

y∈[a,b+b′+1]
g′′(y)

∫ b+b′+1

0
z2π(dz),
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which implies that condition (i) in Lemma 4.2 is satisfied. Observe that for any
y ∈ [a, b], we have∫ ∞

0

(
g(y + z) − g(y) − zg′(y)

)
π(dz)

≥
∫ b′

0

(
g(y + z) − g(y) − zg′(y)

)
π(dz)

= ecy
∫ b′

0

(
ecz − 1 − cz

)
π(dz) ≥ 1

2
c2ecy

∫ b′

0
z2π(dz).

Therefore, for any y ∈ [a, b], we have

Lg(y) = γ0(y)g′(y) + 1

2
γ1(y)g′′(y)

+ γ2(y)

∫ ∞
0

(
g(y + z) − g(y) − zg′(y)

)
π(dz)

≥ γ0(y)cecy + c2

2
γ1(y)ecy + c2

2
γ2(y)ecy

∫ b′

0
z2π(dz)

≥ ecy

[
−cm0 + c2

2
m1 + c2

2
m2

∫ b′

0
z2π(dz)

]
≥ eCy ≥ g(y).

Applying Lemma 4.2 yields Px{τ+
b < ∞} > 0. �

5. Proofs of the main results in Section 2. Recall the definitions of Ha and
Ga in (2.1) and (2.3), respectively. We now present the martingales we use to
show the main results on extinction, explosion and coming down from infinity. It
is remarkable that such a martingale is enough to show all the main results in this
paper. Some other forms of martingales can only be used to prove partial results.

LEMMA 5.1. For b > ε > c > 0 let T := τ−
c ∧ τ+

b . Then the process

X1−a
t∧T exp{∫ t∧T

0 Ga(Xs)ds} is an (Ft )-martingale and

Eε

[
X1−a

T exp
{∫ T

0
Ga(Xs)ds

}]
≤ ε1−a

for a > 0, a �= 1.

PROOF. By Itô’s formula, we can see that

X1−a
t = X1−a

0 −
∫ t

0
Ga(Xs)X

1−a
s ds + (1 − a)

∫ t

0

∫ γ1(Xs)

0
X−a

s W(ds,du)

+
∫ t

0

∫ ∞
0

∫ γ2(Xs−)

0

[
(Xs− + z)1−a − X1−a

s−
]
Ñ(ds,dz,du),
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and it then follows from the integration by parts formula (see, e.g., Protter (2005),
page 68) that

X1−a
t exp

{∫ t

0
Ga(Xs)ds

}

= X1−a
0 +

∫ t

0
X1−a

s exp
{∫ s

0
Ga(Xu)du

}
Ga(Xs)ds

+
∫ t

0
exp

{∫ s

0
Ga(Xu)du

}
d
(
X1−a

s

)
= X1−a

0 + local mart.

Therefore,

(5.1) t �→ X1−a
t∧T exp

{∫ t∧T

0
Ga(Xs)ds

}

is a local martingale. By Protter ((2005), page 38), (5.1) is a martingale if

(5.2) Eε

[
sup

t∈[0,δ]
X1−a

t∧T exp
{∫ t∧T

0
Ga(Xs)ds

}]
< ∞

for each δ > 0. Observe that for 0 ≤ t ≤ δ

exp
{∫ t∧T

0
Ga(Xs)ds

}

is uniformly bounded from above by a positive constant. Then (5.2) is obvious for
a > 1. In the following, we consider the case a < 1. By the Burkholder–Davis–
Gundy inequality, we have

Eε

[
sup

t∈[0,δ]

∣∣∣∣
∫ t∧T

0

∫ γ1(Xs−)

0
W(ds,du)

∣∣∣∣2
]

≤ CEε

[∫ δ∧T

0
ds

∫ γ1(Xs−)

0
du

]
≤ Cδ sup

x∈[0,b]
γ1(x)(5.3)

and

Eε

[
sup

t∈[0,δ]

∣∣∣∣
∫ t∧T

0

∫ 1

0

∫ γ2(Xs−)

0
zÑ(ds,dz,du)

∣∣∣∣2
]

≤ CEε

[∫ δ∧T

0
ds

∫ 1

0
z2π(dz)

∫ γ2(Xs−)

0
du

]

≤ Cδ

∫ 1

0
z2π(dz) sup

x∈[0,b]
γ2(x).(5.4)
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Observe that

Eε

[
sup

t∈[0,δ]

∣∣∣∣
∫ t∧T

0

∫ ∞
1

∫ γ2(Xs−)

0
zÑ(ds,dz,du)

∣∣∣∣
]

≤ Eε

[
sup

t∈[0,δ]

∣∣∣∣
∫ t∧T

0

∫ ∞
1

∫ γ2(Xs−)

0
zN(ds,dz,du)

∣∣∣∣
]

+Eε

[
sup

t∈[0,δ]

∣∣∣∣
∫ t∧T

0
ds

∫ ∞
1

zπ(dz)

∫ γ2(Xs−)

0
du

∣∣∣∣
]

≤ 2δ

∫ ∞
1

zπ(dz) sup
x∈[0,b]

γ2(x).(5.5)

It then follows from (1.3) and (5.3)–(5.5) that Eε[supt∈[0,δ] Xt∧T ] < ∞, which
implies (5.2). Now by Fatou’s lemma, we get

Eε

[
X1−a

T exp
{∫ T

0
Ga(Xs)ds

}]
= Eε

[
lim

t→∞X1−a
t∧T exp

{∫ t∧T

0
Ga(Xs)ds

}]

≤ lim
t→∞Eε

[
X1−a

t∧T exp
{∫ t∧T

0
Ga(Xs)ds

}]

= ε1−a,

which completes the proof. �

PROOF OF THEOREM 2.3. (i) In the present proof for n = 2,3, . . . , let Tn :=
τ−(εn) ∧ τ+

b for small enough 0 < ε < b. It follows from Lemma 5.1 that

ε1−a ≥ Eε

[
X1−a

τ−(εn)∧τ+(b)
exp

{−(
ln ε−n)r

(τ−(
εn) ∧ τ+(b)

}]
≥ Eε

[
X1−a

τ−(εn)
exp

{−(
ln ε−n)r

dn

}
1{τ−(εn)<τ+

b ∧dn}
]

= ε(1−a)n exp
{
ln εn(a−1)/2}

Pε

{
τ−(

εn)
< τ+

b ∧ dn

}
,

where

dn := ln εn(a−1)/2

−(ln ε−n)r
= n(a − 1)/2 ln ε−1

nr(ln ε−1)r
→ ∞

as n → ∞. Then

Pε

{
τ−(

εn)
< τ+

b ∧ dn

} ≤ ε(a−1)(n−2)/2.

By the Borel–Cantelli lemma, we have

(5.6) Pε

{
τ−(

εn)
< τ+

b ∧ dn i.o.
} = 0.

Then Pε-a.s.,

τ−(
εn) ≥ τ+

b ∧ dn

for all n large enough.
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Now if there are infinitely many n so that

(5.7) τ−(
εn) ≥ dn,

then we have τ−
0 = ∞; on the other hand, if (5.7) holds for at most finitely many

n, then by (5.6) we have τ+
b < τ−(εn) for all n large enough. Combining these two

cases,

(5.8) Pε

{
τ−

0 = ∞ or τ+
b < τ−

0 < ∞} = 1.

It follows from the Markov property and lack of negative jumps for X that if
Eε[e−λτ−

0 ; τ−
0 < ∞] > 0 for λ > 0, then

Eε

[
e−λτ−

0 ; τ−
0 < ∞] = Eε

[
e−λτ−

0 ; τ+
b < τ−

0 < ∞]
≤ Eε

[
e−λτ+

b ; τ+
b < τ−

0

]
Eb

[
e−λτ−

ε ; τ−
ε < ∞]

×Eε

[
e−λτ−

0 ; τ−
0 < ∞]

< Eε

[
e−λτ−

0 ; τ−
0 < ∞]

,

where we need (5.8) for the first equation. Therefore, Eε[e−λτ−
0 ; τ−

0 < ∞] = 0 and
consequently, Pε{τ−

0 < ∞} = 0.
One can also find similar arguments in the proof of Theorem 4.2.2 in Le (2014)

and the proof of Theorem 2.8(2) in Le and Pardoux (2015).
(ii) Given 0 < δ < 1

3−2a
, consider the martingale

X1−a
t∧T exp

{∫ t∧T

0
Ga(Xs)ds

}

for T = τ−(ε1+δ) ∧ τ+(ε1−δ). By Lemma 5.1,

ε1−a ≥ Eε

[
X1−a

τ+(ε1−δ)
exp

{∫ τ+(ε1−δ)

0
Ga(Xs)ds

}
1{τ+(ε1−δ)<τ−(ε1+δ)}

]

≥ ε(1−a)(1−δ)
Pε

{
τ+(

ε1−δ) < τ−(
ε1+δ)}.

Then

(5.9) Pε

{
τ+(

ε1−δ) < τ−(
ε1+δ)} ≤ ε(1−a)δ.

Similarly,

ε1−a ≥ Eε

[
X1−a

t exp
{∫ t

0
Ga(Xs)ds

}
1{τ+(ε1−δ)=τ−(ε1+δ)=∞}

]
.

Letting t → ∞, we have

(5.10) Pε

{
τ+(

ε1−δ) = τ−(
ε1+δ) = ∞} = 0.
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By Lemma 5.1 again, for t (ε) := [−(1 − δ) ln ε]1−r we have

ε1−a ≥ Eε

[
X1−a

τ−(ε1+δ)
exp

{∫ τ−(ε1+δ)

0
Ga(Xs)ds

}
1{t (ε)<τ−(ε1+δ)<τ+(ε1−δ)}

]

≥ ε(1−a)(1+δ)
Eε

[
e[−(1−δ) lnε]r t (ε)1{t (ε)<τ−(ε1+δ)<τ+(ε1−δ)}

]
= ε(1−a)(1+δ)ε−(1−δ)

Pε

{
t (ε) < τ−(

ε1+δ) < τ+(
ε1−δ)}.

Then

(5.11) Pε

{
t (ε) < τ−(

ε1+δ) < τ+(
ε1−δ)} ≤ ε(a−1)δε1−δ = ε1+(a−2)δ.

Combining (5.9), (5.10) and (5.11), we have

Pε

{
τ−(

ε1+δ) > t(ε)
} ≤ ε1+(a−2)δ + ε(1−a)δ < 2ε(1−a)δ.

By the strong Markov property and lack of negative jumps for process X,

Pε

{
m⋂

n=0

{
τ−(

ε(1+δ)n) < ∞, τ−(
ε(1+δ)n+1) ◦ θτ−(ε(1+δ)n ) ≤ t

(
ε(1+δ)n)}}

=
m∏

n=0

Pε(1+δ)n
{
τ−(

ε(1+δ)n+1) ≤ t
(
ε(1+δ)n)} ≥

m∏
n=0

[
1 − 2ε(1+δ)n(1−a)δ]

≥
m∏

n=0

e−4ε(1+δ)n(1−a)δ ≥ e−8ε(1−a)δ

.

Letting m → ∞, we have

Pε

{ ∞⋂
n=0

{
τ−(

ε(1+δ)n) < ∞, τ−(
ε(1+δ)n+1) ◦ θτ−(ε(1+δ)n ) ≤ t

(
ε(1+δ)n)}}

≥ e−8ε(1−a)δ

.

Since under Pε ,

τ−
0− =

∞∑
n=0

τ−(
ε(1+δ)n+1) ◦ θτ−(ε(1+δ)n ),

then

Pε

{
τ−

0− ≤
∞∑

n=0

t
(
ε(1+δ)n)} ≥ e−8ε(1−a)δ

.

Notice that for εn := ε(1+δ)n ,
∞∑

n=1

t (εn) =
∞∑

n=1

[
(δ − 1) ln εn

]1−r =
∞∑

n=1

[
(1 + δ)n(δ − 1) ln ε

]1−r
< ∞,
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we thus have

Pε

{
τ−

0− < ∞} ≥ e−8ε(1−a)δ

.

By the definition of solution to SDE (1.3) at the beginning of Section 2, we have

(5.12) Pε

{
τ−

0 = τ−
0− < ∞} ≥ e−8ε(1−a)δ

,

which completes the proof. �

PROOF OF THEOREM 2.8. (i) In the present proof, for small enough b−1 and
ε satisfying 0 < b < ε−1 and for n = 2,3, . . . , let Tn := τ−(b) ∧ τ+(ε−n). By
Lemma 5.1, we have

εa−1 ≥ Eε−1
[
X1−a

τ+(ε−n)∧τ−(b)
exp

{−(
ln ε−n)r(

τ+(
ε−n) ∧ τ−(b)

)}]
≥ Eε−1

[
X1−a

τ+(ε−n)
exp

{−(
ln ε−n)r

dn

}
1{τ+(ε−n)<τ−(b)∧dn}

]
≥ ε(a−1)n

Eε−1
[
exp

{
ln ε(1−a)n/2}

1{τ+(ε−n)<τ−(b)∧dn}
]

for b and ε−1 large enough, where

dn := (1 − a)n ln ε−1

2(ln ε−n)r
= (1 − a)n1−r

2

(
ln ε−1)1−r → ∞

as n → ∞. Then

Pε−1
{
τ+
ε−n < τ−(b) ∧ dn

} ≤ ε(1−a)(n−2)/2

for large enough b and ε−1. The desired result of part (i) then follows from an
argument similar to that in the proof for Theorem 2.3(i).

(ii) Taking T := τ−(ε−1+δ) ∧ τ+(ε−1−δ) in Lemma 5.1, we get

εa−1 ≥ Eε−1

[
X1−a

τ−(ε−1+δ)
exp

{∫ τ−(ε−1+δ)

0
Ga(Xs)ds

}

× 1{τ−(ε−1+δ)<τ+(ε−1−δ)}
]

≥ ε(a−1)(1−δ)
Pε−1

{
τ−(

ε−1+δ) < τ+(
ε−1−δ)}.

Then

(5.13) Pε−1
{
τ−(

ε−(1−δ)) < τ+(
ε−(1+δ))} ≤ ε(a−1)δ.

Similarly,

εa−1 ≥ Eε−1

[
X1−a

n exp
{∫ n

0
Ga(Xs)ds

}
1{τ−(ε−1+δ)∧τ+(ε−1−δ)>n}

]

≥ ε(1+δ)(a−1)enε−1+δ

Pε−1
{
τ−(

ε−1+δ) ∧ τ+(
ε−1−δ) > n

}
.
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Letting n → ∞, we have

(5.14) Pε−1
{
τ−(

ε−(1−δ)) = τ+(
ε−(1+δ)) = ∞} = 0.

Let t (y) := (lny1−δ)1−r for y > 1 and small enough δ. With T replaced by
t (ε−1) ∧ τ−(ε−1+δ) ∧ τ+(ε−1−δ), similar to the above argument we get

εa−1 ≥ Eε−1

[
X1−a

t (ε−1)
exp

{∫ t (ε−1)

0
Ga(Xs)ds

}

× 1{t (ε−1)<τ+(ε−(1+δ))<τ−(ε−(1−δ))}
]

≥ ε(a−1)(1+δ)
Eε−1

[
e((δ−1) lnε)r t (ε−1)1{t (ε−1)<τ+(ε−(1+δ))<τ−(ε−(1−δ))}

]
= ε(a−1)(1+δ)

Eε−1
[
e(δ−1) ln ε1{t (ε−1)<τ+(ε−(1+δ))<τ−(ε−(1−δ))}

]
.

Then

(5.15)

Pε−1
{
t
(
ε−1)

< τ+(
ε−(1+δ)) < τ−(

ε−(1−δ))}
≤ ε(1−a)δe−(δ−1) lnε = ε1−aδ.

Combining (5.13), (5.14) and (5.15), we have

(5.16) Pε−1
{
τ+(

ε−(1+δ)) > t
(
ε−1)} ≤ 2ε(a−1)δ.

Write τ̃0 := 0 and τ̃n+1 := τ+((Xτ̃n
∨ 1)1+δ) ◦ τ̃n + τ̃n for n = 0,1,2, . . . with

the convention X∞ = 0. Notice that X allows possible positive jumps, and under
Pε−1 for n ≥ 1, Xτ̃n

≥ ε−(1+δ)n if τ̃n < ∞.
Observe that under Pε−1 , if τ̃n < ∞ for all n ≥ 1, then

∞∑
n=1

t (Xτ̃n
) ≤

∞∑
n=1

[
ln ε−(1+δ)n(1−δ)]1−r =

∞∑
n=1

[
(1 + δ)n(δ − 1) ln ε

]1−r
< ∞.

By the strong Markov property and estimate (5.16), we can show that

Pε−1
{
τ+∞ < ∞} ≥ Pε−1

{
lim

n→∞ τ̃n < ∞
}

≥ Pε−1
{
τ̃n+1 − τ̃n < t(Xτ̃n

) for all n ≥ 1
}

≥
∞∏

n=1

[
1 − 2ε(a−1)δ(1+δ)n] > 0.

This completes the proof. �
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PROOF OF THEOREM 2.13. To show part (i), for any constants d > 0 and
b > 0 such that (2.10) holds for all u > b, for any 0 < ε < b−1, we have

(5.17)

Pε−1
{
τ−
b < d

}
≤ Pε−1

{
τ−
b < d ∧ τ+(

ε−2)}
+

∞∑
n=1

Pε−1

{
τ+(

ε−2n)
< τ−

b < d, sup
0≤s≤τ−

b

Xs ∈ [
ε−2n

, ε−2n+1)}

≤ Pε−1
{
τ−
b < d ∧ τ+(

ε−2)}
+

∞∑
n=1

Pε−1
{
τ+(

ε−2n)
< τ−

b ,

τ−
b ◦ θ

(
τ+(

ε−2n))
< d ∧ τ+(

ε−2n+1) ◦ θ
(
τ+(

ε−2n))}
≤ Pε−1

{
τ−
b < d ∧ τ+(

ε−2)}
+

∞∑
n=1

Eε−1
[
1{τ+(ε−2n

)<τ−
b }PX

τ+(ε−2n
)

{
τ−
b < d ∧ τ+(

ε−2n+1)}]
.

By Lemma 5.1, for ε−2n ≤ x < ε−2n+1
, T := τ−

b ∧ τ+(ε−2n+1
) ∧ d and n =

0,1,2, . . . ,

x1−a ≥ Ex

[
X1−a

T exp
{∫ T

0
Ga(Xs)ds

}]

≥ Ex

[
X1−a

T exp
{
−

∫ T

0

(
ln(Xs)

)r ds

}]

≥ b1−a
Ex

[
exp

{−d
(
ln ε−2n+1)r}; τ−

b < τ+(
ε−2n+1) ∧ d

]
= b1−a

Ex

[
exp

{−d
(
2n+1 ln ε−1)r}; τ−

b < τ+(
ε−2n+1) ∧ d

]
.

Then

Px

{
τ−
b < τ+(

ε−2n+1) ∧ d
} ≤ ba−1 exp

{
(1 − a)2n ln ε−1 + d

(
2n+1 ln ε−1)r}

≤ ba−1e(1−a)2n−1 ln ε−1 = ba−1ε(a−1)2n−1

for all small enough ε > 0. It follows from (5.17) and the strong Markov property
that

Pε−1
{
τ−
b < d

} ≤ ba−1
∞∑

n=0

ε(a−1)2n−1
,

which goes to 0 as ε → 0+. Since b > 0 and d > 0 are arbitrary, the process X

thus stays at infinity.
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We now proceed to show the part (ii). Write t (x) := (1+ δ)r(lnx)1−r for x > 1.
Then by Lemma 5.1, for large x,

x1−a ≥ Ex

[
X1−a

τ+(x(1+δ))
exp

{∫ τ+(x(1+δ))

0
Ga(Xs)ds

}
1{τ−(x(1+δ)−1

)>τ+(x1+δ)}
]

≥ x(1−a)(1+δ)
Px

{
τ−(

x(1+δ)−1)
> τ+(

x1+δ)}.
Then

(5.18) Px

{
τ−(

x(1+δ)−1)
> τ+(

x1+δ)} ≤ x−δ(1−a).

By condition (2.11), we also have

x1−a ≥ Ex

[
X1−a

τ−(x(1+δ)−1
)
exp

{∫ τ−(x(1+δ)−1
)

0
Ga(Xs)ds

}

× 1{t (x)<τ−(x(1+δ)−1
)<τ+(x1+δ)}

]

≥ x(1−a)/(1+δ)
Ex

[
exp

{∫ t (x)

0
(lnXs)

r ds

}
1{t (x)<τ−(x(1+δ)−1

)<τ+(x1+δ)}
]

≥ x(1−a)/(1+δ)e(1+δ)−r (lnx)r t (x)
Px

{
t (x) < τ−(

x(1+δ)−1)
< τ+(

x1+δ)}
= x(1−a)/(1+δ)xPx

{
t (x) < τ−(

x(1+δ)−1)
< τ+(

x1+δ)}.
It follows that

(5.19) Px

{
t (x) < τ−(

x(1+δ)−1)
< τ+(

x1+δ)} ≤ x
δ(1−a)

1+δ
−1 = x−(1+δa)/(1+δ).

Combining (5.18) and (5.19), we have

Px

{
t (x) < τ−(

x(1+δ)−1)} ≤ x−(1+δa)/(1+δ) + x−δ(1−a) ≤ 2x−δ(1−a)

for small enough δ > 0. Then for b ≡ b(δ) large enough, by the strong Markov
property

Pb(1+δ)m

{
m⋂

n=1

{
τ−(

b(1+δ)n) < ∞, τ−(
b(1+δ)n−1) ◦ θτ−(b(1+δ)n ) ≤ t

(
b(1+δ)n)}}

=
m∏

n=1

Pb(1+δ)n
{
τ−(

b(1+δ)n−1) ≤ t
(
b(1+δ)n)}

≥
m∏

n=1

(
1 − 2b−δ(1−a)(1+δ)n−1) ≥

m∏
n=1

e−4b−δ(1−a)(1+δ)n−1

= e−4
∑m

n=1 b−δ(1−a)(1+δ)n−1 ≥ e−8b−δ(1−a)

.
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Let m → ∞. Then

lim
x→∞Px

{
τ−
b ≤

∞∑
n=1

t
(
b(1+δ)n) = (1 + δ)r(lnb)1−r

∞∑
n=1

(1 + δ)(1−r)n < ∞
}

≥ e−8b−δ(1−a)

(5.20)

for r > 1. Letting b → ∞ in (5.20), we obtain the limit (2.7) and the process X

comes down from infinity. �
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