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NORMAL CONVERGENCE OF NONLOCALISED GEOMETRIC
FUNCTIONALS AND SHOT-NOISE EXCURSIONS

BY RAPHAËL LACHIÈZE-REY

Université Paris Descartes

This article presents a complete second-order theory for a large class
of geometric functionals on homogeneous Poisson input. In particular, the
results do not require the existence of a radius of stabilisation. Hence they
can be applied to geometric functionals of spatial shot-noise fields excursions
such as volume, perimeter, or Euler characteristic (the method still applies
to stabilising functionals). More generally, it must be checked that a local
contribution to the functional is not strongly affected under a perturbation of
the input far away. In this case, the exact asymptotic variance is given, as
well as the likely optimal speed of convergence in the central limit theorem.
This goes through a general mixing-type condition that adapts nicely to both
proving asymptotic normality and that variance is of volume order.

1. Introduction. Let (�,A ,P) be a probability space. Denote by �d the
Lebesgue measure on R

d . Let η be a homogeneous Poisson process on R
d , and

{FW(η);W ⊂ Z
d} a family of geometric functionals. We give general conditions

under which FW(η) has a variance asymptotically proportional to σ 2
0 |W | for some

σ0 > 0, and Var(FW(η))−1/2(FW − EFW(η)) converges to a Gaussian variable,
with a Kolmogorov distance decaying in |W |−1/2, as |W | goes to ∞.

Marked processes. The model is even richer if one marks the input points by
random independent variables, called marks, drawn from an external probability
space (M,M ,μ), the marks space. It can be used for instance to let the shape
and size of grains be random in the Boolean model, or to have a random impulse
function for a shot-noise process. For A ⊂ R

d , denote by A = A × M the cylinder
of marked points x = (x,m) with spatial coordinate x ∈ A. Endow Rd with the
product σ -algebra. The reader not familiar with such a setup can consider the case
where M is a singleton, and all mark-related notation can be ignored (except in
applications). By an abuse of notation, every spatial transformation applied to a
couple x = (x,m) ∈ Rd is in fact applied to the spatial element, that is, x − y =
(x −y,m) for y ∈ R

d , or for A ⊆ R
d ×M, C ⊂ R

d , A∩C = {(x,m) ∈ A : x ∈ C}.
Denote for simplicity by dx = dxμ(dm) the measure element on (Rd, �d × μ).
Throughout the paper, η denotes a Poisson measure on Rd with intensity measure

Received July 2018; revised October 2018.
MSC2010 subject classifications. 60D05, 60G60, 60F05.
Key words and phrases. Poisson functionals, shot-noise fields, random excursions, central limit

theorem, stabilisation, Berry–Esseen bounds.

2613

http://www.imstat.org/aap/
https://doi.org/10.1214/18-AAP1445
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


2614 R. LACHIÈZE-REY

�d × μ. We assume that η and all random variables introduced in the paper live on
the probability space �, up to expanding it.

Functionals. Let A be the class of locally finite sets of Rd endowed with the
topology induced by the mappings ζ �→ |ζ ∩ A| for compact sets A ⊂ Rd , where
| · | denotes the cardinality of a set. Functionals of interest are not properly defined
on every ζ ∈A, so we restrict them to some N0 ⊂A such that P(η ∈ N0) = 1, and
call N the class of configurations ζ ∈ A such that ζ ⊂ η ∪ ζ ′ for some η ∈ N0
and finite set ζ ′. Let F be the class of real measurable functionals on N . Let
Q̃a = [−a/2, a/2)d , Qa = Q̃a ∩ Z

d , a > 0. For W ⊂ Z
d finite, we consider a

functional of the form

FW(ζ ) = ∑
k∈W

FW
k (ζ ), ζ ∈ N , with

FW
k (ζ ) = F0(ζ ∩ W̃ − k), k ∈ W,

(1.1)

where F0 ∈ F and W̃ = ⋃
k∈W(k + Q̃1). It might also happen that all points of η

have an influence but only contributions of the functional over W̃ are considered:
introduce the infinite input version

F ′
W(ζ ) = ∑

k∈W

Fk(ζ ), ζ ∈ N , with

Fk(ζ ) = F0(ζ − k), k ∈ Z
d .

(1.2)

A score function is a bi-measurable mapping ξ : M × N →R such that

F
ξ
0 : ζ �→ ∑

x=(x,m)∈ζ∩Q̃1

ξ(m, ζ − x),(1.3)

is well defined on ζ ∈ N , which yields that FW(ζ ) is the sum of the scores of all
points falling in W̃ . Write ξ(ζ ) instead of ξ(m; ζ ) if no marking is involved (i.e.,
M is a singleton). It is explained later why some shot-noise excursions functionals
also obey representations (1.1)–(1.2). In this paper, we identify a functional F :
N → R with the random variable that gives its value over η : F = F(η), even if
F will be applied to modified versions of η as well.

Nondegeneracy of the variance. Define for ζ ⊂ R
d , 0 ≤ a < b,

ζ b
a = ζ ∩ Q̃b ∩ Q̃c

a, ζa = ζ ∩ Q̃c
a, ζ b = ζ ∩ Q̃b.

A condition that seems necessary for the variance to be nondegenerate is that at
least on a finite input and a bounded window, the functional is not trivial: for some
δ > ρ > 0, P(|FQδ(η

ρ) − FQδ(∅)| > 0) > 0. We actually need that this still holds
if points are added far away from ηρ :

ASSUMPTION 1.1. There is γ > ρ > 0, c > 0, p > 0 such that for δ > γ

arbitrarily large

P
(∣∣FQδ(ηγ ) − FQδ

(
ηρ ∪ ηγ

)∣∣ ≥ c
) ≥ p.
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Observation window. In many works (e.g., [20],[14], Chapter 4), the observation
windows consist in a growing family of subsets Bn, n ≥ 1 of Rd , that satisfy the
Van’Hoff condition: for all r > 0,

�d(
∂B⊕r

n

)
/�d(Bn) → 0,(1.4)

as n → ∞, where B⊕r = {x ∈ R
d : d(x,B) ≤ r} for B ⊂R

d . We rather consider in
this paper, like for instance in [24], a family W of bounded subsets of Zd satisfying
the regularity condition

lim sup
W∈W

|∂Zd W |
|W | = 0,(1.5)

where ∂Zd W is the set of points of W at distance 1 from Wc, and consider a point
process over W̃ . In the large window asymptotics, condition (1.5) imposes the
same type of restrictions as (1.4), and using subsets of the integer lattice eases
certain estimates and is not fundamentally different. In the case where boundary
effects occur (by observing η ∩ W̃ instead of η), stronger geometric conditions
will be required. To this end, let Br, r > 0, be a family of measurable subsets of
R

d such that for some 0 < a− < a+, B(0, a−r) ⊂ Br ⊂ B(0, a+r), where B(x, r)

is the Euclidean ball with center x ∈R
d and radius r > 0. Let also Br(x) = x +Br ,

x ∈ R
d . We set similarly as in [20], Section 2,

Br
W = {

W̃ − k : k ∈ W,Bc
r ∩ (W̃ − k) �= ∅

}
, W ⊂ Z

d,

Br
W = ⋃

W∈W

Br
W ∪ {

R
d}

.

Background. The family of functionals described above is quite general and
covers large classes of statistics used in many application fields, from data analy-
sis to ecology; see [14] for theory, models and applications. We study the variance,
and Gaussian fluctuations, of such functionals, under the assumption that a mod-
ification of η far from 0 modifies slightly F0(η) (or ξ(0, η)). Most of the general
results available require a stabilisation or localisation radius: it consists in a ran-
dom variable R > 0, with sufficiently fast decaying tail, such that any modifica-
tion of η outside B(0,R) does not affect F0(η) (or ξ(0, η)) at all. By stationarity,
this behaviour is transferred to any Fk, k ∈ Z

d . This property is sometimes called
quasi-locality in statistical physics [22]. In the Euclidean framework, the results of
the present paper do not require stabilisation, but can still be applied to geometric
functionals; see Section 1.1.

We give general conditions under which functionals of the form (1.1)–(1.2) have
a volume order variance and undergo a central limit theorem, with a Kolmogorov
distance to the normal given by the inverse square root of the variance. We recall
that the Kolmogorov distance between two real variables U and V is defined as

dK (U,V ) = sup
t∈R

∣∣P(U ≤ t) − P(V ≤ t)
∣∣.(1.6)
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Specified to the case where functionals are under the form (1.3) and the score func-
tion is stabilising, our conditions demand that the tail of the stabilisation radius
R decays polynomially fast, with power strictly smaller than −8d , see Proposi-
tion 1.3.

Main result. The main theoretical finding of this paper is condition (1.8), which
is well suited for second-order Poincaré inequalities in the Poisson space, that is,
bounds on the speed of convergence of a Poisson functional to the Gaussian law,
and at the same time allows to prove nondegenerate asymptotic variance under
Assumption 1.1. The application to shot-noise processes in the following section
illustrates the versatility of the method. The results can be merged into the follow-
ing synthetic result, whose proof is at Section 3.2. For two sequences {an;n ≥ 1},
{bn;n ≥ 1}, write an ∼ bn if bn �= 0 for n sufficiently large and anb

−1
n → 1 as

n → ∞. Also, in all the paper, κ denotes a constant that depends on d , α, a+, a−,
whose value may change from line to line, and which explicit optimal value in the
main result could be traced through the different parts of the proof. If it is well
defined, for F0 ∈ F , let

σ 2
0 := ∑

k∈Zd

Cov
(
F0(η),Fk(η)

)
.(1.7)

THEOREM 1.1. Let F0 ∈ F , FW be defined as in (1.1), W = {Wn;n ≥ 1}
satisfying (1.5). Let M1, M2 be independent random elements of M with law μ.
Assume that for some C0 > 0, α > 2d , for all r ≥ 0,B ∈ Br

W , �d -a.e. x1, x2 ∈ R
d ,

ζ ⊂ {(x1,M1), (x2,M2)}(
E

∣∣F0
(
(η ∪ ζ ) ∩ Br ∩ B

) − F0
(
(η ∪ ζ ) ∩ B

)∣∣4)1/4 ≤ C0(1 + r)−α,(1.8)

and Assumption 1.1 is satisfied. Then 0 < σ0 < ∞, and as n → ∞,

Var(FWn) ∼ σ 2
0 |Wn|, (

σ 2
0 |Wn|)−1/2

(FWn − EFWn)
law−−−→

n→∞ N

where N is a standard Gaussian random variable. Furthermore, for n sufficiently
large,

dK

(
FWn − EFWn

Var(FWn)
1/2 ,N

)
≤ κ|Wn|−1/2

(
C2

0

σ 2
0

+ C3
0

σ 3
0

+ C4
0

σ 4
0

)
.(1.9)

Let us now give the version with infinite input, which is more simple to satisfy
due to the absence of boundary effects, except for the power of the decay:

THEOREM 1.2. Let F0 ∈ F , F ′
W be defined as in (1.2), W = {Wn;n ≥ 1}

satisfying (1.5). Let M1, M2, be independent random elements of M with law μ.
Assume that for some C0 > 0, α > 5d/2, for all r ≥ 0, �d − a.e.x1, x2 ∈ R

d , ζ ⊂
{(x1,M1), (x2,M2)},(

E
∣∣F0

(
(η ∪ ζ ) ∩ Br

) − F0(η ∪ ζ )
∣∣4)1/4 ≤ C0(1 + r)−α,(1.10)
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and Assumption 1.1 is satisfied. Then 0 < σ0 < ∞ (defined in (1.7)), and

Var
(
F ′

Wn

) ∼ σ 2
0 |Wn|, (

σ 2
0 |Wn|)−1/2(

F ′
Wn

− EF ′
Wn

) law−−→ N

as n → ∞. Furthermore, for n sufficiently large

dK

(
F ′

Wn
− EF ′

Wn

Var(F ′
Wn

)1/2 ,N

)
≤ κ|Wn|−1/2

(
C2

0

σ 2
0

+ C3
0

σ 3
0

+ C4
0

σ 4
0

)
.(1.11)

REMARKS 1.1. 1. The application to score functionals (see (1.3)) goes as fol-
lows: let Mi , 0 ≤ i ≤ 6 be i.i.d. marks with law μ, and assume that ξ : M×N →R

satisfies for all r ≥ 0,B ∈ Br
W , x0 ∈ Q̃1, ζ ⊂ Rd with at most six elements,(

E
∣∣ξ (

M0, (η ∪ ζ ) ∩ B ∩ Br − x0
) − ξ

(
M0, (η ∪ ζ ) ∩ B − x0

)∣∣4)1/4

≤ C0(1 + r)−α,
(1.12)

then the functional F0 = F
ξ
0 defined in (1.3) satisfies (1.8). To see it, let xi =

(xi,Mi) be the elements of ζ . Fix ζ1 ⊂ {(x1,M1), (x2,M2)}, apply Lemma 5.1
(with r = 0) to

ψ
(
(x0,M0), ζ

′) = 1{x0∈Q̃1}
∣∣ξ (

M0,
(
ζ ′ ∪ ζ1

) ∩ B ∩ Br − x0
)

− ξ
(
M0,

(
ζ ′ ∪ ζ1

) ∩ B − x0
)∣∣, ζ ′ ∈ N , x0 ∈ R

d .

It yields (
E

∣∣F0
(
(η ∪ ζ1) ∩ B ∩ Br

) − F0
(
(η ∪ ζ1) ∩ B

)∣∣4)1/4

≤
(

E
∣∣∣∣ ∑
x∈η∩Q̃1

ψ(x, η)

∣∣∣∣4
)1/4

≤ κC0(1 + r)−α

for some C0 ≥ 0, hence (1.8) is satisfied. In this framework, the asymptotic vari-
ance can also be expressed as

σ 2
0 = Eξ(M0;η)2 +

∫
Rd

(
E

[
ξ
(
M0, η ∪ {

(x,M1)
})

ξ
(
M1, η ∪ {

(0,M0)
} − x

)]
− [

E
[
ξ(M0;η)

]]2)
dx;

see, for instance, (4.10) in [14].
2. A variant of stabilisation, called strong stabilisation, occurs when the add-one

cost version of the functional is stabilising instead of the functional itself. Penrose
and Yukich derived variance asymptotics and asymptotic normality [20] in such
a context. Let us indicate how the current approach could be adapted to strong
stabilisation: let η′ be an independent copy of η, and for r > 0, ηr = (η ∩ Br) ∪
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(η′ ∩ Bc
r ). Assume that a functional has a strong stabilisation radius with the tail

decaying as a sufficiently low power of r . In this case, (1.8) needs to hold with the
left-hand member replaced with E(|F0((η∪ ζ )∩B)−F0((ηr ∪ ζ )∩B)|4). Then it
should be possible to adapt the proofs of Theorems 2.1 and 3.1 to be able to prove
that the Berry–Esseen bounds and variance upper bounds still hold, under this new
hypothesis.

3. Regarding variance asymptotics, recent results can be found in the literature,
but the assumptions are of different nature, either dealing with different qualitative
long range behaviour (i.e., strong stabilisation in [16, 20]), or different nondegen-
eracy statements [18], whereas Assumption 1.1 is a mixture of nontriviality and
continuity of the functional on large inputs. Penrose and Yukich [20] give a condi-
tion under which the asymptotic variance is strictly positive in Theorem 2.1. The
condition is that the functional is strongly stabilising, and that the variable

�(∞) := lim
δ→∞

[
FQδ

(
η ∪ {0}) − FQδ(η)

]
is nontrivial. It roughly means that for δ sufficiently large, and ρ sufficiently small,

Var
(∣∣FQδ

(
ηρ ∪ ηρ) − FQδ(ηρ)

∣∣∣∣ηρ
∣∣ = 1

)
> 0,

and this is very close to Assumption 1.1 in the particular case ρ = γ . This par-
ticular case seems more delicate to deal with that when γ is much larger than ρ,
because in the latter case the interaction between ηρ and ηγ hopefully becomes
small.

4. Similar results where the input consists of mn i.i.d. variables uniformly dis-
tributed in W̃n, with mn = |Wn|, should be within reach by applying the results of
[15], following a route similar to [16].

Shot-noise excursions. Let {gm;m ∈ M} be a set of measurable functions
R

d → R not containing the function g ≡ 0 indexed by some probability space
(M,M ,μ). Let η be a Poisson process with intensity measure �d × μ on Rd .
Introduce the shot-noise processes with impulse distribution μ by, for ζ ∈ N ,

fζ (y) = ∑
x=(x,m)∈ζ

gm(y − x), y ∈ R
d .(1.13)

Conditions under which fζ is well defined on Poisson input are discussed in
Section 4, along with a proper choice for N0. Given some threshold u ∈ R, we
consider the excursion set {fζ ≥ u} = {x ∈ R

d : fζ (x) ≥ u} and the functionals
ζ �→ �d({fζ ≥ u} ∩ W̃ ), ζ �→ Per({fζ ≥ u}; W̃ ), where for A,B ⊂ R

d;Per(A;B)

denotes the amount of perimeter of A contained in B in the variational sense; see
Section 4.2. The total curvature, related to the Euler characteristic is also studied
in Section 4.3 for a specific form of the kernels.

A shot-noise field is the result of random functions translated at random lo-
cations in the space. It has been introduced by Campbell to model thermionic
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noise [10], and has been used since then under different names in many fields
such as pharmacology, mathematical morphology [17], Section 14.1, image anal-
ysis [13] or telecommunication networks [2, 3]. Biermé and Desolneux [5–7] have
computed the mean values for some geometric properties of excursions. More
generally, the activity about asymptotic properties of random fields excursions
has recently increased, with the notable recent contribution of Estrade and Léon
[11], who derived a central limit theorem for the Euler characteristic of excur-
sions of stationary Euclidean Gaussian fields. Bulinski, Spodarev and Timmer-
man [9] give general conditions for asymptotic normality of the excursion volume
for quasi-associated random fields. Their results apply to shot-noise fields, un-
der conditions of nonnegativity and uniformly bounded marginal density, which
can be verified in some specific examples. We give here the asymptotic variance
and central limit theorems for volume and perimeter of excursions under weak
assumptions on the density, as illustrated in Section 4. Still, a certain control of
the distribution is necessary, and we provide in Lemma 4.2 a uniform bound on
supv∈R,δ>0(δ ln(δ))−1P(fη(0) ∈ [v − δ, v + δ]) when f is of the form

fζ (x) = ∑
i∈I

g
(‖x − xi‖)

(1.14)

where ζ ∈ N , and xi, i ∈ I , are the (random) spatial locations of its points, with
g a smooth strictly nonincreasing function (0,∞) → (0,∞) with a derivative not
decaying too fast to 0. Our results allow to treat fields with singularities, such as
those observed in astrophysics or telecommunications; see [2].

Let Md be the space of measurable subsets of Rd . The results of Section 4 also
apply to processes that can be written under the form

fζ (x) = ∑
i≥1

Li1{x−xi∈Ai}, x ∈ R
d,(1.15)

where the (Li,Ai), i ≥ 1 are i.i.d. couples of R×Md , endowed with a proper σ -
algebra and probability measure; see Section 4.3. Such models are called dilution
functions or random token models in mathematical morphology; see, for instance,
[17], Section 14.1, where they are used to simulate random functions with a pre-
scribed covariance.

To the best of our knowledge, the results about the perimeter or the Euler char-
acteristic are the first of their kind for shot-noise models, and the results about the
volume improve existing results; see the beginning of Section 4.1 for more details.

1.1. Stabilisation and nearest neighbour statistics. Let us transpose our re-
sults in the case where the functional stabilises.

THEOREM 1.3. Let W = {Wn;n ≥ 1} be a class of subsets of Zd . Let FW be
defined as in (1.1) (resp., as in (1.1)–(1.3) with F0 = F

ξ
0 for some score function ξ ).

Assume that for xi ∈ R
d,Mi independent with law μ, i ≥ 1, ζ ⊂ {(xi,Mi); i =
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1, . . . ,6}, η′ = η ∪ ζ , there is a random variable R ≥ 0 such that almost surely, for
r ≥ R,B ∈ Br

W ,

F0
(
η′ ∩ Br ∩ B

) = F0
(
η′ ∩ B

)
(1.16) (

resp. ξ
(
m,η′ ∩ Br ∩ B − x

) = ξ
(
m,η′ ∩ B − x

)
, (x,m) ∈ η ∩ Q̃1

)
.(1.17)

Then (1.8) is satisfied if for some p,q > 1 with 1/p + 1/q = 1, P(R > r) ≤
Cr−8dp−ε for some C,ε > 0, under the moment condition

sup
r≥0,B∈Br

W

E
∣∣F0

(
η′ ∩ B ∩ Br

)∣∣4q
< ∞

(
resp., sup

r≥0,B∈Br
W ,x0∈Q̃1

E
∣∣ξ (

M1, η
′ ∩ B ∩ Br − x0

)∣∣4q
< ∞

)
.

(1.18)

For the infinite input version, “∩B” should be removed from (1.16) (resp.,
(1.17)), the exponent −8dp − ε should be replaced by −10dp − ε, and then (1.10)
would hold.

PROOF. For r ≥ 0,B ∈ Br
W , if (1.16) holds,

E
∣∣F0

(
η′ ∩ B

) − F0
(
η′ ∩ B ∩ Br

)∣∣4
= E1{R>r}|F0

(
η′ ∩ B

) − F0
(
η′ ∩ B ∩ Br

)
)|4

≤ P(R > r)1/p(
E

(∣∣F0
(
η′ ∩ B ∩ Br

)∣∣ + ∣∣F0
(
η′ ∩ B

)∣∣)4q)1/q
,

hence (1.8) is satisfied. If F0 = F
ξ
0 , and (1.17) holds, for r ≥ R,

F
ξ
0

(
η′ ∩ Br ∩ B

) = ∑
(x,m)∈η∩Q̃1

ξ
(
m,η′ ∩ Br ∩ B − x

)

= ∑
(x,m)∈η∩Q̃1

ξ
(
m,η′ ∩ B − x

)

= F
ξ
0

(
η′ ∩ B

)
,

and (1.16) holds. �

REMARKS 1.2. 1. The variance nondegeneracy is a disjoint issue; Assump-
tion 1.1 has to be satisfied independently. Otherwise, if one is only interested in
asymptotic normality, the above requirements can be weakened; see Theorem 3.1.

2. The definition of a stabilisation radius often involves stability under the ad-
dition of an external set, here denoted by ζ . A nice aspect of (1.16)–(1.17) with
respect to classical results is that ζ does not depend on η, that is, ζ does not in gen-
eral achieve the worst case scenario given η. On the other hand, in the finite input
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version, one has to deal here with the intersection with B ∈ Br
W . See Example 1.1

for an application to nearest neighbour statistics.
3. Asymptotic results for stabilising functionals have been derived in numerous

work; see the survey [14], Chapter 4, and references therein. In particular, Matthew
Penrose first proved such results under polynomial decay for the stabilisation ra-
dius.

EXAMPLE 1.1 (Nearest neighbours statistics). Let us develop the example
of nearest neighbour statistics for illustrative purposes. Given ζ ∈ N , x ∈ R

d ,
denote by NN(x; ζ ) the nearest neighbour of x, that is, the closest point of
ζ \ {x} from x, with ties broken by the lexicographic order. Define recursively,
for k ≥ 1, NNk(x; ζ ) = NN(x; ζ \ ⋃k−1

i=0 NNi(x; ζ )), with x = NN0(x; ζ ), and
NN≤k(x; ζ ) = ⋃k

i=0 NNi(x; ζ ). Fix k ≥ 1 and call neighbours of x within ζ the
set Nk(x; ζ ) consisting of all points y ∈ ζ such that x ∈ NN≤k(y, ζ ∪ {x}) or
y ∈ NN≤k(x; ζ ).

Let then ϕ be a real functional defined on finite subsets of Rd , and define the
score function, for ζ ∈ N ,

ξ(ζ ) =
{
ϕ

(
Nk(0; ζ )

)
,

0 if |ζ | < k.

Assume that for each j ≥ k, the induced mapping on (Rd)j , ϕ̃j : (x1, . . . , xj ) �→
ϕ({x1, . . . , xj }), is measurable. The simplest example would be for k = 1 the func-
tional ϕ(A) = 1

2
∑

y∈A ‖y‖, so that FW(ζ ) = ∑
x∈ζ ξ(ζ − x) gives the total length

of the undirected nearest-neighbour graph for ζ ⊂ W̃ . Notice that no marking is
involved in this setup. Such statistics are used in many applied fields, in nonpara-
metric estimation procedures, or more recently in estimation of high-dimensional
data sets [19]. Many asymptotic results have been established since the central
limit theorem of Bickel and Breiman [4]; see, for instance, [16, 18, 20].

THEOREM 1.4. For n ≥ 1, let

Gn = ∑
x∈η∩Q̃

n1/d

ϕ
(
Nk(x;η ∩ Q̃n1/d )

)
.

Assume that there is C,c > 0, u < d/4 such that for all x1, . . . , xm ∈ R
d ,

ϕ
({x1, . . . , xm}) ≤ C exp

(
c max

i
‖xi‖u

)
(1.19)

and that ϕ is not degenerate: ϕ({x1, . . . , xk}) �= 0 for (x1, . . . , xk) in a non-
negligible subset of (Rd)k . Then Var(Gn) ∼ nσ 2

0 , with σ0 > 0 defined in Re-
mark 1.1, and n−1/2(Gn − EGn) converges in law to a centred Gaussian variable
with variance σ 2

0 , with bounds on the Kolmogorov distance proportional to n−1/2.
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PROOF. Call hypercube a set of the form x+[−a, a]d for some x ∈ R
d, a ≥ 0.

For this proof, we choose Br = [−r, r]d, r ≥ 0 (hence a− = 1, a+ = √
d). Let

a0 ∈ (0,1/4) and Qi = xi + [−a0, a0]d , i = 1, . . . , q be hypercubes contained
in B1 \ B1/2

√
d such that the following holds: for all hypercube B that touches

B1/2
√

d and Bc
1 and y ∈ B ∩ B(0,1)c, there is i such that Qi ⊂ (B ∩ B(y,‖y‖)).

Let Q′
i = xi + [−a0/2, a0/2]d and

R = min
{
r ≥ 2

√
d(1 + 1/a0) : ∣∣η ∩ rQ′

i

∣∣ ≥ k for every i = 1, . . . , q
}
.

The fact that R′ := √
d(R + 1) is a stabilisation radius in the sense of (1.17) is

implied by the following claim.

CLAIM 1.1. Let r ≥ R′, B ∈ Br
W , x ∈ B1. All elements of Nk(0, η′ ∩ B − x)

are in B(0,
√

dR).

PROOF. Let y ∈ η′ ∩ (B − x) be such that 0 ∈ NN≤k(y, (η′ ∩ B − x) ∪ {0}).
Assume that y /∈ B(0,R), hence y ∈ (B − x) ∩ B(0,R)c. Since B ∩ Bc

r �= ∅,
(B − x)∩Bc

r−√
d

�= ∅, and (B − x)∩Bc
R �= ∅. 0 ∈ B yields (B − x)∩Bt �= ∅ for

t ≥ 1, hence for t = R/2
√

d . It follows that there is i such that B(y,‖y‖)∩ (B −x)

contains RQi . Since η has (at least) k points in RQ′
i and RQ′

i − x ⊂ RQi (using
Ra0/2 ≥ √

d), η − x has k points in RQi , hence (η′ ∩ B − x) ∩ B(y,‖y‖) con-
tains at least k points, and they are all closer from y than 0, which contradicts
0 ∈ NN≤k(y, (η′ ∩ B − x) ∪ {0}). This proves y ∈ B(0,R).

For every i, RQi contains k points of η that are in BR , hence in B(0,R′), hence
NN≤k(0, η′ ∩ B − x) ⊂ BR′ . �

The claim implies that Nk(0, η′ ∩ B − x) = Nk(0, η′ ∩ B ∩ Br − x) for r ≥ R′.
We have for r ≥ 0,

P(R ≥ r) ≤
q∑

i=1

P
(∣∣η ∩ rQ′

i

∣∣ ≤ k − 1
) ≤ λr(k−1)de−λ′rd

(for some λ,λ′ > 0), and a similar bound holds for R′. For the moment condition,
note that for r > 0, the neighbours of 0 in η ∩ Br ∩ B − x are at most at distance
R′, hence, in virtue of (1.19), uniformly in r , B , for ε > 0,

E
∣∣ξ (

η′ ∩ Br ∩ B − x
)∣∣4+ε ≤CE

[
exp

(
cR′)(4+ε)u]

and this quantity is finite if ε is chosen such that (4 + ε)u < d , and (1.17)–(1.18)
hold, hence (1.8) holds.

Let us check Assumption 1.1. Note that every result giving variance lower
bounds for such functionals requires some kind of nontriviality check, as in [20],
Lemma 6.3, and the following result could likely be deduced from it. We prefer to
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present a self-contained proof since this example is supposed to illustrate the cur-
rent method. Let A ⊂ (Rd)k be such that ϕ̃k > 0 on A and A ⊂ int(Q̃k

ρ) for some
ρ > 1. Hence there is c > 0 such that for δ > ρ, p := P(|FQδ(η

ρ)| ≥ c, |ηρ | =
k +1) > 0 does not depend on δ. It is clear that for γ > 3ρ, x ∈ ηρ , if |ηρ | = k +1,
NN≤k(x;ηρ ∪ ηγ ) ⊂ ηρ . Reciprocally, if for x ∈ ηγ , |B(x,‖x‖ − ρ) ∩ ηγ | >

k + 1, x has its k nearest neighbours in ηγ , and hence none in ηρ . If the two
latter conditions are satisfied, FQδ(η

ρ ∪ ηγ ) = FQδ(η
ρ) + FQδ(ηγ ), where δ > γ .

Hence

P
(∣∣FQδ(ηγ ) − FQδ

(
ηγ ∪ ηρ)∣∣ ≥ c

)
≥ P

(∣∣FQδ(ηγ ) − FQδ

(
ηγ ∪ ηρ)∣∣ ≥ c,

∣∣ηρ
∣∣ = k + 1

)
≥ P

(∣∣FQδ

(
ηρ)∣∣ ≥ c,

∣∣ηρ
∣∣ = k + 1

)
− ∑

j∈Qδ\Qγ

P
(∣∣η ∩ B

(
j,‖j‖ − ρ + √

d
)∣∣ ≤ k

)

≥ p −
∞∑

m=γ

κmd−1Ck(m − ρ + √
d)k exp

(−κ(m − ρ + √
d)d

)
.

For γ > 3ρ sufficiently large (and any δ > γ ), the last term is smaller than p/2,
hence Assumption 1.1 is satisfied. �

1.2. Further applications and perspectives. An important part of the paper is
devoted to shot-noise excursions, but the results should apply also to most stabil-
ising models studied in the literature (packing functionals, Voronoi tessellation,
Boolean models, proximity graphs); see the example of statistics on nearest neigh-
bours graphs above.

In some models, the independent marking is replaced by geostatistical mark-
ing, also called dependent marking or external marking: let m(x;η′), x ∈ R

d be
a random field measurable with respect to an independent homogeneous Poisson
process η′ on R

d , and consider the marked process {(x,m(x, η′)), x ∈ η} instead of
the independently marked process. Such a refinement is necessary to model a vari-
ety of random phenomena, such as gauge measurements for rainfalls or tree sizes
in a sparse forest; see [23] and references therein. Labelling the points of η and η′
with two different colors yields that η ∪η′ has the law of an independently marked
Poisson process, hence our results could be applied to appropriate statistics.

In the nonmarked setting (M is a singleton), let a > 0 be a scaling parame-
ter, and consider the random field X = (Xk)k∈Zd , where Xk = 1{aη∩(k+[0,1)d )=∅},
k ∈ Z

d . X is an independent spin-model where the parameter p = P(X0 = 1) =
exp(−a) can take any prescribed value. Then all the previous results can be ap-
plied to functionals of the form

FW(X) = ∑
k∈Zd

F0(X ∩ W − k) or F ′
W(X) = ∑

k∈Zd

F0(X − k),
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where F0 is some functional on the class of subsets of Zd , with finite second mo-
ment under i.i.d. Bernoulli input. Stabilising functionals and excursions function-
als yield possible applications, and our findings might apply for instance to the
results of [22], where more general classes of discrete input than Bernoulli pro-
cesses are also treated. Seeing FW (or F ′

W ) as a functional of η, the variance and
asymptotic normality results of Theorems 1.1–1.2 apply to FW under conditions
of the type (

E
∣∣FW

(
X′ ∩ B

) − FW

(
X′ ∩ B ∩ Br

)∣∣4)1/4 ≤ C0(1 + r)−α,

where B , Br are like in (1.1), and X′ is obtained from X by forcing up to 2 spins
Xk , Xk′ to the value 1 (the bound has to be uniform over k, k′ ∈ Z

d ).

2. Moment asymptotics. In this section, we give results for second and fourth
moments of a geometric functional under general conditions of nontriviality and
polynomial decay. The fourth-order moment is useful for establishing Berry–
Esseen bounds in the next section. The Greek letter κ still denotes a constant
depending on d , q , α, a−, a+ whose value may change from line to line.

THEOREM 2.1. Let α > d , W ⊂ Z
d , C0 ≥ 0. Let F0 ∈ F .

Assume (i) that for k ∈ W , GW
k = FW

k , (resp. (i′) for k ∈ Z
d , GW

k = Fk) and let
GW = ∑

k∈W GW
k = FW(resp., GW = F ′

W) as defined in (1.1) (resp., (1.2)), and
for all r ≥ 0,B ∈ Br

W ∪ {Rd},(
E

∣∣F0(η ∩ Br ∩ B) − F0(η ∩ B)
∣∣2)1/2 ≤ C0(1 + r)−α(2.1)

(resp., for all r ≥ 0,(
E

∣∣F0(η ∩ Br) − F0(η)
∣∣2)1/2 ≤ C0(1 + r)−α).(2.2)

Then for k, j ∈ W (resp., k, j ∈ Z
d ),

Cov
(
GW

j ,GW
k

) ≤ κC2
0
(
1 + ‖k − j‖)−α

,

σ 2
0 := ∑

k∈Zd

Cov(F0,Fk) < ∞,
(2.3)

and σ0 > 0 if also Assumption 1.1 holds. If W is bounded and nonempty,∣∣|W |−1Var(GW) − σ 2
0
∣∣ ≤ κC2

0
(|∂Zd W |/|W |)1−d/α

.(2.4)

If furthermore α > 2d ,

E(GW − EGW)4 ≤ κC0
(
E(F0 − EF0)

4)3/4|W |2.(2.5)

The proof is deferred to Section 5.1.
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3. Asymptotic normality. We give bounds to the normal in terms of Kol-
mogorov distance, defined in (1.6), or Wasserstein distance, defined between two
random variables U , V as

dW (U,V ) = sup
h∈Lip1

∣∣E[
h(U)

] − E
[
h(V )

]∣∣,
where Lip1 is the set of 1-Lipschitz functions h :R →R.

3.1. Malliavin derivatives. It has been shown in different frameworks [11, 15,
16, 18] that, through inequalities called second-order Poincaré-type inequalities,
Gaussian fluctuations of real functionals can be controlled by some second-order
difference operators defined on the random input. In the Poisson setting, this opera-
tor is incarnated by the Malliavin derivatives. We define it here as it is a central tool
in the theory backing our results: for any functional F ∈ F , ζ ∈ N , and x ∈ Rd ,
define the first- order Malliavin derivative DxF ∈ F by

DxF(ζ ) = F
(
ζ ∪ {x}) − F(ζ ),

and for x,y ∈ Rd , ζ ∈ N , F ∈ F0, the second-order Malliavin derivative is

D2
x,yF(ζ ) =Dx

(
DyF(ζ )

) = F
(
ζ ∪ {x,y}) − F

(
ζ ∪ {x}) − F

(
ζ ∪ {y}) + F(ζ ).

One can use this object to quantify the spatial dependency of the functional F :
a point y ∈ Rd has a weak influence on a point x ∈ Rd for the functional F if its
presence hardly affects the contribution of x, that is, DxF(η) ≈ DxF(η∪{y}), or in
other words D2

x,yF(η) = Dy(DxF(η)) ≈ 0. The proof of the following theorem is
based on the result of Last, Peccati and Schulte [18] that asserts that the functional
FW exhibits Gaussian behavior as W → R

d , as soon as Dx,yFW is small when x,
y are far away, uniformly in W . The speed of decay actually yields a bound on the
speed of convergence of FW towards the normal.

THEOREM 3.1. Let W ⊂ Z
d bounded. Let GW ∈ {FW,F ′

W } as defined in
(1.1)–(1.2), with F0 ∈ F , and let M,M ′ ∼ μ independent. Assume that for some
C0 > 0, either (i) GW = FW and for some α > 2d , for all k ∈ W , a.a. x ∈ W̃ , a.a.
y ∈ R

d , η′ ∈ {η,η ∪ {(y,M ′)}},[
E

∣∣D(x,M)F0
((

η′ ∩ W̃
) − k

)∣∣4]1/4 ≤ C0
(
1 + ‖x‖)−α

, x ∈ R
d,(3.1)

or (i′) GW = F ′
W and for some α > 5d/2, for a.a. x, y ∈ R

d , η′ ∈ {η,η ∪
{(y,M ′)}}, [

E
∣∣D(x,M)F0

(
η′)∣∣4]1/4 ≤ C0

(
1 + ‖x‖)−α

, x ∈R
d .(3.2)

Then σ 2 := Var(GW) < ∞, and if σ > 0, with G̃W = σ−1(GW − EGW),

dW (G̃W ,N) ≤κ
(
C2

0σ−2√|W | + C3
0σ−3|W |)(1 +

( |∂Zd W |
|W |

)a)
,(3.3)
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where a = 0 in case (i), and a = 2(α/d − 2) in case (i′). Let v := supW(GW −
EGW)4|W |−2 ∈ R+ ∪ {∞}, then

dK (G̃W ,N) ≤ κ
(
C2

0σ−2
√|W | + C3

0σ−3|W | + v1/4C3
0σ−4|W |3/2)

×
(

1 +
( |∂Zd W |

|W |
)a)

.
(3.4)

Recall that (2.1) (or (2.2) in case (i′)) is a sufficient condition for v < ∞.

The proof is in Section 5.2.

3.2. Proof of Theorems 1.1 and 1.2. We prove Theorem 1.1 (resp., Theo-
rem 1.2) using Theorems 2.1 and 3.1.

Let n ≥ 1 be such that W = Wn is bounded and nonempty, GW = FW (resp.,
GW = F ′

W ), σ 2 = Var(GW). Assumption (1.8) (resp., (1.10)) clearly implies (2.1)
(resp., (2.2)) and, therefore, (2.4) holds:∣∣|W |−1σ 2 − σ 2

0
∣∣ ≤ κC2

0
(|∂Zd W |/|W |)1−d/α

.

Let y ∈ R
d , k ∈ W , x ∈ W̃ − k, x = (x,M), η′ ∈ {η,η ∪ {(y,M ′)}} as in (3.1)

(resp., (3.2)), η′′ = η′ ∪ {x}, B = W̃ − k (resp., B = R
d), r = ‖x‖/a+. Note that

x ∈ B \ Br , hence

DxF0
(
η′ ∩ B

) = F0
((

η′ ∩ B
) ∪ {x}) − F0

(
η′ ∩ B

)
= F0

((
η′ ∪ {x}) ∩ B

) − F0
(
η′ ∩ B

)
= F0

((
η′ ∪ {x}) ∩ B

) − F0
((

η′ ∪ {x}) ∩ B ∩ Br

)
+ F0

((
η′ ∪ {x}) ∩ B ∩ Br

) − F0
(
η′ ∩ B

)
= F0

(
η′′ ∩ B

) − F0
(
η′′ ∩ B ∩ Br

) + F0
(
η′ ∩ B ∩ Br

)
− F0

(
η′ ∩ B

)
.

Applying (1.8) (resp., (1.10)) twice with x1 = x, x2 = y yields(
E

∣∣DxF0
(
η′ ∩ B

)∣∣4)1/4 ≤ C0(1 + r)−α,

hence (3.1) (resp., (3.2)) holds, and (3.3) holds. Since furthermore Assumption 1.1
holds, Theorem 2.1 yields σ0 > 0, and for n sufficiently large, σ−2 ≤ 2|W |−1σ−2

0 ,
hence, with G̃W := (GW −EGW)(VarGW)−1/2, for n sufficiently large, using also
(1.5),

dW (G̃W ,N) ≤ κ|W |−1/2(
C2

0σ−2
0 + C3

0σ−3
0

)
.

Since (1.8) (resp., (1.10)) holds with α > 2d , we have furthermore by (2.5):

v = lim sup
n≥1

E(GWn − EGWn)
4/|Wn|2 ≤ κC0

(
E(F0 − EF0)

4)3/4
.
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Applying (1.8) with r = 0, B = R
d gives E(F0 − EF0)

4 ≤ κC4
0 . The bound on

Kolmogorov distance (1.9) (resp., (1.11)) follows easily by (3.4).
It remains to prove that G′

W := (σ 2
0 |W |)−1/2(GW − EGW) follows a central

limit theorem. We achieve it by proving that its Wasserstein distance to the normal
goes to 0. The triangular inequality yields

dW
(
G′

W,N
) ≤ E

∣∣G′
W − G̃W

∣∣ + dW (G̃W ,N)

≤
∣∣∣∣ 1

σ0
√|W | − 1√

Var(GW)

∣∣∣∣E|GW − EGW | + dW (G̃W ,N)

which indeed goes to 0 by (2.4).

4. Application to shot-noise processes. Let the notation of the introduction
prevail. For the process fη (see (1.13)) to be well defined, assume throughout the
section that for some τ > 0,∫

M

∫
B(0,τ )c

∣∣gm(x)
∣∣dxμ(dm) < ∞,(4.1)

and let N0 be the class of locally finite ζ such that
∑

(x,m)∈ζ |gm(x)| < ∞, x ∈ R
d .

The fact that η ∈ N0 a.s. follows from the Campbell–Mecke formula.
We study in this section the behaviour of functionals of the excursion set {fη ≥

u}, u ≥ 0. We use the general framework of random measurable sets. A random
measurable set is a random variable taking values in the space Md of measurable
subsets of R

d , endowed with the Borel σ -algebra B(Md) induced by the local
convergence in measure; see Section 2 in [12]. Regarding the more familiar setup
of random closed sets, in virtue of Proposition 2 in [12], a random measurable set
which realisations are a.s. closed can be assimilated to a random closed set.

4.1. Volume of excursions. For u ∈ R fixed, W ⊂ Z
d , ζ ∈ N , define

FW(ζ ) = �d({f
ζ∩W̃

≥ u} ∩ W̃
)
, F ′

W(ζ ) = �d({fζ ≥ u} ∩ W̃
)
.

A central limit theorem for the volume of a certain family of shot-noise excursions
has been derived in [9], under the assumption that fη(0) has a uniformly bounded
density and

∫ |gm(x)|μ(dm) decreases sufficiently fast as ‖x‖ → ∞, using the
associativity properties of nonnegative shot-noise fields. In some specific cases,
the bounded density can be checked manually with computations involving the
Fourier transform. In this section, we refine this result in several ways:

• A general model of random function is treated, it can in particular take negative
values, allowing for compensation mechanisms (see [17]). For u > 0, to avoid
trivial cases we assume

μ
({m ∈ M : gm ≥ 0}) �= 0.(4.2)

• The precise variance asymptotics are derived.
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• Weaker conditions are required for the results to hold, in particular bounded
density is not needed.

• The likely optimal rate of convergence in Kolmogorov distance towards the nor-
mal is given.

• Boundary effects under finite input are considered, in the sense that only points
falling in a bounded window (growing to infinity) contribute to the field. The
case of infinite input is also treated.

The application to shot-noise excursions is a nice illustration of the versatility of
the general method derived in this article. We give examples of fields with no
marginal density to which the results apply, such as sums of indicator functions, or
of kernels with a singularity in 0. Controlling the density of shot-noise fields is in
general crucial for deriving results on fixed-level excursions. The case of indicator
kernels is treated in Section 4.3.

ASSUMPTION 4.1. Let fη be of the form (1.14) with g such that |g(x)| ≤
c‖x‖−λ, ‖x‖ ≥ 1 for some λ > 11d , c > 0. Assume that there is ε > 0, c > 0 such
that ∫ r

0

ρ−2 ∧ ρ2(d−1)

−g′(ρ)
dρ ≤ c exp

(
crd−ε), r > 0.(4.3)

Lemma 4.2 below yields that if fη satisfies this assumption, we can somehow
control its density: for a ∈ (0,1), there is ca > 0 such that

sup
v∈R,δ>0

P
(
fη(0) ∈ (v − δ, v + δ)

) ≤ caδ
a.(4.4)

This result might be of independent interest, and is proved after Lemma 4.2. Here
are examples of functions fulfilling Assumption 4.1 (and hence satisfying (4.4));
note that nothing prevents g from having a singularity in 0.

EXAMPLE 4.1. Theorem 4.1 below applies in any dimension to g(ρ) =
Cρ−ν1{ρ≤1} +g1(ρ)1{ρ>1}, ρ > 0 and g1(ρ) is for instance of the form exp(−aργ )

or ρ−λ, with a, ν > 0, λ > 11d , γ < d , C > 0. Such fields do not necessarily have
a finite first-order moment, and are used for instance in [2] to approximate stable
fields, or for modelling telecommunication networks.

To give results in the case where boundary effects are considered, we need an
additional hypothesis on the geometry of the underlying family of windows W =
{Wn;n ≥ 1}. For θ > 0, let Cθ be the family of cones C ⊂ R

d with apex 0 and
aperture θ , that is, such that Hd−1(C ∩ Sd−1) ≥ θ . Let Cθ,R = {C ∩ B(0,R) : C ∈
Cθ } for R ≥ 0. Say that W has aperture θ > 0 if for all W ∈ W with diameter r > 0,
W has aperture θ : for x ∈ W̃ , there is C ∈ Cθ,ln(r)1/2d such that (x + C) ⊂ W̃ .



NONLOCALISED GEOMETRIC FUNCTIONALS 2629

THEOREM 4.1. Let u > 0. Let GW = F ′
W , or GW = FW if W is assumed to

have aperture θ > 0. Assume that Assumption 4.1 holds. Then as |∂Zd W |/|W | →
0, Var(GW) ∼ σ 2

0 |W |, (GW −EGW)(σ0
√|W |)−1 satisfies a central limit theorem,

with

σ 2
0 =

∫
Rd

[
P

(
fη(0) ≥ u,fη(x) ≥ u

) − P
(
fη(0) ≥ u

)2]
dx > 0.(4.5)

Also, the convergence rate (3.3) in Kolmogorov distance holds for G̃W .

This result requires f to be under the form (1.14) mainly because of the density
estimates provided by Lemma 4.2, but under general density assumptions, it could
apply to more general models of the form (1.13). Let us state a lemma that will be
required in the proof, and in other results concerning the nontriviality of shot-noise
excursions.

LEMMA 4.1. Let fη be of the form (1.13). Assume that

for some M ⊂ {
m ∈ M : �d(

g−1
m

(
(0,∞)

))
> 0

}
, μ(M) > 0.(4.6)

Then there is ρ > 1 such that for β ≥ 1, E(�d({fηρ > u} ∩ Q̃β)) > 0.

PROOF. Basic measure theory yields ε > 0, ρ > 1 such that

μ
({

m : �d(
g−1

m

(
(ε,∞)

) ∩ Q̃ρ−1
)
> 0

})
> 0.

Let t ∈ Q̃1, k > u/ε, and Xi = (Yi,Mi), i ≤ k i.i.d. couples of Q̃ρ × M, and Ui :=
gMi

(t − Yi). We have P(U1 ≥ ε) > 0, hence

P
(
fηρ (t) ≥ u

) ≥P
(
fηρ (t) ≥ kε

) ≥ P
(∣∣ηρ ∩ Q̃ρ

∣∣ = k
)
P(U1 ≥ ε)k > 0.

Then Fubini’s theorem yields for β ≥ 1

E�d({
t ∈ Q̃β : fηρ (t) ≥ u

})
≥ E�d({

t ∈ Q̃1 : f{X1,...,Xk}(t) ≥ u
})

P
(∣∣ηρ

∣∣ = k
)
> 0. �

PROOF OF THEOREM 4.1. The decay assumption on g yields that (4.1) holds
for τ = 1, and the left-hand member of (1.10) is uniformly bounded for r ≤ 2

√
d .

From now on, we take r > 2
√

d . We wish to prove the the conditions of Theo-
rems 1.1 and 1.2 are satisfied with the functional F0(ζ ) = ∫

Q̃1
1{fζ (t)≥u} dt . Let

us start by proving Assumption 1.1. Let M = {m ∈ M : gm ≥ 0}. For ρ > 0, let
�ρ be the event that ηρ ⊂ Q̃ρ × M (i.e., all functions of ηρ are nonnegative).
Since μ(M) > 0, P(�ρ) > 0. Lemma 4.1 yields p > 0, ρ > 1 such that for t ∈ Q̃1,
P(fηρ (t) > 2u|�ρ) ≥ p. Also E|fηγ (t)| → 0 as γ → ∞ uniformly in t ∈ Q̃1,
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hence for γ sufficiently large, t ∈ Q̃1, P(|fηγ (t)| < u) > 1
2 . Conditionally on �ρ ,

fηγ ∪ηρ = fηρ + fηγ ≥ fηγ . Hence, for δ > γ > ρ,

1{�ρ}
∣∣FQδ

(
ηγ ∪ ηρ) − FQδ(ηγ )

∣∣ = 1{�ρ}
∫
Q̃δ

1{fηρ∪ηγ (t)>u,fηγ (t)<u} dt ≥ 1{�ρ}G

where G :=
∫
Q̃1

1{|fηγ (t)|<u,fηρ (t)>2u} dt.

E[G|�ρ] ≥
∫
Q̃1

P
(
fηρ (t) > 2u|�ρ

)
P

(∣∣fηγ (t)
∣∣ < u

)
dt ≥ p

2
.

Since G ≤ 1, P(G ≥ p/4|�ρ) ≥ p/4 > 0. Hence P(|FQδ(ηγ ∪ ηρ) − FQδ(η
ρ)| >

c) ≥ P(�ρ)P(G ≥ p/4|�ρ) =: p′ > 0, hence Assumption 1.1 is satisfied.
Let us now prove that (1.8) holds in the case GW = FW (or (1.10) in the case

GW = F ′
W ). Let x1, x2 ∈ R

d , M1, M2 independent marks with law μ, r ≥ 0, ζ ⊂
{(x1,M1), (x2,M2)}, η′ = η ∪ ζ . Let B = R

d in the case of infinite input (GW =
F ′

W ), and let B ∈ Br
W otherwise (GW = FW ). Jensen’s inequality yields∣∣F0

(
η′ ∩ B

) − F0
(
η′ ∩ Br ∩ B

)∣∣4
=

[∫
Q̃1

(1{fη′∩B(t)≥u} − 1{fη′∩Br∩B(t)≥u}) dt

]4

≤
∫
Q̃1

|1{fη′∩B(t)≥u} − 1{fη′∩Br∩B(t)≥u}|dt,

and for t ∈ Q̃1, r > 2
√

d ,∣∣fη′∩B(t) − fη′∩Br∩B(t)
∣∣ =

∣∣∣∣ ∑
x=(x,m)∈(η′∩B)\Br

gm(t − x)

∣∣∣∣
≤ δr,t := ∑

x=(x,m)∈η′\B(t,a−(r−√
d))

∣∣gm(t − x)
∣∣.

Note that δr,t is independent from η ∩ B(t, a−r/2) and its law does not depend on

t ∈ Q̃1. Since B = Z̃ for some Z ⊂ Z
d and 0 ∈ B , t ∈ B . Let R = 1∧ ln(a−r)

1
d−ε/2 ,

where ε is from Assumption 4.1. Since B intersects Bc
r , it has diameter at least

a−r and since W has aperture θ , there is a solid cone Ct ∈ Cθ,R such that, with
Dt = (Ct + t), Dt ⊂ B . In the infinite input case, the latter trivially holds with
B = R

d , θ = σd−1 := Hd−1(Sd−1), Dt = B(t,R). We have

E
∣∣F0

(
η′ ∩ B

) − F0
(
η′ ∩ Br ∩ B

)∣∣4
≤ sup

t∈Q̃1

P
(
fη′∩B(t) ∈ [u − δr,t , u + δr,t ])

≤ sup
t∈Q̃1

P
(
fη∩Dt (t) + fη∩(B\Dt )(t) + fζ∩B(t) ∈ [u − δr,t , u + δr,t ])
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≤ sup
t∈Q̃1

E
(
P

(
fη∩Dt (t) ∈ [

u − fη∩(B\Dt)(t) − fζ∩B(t) ± δr,t

]|
σ

(
ζ, η ∩ (B \ Dt)

)))
≤ sup

t∈Q̃1

E
(

sup
v∈R

P
(
fη∩Dt (t) ∈ [v − δr,t , v + δr,t ]|σ(δr,t )

))

≤ E
(

sup
C∈Cθ,R

sup
v∈R

[
P

(
fη∩C(0) ∈ [v − δr,0, v + δr,0])|σ(δr,0))

])
.(4.7)

To bound this quantity, we need to study the density of the shot-noise field.

LEMMA 4.2. Assume that fη is of the form (1.14). Let δ > 0,R ≥ 1. Then for
v ∈R, C ∈ Cθ,R ,

P
(
fη∩C(0) ∈ [v − δ, v + δ], |η ∩ C|

≥ 2
) ≤ κδ

∫ R

0

(ρ−2 ∧ ρ2(d−1)) dρ

−g′(ρ)
.

Before proving this result, let us conclude the proof of Theorem 4.1. Assume
without loss of generality r ≥ 2r0/a−. By Assumption 4.1, (4.7) is bounded by
supC∈Cθ,R

P(|η ∩ C| < 2) + cκ(E[δr,0 exp(cRd−ε)]). The decay assumption on g

yields that E(δr,0) ≤ κ(1 + r)−λ+d . Hence (4.7) is bounded by

(
1 + κRd)

exp
(−κθRd) + cκ exp

(
cκ ln(r)

d−ε
d−ε/2

)
(1 + r)−λ+d

≤ κ(1 + r)−(λ′−d)

for any λ′ ∈ (11d,λ). Hence (1.8) and (1.10) hold with α = (λ′ − d)/4 > 5d/2.
�

PROOF OF LEMMA 4.2. Let λ = σd−1
θκd

, nR = |η ∩ C| be the number of germs

(Poisson variable with parameter �d(C) = Rd/λ), and let gR(x) = g(‖x‖)1{x∈C},
so that fη∩C(0) = ∑nR

i=1 gR(Xi) where the Xi are uniform i.i.d. in C. Call μR the
distribution of the gR(Xi). We have for every b > a ≥ g(R), since g is one-to-one
and continuous

μR

([a, b)
) = λ

Rd

∫
C

1{a≤g(‖x‖)<b} dx

= λ

Rd

∫ g−1(a)

g−1(b)
θρd−1 dρ

= σd−1

dκdRd

(
g−1(a)d − g−1(b)d

)
,
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whence μR has density ϕR(a) = 1{a≥g(R)} σd−1
κdRd (

g−1(a)d−1

−g′(g−1(a))
). Then, denoting by

ϕ⊗n
R the density ϕR convoluted with itself n times on the real line,

P
(
fη∩C(0) ∈ [v − δ, v + δ], |η ∩ C| ≥ 2

)
≤

∞∑
n=2

P(nR = n)P

(
n∑

i=1

gR(Xi) ∈ [v − δ, v + δ]
)

≤ ∑
n≥2

P(nR = n)
∥∥ϕ⊗n

R

∥∥∞2δ

≤ 2 sup
n≥2

∥∥ϕ⊗n
R

∥∥∞δ.(4.8)

Due to convolution properties, for n ≥ 2,∥∥ϕ⊗n
R

∥∥∞ ≤ ∥∥ϕ⊗2
R

∥∥∞

≤
∫
R

ϕ2
R(a) da = EϕR

(
gR(X1)

)
= λ

Rd

∫
C

ϕR

(
g
(‖x‖))

dx

≤ λ

Rd

∫
C

g−1(g(‖x‖))d−1

−g′(g−1(g(‖x‖)))
σd−1 dx

κdRd

=
(

σd−1

κdRd

)2 ∫ R

0

1

−g′(ρ)
ρ2(d−1) dρ

≤
(

σd−1

κd

)2(
1

R2d

∫ 1

0

ρ2(d−1)

−g′(ρ)
dρ +

∫ R

1

ρ−2 dρ

−g′(ρ)

)
,

which concludes the lemma after reporting in (4.8). �

PROOF OF CLAIM (4.4). Let v > 0, δ > 0. Let R = Rδ := 1 ∧ | ln(δ)| 1
d−ε/2 .

Introduce the events Aδ,v = {fηR(0) ∈ (v − δ, v + δ)}, A′
δ,v = {fη(0) ∈ (v − δ,

v + δ)}, Bδ = {|ηR| ≥ 2}. Since Assumption 4.1 holds, Lemma 4.2 yields P(Aδ,v ∩
Bδ) ≤ caδ

a for all v > 0. Let Uδ = fη(0) − fηRδ (0). Note that Uδ is independent
from fηRδ (0). We have

P(Aδ,v) ≤ P(Aδ,v ∩ Bδ) + P
(
Bc

δ

) ≤ caδ
a + o

(
δa) ≤ c′

aδ
a,

P
(
A′

δ,v

) = E
[
P

(
fηR(0) + Uδ ∈ (v − δ, v + δ)|Uδ

)]
≤ E

(
P(Aδ,v−Uδ |Uδ)

) ≤ E
(
c′
aδ

a) = c′
aδ

a,

hence the claim is proved. �



NONLOCALISED GEOMETRIC FUNCTIONALS 2633

4.2. Perimeter. We use in this section the variational definition of perimeter,
following Ambrosio, Fusco and Pallara [1]. Define the perimeter of a measurable
set A ⊂ R

d within U ⊂ R
d as the total variation of its indicator function

Per(A;U) := sup
ϕ∈C1

c (U,Rd ):‖ϕ‖≤1

∫
Rd

1A(x)divϕ(x)dx,

where C1
c (U,Rd) is the set of continuously differentiable functions with compact

support in U . Note that for regular sets, such as C1 manifolds, or convex sets with
nonempty interior, this notion meets the classical notion of (d − 1)-dimensional
Hausdorff surface measure ([1], Exercise 3.10), even though the term perimeter is
traditionally used for 2-dimensional objects. It is a possibly infinite quantity that
might also have counterintuitive features for pathological sets ([1], Example 3.53).
The main difference with the traditional perimeter is that the variational one ob-
viously cannot detect the points of the boundary whose neighbourhoods do not
charge the volume of the set, such as in line segments for instance.

For any measurable function f : Rd → R and level u ∈ R, the perimeter of
the excursion Per({f ≥ u};U) within U is a well-defined quantity. To be able
to compute it efficiently, we must make additional assumptions on the regular-
ity of f . Following [7], we assume that f belongs to the space BV (U) of func-
tions with bounded variations, that is, f ∈ L1(U) and its variation above U is
finite:

V (f,U) := sup
ϕ∈C1

c (U,Rd ):‖ϕ‖≤1

∫
U

f (x)divϕ(x)dx < ∞.

The original (equivalent) definition states that f ∈ L1(U) is in BV (U) if and
only if the following holds ([1], Proposition 3.6): there exists signed Radon mea-
sures Dif on U , 1 ≤ i ≤ d , called directional derivatives of f , such that for all
ϕ ∈ C∞

c (Rd),

∫
U

f (x)divϕ(x)dx = −
d∑

i=1

∫
U

ϕi(x)Dif (dx).

Then there is a finite Radon measure ‖Df ‖ on U , called total variation measure,
and a Sd−1-valued function νf (x), x ∈ U , such that Df = ∑

i Dif = ‖Df ‖νf .
According to the Radon–Nikodym theorem, the total variation can be decomposed
as

‖Df ‖ = ∇f �d + Djf + Dcf(4.9)

where ∇f is defined as the density of the continuous part of ‖Df ‖ with respect to
�d , Dcf + Djf is the singular part of ‖Df ‖ with respect to Lebesgue measure,
decomposed in the Cantor part Dcf , and the jump part Djf , that we specify
below, following [1], Section 3.7.
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For x ∈ U , denote by Hx the affine hyperplane containing x with outer normal
vector νf (x). For r > 0, denote by B+(x, r) and B−(x, r) the two components of
B(x, r) \ Hx , with νf (x) pointing towards B+(x, r). Say that x is a regular point
if there are two values f +(x) ≥ f −(x) such that

lim
r→0

r−d
∫
B+(x,r)

∣∣f +(x) − f (y)
∣∣dy

= lim
r→0

r−d
∫
B−(x,r)

∣∣f (y) − f −(x)
∣∣dy = 0.(4.10)

It turns out that the set of nonregular points has Hd−1-measure 0 ([1], Theo-
rem 3.77), and the set Jf of points where f +(x) > f −(x), called jump points,
has Lebesgue measure 0 ([1], Theorem 3.83). Then the jump measure of f is rep-
resented by

Djf (dx) = 1{x∈Jf }
(
f +(x) − f −(x)

)
Hd−1(dx),

where Hd−1 stands for the (d − 1)-dimensional Hausdorff measure.
In the classical case where f is continuously differentiable on U , Df = ∇f �d ,

νf (x) = ‖∇f (x)‖−1∇f (x) (and takes an irrelevant arbitrary value if ∇f (x) =
0) and V (f ;U) = ∫

U ‖∇f (x)‖dx. If f = 1{A} for some C1 compact manifold
A, νf (x) is the outer normal to A for x ∈ ∂A, ∇f = 0, Dcf = 0 and Djf =
1{∂A}Hd−1.

Denote by SBV (U) the functions f ∈ BV (U) such that Dcf = 0. Assume here
that for m ∈ M, gm ∈ SBV (Rd) and that∫

M

[∫
Rd

(∣∣gm(t)
∣∣ + ∥∥∇gm(t)

∥∥)
dt +

∫
Jgm

∣∣g+
m(t) − g−

m(t)
∣∣Hd−1(dt)

]
μ(dm) < ∞.

Let N0 be the class of configurations ζ such that the corresponding shot-noise
field fζ is of class SBV (U) on every bounded set U , finite a.e. on R

d , its gradient
density defined by (4.9) is a vector-valued shot-noise field, defined a.s. and �d -a.e.
by

∇fζ (t) = ∑
(x,m)∈ζ

∇gm(t − x),

and its jump set Jf is the union of the translates of the impulse jump sets: Jf =⋃
(x,m)∈ζ (x + Jgm), and the jumps of f are

f +
ζ (y) − f −

ζ (y) = ∑
(x,m)∈ζ

1{y∈x+Jgm }
(
g+

m(y − x) − g−
m(y − x)

)
, y ∈ Jf .

[7], Theorem 2, and the previous assumption yield that η ∈ N0 a.s. Let h be a test
function, that is, a function h :R →R of class C1 with compact support. Let H be
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a primitive function of h. Biermé and Desolneux [7], Theorem 1, give for W ⊂ Z
d ,

ζ ∈ N ,

F
h,Per
W (ζ ) :=

∫
R

h(u)Per
({fζ ≥ u}; W̃ )

du = F
h,cont
W (ζ ) + F

h,jump
W (ζ ),

where

F
h,cont
W (ζ ) =

∫
W̃

h
(
fζ (x)

)∥∥∇fζ (x)
∥∥dx,

F
h,jump
W (ζ ) =

∫
Jf ∩W̃

(
H

(
f +

ζ (x)
) − H

(
f −

ζ (x)
))
Hd−1(dx).

Their expectations under η are computed in [7], Section 3:

E
[
F

h,cont
W (η)

] = |W |E[
h
(
fη(0)

)∥∥∇fη(0)
∥∥]

,

E
[
F

h,jump
W (η)

] = |W |
∫

M

∫
Jgm

(∫ g+
m(y)

g−
m(y)

E
[
h
(
s + fη(0)

)]
ds

)
Hd−1(dy)μ(dm).

Let us now give their second-order behaviour. It is difficult to give sharp necessary
conditions for nondegeneracy of the variance if the function h changes signs, so
we treat the case h ≥ 0, but it is can clearly be extended.

THEOREM 4.2. Let W = {Wn;n ≥ 1} satisfying (1.5). Assume that (4.6) holds
and that P(F

h,Per
W (η) �= F

h,Per
W (∅)) > 0 for some W ⊂ Z

d . Assume that for some
α > 5d/2, c > 0,(

E
∣∣gM(x)

∣∣4)1/4 ≤ c
(
1 + ‖x‖)−d−α

,(4.11) (
E

∥∥∇gM(x)
∥∥4)1/4 ≤ c

(
1 + ‖x‖)−d−α

,(4.12) (
E

[∫
JgM

∩(x+[0,1)d )

(
1 ∨ ∣∣g+

M(t) − g−
M(t)

∣∣)Hd−1(dt)

]4)1/4

≤ c
(
1 + ‖x‖)−d−α

.

(4.13)

Then the conclusions of Theorems 1.1, 1.2, 2.1 and 3.1 hold for F0 := F
h,Per
{0} . In

particular, F
h,Per
W has a variance proportional to |W | and follows a CLT.

EXAMPLE 4.2. Assume M = R is endowed with a probability measure μ

with finite fourt moment. Let f be a function of the form

fζ (x) = ∑
(y,m)∈ζ

mg
(‖x − y‖)

with g ∈ SBV (R). Conditions (4.11) and (4.12) hold if |g(r)| ≤ C(1 + r)−d−α

and |g′(r)| ≤ C(1 + r)−d−α, r > 0. Then (4.13) holds if Jg is countable and for
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some C > 0, for every r > 0∑
t∈Jg∩[r,r+1)

(
1 ∨ ∣∣g+(t) − g−(t)

∣∣) ≤ C(1 + r)−d−α.

PROOF. First, (4.11)–(4.12) imply that the shot-noise process and its gradient
measure are a.s. well defined. The functionals F

h,cont
W , F

h,jump
W are under the form

(1.1)–(1.2), with F0 defined respectively by, for ζ ∈ N ,

F
h,cont
0 (ζ ) =

∫
Q̃1

h
(
fζ (t)

)∥∥∇fζ (t)
∥∥dt,

F
h,jump
0 (ζ ) =

∫
Jfζ

∩Q̃1

(
H

(
f +

ζ (t)
) − H

(
f −

ζ (t)
))
Hd−1(dt),

where H is a primitive function of h.
Let xi = (xi,mi) ∈ R

d , i = 1, . . . ,6. Let r > 0, ζ ⊂ {x1,x2}, and let ηj =
η′ ∩ Aj , j = 1,2, for some A1 ⊂ A2 ⊂ R

d that coincide on Br . By the triangu-
lar inequality,∣∣Fh,cont

0 (η1) − F
h,cont
0 (η2)

∣∣
≤

∫
Q̃1

∥∥h′∥∥∞
∣∣fη1(t) − fη2(t)

∣∣∥∥∇fη1(t)
∥∥dt

+
∫
Q̃1

‖h‖∞
∥∥∇fη1(t) − ∇fη2(t)

∥∥dt

≤ ∑
(x,m)∈η′\Br

∫
Q̃1

[∥∥h′∥∥∞
∥∥∇fη1(t)

∥∥∣∣gm(x − t)
∣∣ + ‖h‖∞

∥∥∇gm(x − t)
∥∥]

dt.

Define for ζ0 ∈ N , x = (x,m) ∈ Rd ,

ψ(x, ζ0) =
∫
Q̃1

[∥∥h′∥∥∞
∥∥∇f(ζ0∪ζ )∩A1(t)

∥∥∣∣gm(x − t)
∣∣ + ‖h‖∞

∥∥∇gm(x − t)
∥∥]

dt.

For ζ ′ ⊂ {xi ,3 ≤ i ≤ 6}, Jensen’s inequality yields for x = (x,m) ∈ Rd

Eψ
(
x, η ∪ ζ ′)4

≤ C

∫
Q̃1

E
[∣∣gm(x − t)

∣∣4E
∥∥∇fη1∪ζ ′(t)

∥∥4 + E
∥∥∇gm(x − t)

∥∥4]
dt.

An easy application of Lemma 5.1 with ψ ′(x,m) = ‖∇gm(x − t)‖, r = 0 yields
that E‖∇fη1∪ζ ′(t)‖4 ≤ c < ∞ where c does not depend on t ∈ R

d,A1 or the xi .

Therefore, Assumptions (4.11) and (4.12) yield for x = (x,m) ∈Rd

E
[
ψ

(
x, η ∪ ζ ′)4] ≤ C

(
1 + ‖x‖)−4(α+d)

,
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and Lemma 5.1 with (4.14) yields that

(
E

[∣∣Fh,cont
0 (η ∩ A1) − F

h,cont
0 (η ∩ A2)

∣∣4])1/4 ≤ C(1 + r)−α,(4.14)

where C does not depend on the Ai . Hence, (1.8) is satisfied by F
h,cont
0 (hypothet-

ical points of ζ \ Br have to be treated separately).
Let us now prove that it is satisfied by the jump functional F

h,jump
0 . Since it

has to hold only for �d -a.e. x1, x2, and the Jg1 , Jg2 have finite Hd−1 measure, we
assume that Jgm1

− x1 and Jgm2
− x2 have a Hd−1-negligible intersection. They

also a.s. have a Hd−1-negligible intersection with each Jgm − x, (x,m) ∈ η. Call
f1 = fη1 , f2 = fη2 ,

∣∣Fh,jump
0 (η1) − F

h,jump
0 (η2)

∣∣
=

∣∣∣∣ ∑
(x,m)∈η1

∫
Jgm∩Q̃1

[(
H

(
f +

1 (t)
) − H

(
f −

1 (t)
))

− (
H

(
f +

2 (t)
) − H

(
f −

2

)
(t)

)]
Hd−1(dt)

− ∑
(x,m)∈η2\η1

∫
Jgm∩Q̃1

[
H

(
f +

2 (t)
) − H

(
f −

2 (t)
)]
Hd−1(dt)

∣∣∣∣
≤

∫
Jf1∩Q̃1

‖h‖(∣∣f +
2 (t) − f +

1 (t)
∣∣ + ∣∣f −

2 (t) − f −
1 (t)

∣∣)Hd−1(dt)

+ ∑
(x,m)∈η′\Br

∫
Q̃1∩Jgm

‖h‖∣∣g+
m(x − t) − g−

m(x − t)
∣∣Hd−1(dt)

≤ ∑
(x,m)∈η′\Br

‖h‖
(

2
∫
Jf

η′ ∩Q̃1

∣∣gm(x − t)
∣∣Hd−1(dt)

︸ ︷︷ ︸
=:ψ1((x,m),η)

+
∫
Q̃1∩Jgm

∣∣g+
m(x − t) − g−

m(x − t)
∣∣Hd−1(dt)︸ ︷︷ ︸

=:ψ2(x,m)

)
.(4.15)

We have E[ψ2(x,M0)
4] ≤ C(1 + ‖x‖)−4(α+d) by (4.13), and Jensen’s inequality

yields for ζ ′ ⊂ {x3, . . . ,x6}, f3 = fη′∪ζ ′ , after expanding the fourth power of the
integral as a quadruple integral,

Eψ1
(
(x,M0), η ∪ ζ ′)4

= E
(

E
[(∫

Jf3∩Q̃1

∣∣gM0(x − t)
∣∣Hd−1(dt)

)4∣∣∣∣σ (
η, ζ, ζ ′)])
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≤ E
((∫

Jf3∩Q̃1

(
EgM0(x − t)4)1/4Hd−1(dt)

)4∣∣∣∣σ (
η, ζ, ζ ′))

≤ C
(
1 + ‖x‖)−4(d+α)E

[
Hd−1(Jf3 ∩ Q̃1)

4]
by Assumption (4.11). Then (4.13) yields E[Hd−1(Jf3 ∩ Q̃1)

4] < ∞ with an ap-

plication of Lemma 5.1, where Lemma 5.1 again yields that F
h,jump
0 also satisfies

(1.8) (here again the points of ζ ∪ ζ ′ have to be considered separately). Hence
F0 = F

h,cont
0 + F

h,Per
0 satisfies (1.8).

It remains to prove Assumption 1.1. Assume wlog F0(∅) = 0. Since a set
with positive volume has positive perimeter, Lemma 4.1 and Assumption (4.6)
yield ρ > 1, c > 0, p > 0 such that for β > ρ, P(|FQβ (ηρ)| ≥ c) ≥ p. Then for
δ > γ > β ,

U := ∣∣FQδ

(
ηγ ∪ ηρ) − FQδ(ηγ ) − FQβ

(
ηρ)∣∣

≤ ∣∣FQβ

(
ηγ ∪ ηρ) − FQβ

(
ηρ)∣∣ + ∣∣FQδ\Qβ

(
ηρ ∪ ηγ

) − FQδ\Qβ (ηγ )
∣∣

+ ∣∣FQβ (ηγ )
∣∣

EU ≤ κβd(γ − β)−α +
δ∑

m=β

κmd−1(m − ρ)−α + κβd(γ − β)−α

≤ κβd(γ − β)d−α + Cρ(β − ρ)d−α,

the last estimates are obtained by choosing adequately A1, A2 in (4.14), (4.15).
We can arbitrarily increase β such that Cρ(β − ρ)d−α < pc/8, and then for γ

sufficiently large κβd(γ − β)d−α < pc/8 as well, from where

P
(∣∣FQδ

(
ηγ ∪ ηρ) − FQδ(ηγ )

∣∣ > c/2
)

≥ P
(∣∣FQβ

(
ηρ)∣∣ > c

) − P
(|U | > c/2

)
≥ p − EU/(c/2) ≥ p − p/2 = p/2 > 0.

That proves Assumption 1.1 and concludes the proof. �

4.3. Fixed level perimeter and Euler characteristic. Let B be a measurable
subset of Md , and let the marks space be M = (R \ {0}) × B, endowed with the
product σ -algebra and some probability measure μ. This section is restricted to
shot-noise fields of the form

fζ (x) = ∑
(y,(L,A))∈ζ

L1{x−y∈A}, ζ ⊂ R
d × M, x ∈ R

d .(4.16)

Such fields are used in image analysis [6, 7], or in mathematical morphology [17],
sometimes with L = const., and their marginals might not have a density. The
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article [8] uses the asymptotic normality result below for the Euler characteristic
when B is the class of closed discs in R

2 (Example 4.5).
The current framework allows to give general results for a fixed level u ∈R, for

a large class of additive functionals, including the perimeter or the total curvature,
related to the Euler characteristic. For the latter, the main difficulty is to properly
define it on a typical excursion of the shot-noise field, as it is obtained by locally
adding and removing sets from B. The general result only involves the marginal
distribution μB(·) := μ(R× ·).

We call B′ the class of excursion sets generated by shot-noise fields of the form
(4.16) where all but finitely many points of ζ in general position have been re-
moved. Formally, given a measurable subclass B′ ⊂ Md , a function V : B′ → R

such that V (A) only depends on A∩Q̃1, and a function |V | : B → (0,∞), say that
(B,B′,V , |V |) is admissible if for A1, . . . ,Aq ∈ B, for a.a. y1, . . . , yq ∈ R

d , any
set A obtained by sequentially removing, adding or intersecting the Ai + yi, i =
1, . . . , q , belongs to B′, and |V (A)| ≤ ∑q

i=1 |V |(Ai). We consider below the func-
tionals, for W ⊂ Z

d , ζ ∈ N ,

FW(ζ ) = ∑
k∈W

V
({f

ζ∩W̃
≥ u} − k

)
, F ′

W(ζ ) = ∑
k∈W

V
({fζ ≥ u} − k

)
.

THEOREM 4.3. Let u ∈ R, (B,B′,V , |V |) be an admissible quadruple, let
f be of the form (4.16) and let W = {Wn;n ≥ 1} be a sequence of subsets of
Z

d satisfying (1.5). Assume that for some ρ,p, c > 0, P(|FQβ (ηρ)| ≥ c) ≥ p for
β > ρ, that

∫
B |V |(A)8μB(dA) < ∞, and that for some λ > 28d , C > 0,

μB
({

A ∈ B : (x + A) ∩ Q̃1 �= ∅
}) ≤ C

(
1 + ‖x‖)−λ

, x ∈ R
d .(4.17)

Then the conclusions of Theorems 1.1 and 1.2 hold: FW and F ′
W have variance of

volume order and undergo a CLT.

Remark that nothing prevents the typical grain of B to be unbounded with pos-
itive μB-probability.

PROOF. In this proof, N0 is chosen to be the class of ζ such that for any
bounded set D, ζ [D] := {(y, (L,A)) ∈ ζ : (y +A)∩D �= ∅} is finite. Assumption
(4.17) implies that η ∈ N0 a.s. Let the notation of (1.8) prevail. Let r ≥ 0. Introduce
the independent variables

S−
r = ∑

(y,(L,A))∈(η′∩Br)[Q̃1]
|V |(A), S+

r = ∑
(y,(L,A))∈(η′\Br)[Q̃1]

|V |(A).

We have a.s. ∣∣F0
(
η′ ∩ B

) − F0
(
η′ ∩ B ∩ Br

)∣∣
= ∣∣V ({fη′∩B∩Br

≥ u}) − V
({fη′∩B ≥ u})∣∣

≤ 1{S+
r �=0}2

(
S−

r + S+
r

) ≤ 21{S+
r �=0}S

−
r + 2S+

r .

(4.18)
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Define ψ(y, (L,A)) = 1{(y+A)∩Q̃1 �=∅}|V |(A). Let (L0,A0) be a random variable

with law μ. We have by Cauchy–Schwarz, for y ∈ R
d ,

E
(
ψ

(
y, (L0,A0)

))4 ≤
√

E|V |(A0)8
√

P
(
(y + A0) ∩ Q̃1 �= ∅

)
≤ C

(
1 + ‖y‖)−λ/2

.

Hence Lemma 5.1 yields supr>0 E(S−
r )4 ≤ E(S−∞)4 < ∞. The same method

yields (E(S+
r )4)1/4 ≤ C(1 + r)−λ/8+d . The same method again but this time with

ψ(y, (L,A)) = 1{(y+A)∩Q̃1=∅} yields P(S+
r �= 0) ≤ C(1 + r)−λ+d . Taking the

fourth moment and plugging these estimates back in (4.18) yields that (1.8) and
(1.10) hold.

Let us show that Assumption 1.1 holds. For β > ρ, P(|FQβ (ηρ)| ≥ c) > p. If
ηγ [Qβ] = ∅, FQβ (ηρ ∪ ηγ ) = FQβ (ηρ) and if ηρ[Qc

β] = ∅, FQδ\Qβ (ηρ ∪ ηγ ) =
FQδ\Qβ (ηγ ). Hence, with Uδ,γ := FQδ(η

ρ) − FQδ(η
ρ ∪ ηγ ) − FQβ (ηρ),

P
(∣∣FQδ

(
ηρ) − FQδ

(
ηρ ∪ ηγ

)∣∣ > c/2
)

≥ P
(∣∣FQβ

(
ηρ)∣∣ > c

) − P
(|Uδ,γ | > c/2

)
≥ p − P

(
ηρ[

Qc
β

] �= ∅
) − P

(
ηγ [Qβ] �= ∅

)
.

Since at fixed ρ, 1{ηρ [Qc
β ]�=∅} → 0 a.s. as β → ∞, fix β such that P(ηρ[Qc

β] �=
∅) < p/4. Then for γ sufficiently large and any δ > γ , P(ηγ [Qβ] �= ∅) < p/4,
hence Assumption 1.1 is satisfied. �

EXAMPLE 4.3 (Volume). The simplest example is the class B = Md of mea-
surable subsets of Rd , endowed with Lebesgue measure V (A) = �d(A ∩ Q̃1). We
have FW(η) := �d({f

η∩W̃
≥ u} ∩ W̃ ) a.s. This example has been treated in a dif-

ferent framework at Section 4.1.

EXAMPLE 4.4 (Perimeter). Let B be the class of A ∈ Md such that
Hd−1(∂A) < ∞. Define V (A) = Hd−1(∂A ∩ Q̃1), we prove below that FW(η) =
Hd−1({f

η∩W̃
≥ u} ∩ W̃ ) a.s. Assume for the moment condition that∫

BHd−1(∂A)8μB(dA) < ∞.

EXAMPLE 4.5 (Total curvature). Let d = 2, B be the class of nontrivial closed
discs of R

2. A set A ⊂ R
2 is an elementary set in the terminology of Biermé

and Desolneux [6] if ∂A can be decomposed as a finite union of C2 open curves
Cj , j = 1, . . . , p with respective constant curvatures κj > 0, separated by corners
xi ∈ ∂A, i = 1, . . . , q (with 0 ≤ q ≤ p) with angle α(xi,A) ∈ (−π,π). The total
curvature of A within some open set U is defined by

TC(A;U) :=
p∑

j=1

κjH1(Cj ∩ U) +
q∑

i=1

1{xi∈U }α(xi,A).
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Therefore, we define V (A) = TC(A; Q̃1). Via the Gauss–Bonnet theorem, for
W ⊂ Z

d , TC(A; int(W̃ )) is strongly related to the Euler characteristic of A ∩
W̃ , in the sense that they coincide if A ⊂ int(W̃ ), and otherwise they only
differ by boundary terms; see [6]. We will see that FW(η) = TC({f

η∩W̃
≥

u}; int(W̃ )) a.s. Assume also that the typical radius has a finite moment of
order 8d .

PROPOSITION 4.1. In the three previous examples, assume that (4.17) holds,
and that P(fη(0) ≥ cu) /∈ {0,1} for some c > 0. Then the functionals FW , F ′

W

satisfy the conclusions of theorems 1.1, 1.2, in particular, they have variance of
volume order and undergo a central limit theorem as |∂Zd W |/|W | → 0.

PROOF. All proofs rely on defining an admissible quadruple that satisfies the
assumptions of Theorem 4.3, and show that the variance assumption holds. We
only treat the case u ≥ 0, the case u ≤ 0 can be treated similarly. Let �k = k + Q̃1,
k ∈ Z

d .
(Volume.) Defining B′ = Md , |V |(A) = �d(A) yields an admissible quadruple

(B,B′,V , |V |). In the case u > 0, the fact that 1{fη(0)>0} is not trivial yields that
(4.6) holds, and hence using Lemma 4.1, P(FQβ (ηρ) ≥ c) ≥ P(FQρ (η

ρ) ≥ c) =:
p > 0 holds for some ρ, c > 0, and for β > ρ. The case u = 0 can be treated
directly and is left to the reader.

(Perimeter.) Let B′ be the class of A ∈ B such that Hd−1(∂A ∩ ∂�k) = 0 for
k ∈ Z

d . For A ∈ B, for a.a. y ∈ R
d , Hd−1(∂(A + y) ∩ ∂�k) = 0. Hence for

A1, . . . ,Aq ∈ B, for a.a. y1, . . . , yq ∈ R
d , any set A obtained by sequentially

adding, intersecting or removing the Ai + yi is in B′, using ∂A ⊂ ⋃n
i=1(∂Ai + yi).

Defining |V |(A) := Hd−1(∂A) yields an admissible quadruple (B,B′,V , |V |).
The justification that Var(FQβ (ηρ)) > 0 holds is the same as for the vol-
ume (above), because a set with positive volume has positive boundary mea-
sure.

(Total curvature.) Let B′ be the class of sets obtained from finite unions, in-
tersections and removals of discs A1, . . . ,Aq such that for i �= j , Ai and Aj

are not tangent and ∂Ai ∩ ∂Aj ∩ ∂�k = ∅ for k ∈ Z
d . Every A ∈ B′ is elemen-

tary, and defining |V | ≡ 1 yields that (B,B′,V , |V |) is an admissible quadru-
ple. Let Xi = (Yi, (Li,Di)), i ≥ 1, i.i.d. marked couples of discs with i.i.d. uni-
form centers Yi in B(0,1). Let k ∈ N be such that the event � = (

∑k
i=1 Li ≥

u,
∑k−1

i=1 Li < u) has positive probability. Conditionally on �, {f{X1,...,Xk} ≥
u} = ⋂k

i=1(Yi + Di). Since the Di have positive radii, the probability that the
Yi, i = 1, . . . , k are sufficiently close to 0 such that this set is nonempty is also
positive. In this case, it is the intersection of discs, hence its total curvature
is equal to 1, and P(FQβ (ηρ) ≥ 1) ≥ p > 0 is satisfied for some ρ > 0 and
β > ρ. �
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With a similar route, the previous example can likely be generalised to more
general classes of sets B in higher dimensions, such as the polyconvex ring, pro-
vided one can estimate properly the curvature or the Euler characteristic on sets
from B′.

5. Proofs. Recall that κ denotes a constant which depends on d , α, a−, a+
and whose value might change from line to line. The following lemma is useful
several times in the paper.

LEMMA 5.1. Let α > d,C0 ≥ 0, Mi , 0 ≤ i ≤ 4 be independent marks with
law μ. Let r > 0, ψ : Rd × N → R+ be a measurable function such that for
�d -a.e. xi ∈ R

d,0 ≤ i ≤ 4, and ζ ⊂ {(xi,Mi), i = 1, . . . ,4}, (Eψ((x0,M0), η ∪
ζ )4)1/4 ≤ C0(1 + ‖x0‖)−α−d . Then(

E
∣∣∣∣ ∑
x∈η\Br

ψ(x;η)

∣∣∣∣4
)1/4

≤ C0κ(1 + r)−α.

PROOF. Let ηr = η \ Br . Let xi = (xi,Mi). Let P4 be the family of or-
dered tuples of natural integers which sum is 4. The multivariate Mecke formula
yields

E
[ ∑

x∈ηr

ψ(x;η)

]4

≤ κ
∑

(m1,...,mq)∈P4

E
[ ∑
(x1,...,xq )∈η

q
r

ψ(x1;η)m1 · · ·ψ(xq;η)mq

]

≤ κ
∑

(m1,...,mq)∈P4

∫
(Bc

r )q
E

[ q∏
l=1

ψ
(
xl , η ∪ {x1, . . . ,xq})ml

]
dx1 · · ·dxq

≤ κ
∑

(m1,...,mq)∈P4

∫
(Bc

r )q

q∏
l=1

(
Eψ

(
xl , η ∪ {x1, . . . ,xq})4)ml/4

dx1 · · ·dxq

≤ κ
∑

(m1,...,mq)∈P4

q∏
l=1

κ

∫
Bc

r

C
ml

0

(
1 + ‖xl‖)−ml(α+d)

dxl

≤ κ
∑

(m1,...,mq)∈P4

C4
0

q∏
l=1

κ

∫ ∞
a−r

(1 + t)−ml(α+d)td−1 dt

≤ κC4
0

∑
(m1,...,mq)∈P4

(1 + r)−4(α+d)+qd ≤ κC4
0(1 + r)−4α.

�



NONLOCALISED GEOMETRIC FUNCTIONALS 2643

5.1. Proof of Theorem 2.1. We prove (2.3) under Assumption (2.1) (i.e., in
case (i)). Remark first that (2.1) trivially holds also for B ∈ Bs

W \Br
W , s < r . Also,

if (2.1) is satisfied, with B = R
d , (2.2) is also satisfied. Assume without loss of

generality F0(∅) = 0, then (2.1) with r = 0 yields

m2 := sup
k∈W

E
∣∣FW

k (η)
∣∣2

= sup
k∈W

E
∣∣F0

(
(η ∩ W̃ ) − k

) − F0
((

(η ∩ W̃ ) − k
) ∩ B0

)∣∣2
≤ κC2

0 < ∞.

The following inequality is useful several times in the proof: given some square-
integrable random variables Yi,Zi, i = 1,2 on �, and a σ -algebra Z ⊂ A ,

E
∣∣Cov(Y1, Y2|Z) − Cov(Z1,Z2|Z)

∣∣
≤ E

(√
2E

(
Y 2

1 |Z)√
2E

(
(Z2 − Y2)2|Z)

+
√

2E
(
Z2

2|Z
)√

2E
(
(Z1 − Y1)2|Z))

≤ 2
(√

EY 2
1

√
E(Z2 − Y2)2 +

√
EZ2

2

√
E(Z1 − Y1)2

)
.

(5.1)

Let Br(k) = k + Br for k ∈ Z
d, r ≥ 0. Let k, j ∈ W , r = ‖k − j‖/(3a+), η′, η′′

independent copies of η, and

ηk = (
η ∩ Br(k)

) ∪ (
η′ ∩ Br(k)c

)
, ηj = (

η ∩ Br(j)
) ∪ (

η′′ ∩ Br(j)c
)
,

which are processes distributed as η, independent since Br(k) ∩ Br(j) = ∅. Since
η ∩ Br(k) = ηk ∩ Br(k), (2.1) yields

FW
k (η) − FW

k (ηk) = FW
k (η) − FW

k

(
η ∩ Br(k)

)
+ FW

k

(
ηk ∩ Br(k)

) − FW
k (ηk),

E
∣∣FW

k (η) − FW
k (ηk)

∣∣2 ≤ 2
(
E

∣∣F0
(
(η − k) ∩ (W̃ − k)

)
− F0

(
(η − k) ∩ (W̃ − k) ∩ Br

)∣∣2
+ E

∣∣F0
(
(ηk − k) ∩ (W̃ − k) ∩ Br

)
− F0

(
(ηk − k) ∩ (W̃ − k)

)∣∣2)
≤ κC2

0(1 + r)−2α,
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because ηk − k
(d)= η − k

(d)= η. A similar bound holds for FW
j . Then (5.1) yields∣∣Cov

(
FW

k (η),FW
j (η)

) − Cov
(
FW

k (ηk),F
W
j (ηj )

)
︸ ︷︷ ︸

=0

∣∣

≤ κ
√

EFW
j (η)2

√
E

∣∣FW
k (η) − FW

k (ηk)
∣∣2

+ κ

√
E

(
FW

k (ηk)
)2

√
E

∣∣FW
j (η) − FW

j (ηj )
∣∣2

≤ κ
√

m2

√
C2

0(1 + r)−2α ≤ κC2
0
(
1 + ‖k − j‖)−α

.

(5.2)

Hence (2.3) is proved in case (i). If GW
k = Fk and (2.2) is assumed instead of (2.1)

(case (i′)), replacing W by Z
d in the computation above yields the same bound for

Cov(Fk,Fj ). The finiteness of σ0 follows from α > d .
Let us now assume |W | < ∞ and show (2.4). Let k ∈ W , r = d(k, W̃ c)/a+, so

that Br ∩ (W̃ − k) = Br . We have if (2.1) holds

FW
k − Fk = F0

(
(η − k) ∩ (W̃ − k)

) − F0
(
(η − k) ∩ (W̃ − k) ∩ Br

)
+ F0

(
(η − k) ∩ Br

) − F0(η − k),

E
∣∣FW

k − Fk

∣∣2 ≤ κC2
0(1 + r)−2α ≤ κC2

0
(
1 + d

(
k, W̃ c))−2α

.

We hence have by (5.1), for k, j ∈ W , recalling also (5.2),∣∣Cov
(
FW

k ,FW
j

) − Cov(Fk,Fj )
∣∣

≤ κC2
0
(
1 + min

(
d
(
k, W̃ c), d(

j, W̃ c)))−α

≤ κC2
0
(
1 + max

(‖k − j‖,min
(
d
(
k, W̃ c), d(

j, W̃ c))))−α
.

(5.3)

Denote by [x] the integer part of x ∈ R. Let dW ∈ N \ {0}, Wm = {k ∈ W :
[d(k, W̃ c)] = m} for m ∈ N, W∂ = {k ∈ W : [d(k, W̃ c)] ≤ dW } = ⋃dW

m=0 Wm,
Wint = W \ W∂ . We have, using (2.3) and (5.3),

∣∣Var(FW) − σ 2
0 |W |∣∣ =

∣∣∣∣ ∑
k∈W,j∈W

Cov
(
FW

k ,FW
j

) − ∑
k∈W,j∈Zd

Cov(Fk,Fj )

∣∣∣∣
≤ ∑

k∈W,j /∈W

∣∣Cov(Fk,Fj )
∣∣

+ 2
∑

k,j∈W :d(k,W̃ c)≤d(j,W̃ c)

∣∣Cov
(
FW

k ,FW
j

) − Cov(Fk,Fj )
∣∣

≤
∞∑

m=0

∑
k∈Wm

[ ∑
j∈Wc

κC2
0
(
1 + ‖k − j‖)−α
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+ 2
∑
j∈W

κC2
0
(
1 + max

(‖k − j‖,m))−α
]

≤ κC2
0

∞∑
m=0

∑
k∈Wm

(
3

∑
j∈B(k,m)c

(
1 + ‖k − j‖)−α

+ 2
∑

j∈B(k,m)

(1 + m)−α

)

≤ κC2
0

∞∑
m=0

∑
k∈Wm

(
3κ(1 + m)−α+d + 2κmd(1 + m)−α)

≤ κC2
0
(|W∂ | + d−α+d

W |Wint |)
hence |Var(FW )

|W | − σ 2
0 | ≤ κC2

0(
dd
W |∂

Zd W |
|W | + d−α+d

W ). Equation (2.4) follows by tak-

ing dW = [(|W |/|∂Zd W |) 1
α ]. The same computation where FW

k is replaced by Fk

(hence with no second term on the second line), treats the case (i′), without requir-
ing (2.1).

Let us now prove that under the current assumptions, Assumption 1.1 im-
plies σ0 > 0. Recall the notation ηa = η ∩ Q̃c

a , ηb
a = ηa ∩ Q̃b, a, b > 0. Let

δ > 0, and decompose W in the finite disjoint union of subparts with side-
length δ: W = ⋃

k∈Zd W(k) where W(k) = W ∩ (δk + Qδ). Decompose accord-
ingly FW = ∑

k∈Zd F (k) where F (k) = ∑
j∈W(k) Fj . Let γ < δ, and condition

by the points of η γ -close to the boundary of a W(k): η∗
γ = η ∩ Q̃∗

γ where

Q̃∗
γ = R

d \ (
⋃

k∈Zd (δk + Q̃γ )). Denote by Eη∗
γ
, Varη∗

γ
and Covη∗

γ
the conditional

expectation, variance and covariance with respect to η∗
γ . We have

Var(FW) ≥ E
[
Varη∗

γ
(FW)

]
≥ ∑

k∈Zd

E
[
Varη∗

γ

(
F (k))] − ∑

k �=j

E
∣∣Covη∗

γ

(
F (k),F (j))∣∣.(5.4)

We claim (and prove later) that for k ∈ Z
d ,

E
∑
j �=k

∣∣Covη∗
γ

(
F (k),F (j))∣∣ ≤ C′δ2d(δ − γ )−α.(5.5)

For the first term of (5.4), among the k ∈ Z
d such that W(k) �= ∅, call Wδ,int those

such that W(k) − kδ = Qδ , and Wδ,∂ the others. We have, using also (5.1),∑
k∈Zd

E
[
Varη∗

γ

(
F (k))] ≥ ∑

k∈Wδ,int

E
[
Varη∗

γ

(
F (k))] − 2

∑
k∈Wδ,∂

E
[(

F (k))2]

≥ ∣∣Wδ,int∣∣E[
Varη∗

γ
(FQδ)

] − 2
∣∣Wδ,∂

∣∣δdm2

(5.6)
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because by stationarity, for k ∈ Wδ,int, E[Varη∗
γ
(F (k))] = E[Varη∗

γ
(FQδ)]. Recall

that any real random variable U satisfies Var(U) = infz∈R E(U − z)2. Since Q̃∗
γ ⊂

Qc
γ , η∗

γ ∈ σ(ηγ ), hence for ρ ∈ (0, γ ),

E
[
Varη∗

γ
(FQδ)

] ≥ E
[
Varηγ (FQδ)

]
= E

[
inf
z∈REηγ (FQδ − z)2

]
≥ E

[
inf
z∈REηγ

[
1η

γ
ρ =∅

(FQδ − z)2]]
= P

(
ηγ

ρ =∅
)
E

[
inf
z∈REηγ

[(
FQδ

(
ηρ ∪ ηγ

) − z
)2]]

= P
(
ηγ

ρ =∅
)
E

[
Varηγ

[
FQδ

(
ηρ ∪ ηγ

)]]
where the second equality is true because η

γ
ρ , ηρ , ηγ are independent and

1{ηγ
ρ =∅}FQδ = 1{ηγ

ρ =∅}FQδ(η
ρ ∪ ηγ ). Up to increasing δ, let 0 < ρ < γ be like

in Assumption 1.1, which yields vγ > 0 such that for arbitrarily large δ > γ ,
E[Varηγ (FQδ(η

ρ ∪ηγ ))] ≥ vγ . By (5.5), (5.4) and (5.6) for δ > γ sufficiently large

Var(FW) ≥ ∣∣Wδ,int∣∣P(
ηγ

ρ = ∅
)
vγ − 2

∣∣Wδ,∂
∣∣δdm2

− (∣∣Wδ,int∣∣ + ∣∣Wδ,∂
∣∣)C′δ2d(δ − γ )−α

≥∣∣Wδ,int∣∣(P(
ηγ

ρ = ∅
)
vγ − C′δ2d(δ − γ )−α)

− ∣∣Wδ,∂
∣∣(2δdm2 + C′δ2d(δ − γ )−α)

.

Since α > 2d , given any γ , one can choose δ =: δγ such that C′δ2d(δ − γ )−α <

εγ := P(η
γ
ρ = ∅)vγ /2. Hence Var(FW) ≥ |Wδ,int|εγ − |Wδ,∂ |(2δdm2 + εγ ). To

conclude, let a sequence {Wn;n ≥ 1} be such that limn |∂Zd Wn|/|Wn| = 0. Since
|∂Zd Wn|/|Wn| ≥ |Wδ,∂

n |/(δd(|Wδ,int
n | + |Wδ,∂

n |)), (2.4) yields

σ0 = lim inf
n

|Wn|−1 Var(FWn) ≥ lim inf
n

(
δd

∣∣Wδ,int
n

∣∣)−1 Var(FWn) > 0.

Let us finally prove (5.5). Let k �= j ∈ Z
d , l ∈ W(k), m ∈ W(j), r = ‖j − k‖(δ −

γ )/(2a+). Let η′, η′′ independent copies of η, and define

ηl =(
η ∩ Br(l)

) ∪ (
η′ ∩ Br(l)

c), ηm = (
η ∩ Br(m)

) ∪ (
η′′ ∩ Br(m)c

)
.

Since Br(l) ∩ Br(m) ⊂ Q̃∗
γ , ηl and ηm are independent conditionally to η∗

γ ,
and we have by (5.1), with a computation similar to (5.2), E|Covη∗

γ
(Fl,Fm) −

Covη∗
γ
(Fl(ηl),Fm(ηm))| ≤ κC2

0(1 + r)−α . It follows that

E
∣∣Covη∗

γ

(
F (k),F (l))∣∣ ≤ E

∑
l∈W(k),m∈W(j)

∣∣Covη∗
γ
(Fl,Fm)

∣∣ ≤ κC2
0δ2d(1 + r)−α
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and, for some C′ not depending on W , for k ∈ W ,

E
∑

j∈Zd\{k}

∣∣Covη∗
γ

(
F (k),F (j))∣∣ ≤ κC2

0δ2d
∞∑

p=1

pd−1(‖p‖(δ − γ )
)−α

≤ C′δ2d(δ − γ )−α.

This concludes the proof of (5.5), and hence of σ0 > 0.
It remains to prove (2.5). Assume that (2.2) holds with α > 2d . The proof

when instead (2.1) holds is exactly the same with FW
k instead of Fk , and it

is omitted. For k ∈ Z
d , let F̄k = Fk(η) − EFk(η). We have E(FW − EFW)4 =∑

i,j,k,l∈W EF̄i F̄j F̄kF̄l . Let I = {i, j, k, l} ⊂ W . Assume that i is I -isolated,
that is, δ := [d(i, I \ {i})] = maxm∈I [d(m, I \ {m})] (let this quantity be 0 if
i = j = k = l). Let ηm,m ∈ I , be independent copies of η, and Hm = Bδ/2a+(m),
η′

m = (η ∩ Hm) ∪ (ηm ∩ Hc
m). Note that η′

m is distributed as η, and that for
m ∈ I \ {i}, Hi ∩ Hm = ∅, hence η′

i is independent from {η′
j , η

′
k, η

′
l}. Introduce

F̄ ′
m = Fm(η′

m) − EFm, F̄ = F̄j F̄kF̄l , F̄ ′ = F̄ ′
j F̄

′
kF̄

′
l , independent of F̄ ′

i . We have,
using Hölder’s inequality,∣∣EF̄i F̄ − EF̄ ′

i F̄
′︸ ︷︷ ︸

=0

∣∣ ≤ E
[∣∣(F̄i − F̄ ′

i

)
F̄j F̄kF̄l

∣∣ + ∣∣F̄ ′
i

(
F̄j − F̄ ′

j

)
F̄kF̄l

∣∣
+ ∣∣F̄ ′

i F̄
′
j

(
F̄k − F̄ ′

k

)
F̄l

∣∣ + ∣∣F̄ ′
i F̄

′
j F̄

′
k

(
F̄l − F̄ ′

l

)∣∣]
≤ 4

∑
m∈I

(
EF̄ 4

0
)3/4(

E
∣∣F̄m − F̄ ′

m

∣∣4)1/4

≤ κC0
(
EF̄ 4

0
)3/4

(1 + δ)−α

by (2.2) (or (2.1) for the proof with the FW
k ). Notice that one point among {j, k, l}

is between distance δ and δ + 1 from i, call it a, and there are at most κδd−1

possible values for a, given i. If there are two points remaining in {j, k, l} \a, they
are at mutual distance at most 3δ. We have

E(FW − EF̄W )4

≤ 4
∑

i,j,k,l∈W

1{i isolated}κC0
(
EF̄ 4

0
)3/4(

1 + [
d
(
i, {j, k, l})])−α

≤ κC0
(
EF̄ 4

0
)3/4

∞∑
δ=0

(1 + δ)−α
∑

i,j,k,l∈W

1{i isolated and [d(i,{j,k,l})]=δ}

≤ κC0
(
EF̄ 4

0
)3/4

∞∑
δ=0

|W |2(1 + δ)−ακδd−1(3δ)d ≤ κC0
(
EF̄ 4

0
)3/4|W |2

where κ < ∞ because α > 2d .



2648 R. LACHIÈZE-REY

5.2. Proof of Theorem 3.1. W is fixed. For simplicity, in all of the proof,
we use the notation G = GW , G̃ = G̃W . If (3.2) is satisfied, put Gk = Fk and
A = R

d . If instead (3.1) is satisfied, put Gk = FW
k and A = W̃ . Assume with-

out loss of generality that F0 is centered. Theorem 1.2 from [18] gives general
Berry–Esseen bounds on the Poisson functional G̃: provided

∫
A E(DxG)2 dx < ∞

(implied here by Assumption (3.2) or (3.1) and α > d), dW (G̃,N) ≤ ∑3
i=1 γi ,

dK (G̃,N) ≤ ∑6
i=1 γi , where the γi are quantities depending on the first- and

second-order Malliavin derivatives of G̃, whose values are recalled later. Let
x, y ∈ A, x = (x,M), y = (y,M ′). Call ηx = η ∪ {x}, ηy = η ∪ {y}. We have,
using Hölder’s inequality at the last line,∣∣Dx,yG(η)

∣∣
≤ ∑

k∈W

min
(∣∣DxGk(η)

∣∣ + ∣∣DxGk

(
ηy)∣∣, ∣∣DyGk(η)

∣∣ + ∣∣DyGk

(
ηx)∣∣),

E
∣∣D2

x,yG(η)
∣∣4

≤ E
∣∣∣∣2 ∑

k∈W

min
(

sup
η′∈{η,ηy}

∣∣DxGk

(
η′)∣∣, sup

η′∈{η,ηx}
∣∣DyGk

(
η′)∣∣)∣∣∣∣4

≤ 24
∑

k1,...,k4∈W

E
4∏

i=1

min
(

sup
η′∈{η,ηy}

∣∣DxGki

(
η′)∣∣, sup

η′∈{η,ηx}
∣∣DyGki

(
η′)∣∣)

≤ 24
( ∑

k∈W

(
E min

(
sup

η′∈{η,ηy}
∣∣DxGk

(
η′)∣∣4, sup

η′∈{η,ηx}
∣∣DyGk

(
η′)∣∣4))1/4

)4
.

Let k ∈ W . Note that, with B = W̃ − k, for x ∈ W̃ , y ∈ R
d ,

DxF
W
k

(
η′) = FW

k

(
η′ ∪ {x}) − FW

k

(
η′)

= F0
((

η′ ∪ {x}) ∩ W̃ − k
) − F0

(
η′ ∩ W̃ − k

)
= F0

(((
η′ − k

) ∩ B
) ∪ {x − k}) − F0

((
η′ − k

) ∩ B
)

= Dx−kF0
((

η′ − k
) ∩ B

)
.

Since η − k
(d)= η, applying either (3.2) or (3.1) with y − k instead of y yields

E
∣∣D2

x,yG(η)
∣∣4 ≤ κC4

0

( ∑
k∈W

min
((

1 + ‖x − k‖)−α
,
(
1 + ‖y − k‖)−α))4

.

Consider case (i′) (the following is valid but irrelevant in case (i)). Sum-
ming in a radial manner around x yields that the previous sum is bounded by
κC4

0(
∑∞

m=[d(x,W)] md−1(1 + m)−α)4 ≤ κC4
0(1 + d(x,W))4(d−α), and the same



NONLOCALISED GEOMETRIC FUNCTIONALS 2649

holds for y. We can also work on the first-order derivative with a similar tech-
nique:

E|DxG|4 ≤ κC4
0

( ∑
k∈W

(
1 + ‖x − k‖)−α

)4
≤ κC4

0
(
1 + d(x,W)

)4(d−α)
.

Noting Ix,y = {k ∈ W : ‖k − x‖ ≥ ‖k − y‖},

E
∣∣Dx,yG(η)

∣∣4 ≤ κC4
0

[( ∑
k∈Ix,y

(
1 + ‖x − k‖)−α

)4

+
( ∑

k∈Iy,x

(
1 + ‖y − k‖)−α

)4]

≤ κC4
0

[ ∑
k∈Zd\B(x,‖y−x‖/2)

(
1 + ‖x − k‖)−α

+ ∑
k∈Zd\B(y,‖x−y‖/2)

(
1 + ‖y − k‖)−α

]4

≤ C4
0κ

(
1 + ‖x − y‖/2

)4(d−α)
,

where finally

E
∣∣Dx,yG(η)

∣∣4 ≤κC4
0
(
1 + max

(‖x − y‖, d(x,W), d(y,W)
))4(d−α)

.(5.7)

Let us start with a few geometric estimates, useful in the case (i′).

LEMMA 5.2. Let W ⊂ Z
d , bounded and nonempty, dW = (|W |/|∂Zd W |)1/d ,

W ′ = {k ∈ Z
d : d(k,W) ≤ dW }. We have∣∣W ′∣∣ ≤ κ|W |,(5.8) ∫

(W̃ ′)c
(
1 + d(x, W̃ )

)a
dx ≤ κa|W |da

W , a < −d(5.9)

I (x) :=
∫
Rd

(
1 + max

(
d(x,W),‖x − y‖))d−α

dy

(5.10)
≤ κ

(
1 + d(x,W)

)2d−α
, x ∈ R

d .

PROOF. Since each point of W ′ \ W is in a ball with radius dW centered in
∂Zd W , (5.8) is proved via∣∣W ′∣∣ ≤ |W | + |∂Zd W |κdd

W ≤ κ|W |.
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Let ψ(x) = d(x, W̃ ), x ∈ R
d , h(t) = 1{t≥dW }(1 + t)a , t ≥ 0. The Federer co-area

formula yields∫
Rd

h
(
ψ(x)

)∥∥∇ψ(x)
∥∥dx =

∫
R+

h(t)Hd−1(
ψ−1({t}))dt.

We have ‖∇ψ(x)‖ = 1 for a.a. x ∈ W̃ c. According to [21], Lemma 4.1, for almost
all t > 0,

Hd−1(
ψ−1({t})) ≤ td−1Hd−1(

ψ−1({1})),
and the latter is bounded by κtd−1|∂Zd W |. Since a + d < 0,∫

(W̃ ′)c
h
(
ψ(x)

)
dx ≤ κ

∫ ∞
dW

(1 + t)atd−1|∂Zd W |dt

≤ κa|∂Zd W |da
Wdd

W = κa|W |da
W ,

which yields (5.9). The left-hand member of (5.10) is equal to

I (x) = �d(
B

(
x, d(x,W)

))(
1 + max

(
d(x,W)

))d−α

+
∫
B(x,d(x,W))c

(
1 + ‖x − y‖)d−α

dy

≤ κ
(
1 + d(x,W)

)2d−α +
∫ ∞
d(x,W)

(1 + r)d−ακrd−1 dr,

from which the result follows. �

Writing x1 = (x1,M1), x2 = (x2,M2), x3 = (x3,M3), with M1, M2, M3 i.i.d.
distributed as μ, denote by Ẽ the expectation with respect to (M1,M2,M3), and Eη

the expectation with respect to η, such that E = ẼEη. We have, bounding ED4
x1

G

by κC4
0 and using the Cauchy–Scwharz inequality several times,

γ1 = 4σ−2
[∫

A3
Ẽ

[√
Eη

[
(Dx1G)2(Dx2G)2

]

×
√

Eη

[(
D2

x1,x3
G

)2(
D2

x2,x3
G

)2]]
dx1 dx2 dx3

]1/2

≤ 4σ−2
[∫

A3

√
Ẽ

[
Eη

[
(Dx1G)2(Dx2G)2

]]

×
√

Ẽ
[
Eη

[(
D2

x1,x3
G

)2(
D2

x2,x3
G

)2]]
dx1 dx2 dx3

]1/2

≤ κC0σ
−2

[∫
A3

(
E

(
D2

x1,x3
G

)4)1/4(
E

(
D2

x2,x3
G

)4)1/4
dx1 dx2 dx3

]1/2

≤ κC2
0σ−2

√∫
A

(∫
A

(
1 + max

(
d(x, W̃ ),‖x − x3‖)))d−α

dx)2 dx3
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using (5.7). Similar techniques to integrate out the marks yield the same bound

γ2 ≤ κC0σ
−2

[∫
A3

(
E

(
D2

x1,x3
G

)4)1/4(
E

(
D2

x2,x3
G

)4)1/4
dx1 dx2 dx3

]1/2

≤ κC2
0σ−2

√∫
A

(∫
A

(
1 + max

(
d(x, W̃ ),‖x − x3‖)))d−α

dx)2 dx3.

In the case (i), A = W̃ and α > 2d . We have

max(γ1, γ2) ≤ κC2
0σ−2

√
�d(W̃ )

(∫
Rd

(
1 + ‖x‖)d−α

dx

)2
≤ κC2

0σ−2√|W |.

In the case (i′), A = R
d , α > 5d/2. Using successively (5.10), (5.8) and (5.9) yield,

with 2(2d − α) < 2(−d/2) = −d ,

max(γ1, γ2) ≤ κC2
0σ−2

√∫
A

I (x3)2 dx

≤ κC2
0σ−2

√
κ�d

(
W̃ ′) +

∫
(W̃ ′)c

(
1 + d(x,W)

)2(2d−α)
dx

≤ κC2
0σ−2

√
κ|W | + κ2(2d−α)|W |d2(2d−α)

W

≤ κC2
0σ−2

√|W |(1 + d
2(2d−α)
W

)
,

which gives the power a in (3.3)–(3.4). Let us keep assuming we are in case (i′).
Since A = R

d and α > 2d , (5.9) yields

γ3 ≤ σ−3
∫
Rd

(
C4

0κ
(
1 + d(x,W)

)4(d−α))3/4
dx

≤ C3
0κσ−3

(
�d(

W̃ ′) +
∫
(W̃ ′)c

(
1 + d(x,W)

)3(d−α)
dx

)

≤ κC3
0σ−3|W |(1 + d

3(d−α)
W

)
.

In case (i), the same bound holds after removing d
3(d−α)
W . Reporting back gives

(3.3).
Introduce G = G − EG. Using (5.8) and (5.9),

γ4 ≤ 1

2
σ−1(

EG
4)1/4

∫
Rd

σ−3(
C4

0κ
(
1 + d(x,W)

)4(d−α))3/4
dx

≤ κσ−4v1/4√|W |C3
0

(
�d(

W̃ ′) +
∫
(W̃ ′)c

(
1 + d(x,W)

)3(d−α)
dx

)

≤ σ−4C3
0κ|W |3/2v1/4(

1 + d
3(d−α)
W

)
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where v := sup|W |→∞ E((G−EG)4)

|W |2 . Let us conclude the proof: (5.9) yields

γ5 ≤
[∫

Rd
σ−4C4

0κ
(
1 + d(x,W)

)4(d−α)
dx

]1/2

≤ σ−2C2
0κ

√|W |(1 + d
4(d−α)
W

)1/2
,

γ6 ≤
[∫

(Rd )2
σ−4(

6C4
0κ

(
1 + d(x1,W)

)2(d−α)(1 + ‖x1 − x2‖)2(d−α)

+ 3C4
0κ

(
1 + d(x1,W)

)2(d−α)(1 + ‖x1 − x2‖)2(d−α))
dx1 dx2

]1/2

≤ σ−2C2
0κ

[∫
Rd

(
1 + d(x1,W)

)2(d−α)

×
(∫

Rd

(
1 + ‖x1 − x2‖)2(d−α)

dx2

)
dx1

]1/2

≤ σ−2C2
0κ

√|W |(1 + d
2(d−α)
W

)1/2
.

In case (i), A = W̃ , all the same inequalities still hold after removing terms of the
form da

W . Reporting back gives (3.4).

Acknowledgements. I am thankful to J. E. Yukich, who brought valuable in-
sights on topics related to asymptotic normality of geometric functionals.
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