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RANDOM INSCRIBED POLYTOPES HAVE SIMILAR RADIUS
FUNCTIONS AS POISSON–DELAUNAY MOSAICS1

BY HERBERT EDELSBRUNNER AND ANTON NIKITENKO

Institute of Science and Technology Austria

Using the geodesic distance on the n-dimensional sphere, we study the
expected radius function of the Delaunay mosaic of a random set of points.
Specifically, we consider the partition of the mosaic into intervals of the ra-
dius function and determine the expected number of intervals whose radii
are less than or equal to a given threshold. We find that the expectations are
essentially the same as for the Poisson–Delaunay mosaic in n-dimensional
Euclidean space. Assuming the points are not contained in a hemisphere,
the Delaunay mosaic is isomorphic to the boundary complex of the convex
hull in R

n+1, so we also get the expected number of faces of a random in-
scribed polytope. As proved in Antonelli et al. [Adv. in Appl. Probab. 9–12
(1977–1980)], an orthant section of the n-sphere is isometric to the standard
n-simplex equipped with the Fisher information metric. It follows that the
latter space has similar stochastic properties as the n-dimensional Euclidean
space. Our results are therefore relevant in information geometry and in pop-
ulation genetics.

1. Introduction. Letting X be a Poisson point process in R
n, the expected

sizes, meaning the number and metric properties of the cells, of the Voronoi tes-
sellation and, equivalently, of the dual Delaunay mosaic are reasonably well un-
derstood. The starting point for this paper is the question how these expectations
change when we pick the points on the n-dimensional sphere, Sn. Perhaps surpris-
ingly, the difference is very small. Even the partitions of the Delaunay mosaics
into the intervals of the respective radius functions are barely distinguishable.

Motivation. Our reason for comparing random sets in the Euclidean space and
on the sphere is the Fisher information metric, which measures the dissimilarity
between discrete probability distributions. Write x and y for two such distributions,
x = (x0, x1, . . . , xn) and y = (y0, y1, . . . , yn), with

∑n
i=0 xi = ∑n

i=0 yi = 1 and
xi, yi ≥ 0 for all i, and note that x and y are points of the n-dimensional standard
simplex, �n. Letting γ : [0,1] → �n be a smooth curve connecting x = γ (0) to
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y = γ (1), we define its length as

Length(γ ) =
∫ 1

t=0

√√√√1

2

n∑
i=0

γ̇i(t)2

γi(t)
dt,(1.1)

in which γi(t) and γ̇i(t) are the ith components of the curve and its velocity vector.
The Fisher information metric assigns the length of the shortest connecting path
to the pair x,y; see Amari and Nagaoka [(2000), Section 2.2], as well as Akin
[(1979), Section I.4], where this metric is referred to as the Shahshahani metric.
This way of measuring distance is fundamental in information geometry and in
population genetics.

To shed light on the Fisher information metric, we map every point x =
(x0, x1, . . . , xn) of �n to the point ϕ(x) = (u0, u1, . . . , un) with ui = √

2xi for
every i. The coordinates of ϕ(x) are all nonnegative and satisfy

∑n
i=0 u2

i = 2. In
words, ϕ(x) is a point of

√
2Sn+, which is our notation for the nonnegative orthant

of the sphere with radius
√

2 centered at the origin in R
n+1; see Figure 1 on the

right. As noticed already by Antonelli et al. (1977–80), see also Akin [(1979),
page 39], this mapping is an isometry between �n and

√
2Sn+. We can there-

fore understand �n under the Fisher information metric by studying S
n+ under

the geodesic distance. To get a handle on the difference between random sets in
R

n and in �n, we compare point sets selected from Poisson point processes in R
n

and on S
n, the latter being the topic of this article. Figure 1 illustrates the isometry

by showing three level lines each for seven points in the standard triangle on the
left and for the seven corresponding points in the positive orthant of the sphere on
the right.

Prior work. This article builds on work from three different but related areas:
random polytopes, Poisson–Delaunay mosaics and discrete Morse theory.

Consider the model in which a random polytope is generated by taking the
convex hull of randomly chosen points on the unit sphere. The first paper with

FIG. 1. Left: disk neighborhoods under the Fisher information metric of seven points in the stan-
dard triangle. Right: the corresponding seven points and cap neighborhoods in the isometric non-
negative octant of the 2-sphere. For aesthetic reasons, the octant is scaled to 1/

√
2 times its actual

size.
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substantial results on this topic is Miles (1971). The large body of work on the
expected number of faces of random polytopes and their volume is summarized
and surveyed in Bárány, Fodor and Vígh (2010), Hug (2013), Reitzner (2010),
Schneider (2008), Schneider and Weil (2008). A survey of recent results can be
found in Stemeseder (2014). The more general setting in which the points are se-
lected on the boundary of a convex body is addressed in Reitzner and Stemeseder
(2016), and the linear dependence of the expected number of faces on the number
of vertices is proved.

The study of Poisson–Delaunay mosaics in Euclidean space was started by
Miles with two seminal papers [Miles (1970, 1971)]. Considering the expected
number of k-dimensional simplices in an n-dimensional Poisson–Delaunay mo-
saic per unit volume, he settles the question for all values of k in dimensions
n ≤ 3, and for k = n − 1, n in any dimension n. The first substantial extension
of these results appeared in Edelsbrunner, Nikitenko and Reitzner (2017), settling
the question for all values of k in dimension n = 4, and determining the density of
the radius of a typical simplex. The main new idea in Edelsbrunner, Nikitenko and
Reitzner (2017) is the classification of the simplices based on the discrete Morse
theory of the Delaunay mosaic, and this approach is also central to the work in this
paper. Discrete Morse theory was first introduced as an abstract concept in Forman
(1998), and its generalized version was used in Bauer and Edelsbrunner (2017) to
study the radius function of a Delaunay mosaic.

Concepts and notation. Before stating our results, we introduce some concepts
and notation; the detailed description will follow in Section 3. We write Rn for
the n-dimensional Euclidean space, Bn ⊆ R

n for the closed unit ball, and S
n−1 =

bdBn for the unit sphere, the boundary of the unit ball. Following Miles (1971),
we write νn for the n-dimensional volume of Bn and σn for the area [the (n − 1)-
dimensional volume] of Sn−1.

To facilitate the comparison between Euclidean and spherical space, we move
up by one dimension and consider Sn, which we equip with the geodesic distance,
d : Sn ×S

n →R, induced by the Euclidean metric in R
n+1; see Section 3 for more

details. The relation between the geodesic distance and the Euclidean distance is
d(x, y) = 2 arcsin ‖x−y‖

2 . Let Capη(x) = {w ∈ S
n | d(w,x) ≤ η} be the spherical

cap with center x ∈ S
n and geodesic radius 0 ≤ η ≤ π . To measure the area of

a cap, we use the Beta function, B(a, b) = B1(a, b), and its incomplete version,
Bu(a, b) = ∫ u

t=0 ta−1(1 − t)b−1 dt , in which 0 ≤ u ≤ 1. For η ≤ π
2 , the fraction of

the sphere covered by the cap is F(η) = 1
2Bs(

n
2 , 1

2)/B(n
2 , 1

2), in which s = sin2 η

is the square of the Euclidean radius measured in R
n+1; see Li (2011). The area of

the cap is then

Area(η) =
⎧⎪⎨
⎪⎩

F(η)σn+1 for 0 ≤ η ≤ π

2
,[

1 − F(π − η)
]
σn+1 for

π

2
≤ η ≤ π,

(1.2)
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in which F(π − η) = F(η) because sin(π − η) = sinη. Besides the Beta func-
tions, we will use the Gamma function, 	(k) = γ∞(k), and its lower incomplete
version, γ (k;u) = ∫ u

t=0 tk−1e−t dt , in which 0 ≤ u ≤ ∞. The connection to the
Beta functions is B(a, b) = 	(a)	(b)/	(a + b). Finally, we write Ln

k for the
Grassmannian, which consists of all k-dimensional planes that pass through the
origin in R

n. This is a manifold of dimension (n − k) × k, and following Miles
(1971) we equip it with the unique motion-invariant measure, normalized such
that ‖Ln

k‖ = σn·σn−1·...·σn−k+1
σ1·σ2·...·σk

; see also Hadwiger (1957). This measure appears in
the definition of constants that play an important role in the statement of our re-
sults:

Cn

,k = σn · σn−1 · . . . · σn−k+1

σ1 · σ2 · . . . · σk

· 	(k)nk−1k!n−kσ k+1
k

(k + 1)σ k
n

· En

,k,(1.3)

En

,k = E

[
Vol(u)n−k+11k−
(u)

]
,(1.4)

in which u = (u0, u1, . . . , uk) is a sequence of k + 1 points chosen independently
and uniformly at random on S

k−1, with 1k−
(u) = 1, if k − 
 of the k + 1 facets of
the k-simplex span k-planes that separate 0 from u, and 1k−
(u) = 0, otherwise;
see Edelsbrunner, Nikitenko and Reitzner (2017), where the same constants are
studied in more detail. Vol(u) is the k-dimensional volume of the convex hull of
the points in u.

Let X be a finite set of points on S
n. We follow Renka (1997) in defining the

Voronoi domain of a point x ∈ X as the set Vor(x) of points w ∈ S
n that satisfy

d(w,x) ≤ d(w,y) for all y ∈ X as well as d(w,x) < π
2 . Note that the Voronoi do-

mains cover Sn iff there is no closed hemisphere that contains X; see Figure 2. The
Delaunay mosaic is defined as the nerve of the Voronoi domains; this is an abstract
simplicial complex, which we denote DelX. Assuming general position—a notion
we will formally define on page 3227—DelX is isomorphic to a subcomplex of
the boundary complex of convX in R

n+1, and in this case we identify DelX with
this subcomplex. DelX is isomorphic to the entire boundary complex iff X is not
contained in any closed hemisphere. Given a geodesic radius 0 ≤ η ≤ π

2 , we some-
times restrict the Voronoi domains to Vor(x) ∩ Capη(x), for every x ∈ X, and we
write DelηX for the nerve of the thus restricted Voronoi domains. The (geodesic)
radius function, R : DelX → R, maps every Delaunay simplex to the radius of
its smallest empty circumscribed cap; that is, the smallest spherical cap whose
boundary passes through the vertices of the simplex and that contains no points
of X in its interior; see details in Section 3. By assumption, this radius is always
less than π

2 , and we observe that R−1[0, η] = DelηX for all η ≥ 0. For points in
general position, R is a generalized discrete Morse function, as defined in Bauer
and Edelsbrunner (2017) and Forman (1998), which implies a partition of DelX
into maximal intervals [L,U ] = {Q | L ⊆ Q ⊆ U} consisting of simplices with
equal function value, as discussed in Section 3. The type of the interval [L,U ] is
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FIG. 2. The Voronoi domains of four points on the 2-dimensional sphere. The darker region in the
south does not belong to any of these domains because the four points all belong to the northern
hemisphere. The dual Delaunay complex consists of two triangles glued along a shared edge.

(
, k), in which 
 = dimL and k = dimU . If L = U , then the interval contains a
single simplex, which we call a critical simplex of R.

We need one more concept to express the asymptotic behavior of the expected
numbers, when their density goes to infinity. Assuming an isotropic Poisson point
process with density ρ > 0 on S

n, for a cap with geodesic radius η, we call η̄ =
ηρ1/n the normalized radius of the cap. It is the geodesic radius of the cap after
scaling the unit sphere to the sphere with area ρσn.

Results. Our main result concerns the radius function on the Delaunay mosaic.
For each type, we express the expected number of intervals of that type with nor-
malized radius smaller than a threshold in terms of an integral, which we evaluate
asymptotically, when the density of the Poisson point process goes to infinity.

THEOREM 1 (Main result). Let X be an isotropic Poisson point process with
density ρ > 0 on S

n. For any integers 1 ≤ 
 ≤ k ≤ n and any real number 0 < η0 <
π
2 , the expected number of intervals of type (
, k) and geodesic radius at most η0
is

(1.5)
E

[
cn

,k, η0

] = ρσn+1 · σk
n

2	(k)nk−1

· Cn

,k

∫ s

t=0
ρkt

kn−2
2 (1 − t)

n−k−1
2 P∅(

√
t)dt,

in which s = sin2 η0 is the square of the maximum Euclidean radius, and P∅(r) is
the probability that a spherical cap with geodesic radius η = arcsin r contains no
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points of X, namely P∅(r) = e−ρ Area(η). Let now ρ → ∞. For any η̄0 ∈ [0,+∞],
the expected number of intervals of type (
, k) and normalized radius at most η̄0 is

E
[
cn

,k, η̄0

] = ρσn+1 · γ (k;v)

	(k)
· Cn


,k + o(ρ),(1.6)

in which v = η̄n
0νn is the volume of the n-ball with radius η̄0.

REMARKS. (1a) Theorem 1 does not cover the case 
 = 0, that is, intervals
containing vertices, but here the results are straightforward. Specifically, the ex-
pected number of critical vertices is E[cn

0,0, η0] = ρσn+1, for every η0 ≥ 0, and
cn

0,k = 0 for every k ≥ 1.
(1b) We will prove that for constant s, the integral in (1.5) is bounded away

from both 0 and ∞. This implies that the expected number of intervals in (1.5) is
of order �(ρ); compare with Reitzner and Stemeseder (2016).

(1c) We will also prove that setting η̄0 = ∞ in (1.6) gives the total number of
intervals of type (
, k) as E[cn


,k] = ρσn+1 ·Cn

,k + o(ρ). On the other hand, letting

η̄0 → ∞, we get the total number of intervals of geodesic radius �(ρ−1/n). This
implies that the number of intervals with radius ω(ρ−1/n) is o(ρ). Note that also
the number of intervals with radius o(ρ−1/n) is o(ρ).

The total number of simplices of dimension j in the Delaunay mosaic is easy
to deduce from the number of intervals: dn

j = ∑n
k=j

∑j

=0

(k−

k−j

)
cn

,k . Accordingly,

we define the constant Dn
j = ∑n

k=j

∑j

=0

(k−

k−j

)
Cn


,k . We generalize this relation so
it depends on a normalized radius threshold.

COROLLARY 2 (Delaunay simplices). Let X be an isotropic Poisson point
process with density ρ > 0 on S

n. For any integer j ≥ 1 and any nonnegative real
number η̄0, the expected number of j -simplices of DelX with normalized radius
at most η̄0 is

E
[
dn
j , η̄0

] = ρσn+1 ·
n∑

k=j

γ (k;v)

	(k)

j∑

=0

(
k − 


k − j

)
Cn


,k + o(ρ),(1.7)

in which v = η̄n
0νn. Setting

Gn
j (η̄0) =

n∑
k=j

γ (k;v)

	(k)

j∑

=0

(
k − 


k − j

)
Cn


,k

Dn
j

,(1.8)

we thus get the distribution of the normalized radius of the typical j -simplex in the
limit when ρ → ∞.
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REMARKS. (2a) Observe that ρσn+1 is the expected number of points in X.
Comparing with Edelsbrunner, Nikitenko and Reitzner (2017), we thus notice that
(1.6), (1.7) and (1.8) are essentially the same expressions as for the Poisson point
process in R

n. This justifies the title of this article.
(2b) While we state our results for Poisson point processes, very similar results

can be obtained for the uniform distribution; see the Appendix.

Outline. Section 2 introduces the main technical tool used to prove our results.
Section 3 gives the background, including discrete Morse theory. Section 4 proves
the integral equation and the asymptotic result both stated in Theorem 1. Section 5
concludes the paper.

2. Blaschke–Petkantschin formula for the sphere. This section introduces
a formula of Blaschke–Petkantschin-type used in the proof of Theorem 1. Since
it is a stand-alone result, not specific to the problem addressed in this article, we
present it before discussing the background related to the subject in this paper. In
its basic form, the Blaschke–Petkantschin formula writes an integral over Rn+1 as
an integral over the Grassmannian, Ln+1

k . We adapt the original such formula to the
n-sphere. Formulas of this type were studied in Zähle (1990). To express the result,
we write P ⊥ for the (n − k + 1)-plane orthogonal to the k-plane P , both passing
through the origin in R

n+1, and we write SP for the unit (k − 1)-sphere in P .
As usual, we use boldface to denote sequences of points: x = (x0, x1, . . . , xk), etc.
A shortcut p + ru is used for (p + ru0,p + ru1, . . . , p + ruk). The integrations
are with respect to the standard measure on the Grassmanian and the Lebesgue
measures in the plane and on the sphere.

THEOREM 3 (Blaschke–Petkantschin for the sphere). Let n be a positive
integer, 1 ≤ k ≤ n, and f : (Sn)k+1 → R a nonnegative measurable function.
Then∫

x∈(Sn)k+1
f (x)dx

=
∫
P∈Ln+1

k

∫
p∈P ⊥

rkn−2
∫

u∈(SP )k+1
f (p + ru)

[
k!Vol(u)

]n−k+1 du dp dP,

in which r2 = 1 − ‖p‖2, implicitly assuming ‖p‖ ≤ 1, and Vol(u) is the k-
dimensional volume of the convex hull of the points in u, which is a k-simplex.
If f is rotationally symmetric, we define fr(u) = f (p + ru), in which u
is a k-simplex on S

k−1 ⊆ R
k , and p is any point with ‖p‖2 = 1 − r2 ≤ 1

in the (n − k + 1)-plane orthogonal to R
k ⊆ R

n+1. With this notation, we
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have ∫
x∈(Sn)k+1

f (x)dx

= σn+1

2

∥∥Ln
k

∥∥∫ 1

t=0
t

kn−2
2 (1 − t)

n−k−1
2

×
∫

u∈(Sk−1)k+1
f√

t (u)
[
k!Vol(u)

]n−k+1 du dt.

(2.1)

PROOF. We first argue that f may be assumed to be continuous. Consider the
subset M of Ln+1

k ×R
n+1 × (Rn+1)k+1 consisting of all triplets (P,p,u) such that

p ∈ P ⊥, ‖p‖ < 1, and u ∈ (SP )k+1. Clearly, M is a submanifold of the product
space with a natural measure. Recall that r2 = 1 −‖p‖2 and consider the mapping
T : M → (Sn)k+1 defined by T (P,p,u) = p + ru. It is a bijection up to a set of
measure 0. By Theorem 20.3 in Hewitt and Stromberg (1965), there exists a corre-
sponding Jacobian J : M → R, meaning that every integrable function f satisfies∫

x∈(Sn)k+1 f (x)dx = ∫
y∈M f (T (y))J (y)dy. For nonnegative f , the right-hand side

integral can be split using Fubini’s theorem. The existence of the Jacobian is thus
settled, and to find its values, we may assume that f be continuous.

The main idea in the rest of the proof is to thicken S
n to an (n+ 1)-dimensional

annulus, to apply the original Blaschke–Petkantschin formula to this annulus, and
to take the limit when we shrink the annulus back to S

n. We write A
n+1
1+ε = (1 +

ε)Bn+1 \ intBn+1 for the (n+1)-dimensional annulus with inner radius 1 and outer
radius 1+ε. We begin by extending f from the sphere to the annulus. Specifically,
for points yi ∈ A

n+1
1+ε , we set

F(y0, y1, . . . , yk) = f
(
y0/‖y0‖, y1/‖y1‖, . . . , yk/‖yk‖)

.(2.2)

Since f is continuous on the (k + 1)-fold product of spheres, by assumption, F

is continuous on the (k + 1)-fold product of annuli. Because F is continuous on a
compact set and therefore bounded and uniformly continuous, we have∫

x∈(Sn)k+1
f (x)dx

= lim
ε→0

1

εk+1

∫
y∈(An+1

1+ε )k+1
F(y)dy

(2.3)

= lim
ε→0

1

εk+1

∫
P∈Ln+1

k

∫
p∈P ⊥

∫
u∈Ak+1

F(u)
[
k!Vol (u)

]n−k+1 du dp dP,(2.4)

in which A = A
n+1
1+ε ∩[p+P ] is the k-dimensional slice of the (n+1)-dimensional

annulus defined by P and p. We obtain (2.4) from (2.3) by applying the standard
Blaschke–Petkantschin formula in R

n+1 to the function F(y) times the indicator
function of the (k+1)-fold product of annuli, and then absorb the indicator into the
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FIG. 3. For h = ‖p‖ < 1, the slice of the (n + 1)-dimensional annulus is a k-dimensional annulus.
In this picture, n + 1 = 2 and k = 1.

integration domain. To continue, we investigate the slice of the annulus whose (k+
1)-fold product is the innermost integration domain; see Figure 3. Write h = ‖p‖
for the height of the slice, which is nonempty for 0 ≤ h ≤ 1 + ε. A is a (possibly
degenerate) k-dimensional annulus, with squared inner radius r2 = max{0,1−h2}
and squared outer radius r2

ε = (1 + ε)2 − h2. We split the integration domain into
three regions: h ≤ 1 − ε−0.2, 1 − ε0.2 < h ≤ 1 and 1 < h ≤ 1 + ε.

We first show that the contribution of the region 1 − ε0.2 < h ≤ 1 is small.
To get started, note that rε − r = (r2

ε − r2)/(rε + r) = (2ε + ε2)/(rε + r). For
small ε, this implies rε − r ≤ const · ε/rε , in which we deliberately avoid the
computation of the constant. With this, we can bound the k-dimensional volume
of A. Assuming k ≥ 2, we get Vol(A) = νk(r

k
ε − rk) = νk(rε − r)(rk−1

ε + rk−2
ε r +

· · · + rk−1) ≤ const · εrk−2
ε , in which the constant depends only on k and n. As

noted before, the inequality also holds for k = 1. Since h > 1 − ε0.2, we also get
r2
ε < (1 + ε)2 − (1 − ε0.2)2 ≤ ε2 + 2ε + 2ε0.2 − ε0.4 for small ε, which implies

rε < const · ε0.1. Clearly, the k-dimensional volume of any k-simplex with vertices
inside A cannot exceed a constant times the kth power of the diameter of A, which
is 2rε , implying Vol(u) ≤ const · rk

ε . Recalling that F is bounded, we thus get∣∣∣∣
∫
P∈Ln+1

k

∫
p∈P ⊥

‖p‖<1−ε0.2

1

εk+1

∫
u∈Ak+1

F(u)
[
k!Vol(u)

]n−k+1 du dp dP

∣∣∣∣(2.5)

≤ const
∫ 1

h=1−ε0.2

1

εk+1 Vol(A)k+1 Vol(u)n−k+1 dh(2.6)

≤ const
∫ 1

h=1−ε0.2

1

εk+1

(
εrk−2

ε

)k+1
rk(n−k+1)
ε dh(2.7)

≤ const
∫ 1

h=1−ε0.2
rkn−2
ε dh ≤ const · ε0.2 · ε0.1(kn−2) → 0.(2.8)
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Here, we use the bound on rε for the last inequality, and kn ≥ 1 to see that the
expression tends to zero. Next, consider the region 1 < h ≤ 1 + ε, in which A

is a ball of radius rε , so Vol(A) = νkr
k
ε . We have Vol(u) ≤ νkr

k
ε , as before, and

r2
ε ≤ (1 + ε)2 − 1, which implies rε ≤ const ·√ε. With this, we can again establish

the vanishing of the integral as ε → 0:∣∣∣∣
∫
P∈Ln+1

k

∫
p∈P ⊥

1≤‖p‖≤1+ε

1

εk+1

∫
u∈Ak+1

F(u)
[
k!Vol(u)

]n−k+1 du dp dP

∣∣∣∣(2.9)

≤ const
∫ 1+ε

h=1

1

εk+1 Vol(A)k+1 Vol(u)n−k+1 dh(2.10)

≤ const
∫ 1+ε

h=1

1

εk+1 rk(n+2)
ε dh ≤ const · ε · ε(kn−2)/2 → 0.(2.11)

We have thus established that the relevant region is 0 ≤ h ≤ 1 − ε0.2, and we are
ready to investigate its contribution. First, we claim that the width of the annulus
A is

rε − r = r

√
1 + 2ε + ε2

r2 − r = ε

r
+ o(ε).(2.12)

To get the right-hand side of (2.12), we use the Taylor expansion of g(x) = (1 +
x)1/2 = 1 + 1

2x − 1
2x2 + · · · , and r > ε0.1 as well as x = (2ε + ε2)/r2 < 3ε0.8,

which we get from the assumed h ≤ 1 − ε0.2. Observing that ε2/(2r2) = O(ε1.8),
we get rg(x) − r = ε

r
+ O(rε1.8) + O(rε1.6) and, therefore, (2.12). Using the fact

that F(u) is equal to f (u) when all points lie on the inner sphere and the uniform
continuity of F and writing Sr for the (k − 1)-sphere with center p and radius r in
P ∈ Ln+1

k , we get∫
u∈Ak+1

1

εk+1 F(u)
[
k!Vol(u)

]n−k+1 du

=
(

1

r

)k+1∫
u∈(Sr )k+1

f (u)
[
k!Vol(u)

]n−k+1 du + o(1),

(2.13)

in which the integration domain on the right is the (k + 1)-fold product of the
(k − 1)-sphere with center p and radius r in P , and o(1) is uniform over p and P .
Substituting (2.8), (2.11) and (2.13) into (2.4), we finally get∫

x∈(Sn)k+1
f (x)dx(2.14)

= lim
ε→0

∫
P∈Ln+1

k

∫
p∈P ⊥

‖p‖≤1−ε0.2

[
1

rk+1

×
∫

u∈(Sr )k+1
f (u)

[
k!Vol(u)

]n−k+1 du + o(1)

]
dp dP

(2.15)
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=
∫
P∈Ln+1

k

∫
p∈P ⊥

(
1

r

)k+1

×
∫

u∈(Sr )k+1
f (u)

[
k!Vol(u)

]n−k+1 du dp dP

(2.16)

=
∫
P∈Ln+1

k

∫
p∈P ⊥

rkn−2

×
∫

u∈(SP )k+1
f (p + ru)

[
k!Vol(u)

]n−k+1 du dp dP,

(2.17)

in which we drop the ‖p‖ ≤ 1− ε0.2 condition in (2.15) for the implicitly assumed
‖p‖ ≤ 1 when passing to (2.16), which we can do because the difference vanishes
in the limit and (2.17) is obtained by rescaling and translating the sphere in (2.16).
Indeed, the power of r is a consequence of scaling the volume of the k-simplex,
adjusting the volume of the integration domain, and subtracting the power we have
already in (2.16): k(n − k + 1) + (k − 1)(k + 1) − (k + 1) = kn − 2. This proves
the first relation claimed in Theorem 3.

To get the second relation, we simplify the first by exploiting the rotational
symmetry of f . Recalling that r2 = 1 − ‖p‖2, it makes sense to define fr(u) =
f (p + ru) on the (k + 1)-fold product of SP ⊆ S

n because the direction of p does
not matter for a fixed height. Neither does P influence the function for a fixed
height, so we can define fr on (Sk−1)k+1. Thus∫

x∈(Sn)k+1
f (x)dx

= ∥∥Ln+1
k

∥∥∫
p∈Bn−k+1

rkn−2
∫

u∈(Sk−1)k+1
fr(u)

[
k!Vol(u)

]n−k+1 du dp

(2.18)

= ∥∥Ln+1
k

∥∥σn−k+1

∫ 1

h=0
hn−krkn−2

×
∫

u∈(Sk−1)k+1
fr(u)

[
k!Vol(u)

]n−k+1 du dh

(2.19)

= σn+1

2

∥∥Ln
k

∥∥∫ 1

t=0
t

kn−2
2 (1 − t)

n−k−1
2

×
∫

u∈(Sk−1)k+1
fr(u)

[
k!Vol(u)

]n−k+1 du dt,

(2.20)

in which t = r2 = 1 − h2. We get (2.18) from (2.17) because every P ∈ Ln+1
k

contributes the same to the integral. Similarly, we get (2.19) from (2.18) by inte-
grating over the range of heights and compensating for the different sizes of the
corresponding spheres, aka expressing the integral in polar coordinates. Finally,
we get (2.20) from (2.19) by substituting t for r2, 1 − t for h2, and dt for −2hdh,
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noting that the minus sign is absorbed by reversing the limits of integration. This
proves the second relation in Theorem 3. �

3. Background. This section introduces the geometric and probabilistic
background needed to appreciate the results in this paper. After presenting the
diagrams under study, we explain the connection to discrete Morse theory, and
finally describe how we generate random diagrams.

Voronoi tessellations and Delaunay mosaics. We recall that the object un-
der consideration is S

n ⊆ R
n+1 with the geodesic distance, d : Sn × S

n → R,
the metric inherited from the Euclidean metric on R

n+1. The distance between
any pair of points is defined to be the length of the shortest connecting path:
d(x, y) = 2 arcsin ‖x−y‖

2 . This shortest path is unique, unless y = −x, in which
case there are infinitely many shortest paths of length π . Letting X be a finite set
of points on S

n, we define the Voronoi domain of x ∈ X as the set of points for
which x minimizes the geodesic distance from X, further constraining it to within
the open hemisphere centered at x:

(3.1) Vor(x) =
{
w ∈ S

n
∣∣∣ d(w,x) ≤ d(w,y) for all y ∈ X and d(w,x) <

π

2

}
.

Note that d(w,x) ≤ d(w,y) defines a closed hemisphere, namely all points w ∈ S
n

that satisfy ‖w − x‖ ≤ ‖w − y‖ in R
n+1. It follows that Vor(x) is the intersection

of a finite collection of hemispheres—a set we refer to as a (convex) spherical
polytope. Any two of these spherical polytopes have disjoint interiors. The Voronoi
tessellation of X is the collection of Voronoi domains, one for each point in X.
It covers the entire n-sphere, except if X is contained in a closed hemisphere,
in which case it covers S

n minus a possibly degenerate but nonempty spherical
polytope; see Figure 2. Generically, the common intersection of 1 ≤ k ≤ n + 1
Voronoi domains is either empty or a shared face of dimension n − k + 1, and the
common intersection of n + 2 or more Voronoi domains is empty. The Delaunay
mosaic of X is isomorphic to the nerve of the Voronoi tessellation:

DelX =
{
Q ⊆ X

∣∣∣ ⋂
x∈Q

Vor(x) �= ∅

}
.(3.2)

While the mosaic is defined as an abstract simplicial complex, we will shortly
explain that it has a natural geometric realization generically. The nerve theorem
[Leray (1945)] implies that the Delaunay mosaic has the same homotopy type
as the union of Voronoi domains. Assuming there is no closed hemisphere that
contains all points, this is the homotopy type of Sn.

Delaunay mosaics and inscribed polytopes. The Delaunay mosaic is an (ab-
stract) simplicial complex, and its simplices are subsets of X. In the generic case,
DelX can be geometrically realized in R

n+1, namely by mapping every abstract
simplex, Q, to the convex hull of the points of X it contains. To make this precise,
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we compare DelX with the boundary complex of convX, which is a convex poly-
tope inscribed in the n-sphere. Each (n − 1)-sphere S ⊆ S

n defines two (closed)
caps. If S is a great-sphere, these caps are hemispheres, else they have different
volume and we call one the small cap and the other the big cap. Every facet of
convX defines such a pair of caps, namely the portions of Sn on the two sides of
the n-plane spanned by the facet. One of these caps is empty, by which we mean
that no point of X lies in its interior. If 0 is in the interior of convX, then all
empty caps are small, but if 0 /∈ convX, then there is at least one empty big cap.
For nongeneric sets, 0 may lie on the boundary of convX, in which case there
is at least one empty hemisphere cap. Parsing the definitions in (3.1) and (3.2),
we observe that a simplex Q ⊆ X belongs to the Delaunay mosaic iff there is an
(n − 1)-sphere, S, that contains Q, is not a great-sphere, and whose empty cap is
small. In the generic case, these simplices Q are exactly the faces of the facets of
convX whose small caps are empty. In particular, it shows that if points are not
contained in any hemisphere, then DelX is isomorphic to the boundary complex
of convX, a random inscribed polytope.

Radius function. Consider growing a spherical cap from each point in X. To
formalize this process, we recall that Capη(x) = {w ∈ S

n | d(w,x) ≤ η} is the cap
with center x ∈ X and geodesic radius η. Clipping the Voronoi domain to within
the cap, for each point x ∈ X, we get a subcomplex of the Delaunay mosaic when
we take the nerve:

DelηX =
{
Q ⊆ X

∣∣∣ ⋂
x∈Q

[
Vor(x) ∩ Capη(x)

] �= ∅

}
.(3.3)

By construction, DelηX is a simplicial complex, which we call the Delaunay
complex, and DelηX ⊆ DelζX whenever η ≤ ζ . For η = π

2 , each restricting
cap is a hemisphere and thus contains its corresponding Voronoi domain, which
implies Delπ/2X = DelX. We are now ready to introduce the radius function,
R : DelX → R, which maps every simplex to the smallest geodesic radius for
which the simplex belongs to the subcomplex of the Delaunay mosaic:

R(Q) = min{η | Q ∈ DelηX}.(3.4)

In other words, R−1[0, η] = DelηX. This definition is different from but equiv-
alent to the one we gave in the Introduction. We will prove shortly that for
generic X, the radius function on the Delaunay mosaic is a generalized dis-
crete Morse function; see Bauer and Edelsbrunner (2017), Forman (1998). To
explain what this means, we let L ⊆ U be two simplices in DelX, and we call
[L,U ] = {Q | L ⊆ Q ⊆ U} an interval and (
, k) with 
 = dimL and k = dimU

its type. For simple combinatorial reasons, the number of simplices in [L,U ] is
2k−
. A function g : DelX → R is a generalized discrete Morse function if there
exists a partition of DelX into intervals such that g(P ) ≤ g(Q) whenever P ⊆ Q,
with equality in this case iff P and Q belong to the same interval. We can prove
that the radius function for a generic set X satisfies this condition. Formally, we
say a finite set X ⊆ S

n is in general position if |X| > n+1 and for every 0 ≤ k < n:
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1. no k + 3 points of X belong to a common k-sphere on S
n,

2. considering the unique (k + 1)-sphere that passes through k + 3 points of X,
no k + 2 of these points belong to a common k-sphere that shares its center with
the (k + 1)-sphere.

Condition 2 implies that no n + 1 points of X lie on a great-sphere of Sn. We
need a few additional concepts. Assume X is in general position and Q ⊆ X is a
k-simplex with 0 ≤ k ≤ n. A cap circumscribes Q if the bounding (n − 1)-sphere
passes through all points of Q. Since X is generic, Q has a unique smallest circum-
scribed cap, which we denote cap(Q). If Q ∈ DelX, Q also has a unique smallest
empty circumscribed cap, which may or may not be the smallest circumscribed
cap. We call it the circumcap of Q and denote it as cap∅(Q). The Euclidean cen-
ter of a cap is the center of the bounding (n − 1) sphere, which is a point in R

n+1

but not on S
n. Using this center, we introduce a notion of visibility within the

affine hull of Q, which is a k-dimensional plane in R
n+1. Recalling that a facet of

a k-simplex is a (k − 1)-dimensional face, we say a facet of Q is visible from this
center if the (k − 1)-plane spanned by the facet separates the center from Q or,
equivalently, if the center lies in one closed k-dimensional half-space bounded by
the (k − 1)-plane and Q is contained in the other such half-space.

LEMMA 4 (Radius function). Let X ⊆ S
n be finite and in general position.

Then R : DelX → R is a generalized discrete Morse function, and [L,U ] is an
interval of R iff cap(U) is empty and L is the maximal common face of all facets
of U that are visible from the Euclidean center of cap(U). Furthermore, for every
Q ∈ [L,U ], we have cap∅(Q) = cap(U).

PROOF. We prove that for each Q ∈ DelX there are unique Delaunay sim-
plices L ⊆ Q ⊆ U such that cap(U) = cap∅(U), L is the intersection of all visible
facets of U , and all simplices in [L,U ] share the circumcap. Note that R(Q) is
the geodesic radius of the circumcap of Q. Letting U ⊆ X be the set of all points
on the (n − 1)-sphere that bounds this circumcap, we have cap∅(U) = cap(U) for
else we could find a smaller empty circumscribed cap. Let z be the center and η

the geodesic radius of cap(U). By assumption of general position, |U | ≤ n + 1, so
U is a Delaunay simplex. For every facet F of U , let zF be the center and ηF the
geodesic radius of cap(F ), and let uF be the unique vertex in U \ F . We move the
center of this cap along the shortest path from zF to z while adjusting the radius so
that all points of F remain on the boundary of the cap. During this motion, the ra-
dius increases continuously, and when it reaches η, the boundary of the cap passes
through uF . If F is visible from z, then uF is inside the cap at the beginning and
on the boundary of the cap at the end of the motion. If F is not visible from the
Euclidean center, then uF changes from outside at the beginning to on the bound-
ary of the cap at the end of the motion. In other words, cap(U) is the circumcap



RANDOM INSCRIBED POLYTOPES 3229

of every visible facet of U , but every invisible facet has a smaller empty circum-
scribed cap. Since the intersection of two simplices with common circumcap has
the same circumcap Bauer and Edelsbrunner (2017), Lemma 3.4, we can take L as
the intersection of all visible facets of U and get cap∅(L) = cap(U). On the other
hand, any face of U that does not contain L is also a face of an invisible facet and,
therefore, has a smaller empty circumscribed cap. This implies L ⊆ Q.

We note that the construction gives a partition of DelX into intervals. Indeed,
any two Delaunay simplices sharing the circumcap give rise to the same simplex
U and, therefore, to the same interval [L,U ]. This concludes the proof. �

REMARK. (3a) While the proof follows almost verbatim the proof in the Eu-
clidean case Bauer and Edelsbrunner (2017), and actually the Euclidean Delau-
nay mosaic of the spherical point set is almost identical to the one we are talking
about, there is a subtlety hidden in its definition. Indeed, because each Voronoi
domain is restricted to within the open hemisphere centered at the generating
point, the sets Vor(x) ∩ Capη(x) form a system in which every common inter-
section is either empty or contractible. The nerve theorem thus applies, proving
that the subcomplex of the Delaunay mosaic has the same homotopy type as the
union of caps of radius η. This property breaks down for the boundary complex of
convX. This can be seen by considering the four points on S

2 shown in Figure 2:
A,B = (±ε,0,

√
1 − ε2) and C,D = (0,±1/2,

√
3/2), in which ε is a sufficiently

small positive real number. The great-circle arc shared by the Voronoi domains of
C and D has length only slightly shorter than π and it intersects the union of four
caps of geodesic radius η slightly larger than π

2 in two disconnected segments. The
union of the four caps has the topology of a disk, while the nerve has the topology
of a circle. Indeed, the latter consists of two triangles glued along a shared edge
plus another edge connecting the two respective third vertices of the two triangles.

Poisson point process. We are interested in sets X ⊆ S
n that are randomly gen-

erated. In particular, we use an isotropic Poisson point process with density ρ > 0,
which is characterized by the following two properties:

1. the numbers of points in a finite collection of pairwise disjoint Borel sets on
S

n are independent random variables;
2. the expected number of points in a Borel set is ρ times the Lebesgue measure

of the set.

See Kingman (1993) for an introduction to Poisson point processes. The two
conditions imply that the probability of having k points in a Borel set B ⊆ S

n with
Lebesgue measure ‖B‖ is P[|X ∩ B| = k] = ρk‖B‖ke−ρ‖B‖/k!. In particular, the
probability of having no point in B is P[X ∩ B =∅] = e−ρ‖B‖. It is not difficult
to prove that the realization X of a Poisson point process on S

n is finite and in
general position with probability 1, a property we will assume for the remainder
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of this paper. It follows that DelX is an n-dimensional simplicial complex and, by
Lemma 4, that R : DelX →R is a generalized discrete Morse function.

To familiarize ourselves with the definition of a Poisson point process, we prove
that the difference between the boundary complex of convX and DelX is small.
More precisely, the number of faces of convX that are visible from 0 outside
convX vanishes rapidly as the density increases. This is consistent with the rapid
decrease of the probability that 0 /∈ convX, as computed by Wendel (1962) for the
uniform distribution on S

n. To prove the following lemma, we utilize the Slivnyak–
Mecke formula, which writes the expectation of a random variable of a Poisson
point process as an integral over the space on which the process is defined; see
Schneider and Weil (2008), page 68.

LEMMA 5 (Non-Delaunay faces). Let X be a Poisson point process with den-
sity ρ > 0 on S

n. For every 0 ≤ k ≤ n, the expected number of k-faces of convX

that do not belong to DelX goes to 0 as ρ goes to ∞.

PROOF. We may assume that convX is simplicial and that no n + 1 points
lie on a great-sphere of S

n. Let Q ⊆ X be a set of n + 1 points and consider
its small and big caps. The big cap has volume larger than σn+1/2, and Q is a
facet of convX but not a simplex of DelX iff this big cap is empty. Writing 1Q

for the indicator of this event, we sum over all possible (n + 1)-subsets using the
Slivnyak–Mecke formula to estimate the number of such facets:

E

[∑
Q

1Q

]
= 1

(n + 1)!
∫
Q∈(Sn)n+1

P[big cap of Q is empty]ρn+1 dQ

≤ 1

(n + 1)!ρ
n+1e−ρσn+1/2σn+1

n+1 ,

which goes to 0 as ρ goes to ∞. For k < n, every k-face of convX that does not
belong to DelX is a face of a facet with this property. The expected number of
such k-faces thus also goes to 0 as ρ goes to ∞. �

4. Proof of main result. In this section, we prove the main result of this paper
stated as Theorem 1 in the Introduction. It consists of an integral expression for the
expected number of intervals as a function of the maximum geodesic radius, and
an asymptotic version of the formula for ρ → ∞.

4.1. The integral expression. We begin with the proof of the integral expres-
sion, (1.5). The main tools are the Slivnyak–Mecke formula, which we have just
seen, and the Blaschke–Petkantschin formula for the sphere, which was stated and
proved in Section 2. In addition, we employ the combinatorial analysis of inscribed
simplices in Edelsbrunner, Nikitenko and Reitzner (2017).
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The Slivnyak–Mecke approach. For a Poisson point process with density ρ > 0
on S

n, we use the Slivnyak–Mecke formula to write the expected number of in-
tervals of type (
, k) and geodesic radius at most η0 as an integral. To write this
integral, we recall that x = (x0, x1, . . . , xk) is a sequence of k + 1 points or k-
simplex on S

n, that P∅ : (Sn)k+1 → R maps x to the probability that its smallest
circumscribed cap is empty, that 1k−
 : (Sn)k+1 → R indicates whether or not the
number of facets of x visible from the Euclidean center of the smallest circum-
scribed cap is k − 
, and that 1η : (Sn)k+1 →R indicates whether or not R(x) ≤ η.
With this notation, we get

E
[
cn

,k, η0

] = ρk+1

(k + 1)!
∫

x∈(Sn)k+1
P∅(x) · 1k−
(x) · 1η0(x)dx,(4.1)

in which 0 ≤ 
 ≤ k ≤ n; compare with Edelsbrunner, Nikitenko and Reitzner
(2017). The probability that the smallest circumscribed cap of the k-simplex is
empty is P∅(x) = e−ρ Area(η), with η the geodesic radius of the cap. To com-
pute the integral in (4.1), we apply equation (2.1) from Theorem 3 with f (x) =
P∅(x)1k−
(x)1η0(x). The corresponding function from the statement of Theo-
rem 3, fr : (Sk−1)k+1 ⊆ (Rn+1)k+1 → R, is defined by fr(u) = P∅(r)1k−
(u)×
1η0(r), where we write P∅(r) = P∅(u) and 1η0(r) = 1η0(u) to emphasize that
these expressions depend only on the radius. Equation (2.1) then gives

(4.2)

∫
x∈(Sn)k+1

f (x)dx = σn+1

2

∥∥Ln
k

∥∥∫ 1

t=0
t

kn−2
2 (1 − t)

n−k−1
2 P∅(

√
t)1η0(

√
t)

×
∫

u∈(Sk−1)k+1
1k−
(u)

[
k!Vol(u)

]n−k+1 du dt.

Substitution and reformulation. To continue, we recall the notion En

,k =

E[Vol(u)n−k+11k−
(u)] from (1.4), in which the expectation is for sampling k + 1
points from the uniform distribution on S

k−1. It follows that the second integral on
the right-hand side of (4.2) is k!n−k+1σk+1

k En

,k . Rewriting (4.1) using (4.2), we

therefore get

E
[
cn

,k, η0

] = ρk+1

(k + 1)!
σn+1

2

∥∥Ln
k

∥∥k!n−k+1σk+1
k

× En

,k

∫ s

t=0
t

kn−2
2 (1 − t)

n−k−1
2 P∅(

√
t)dt,

(4.3)

= ρσn+1 · σk
n

2	(k)nk−1

· Cn

,k

∫ s

t=0
ρkt

kn−2
2 (1 − t)

n−k−1
2 P∅(

√
t)dt,

(4.4)

in which we absorb one indicator by limiting the range of integration to the square
of the maximum Euclidean radius, s = sin2 η0. To get (4.4) from (4.3), we cancel
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k!, move ρk inside the integral, and use (1.4) to substitute [σk
n /(	(k)nk−1)] · Cn


,k

for [‖Ln
k‖k!n−kσ k+1

k /(k + 1)] · En

,k . This proves the integral expression (1.5) in

Theorem 1.

4.2. The asymptotic result. We continue with the proof of the asymptotic re-
sult (1.6). We proceed in two stages, first taking liberties and leaving gaps in the
argument, and second filling all the gaps.

Argument with gaps. We are interested in the behavior of the integral in (4.4),
when ρ → ∞. We observe that the probability of a cap to be empty vanishes
rapidly with increasing geodesic radius: P∅(r) = e−ρ Area(η), in which r = sinη is
the Euclidean radius. This implies that the integrand is concentrated in the vicinity
of 0. To make sense of the radius in the limit, we rescale by mapping η and ρ to
the normalized radius, η̄ = ηρ1/n. To proceed with the informal computations, we
assume that η is close to 0 and prepare two approximations and one relation:

A. the squared Euclidean radius is roughly the squared geodesic radius: s =
sin2 η ≈ η2;

B. the square of the height is 1 − s ≈ 1, which allows us to simplify the incom-
plete Beta function:

Bs

(
n

2
,

1

2

)
=

∫ s

t=0
t

n
2 −1(1 − t)−

1
2 dt ≈

∫ s

t=0
t

n
2 −1 dt = 2

n
sn/2;(4.5)

C. the relation σn+1
σn

= B(n
2 , 1

2) implies σn+1
n

/B(n
2 , 1

2) = σn

n
= νn.

Returning to the integral in (1.5), but without the factor ρn, we get
∫ sin2 η0

t=0
t

kn−2
2 (1 − t)

n−k−1
2 P∅(

√
t)dt ≈

∫ η̄2
0/ρ2/n

t=0
t

kn−2
2 e−ρνntn/2

dt,(4.6)

in which we approximate the upper limit of the integration using A, and drop the
middle factor because it is close to 1 according to B. The probability of having an
empty cap is P∅(r) = e−ρ Area(η), in which the area of the cap can be written in
terms of Beta functions:

Area(η) = σn+1Bs(n/2,1/2)

2B(n/2,1/2)
≈ σn+1(2/n)sn/2

2B(n/2,1/2)
= νns

n/2,(4.7)

using B for the approximation and C to get the final result, which we plug into
the left-hand side of (4.6) to get the approximation on its right-hand side. The
exponential term motivates us to change variables with τ = ρνnt

n/2. Plugging t =
τ 2/n/(ρνn)

2/n and dt = [ 2
n
τ 2/n−1/(ρνn)

2/n]dτ into the right-hand side of (4.6),
we get ∫ v

τ=0
τ k−1(ρνn)

−k

(
2

n

)
e−τ dτ = 2nk−1

ρkσ k
n

· γ (k;v),(4.8)
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in which the upper bound of the integration range is v = ρνn(η̄
2
0/ρ

2/n)n/2 = η̄n
0νn,

the power of τ is 2
n

kn−2
2 + 2

n
− 1 = k − 1, and the power of ρσn is − 2

n
kn−2

2 − 2
n

=
−k. We get the right-hand side of (4.8) from the left-hand side using σn

n
= νn and

γ (k;v) = ∫ v
τ=0 τ k−1e−τ dτ . Finally plugging the right-hand side into (1.5), we get

E
[
cn

,k, η0

] = ρσn+1 · σk
n

2	(k)nk−1

· Cn

,k

∫ sin2 η0

t=0
ρkt

kn−2
2 (1 − t)

n−k−1
2 P∅(

√
t)dt

(4.9)

= ρσn+1 · γ (k;v)

	(k)
· Cn


,k + o(ρ),(4.10)

as claimed in Theorem 1. Making the unjustified substitution v = η̄n
0νn = ∞, we

get

E
[
cn

,k

] = ρσn+1 · Cn

,k + o(ρ),(4.11)

as claimed in Remark (1c) after Theorem 1.
Formal justifications. We continue with the justification of the asymptotic equiv-

alences claimed above. To recall, there is the approximation in (4.6) and the sub-
stitution η̄0 = ∞ after (4.10). Fixing a real number 0 ≤ δ ≤ 1, we introduce some
notation to streamline the computations:

α = kn − 2

2
, α′ = n − k − 1

2
,

β = n

2
, β ′ = 1

2
, c = σn

2
,

(4.12)

g(s) = c

∫ s

t=0
tβ−1(1 − t)β

′−1 dt,(4.13)

J0 = ρk
∫ 1

t=0
tα(1 − t)α

′
e−ρg(t) dt,

J1(δ) = ρk
∫ δ

t=0
tα(1 − t)α

′
e−ρg(t) dt,

(4.14)

J2(δ) = ρk
∫ δ

t=0
tαe−ρg(t) dt,

J3(δ) = ρk
∫ δ

t=0
tαe

−ρ c
β
tβ dt.

(4.15)

We note that α,α′ ≥ −1
2 , β,β ′ ≥ 1

2 , and g(s) is c = σn

2 times the incomplete Beta

function. Recall that σn+1
σn

= B(n
2 , 1

2), which implies that g(s) is σn+1
2 times the ra-

tio of incomplete over complete Beta functions. Hence g(s) = Area(η), in which
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s = sin2 η; see (1.2). Note also that J0 is the integral in (4.4) except that the inte-
gration range goes all the way to 1, which corresponds to computing the number
of intervals without restricting the radius. For δ = 1, we have J1 = J0, and for
δ = sin2 η0, J1 is ρk times the expression on the left-hand side of (4.6). Finally, for
δ = η̄2

0ρ
−1/β , J3 is the integral on the right-hand side of (4.6), which we computed

in (4.8). Next, we list a sequence of observations:

I. The integral in (4.13) satisfies

c

β
sβ ≤ g(s) = c

∫ s

t=0
t (n−2)/2(1 − t)−1/2 dt ≤ c

β
sβ + const · sβ+1,

for 0 ≤ s ≤ 1 on the left, and for 0 ≤ s ≤ 1
2 on the right. Indeed, we have 1 ≤

1/
√

1 − t for all 0 ≤ t ≤ 1 and 1/
√

1 − t ≤ 1 + const · t for all 0 ≤ t ≤ 1
2 .

II. The absolute difference between J0 and J1(δ) satisfies

∣∣J0 − J1(δ)
∣∣ = ρk

∫ 1

t=δ
tα(1 − t)α

′
e−ρg(t) dt ≤ ρke

−ρ c
β
δβ

B
(
α + 1, α′ + 1

)
,

because g(t) ≥ g(δ) throughout the integration domain, and g(δ) ≥ c
β
tβ by I. The

value of the Beta function is a constant independent of ρ.
III. For δ ≤ 1

2 , the absolute difference between J1 and J2 satisfies

∣∣J1(δ) − J2(δ)
∣∣ ≤ ρk

∫ δ

t=0

[
tα(1 − t)α

′ − tα
]
e−ρg(t) dt ≤ const · δJ2(δ),

because |1 − (1 − t)α
′ | ≤ const · t for all 0 ≤ t ≤ 1

2 and α′ ≥ −1
2 .

IV. For δ ≤ 1
2 , the absolute difference between J2 and J3 satisfies

∣∣J2(δ) − J3(δ)
∣∣ = ρk

∫ δ

t=0
tα

[
e
−ρ c

β
tβ − e−ρg(t)] dt(4.16)

≤ ρk
∫ δ

t=0
tαe

−ρ c
β
tβ [

1 − e−const·ρtβ+1]
dt(4.17)

≤ J3(δ)
[
1 − e−const·ρδβ+1]

,(4.18)

in which we use the left inequality in I to get the right signs of the exponential
terms in (4.16), and the right inequality in I to get (4.17).

V. For η ≤ 1/
√

2, the absolute difference between J1 at the values sin2 η and
η2 satisfies

∣∣J1
(
sin2 η

) − J1
(
η2)∣∣ = ρk

∫ η2

t=sin2 η
tα(1 − t)α

′
e−ρg(t) dt ≤ 2ρk

∫ η2

t=sin2 η
tα dt

≤ 2ρk

α + 1

[
η2α+2 − (

η − η2)2α+2] ≤ 4ρkη2α+3,
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in which we use (1− t)α
′ ≤ 2 for t ≤ 1

2 to get the first inequality. To get the second,
we use sinη > η−η2, which we glean from the Taylor series sinη = η− 1

6η3 +· · · ,
and the binomial expansion of (η − η2)2α+2.

As mentioned earlier, J1(sin2 η0) is ρk times the left-hand side of (4.6), and
J3(η

2
0) is ρk times the right-hand side of (4.6). According to (4.8), ρk times this

right-hand side is (2nk−1/σ k
n ) · γ (k;v), with v = η̄nνn, which is a positive con-

stant; see Remark (1b) where we first mentioned that this integral is bounded
from 0 as well as from ∞. Having established that there is a positive constant

C = J3(η
2
0), IV implies that J2(η

2
0) ≤ C + (1 − e

−ρ c
β
η

2(β+1)
0 )C is also bounded by

a constant. Using III, IV, V, we get∣∣J1
(
sin2 η0

) − J3
(
η2

0
)∣∣(4.19)

≤ ∣∣J1
(
sin2 η0

) − J1
(
η2

0
)∣∣ + ∣∣J1

(
η2

0
) − J2

(
η2

0
)∣∣ + ∣∣J2

(
η2

0
) − J3

(
η2

0
)∣∣(4.20)

≤ 4ρkη2α+3
0 + const · η2

0J2
(
η2

0
) + (

1 − e−const·ρη
2(β+1)
0

)
C.(4.21)

Letting ρ go to infinity, we observe

ρkη2α+3
0 = ρk(η̄0ρ

− 1
n
)kn+1 → 0,(4.22)

ρη
2(β+1)
0 = ρ

(
η̄0ρ

− 1
n
)n+2 → 0,(4.23)

implying the three terms in (4.21) go to 0. This finally justifies the approximation
(4.6) and the argument proving Theorem 1.

Justification of Remark (1c). We finally prove that we can compute J0 by
setting η̄0 to infinity in (4.10) or, more formally, by replacing the incomplete
gamma function in the expression by the complete gamma function. Such a jus-
tification is needed because so far we have treated the geodesic radius as a con-
stant in our computations. We now couple the bound of the integration domain
with the density by setting δ0 = ρ−1/(β+1/2). We reuse equations (4.6) and (4.10)
to compute J3(δ0) = (2nk−1/σ k

n ) · γ (k;v), with v = ρνnδ
n/2
0 = νnρ

1/(n+1). The
upper bound for the incomplete Gamma function thus goes to infinity and ap-
proaches the complete Gamma function. We still have J3(δ0) bounded by a con-
stant, so the rest of the argument above goes through. We finally use II, which
shows |J0 − J1(δ0)| → 0. This justifies (4.11) and Remark (1c) in the Introduc-
tion.

5. Discussion. The main result of this paper is a radius-dependent integral
expression for the expected number of intervals of the radius function of a Pois-
son point process on S

n. To first order, the expected numbers are the same as in
R

n; compare with Edelsbrunner, Nikitenko and Reitzner (2017). The Delaunay
mosaics on S

n relate to inscribed convex polytopes in R
n+1 and to the Delaunay
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mosaics in the standard n-simplex equipped with the Fisher information metric.
These diagrams have therefore very similar stochastic properties as the Delaunay
mosaics in R

n. We formulate a few questions that are motivated by the findings
reported in this article:

• As mentioned earlier, the first-order terms of the expected number of intervals
of the radius function do not distinguish S

n from R
n. There are no further terms

in the Euclidean case, but what are they for Sn?
• Projecting the convex hull of a finite X ⊆ S

n orthogonally onto a (k + 1)-plane
corresponds to slicing the Voronoi tessellation of X with a k-dimensional great-
sphere of Sn. Similarly, we can define a k-dimensional weighted Delaunay mo-
saic by slicing a Voronoi tessellation in R

n with a k-plane. What are the stochas-
tic properties of these slices and projections?

• The square of the Fisher information metric agrees infinitesimally with the
Kullback–Leibler divergence Kullback and Leibler (1951). The more general
class of Bregman divergences has recently come into focus Edelsbrunner and
Wagner (2017). What are the stochastic properties of the Bregman divergences
and their corresponding metrics? Is the similarity to the Euclidean metric spe-
cific to the Fisher information metric or is it a more general phenomenon?

APPENDIX: UNIFORM DISTRIBUTION

In this Appendix, we sketch the case of the uniform distribution on S
n. The sole

difference to the Poisson point process is that the number of points is prescribed
rather than a random variable. Setting this number to N = ρσn+1, it makes sense
that in the limit, when N and ρ go to infinity, the expected numbers of intervals
of the radius function are the same under both probabilistic models. This is indeed
what we establish now more formally. By linearity of expectation, the number of
intervals of type (
, k) and geodesic radius at most η0 is

E
[
cn

,k, η0

] =
(

N

k + 1

)
E

[
P∅(x) · 1k−
(x) · 1η0(x)

]
,(A.1)

in which x = (x0, x1, . . . , xk) is a sequence of k + 1 points on S
n, η is the

geodesic radius of the smallest circumscribed cap of x, and P∅(x) = (1 −
Area(η)/σn+1)

N−k+1 is the probability that this cap is empty. The analogue of
(4.1) is therefore

E
[
cn

,k, η0

] =
(

N

k + 1

)
1

σk+1
n+1

∫
x∈(Sn)k+1

P∅(x) · 1k−
(x) · 1η0(x)dx.(A.2)
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We apply the rotation-invariant Blaschke–Petkantschin formula (2.1), again with
narrow bump functions as in (4.2). This gives

E
[
cn

,k, η0

]
= N !

(N − k − 1)!σk
n+1

σk
n

2	(k)nk−1

· Cn

,k

∫ sin2 η0

t=0
t

kn−2
2 (1 − t)

n−k−1
2

(
1 − Area(η)

σn+1

)N−k+1
dt,

(A.3)

in which η = η(t) = arcsin
√

t ; compare with (4.4). To prepare the next step, we
note that (

1 − Area (η(t))

σn+1

)N−k+1
≈ e

− N
σn+1

Area (η(t))
(A.4)

as t → 0. From here on, we retrace the steps we took from (4.6) to (4.8). In partic-
ular, we change variables with τ = N

σn+1
νnt

n/2, and we substitute η̄0ρ
−1/n for η0.

Observing N !
(N−k−1)! ≈ Nk+1, we simplify the expression and get

E
[
cn

,k, η̄0

] = N · γ (k;v)

	(k)
· Cn


,k + o(N)(A.5)

for the expected number of intervals of the radius function of the Delaunay mosaic
for N points chosen uniformly at random on S

n, in which v = η̄n
0νn. Comparing

with the asymptotic result (1.6) in Theorem 1, we see the same constants as for
the Poisson point process. However, the variance distinguishes the two cases, be-
ing smaller for the uniform distribution than for the Poisson point process; see
Stemeseder (2014).
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