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REAL EIGENVALUES IN THE NON-HERMITIAN
ANDERSON MODEL

BY ILYA GOLDSHEID∗ AND SASHA SODIN∗,†,1

Queen Mary University of London∗ and Tel Aviv University†

The eigenvalues of the Hatano–Nelson non-Hermitian Anderson matri-
ces, in the spectral regions in which the Lyapunov exponent exceeds the
non-Hermiticity parameter, are shown to be real and exponentially close to
the Hermitian eigenvalues. This complements previous results, according to
which the eigenvalues in the spectral regions in which the non-Hermiticity
parameter exceeds the Lyapunov exponent are aligned on curves in the com-
plex plane.

1. Introduction and the main result. Let v1, v2, . . . be independent, identi-
cally distributed random variables (potential) and let g be a real parameter, g ≥ 0.
Consider the N × N random matrix

(1.1) HN(g) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1 e−g 0 0 · · · 0 eg

eg v2 e−g 0 · · · 0 0
0 eg v3 e−g · · · 0 0

. . .

. . .

0 0 0 0 vN−1 e−g

e−g 0 0 0 · · · eg vN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Non-Hermitian matrices of the form (1.1) were introduced and studied by
Hatano and Nelson [21, 22] to describe the reaction of an Anderson-localised
quantum particle on a ring to a constant imaginary vector field. For g = 0, the
matrix HN = HN(0) is Hermitian, and the eigenvalues are real. For g > 0, the
eigenvalues are not necessarily real. The numerical studies of Hatano and Nelson
(carried out for the case when the vj have the uniform [−1,1] distribution) suggest
that there exist critical values gcr > g

cr
> 0 such that the following hold:

(a) For 0 ≤ g < g
cr

, all the eigenvalues of HN(g) are real;
(b) for g ∈ (g

cr
, gcr), some of the eigenvalues remain real, while others align

along a smooth curve in the complex plane;
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FIG. 1. A realisation of the spectrum for a variant of (1.1) with a 2-periodic background (cf. Re-
mark 1.3); N = 70 and g = 0.08 ∈ (gcr, gcr). The axis is split in 5 intervals. On the odd ones, the
Lyapunov exponent is ≥ 0.08; on the even ones, it is ≤ 0.08.

(c) essentially all eigenvalues move out of the real axis when g > gcr.

A variant of this numerical experiment in the regime (b) is depicted in Figure 1.
These observations, and especially (b) and (c), were supported by the subsequent
analysis performed on the physical level of rigour; see especially [7, 8, 11, 35]. We
refer to these works and also to [28] and references therein for a discussion of the
properties of the (left and right) eigenvectors of HN(g), and for extensions to the
strip and to higher dimension, which will mostly remain outside the scope of this
paper (see, however, Section 6).

In the mathematical works [15, 17, 18] of Khoruzhenko and the first author,
it was shown that the behaviour of the eigenvalues depends crucially on the Lya-
punov exponent γ (E) associated to the Hermitian operator [see Section 2, equa-
tion (2.2)]. Let us label the algebraic spectrum of HN(g){λ1(g), . . . , λN(g)} so that
each λj (g) is a continuous function of g, and λ1(0) ≥ · · · ≥ λN(0) (cf. Lemma 2.3
below).

Fix j ; for g = 0 the eigenvalue λj (0) lies on the real axis. It was shown in
[15, 17] that for g < γ (λj (0)) the eigenvalue λj (g) remains in the vicinity of
the real axis [i.e., it lies in the strip |�λ| < ε, provided that N ≥ N0(ε)], whereas
for g > γ (λj (0)) it escapes to certain polynomial curves �

(N)
g in the complex

plane. These statements hold simultaneously for all the eigenvalues λj (g) on an

event of asymptotically full probability. As N → ∞, �
(N)
g converges to the curve

�g = {z ∈ C | γ (z) = g}.
In [18], these results were extended to a wide class of deterministic potentials,

under the mild assumption of existence of the integrated density of states N (E).
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Under this assumption, one defines the Lyapunov exponent via the Thouless for-
mula

γ (E) =
∫

log
∣∣E − E′∣∣dN (

E′).
In the case of stationary random sequences, this definition coincides with the usual
one, given in (2.2).

Moreover, it was shown in [18] that the eigenvalues near the curves �g boast
regular behaviour on a local scale: after re-scaling the eigenvalues near a fixed
z ∈ �g by the mean (complex) spacing, these align, in the large N limit, on an
arithmetic progression.

Consequently, the critical values should be given by the formulæ

g
cr

= min
{
γ (E) | E ∈ S

}
, gcr = max

{
γ (E) | E ∈ S

}
,

where S is the support of the limiting eigenvalue distribution of HN(0) [i.e., the
support of the integrated density of states N (E) defined in (1.3), or equivalently
the essential spectrum of the infinite-volume self-adjoint operator].

The results proved in [15, 17, 18] provide a detailed statistical description of
the behaviour of the eigenvalue λj (g) for g > γ (λj (0)), both in the global and the
local limiting regime; thus one has a complete description of the regime (c), and a
partial one of (b).

The description of the behaviour for g < γ (λj (0)) remained incomplete. In
fact, neither the rigorous analysis of [15, 17, 18] nor the heuristic arguments of
[7, 8, 11, 35] provide an indication on whether these eigenvalues are truly real (as
suggested by computer simulations such as Figure 1), or they may have a nonzero
but asymptotically vanishing imaginary part.

To the best of our knowledge, no progress on this question has been made since
the work [18] had been published. We are also not aware of any previous analysis
of the spacings between these eigenvalues (the local regime).

In this work, we provide a reasonably complete description of the regime
γ (λj (0)) > g, thus settling these two questions. We prove that in the case of
(1.1) with independent, identically distributed potential the corresponding non-
Hermitian eigenvalues λj (g) do in fact remain on the real axis and, moreover, they
are exponentially close to the Hermitian eigenvalues λj (0). In other words, if j

is fixed and g varies from 0 to ∞, the eigenvalue λj (g) remains real and expo-
nentially close to λj (0) for g ≤ γ (λj (0)) − ε [where ε > 0 is arbitrary small, and
N ≥ N0(ε)]. This complements the result of [18], according to which λj (g) aligns
near �g for g ≥ γ (λj (0)) + ε. See Figure 2 for an illustration.

In contrast to the potential-theoretic approach of [18], our arguments are based
on the properties of products of random matrices.

THEOREM 1. Assume that (vj ) is a sequence of i.i.d. random variables and
that |v1| ≤ A < ∞ almost surely. Then for any ε > 0,

P
{
for all 1 ≤ j ≤ N and g ∈ [

0, γ
(
λj (0)

) − ε
]

one has: λj (g) ∈ R
} −→

N→∞ 1
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FIG. 2. The curves connecting the points (λj (g), g) ∈ R
2 with λj (g) ∈ R, for N = 70 and

vj ∼ Unif[0,4]. In the large N limit, the upper envelope of these curves converges to the graph
of γ (E) on S . Note that the curves are almost vertical.

and, moreover, there exists c = c(ε) > 0 such that

P
{∀j ∀g ∈ [

0, γ
(
λj (0)

) − ε
] : λj (g) ∈ (

λj (0) − e−cN ,λj (0) + e−cN )} −→
N→∞ 1.

REMARK 1.1. The first part of the theorem is essentially equivalent to the
following statement: if I is an interval, then for any ε > 0,

lim
N→∞P

{
for all λj (0) ∈ I and all g ≤ inf

E∈I
γ (E) − ε one has λj (g) ∈ I

}
= 1.

REMARK 1.2. Without invoking new ideas, the theorem can be shown to hold
under the weaker assumption E|v1|η < ∞ for some η > 0. We restrict ourselves
to the case of bounded random variables, to keep the argument reasonably short.
On the other hand, we do insist on avoiding any regularity assumptions on the
potential.

REMARK 1.3. Only minor adjustments in the argument are required to con-
sider a variant of the model in which vj is replaced with vj + aj , where (aj )

is a nonrandom periodic sequence. For cosmetic reasons, we chose to depict this
variant in Figure 1, which we included for illustration only.

REMARK 1.4. Similar to [17] and in contrast to [18], we assume that (vj ) is
an i.i.d. sequence. While we do not expect the conclusion of the theorem to hold
in the generality of [18], additional special cases such as operators with almost
periodic potentials merit further consideration.
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The theorem implies that the local eigenvalue statistics of HN(g) in the regime
g < γ (λj (0)) are the same as for the Hermitian operator HN(0).

COROLLARY 1.5. In the setting of Theorem 1, assume that for g = 0,

(1.2)
N∑

j=1

δ(λj (g)−E)Nρ
distr−→ standard Poisson process

for some E ∈ R, ρ > 0, as N → ∞. Then (1.2) holds for all 0 ≤ g < γ (E).

In the Hermitian case g = 0, a limit theorem of the form (1.2) was first proved
by Molchanov [27] for a class of (continual) one-dimensional Hermitian random
Schrödinger operators. An extension to higher-dimensional operators in the regime
of Anderson localisation was proved by Minami [26]; his result implies that (1.2)
holds (for g = 0) if the cumulative distribution function of v1 is uniformly Lips-
chitz, with

(1.3) ρ = ρ(E) =N ′(E), N (E) = lim
N→∞

1

N
#
{
λj (0) < E

}
.

The existence of the density of states ρ(E) = N ′(E) (in the sense of Radon) in
this situation follows from an argument of Wegner [34].

Recently, Bourgain showed [5] for the one-dimensional case that the density of
states exists (and in fact N is C∞ smooth) whenever the cumulative distribution
function of v1 is uniformly Hölder continuous of some order ν > 0. In [6], he
showed that (1.2) holds (for g = 0) under the same assumptions, for the case of
Dirichlet boundary conditions (i.e., the top-right and bottom-left corner matrix
elements are set to zero). The argument of [6] can be adjusted to periodic boundary
conditions [i.e., to HN(0)]. Combining this with Corollary 1.5, we obtain that,
under the same assumption, (1.2) also holds for all g < γ (E) (at least, if v1 is
bounded almost surely).

The logical structure of the paper. The key ingredient in the proof of Theorem 1
is a uniform lower bound on the spectral radius of the transfer matrices associated
with the Hermitian matrices HN(0), outside exponentially small neighbourhoods
of the bands. This bound, possibly of independent interest, is stated as Proposi-
tion 3.1 in Section 3.1, where we also provide its proof. In Section 3.2, we use it
to prove Theorem 1.

The proof of Proposition 3.1 makes use of several facts from the theory
of random matrix products: particularly, a large deviation bound for the norm
(Lemma 2.1) and a comparison between the norm and the spectral radius
(Lemma 2.2). While such statements are well known (the former goes back to
the work of Le Page [24], and the latter—to the work of Guivarc’h [20] and Reddy
[30]), the form in which we found them (and particularly the latter one) in the
literature is somewhat weaker than what is needed for our purposes. Therefore,
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we develop in Sections 4 and 5, an approach (close in spirit to the article [32] of
Shubin–Vakilian–Wolff and to unpublished work of the first author on the central
limit theorem for eigenvalues of random matrix products) which allows us to re-
prove these statements in the required form. Two other important ingredients of
the proof of Proposition 3.1 are Lemmata 2.5 and 2.4, due to Bourgain [6] and
Le Page [25], respectively. The latter lemma lies in the field of random matrix
products, and in the short Section 5.2, we deduce it from Lemma 2.1.

In Section 2, we formulate the definitions and the lemmata required to state and
prove Proposition 3.1. Possible generalisations and extensions of Theorem 1 are
discussed in Section 6.

2. Preliminaries.

Transfer matrices. Let E ∈ R. For N = 1,2, . . . , define


N(E) = TN(E) · · ·T2(E)T1(E),

where

(2.1) Tj (E) =
(
E − vj −1

1 0

)
∈ SL2(R).

More generally, one may consider the matrices Tj (z) and 
N(z) for z ∈ C. As
usual, 
N(z) is associated to the formal solutions ψ of the equation

ψj−1 + vjψj + ψj+1 = zψj , j ≥ 1

as follows:


N

(
ψ1
ψ0

)
=

(
ψN+1
ψN

)
.

Denote

(2.2) γ (E) = lim
N→∞

1

N
E log

∥∥
N(E)
∥∥.

According to a result of Furstenberg and Kesten [14], for any stationary ergodic se-
quence v = (vj ), the following equality holds with probability one for any (fixed)
E:

(2.3) lim
N→∞

1

N
log

∥∥
N(E)
∥∥ = γ (E).

We emphasise that (2.3) does not hold simultaneously for all E (see [16]); in fact,
in the i.i.d. case the left-hand side of (2.2) vanishes on a dense random subset of S .

A fundamental fact which is crucial for our considerations is the positivity of
the Lyapunov exponent: in the i.i.d. case, Furstenberg’s theorem [13] implies that
γ (E) > 0 for all E ∈ R. [Formally, we use the quantitative version (4.5) of this
fact.]
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Large deviations. Large deviations bounds for the norm of a random matrix
product go back to the work of Le Page [24]. There are numerous extensions (see
particularly the recent work [31]), where a large deviation principle was obtained,
and references therein. We need the following upper bound, close to the original
work of Le Page; a proof is provided in Section 5.1.

LEMMA 2.1 (Le Page). If E|v1|η < ∞ for some η > 0, then for any R > 0
there exist C,c > 0 such that for ε ∈ (0,1/e) and |E| ≤ R,

(2.4) P

{∣∣∣∣ 1

N
log

∥∥
N(E)
∥∥ − γ (E)

∣∣∣∣ ≥ ε

}
≤

(
C log

1

ε

)
exp

[
−cε2N

log 1
ε

]
.

Spectral radius. We shall use the following lemma, which is a variant of the
results proved by Guivarc’h [20] and by Reddy [30], Section 2.4. We provide a
proof in Section 4.3. For a matrix 
, we denote by ρ(
) its spectral radius.

LEMMA 2.2. If E|v1|η < ∞ for some η > 0, then for any R > 0 there exist
B,B ′ > 0 and b, b′ > 0 such that

sup
|E|≤R

P
{
ρ

(

N(E)

) ≤ δ
∥∥
N(E)

∥∥} ≤ Bδb + B ′e−b′N, 0 ≤ δ ≤ 1.

Bands and gaps. Consider the transfer matrices corresponding to the potential
(vj ) (in this paragraph the potential does not have to be random). The set of E

such that ρ(
N(E)) = 1 consists of N disjoint intervals (bands); we denote their
interiors, numbered from the rightmost to the leftmost, I1, . . . , IN . Denote

R = G0 � I1 � G1 � I2 � · · · � IN � GN,

where the Gj (the closures of the gaps) are also ordered from right to left.
The eigenvalues of the periodic operator HN(0) are exactly the points E at

which 1 is an eigenvalue of 
N(E). These are exactly the edges of the gaps
G0,G2, . . . with even indices. This fact admits the following generalisation to the
non-Hermitian case (cf. [17, 18]).

LEMMA 2.3 ([18], Lemma 4.1). The eigenvalues of HN(g) are the points z ∈
C such that eNg is an eigenvalue of 
N(z).

Hölder continuity of the Lyapunov exponent. The local Hölder continuity of
the Lyapunov exponent goes back to the work of Le Page [25]. We need the fol-
lowing version, proved in [9] and, by different arguments, in [4, 32]; for the sake
of unity of argument, we provide a proof in Section 5.2.

LEMMA 2.4 (Le Page). If vj are independent, identically distributed with
E|v1|η < ∞ for some η > 0, then the Lyapunov exponent γ (E) associated to the
sequence TN(E) is uniformly Hölder continuous on any compact interval.



3082 I. GOLDSHEID AND S. SODIN

Gaps between the eigenvalues.

LEMMA 2.5 (Bourgain [6]). If vj are independent, identically distributed with
E|v1|η < ∞ for some η > 0, then for any R > 0 there exists K > 0 such that

P

{
min

λ 
= λ′-eigenvalues of HN in [−R,R]
∣∣λ − λ′∣∣ < N−K

}
= 0.

REMARK 2.6. In the work [6], the lemma is proved for Dirichlet rather than
periodic boundary conditions, and only for the case of Bernoulli potential. How-
ever, the argument presented there applies equally well in the current setting.

REMARK 2.7. The argument in [6] relies on Anderson localisation. On the
other hand, if the cumulative distribution function of v1 is uniformly Hölder of
order ν > 1/2, the conclusion of the lemma also follows from the Minami esti-
mate; see [26] and further [10, 19]. Thus, for such potentials, the conclusion of
Theorem 1 is established using fixed-energy arguments only.

3. Proof of the main result.

3.1. The key technical statement. Let c > 0 be a sufficiently small constant, to
be chosen later. For a gap Gj = [aj , bj ], denote

G
+,c
j = [

bj − e−cN , bj

]
, G

−,c
j = [

aj , aj + e−cN ]
.

The following proposition provides uniform control of the transfer matrices out-
side exponentially small neighbourhoods of the bands. It is the key ingredient in
the proof of the main theorem. Having in mind possible additional applications
(in the Hermitian and non-Hermitian setting), we formulate it as an independent
statement.

PROPOSITION 3.1. Let vj be i.i.d. with |v1| ≤ A for some A > 0. Then for
any ε > 0,

(3.1) lim
N→∞P

{
∀1 ≤ j < N max

E∈Gj

1

N
logρ

(

N(E)

) ≥ max
E∈Gj

γ (E) − ε

}
= 1.

In addition, if c > 0 is small enough and s ∈ {+,−},

(3.2) lim
N→∞P

{
∀1 ≤ j < N max

E∈G
s,c
j

1

N
logρ

(

N(E)

) ≥ max
E∈Gj

γ (E) − ε

}
= 1.

PROOF. As customary, we denote �x� = maxn≤x n and �y� = minn≥x n.

If |v1| ≤ A < ∞ almost surely, then ‖HN(0)‖ ≤ 2 + A. Let (El)
�ecN �
l=1 be a se-

quence of equally spaced points with E1 = −3 − A and E�ecN � = 3 + A.
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The large deviation estimate of Lemma 2.1 allows to bound the norm of the
transfer matrix from below, outside an event of small probability. Formally, for
any El ∈ [−3 − A,3 + A], we have

P
{∥∥
N(El)

∥∥ ≤ eN(γ (El)− ε
4 )} ≤ B1e

−b1N,

where B1 and b1 do not depend on El ∈ [−3 − A,3 + A].
In turn, Lemma 2.2 allows to compare the spectral radius with the norm: taking

δ = e−N ε
4 in the lemma, we obtain for any El :

P
{
ρ

(

N(El)

) ≤ e−N ε
4
∥∥
N(El)

∥∥} ≤ Be−Nb ε
4 + B ′e−b′N ≤ Ce−b̄N ,

where C > 0 and b̄ > 0 do not depend on El ∈ [−3 − A,3 + A]. Hence

P

{
∃l : 1

N
logρ

(

N(El)

) ≤ γ (El) − ε

2

}

≤ ecN [
B1e

−b1N + Ce−b̄N ] ≤ C′e−c′N,

where we chose c > 0 small enough [c < min(b1, b̄)]. In particular, the probability
of the event

�1 =
{
∀l

1

N
logρ

(

N(El)

) ≥ γ (El) − ε

2

}

tends to 1 as N → ∞.
Let mj ∈ Gj be such that max

E∈Gj

γ (E) = γ (mj ). Denote

�2 = {∀1 ≤ j < N ∃lj : Elj ∈ Gj, |Elj − mj | ≤ Ce−cN}
.

By Lemma 2.5, no gap is exponentially short, hence each Gj contains at least
one El . Therefore, also the probability of �2 tends to 1, for C > 0 large enough.
Then on the event �1 ∩ �2, for sufficiently large N :

∀j max
E∈Gj

1

N
logρ

(

N(E)

) ≥ 1

N
logρ

(

N(Elj )

)

≥ γ (Elj ) − ε

2
≥ γ (mj ) − ε = max

E∈Gj

γ (E) − ε,

where we used the Hölder continuity of the Lyapunov exponent (Lemma 2.4).
Similarly,

∀j max
E∈G

s,c
j

1

N
logρ

(

N(E)

) ≥ max
E∈Gj

γ (E) − ε.
�
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3.2. Proof of Theorem 1. Let ε > 0. By equation (3.1) of Proposition 3.1,

lim
N→∞P

{
∀1 ≤ j < N max

E∈Gj

1

N
logρ

(

N(E)

) ≥ max
E∈Gj

γ (E) − ε/2
}

= 1.

On this event, we have for any 1 ≤ j < N :

max
E∈Gj

1

N
logρ

(

N(E)

) ≥ max
E∈Gj

γ (E) − ε/2.

Since G2j = [λ2j+1, λ2j ] [where λj = λj (0); in the notation of Proposition 3.1,
a2j = λ2j+1 and b2j = λ2j ], we conclude the following: if, for some g,

max
(
γ (λ2j ), γ (λ2j+1)

) ≥ g + ε,

then

max
E∈G2j

1

N
logρ

(

N(E)

) ≥ (g + ε/2).

On the other hand, 1
N

logρ(
N(λ2j )) = 1
N

logρ(
N(λ2j+1)) = 0, hence by the
intermediate value theorem there are two solutions to ρ(
N(E)) = eNg lying
in Gj . By Lemma 2.3, these are exactly the eigenvalues λ2j (g) and λ2j+1(g). As
to the eigenvalues λ1(g) and, for even N , λN(g), these are real. Invoking the sec-
ond part (3.2) of Proposition 3.1, we obtain that |λj (g) − λj (0)| is exponentially
small. �

4. On the spectral radius of transfer matrices. The ultimate goal of this
section is the proof of Lemma 2.2 in Section 4.3. We start with some auxiliary
statements.

Let Tj = Tj (E) with E|vj |η < ∞ for some η > 0. Then E‖Tj‖η < eAη, where
A > 0 can be chosen locally uniformly in E. Let 
N = TN · · ·T2T1, and further
let 
N,M = TN · · ·TM+1 for N > M . We use the singular value decomposition

(4.1) 
N = UN

(
sN 0
0 s−1

N

)
VN, 
N,M = UN,M

(
sN,M 0

0 s−1
N,M

)
VN,M,

where sN, sN,M ≥ 1, UN,VN,UN,M,VN,M ∈ SO(2). The application of singular
value decomposition in the study of random matrix products goes back at least to
the work of Tutubalin [33], who realised that the sequence (UN) is approximated
by a Markov chain whereas VN converges to a random limit. This idea plays an
important role in our analysis as well.

4.1. A lemma in linear algebra. Denote by uv∗ the rank-one operator taking
w to (w, v)u, where (u, v) is the inner product. Also, we denote by ej the j th
vector of the standard basis. Although we need the following lemma only for two-
dimensional matrices, specialising the argument to this case would only obscure
the idea.
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LEMMA 4.1. If u, v ∈ C
m and h : Cm → C

m is a linear map such that ‖h‖ ≤
|(u,v)|2
9‖u‖‖v‖ , then

(4.2) ρ
(
uv∗ + h

) ≥ 1

2

∣∣(u, v)
∣∣.

PROOF. Let 0 ≤ t ≤ 1, and let z be a complex number on the circle of radius
1
2 |(u, v)| about (u, v). We shall show that for such t and z the determinant det(z −
uv∗ − th) does not vanish. This will imply that the number of eigenvalues of uv∗ +
th in the disc enclosed by the circle does not change as t varies from 0 to 1. For
t = 0, the spectrum of uv∗ consists of two eigenvalues, 0 (with multiplicity m− 1)
and (u, v) (with multiplicity 1), of which the second one lies in the disk; thus also
for t = 1 there is (exactly) one simple eigenvalue in the disc, and in particular (4.2)
holds.

Let us factorise

det
(
z1 − uv∗ − th

) = det
(
z1 − uv∗)

det
(
1 − (

z1 − uv∗)−1
th

)
.

The first term is equal to

zm−1(
z − (u, v)

)
,

and thus does not vanish on the circle. To show that the second term does not
vanish, observe that

∥∥(
z1 − uv∗)−1∥∥ =

∥∥∥∥1

z
1 + 1

z

uv∗

z − (u, v)

∥∥∥∥ ≤ 1

|z|
{

1 + ‖u‖‖v‖
|z − (u, v)|

}

≤ 2

|(u, v)|
4‖u‖‖v‖
|(u, v)| = 8‖u‖‖v‖

|(u, v)|2 ,

hence

∥∥(
z1 − uv∗)−1

th
∥∥ ≤ 8‖u‖‖v‖

|(u, v)|2
|(u, v)|2
9‖u‖‖v‖ = 8

9
< 1. �

COROLLARY 4.2. If 
 = U

(
s 0
0 1/s

)
V with U,V ∈ SO(2) and s ≥ 3,

|(V Ue1, e1)| ≥ 3
s
, then

ρ(
) ≥ s

2

∣∣(V Ue1, e1)
∣∣.

PROOF. Apply the lemma to u = Ue1, v = V ∗e1, observing that

U

(
s 0
0 0

)
V = uv∗
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and ∥∥∥∥U
(

0 0
0 1/s

)
V

∥∥∥∥ = 1/s. �

Our goal in the remaining part of the section is to prove the estimate

(4.3) P
{∣∣(VNUNe1, e1)

∣∣ ≤ δ
} ≤ Kδκ + e−cN ,

which will imply Lemma 2.2, in view of Corollary 4.2.

4.2. On an important unitary operator. For each T ∈ SL2(R), consider the
operator π(T ) : L2(S

1) → L2(S
1), defined via(

π(T )f
)
(x) = f

(
T x/‖T x‖)

/‖T x‖.
For any T ∈ SL2(R), π(T ) is unitary.

LEMMA 4.3 (Shubin–Vakilian–Wolff [32]). If v1 is not almost surely equal to
a constant, then there exists a > 0 such that

(4.4) sup
E

∥∥(
Eπ

(
T1(E)

))2∥∥ ≤ e−a < 1.

Denoting by 1 ∈ L2(S
1) the function identically equal to 1 and parametrising the

points on the circle by an argument θ ∈ [0,2π ], we obtain

(4.5) E
∥∥
n(E)

∥∥−1 ≤ E

∫ 2π

0

dθ

2π

∥∥
n(E)eiθ
∥∥−1 = 1

2π

(
Eπ(
n)1,1

) ≤ e−a� n
2 �,

and in particular γ ≥ a/2.
Next, by the Oseledec multiplicative ergodic theorem [29], VN converges almost

surely to a random limit V . We use this fact in the following form.

LEMMA 4.4. Suppose E|v1|η < ∞ for some η > 0. Then, for any R > 0,

sup
|E|≤R

E
∥∥VN(E) − V (E)

∥∥ ≤ Be−bN .

PROOF. Let V ∗
Ne2 = cos θV ∗

N−1e2 + sin θV ∗
N−1e1. Then

‖
N‖−1 = ∥∥
NV ∗
Ne2

∥∥ = ∥∥TN
N−1V
∗
Ne2‖ ≥ ‖TN

∥∥−1∥∥
N−1V
∗
Ne2

∥∥
≥ ‖TN‖−1[

cos2 θ‖
N−1‖−2 + sin2 θ‖
N−1‖2]1/2

≥ | sin θ |‖TN‖−1‖
N−1‖,
whence

| sin θ | ≤ ‖TN‖
‖
N‖‖
N−1‖ ,
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and, using (4.5),

E| sin θ | ≤ E| sin θ |η ≤ eA(R)ηB0e
−bN .

Thus an estimate of the same form holds for ‖VN − VN−1‖ in place of | sin θ |. �

4.3. Conclusion of the proof of Lemma 2.2. As before, we denote �x� =
maxn≤x n and �y� = minn≥x n. In the notation of (4.1), Lemma 4.4 applied to
the matrix products TN · · ·T1 and T ∗

1 T ∗
2 · · ·T ∗

N implies that for N ≥ C logA

(4.6) E‖VN − V�N/2�‖ ≤ e−b′N, E‖UN − UN,�N/2�‖ ≤ e−b′N.

The matrices V�N/2�,UN,�N/2� are independent, therefore, by an additional appli-
cation of Lemma 4.4,

(4.7) E‖VN − Ṽ ‖ ≤ e−b′N, E‖UN − Ũ‖ ≤ e−b′N,

where Ũ , Ṽ ∈ SO(2) are independent random matrices sampled from the corre-
sponding limiting distributions. To conclude the proof of Lemma 2.2, we state (and
prove) the following.

LEMMA 4.5. Assume that E|v1|η < ∞, and that v1 is not almost surely con-
stant. Then for any E there exist K > 0 and κ > 0 such that for any 0 ≤ δ ≤ 1 and
w,w′ ∈ S1,

(4.8) P
{∣∣(U(E)w,w′)∣∣ ≤ δ

} ≤ Kδκ, P
{∣∣(V (E)w,w′)∣∣ ≤ δ

} ≤ Kδκ.

The numbers K and κ may be chosen locally uniformly in E.

PROOF OF LEMMA 2.2. Applying Lemma 4.5 with Ũ and Ṽ in place of U

and V , we obtain

(4.9) P
{∣∣(Ṽ Ũe1, e1)

∣∣ ≤ δ
} ≤ Kδκ.

Together with (4.7), this implies (4.3), which by Corollary 4.2 implies the conclu-
sion of Lemma 2.2. �

PROOF OF LEMMA 4.5. Since we do not keep track on the dependence of the
constants on a (from Lemma 4.3) and η, we may assume that a < 4η. Let Cδ ⊂ S1

be a cap of angular size δ. Assume: E‖T1‖η ≤ eAη, and denote n = �log 2(A+1)
δ

�.
Let us show that

(4.10) P
{
V ∗

n e2 ∈ Cδ

} ≤ C

⌈
log

16(A + 1)

a

⌉
e− an

16 .

By an additional application of Lemma 4.4, this implies (4.8).
To prove (4.10), we start with the estimates

E‖
n‖η ≤ eAnη, E‖
n‖−1 ≤ (
Eπ(
n)1,1

) ≤ 2πe− an
2 ,
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which imply that

P
{
e

an
4 ≤ ‖
n‖ ≤ e(A+1)n} ≥ 1 − C1e

− an
4 .

If (4.10) fails, there exists 4 ≤ m ≤ �log 16(A+1)
a

� such that

(4.11) P
{
e

ma
16 n ≤ ‖
n‖ ≤ e

(m+1)a
16 n,V ∗

n e2 ∈ Cδ

} ≥ Ce− an
16 .

Let τ = max(δ, e− (m+1)a
16 n), let Cτ ⊃ Cδ be a cap of size τ , and let 1τ be the indicator

of Cτ . Then (still treating eiθ as a vector on the circle)

(4.12) E

∫
Cτ

∥∥
ne
iθ

∥∥−1
dθ = (

Eπ(
n)1,1
) ≤ C2e

− an
2
√

τ .

On the other hand, if

(4.13) V ∗
n e2 ∈ Cτ , e

ma
16 n ≤ ‖
n‖ ≤ e

(m+1)a
16 n,

then

(4.14)
∫
Cτ

∥∥
ne
iθ

∥∥−1
dθ ≥ 1

C3
min

(
τ,‖
n‖−2)‖
n‖ ≥ 1

C3
τe

(m−1)a
16 n,

therefore by (4.11)∫
Cτ

∥∥
ne
iθ

∥∥−1
dθ ≥ 1

C3
τ‖
n‖ ≥ 1

C3
τe

(m−1)a
16 n

P
(
the event (4.13)

)

≥ 1

C3
τe

(m−1)a
16 nCe− an

16 .

(4.15)

If we choose C > C2C3, the juxtaposition of (4.15) with (4.12) leads to

e− (m+1)a
16 n ≤ √

τ ≤ e− (m−1)a
16 ne

an
16 e− an

2 ,

which is a contradiction. �

5. Proofs of the additional lemmata.

5.1. Large deviations: Proof of Lemma 2.1. We suppress the dependence on
the spectral parameter E, on which the estimates below are locally uniform. Fix
x ∈ S1. It will suffice to prove the following: for any ε ∈ (0,1/e),

P

{∣∣∣∣ 1

N
log‖
Nx‖ − γ

∣∣∣∣ ≥ ε

}
≤ C log

1

ε
exp

{
−cε2N

log 1
ε

}
.

Let x0 = x, and let xj+1 = Tj+1xj/‖Tj+1xj‖. The vectors xj ∈ S1 form a Markov
chain, and

‖
Nx‖ =
N∏

j=1

‖Tjxj−1‖.
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Our strategy from this point (based on two arguments going back to the work of
S. N. Bernstein [2, 3]) is as follows. Fix k = �log 1

ε
�, and split the product into k

sub-products corresponding to the different residues of j modulo k. The terms in
each sub-product are almost independent; we make them independent by restarting
the Markov chain from an invariant distribution every k steps. Then we obtain a
bound on the positive and negative fractional moments of each sub-product, from
which the desired estimate follows using the Chebyshev inequality.

Formally, for each j choose (independently) a random vector on the circle, dis-
tributed according to the invariant measure of the Markov chain; denote this vector
by yj−k,j . Then set yn+1,j = Tn+1yn,j /‖Tn+1yn,j‖ for n ≥ j − k, and, finally, de-
fine yj = yj,j . Then, for each r , the random variables {yj | j ∈ Ir}, where

Ir = (r + kZ) ∩ {1, . . . ,N},
are jointly independent. The vectors yj are close to xj : for j ≥ k,

(5.1) E
{‖xj − yj‖ | v1, v2, . . . , vj−k

} ≤ C exp(−ck),

as implied by the following consequence of Lemma 4.5:

P
{
V ∗

j,j−ke2 ∈ Cδ

} ≤ C
[
δc + e−ck].

Denote

Ar = ∏
j∈Ir

‖Tjxj−1‖, so that ‖
Nx‖ =
k∏

r=1

Ar,

and observe that (for 0 ≤ p ≤ 1)

(5.2) ‖Tjxj−1‖p ≤ ‖Tjyj−1‖p + ‖Tj‖p‖xj−1 − yj−1‖p

whereas

‖Tjxj−1‖−p = ‖Tjyj−1‖−p + (‖Tjxj−1‖−p − ‖Tjyj−1‖−p)
≤ ‖Tjyj−1‖−p + ‖Tjyj−1‖p − ‖Tjxj−1‖p

‖Tjyj−1‖p‖Tjxj−1‖p

≤ ‖Tjyj−1‖−p + ‖Tj‖3p‖xj−1 − yj−1‖p.

(5.3)

Also observe that (for η from the formulation of the lemma)

(5.4) E log‖Tjyj−1‖ = γ, E‖Tjyj−1‖±η ≤ C < ∞.

From (5.1) and (5.4), we obtain that for 0 < p < min(
η
10 ,1),

E
{‖Tjxj−1‖p | v1, v2, . . . , vj−k

} ≤ 1 + pγ + C
(
p2 + e−ck)

E
{‖Tjxj−1‖−p | v1, v2, . . . , vj−k

} ≤ 1 + pγ + C
(
p2 + e−ck).(5.5)
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Taking the products of each of these inequalities over j ∈ Ir and using the expo-
nential Chebyshev inequality, we have

(5.6) P
{| logAr − γ #Ir | ≥ ε

} ≤ exp
(−cε2#Ir

)
,

whence Lemma 2.1 follows by the union bound. �

REMARK 5.1. Using a slightly longer spectral-theoretic argument, one may
dispose of the logarithmic terms in (2.4).

5.2. Hölder continuity: Proof of Lemma 2.4. Let R ≥ e, δ ∈ (0,1/e], and N =
�log 1

δ
�. By the large deviation estimate (2.4), for any |E|, |E′| ≤ R,

P

{∣∣log
∥∥
N(E)

∥∥ − γ (E)
∣∣ <

δ

3
,

∣∣log
∥∥
N

(
E′)∥∥ − γ

(
E′)∣∣ <

δ

3

}
≥ 3

4
.

Next, by the assumption E|v1|η < ∞, we have for sufficiently large C:

P
{‖
j‖ ≥ (CR)j

} ≤ e−10j ,

therefore with probability > 3/4,

∀1 ≤ j ≤ N
∥∥
j(E)

∥∥, ∥∥
j

(
E′)∥∥ ≤ (CR)j ,∥∥
N,j (E)

∥∥, ∥∥
N,j

(
E′)∥∥ ≤ (CR)N−j ,

and on this event

∥∥
N(E) − 
N

(
E′)∥∥ ≤ ∣∣E − E′∣∣N(CR)N.

Therefore, for |E − E′| ≤ (2CR)−N = δlog(2CR),

∣∣γ (E) − γ
(
E′)∣∣ ≤ δ,

as claimed. �

6. Outlook. Let us briefly comment on possible extensions and directions for
further study.

Other potentials. As mentioned in Remark 1.4, it would be interesting to ex-
plore the counterparts of Theorem 1 for other stationary (but nonindependent) po-
tentials. It may be of independent interest to explore the counterparts of Proposi-
tion 3.1 in this setting.
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Higher dimension. The arguments used in the proof of Theorem 1 can be re-
cast into the language of resolvent estimates. In this form, they are applicable to
the following higher-dimensional analogue of (1.1) acting on �2(Z

d/NZ
d):

(6.1)

(
HN,d(g)ψ

)
(x) = e−gψ(x + e1) + egψ(x − e1)

+
d∑

j=2

(
ψ(x + ej ) + ψ(x − ej )

) + vxψ(x),

where vx are i.i.d. We state a sample result that can be proved by these arguments.

PROPOSITION 6.1. Assume that the cumulative distribution function of v1 is
uniformly Hölder of order ν > 1/2. Let I ⊂ R be a bounded interval such that, for
some η ∈ (0,1),

(6.2) E
∣∣(HN,d(0) − E

)−1
(x, y)

∣∣η < C exp
(−γ η min

(|x1 − y1|,N − |x1 − y1|))
for all E in I . Then for any g < γ there exists c > 0 such that

P
{∀j s.t. λj (0) ∈ I : λj (g) ∈ R and

∣∣λj (g) − λj (0)
∣∣ ≤ e−cN} −→

N→∞ 1.

The assumption (6.2) is a signature of Anderson localisation; it was shown by
Aizenman and Molchanov [1] to hold for any interval I when the disorder is suf-
ficiently strong, and for intervals I at the spectral edges for any strength of the
disorder. A similar result can be proved if (6.2) is replaced with the conclusion
of the multiscale analysis of Fröhlich and Spencer [12]. Proposition 6.1 confirms
the prediction of Kuwae and Taniguchi [23], which was challenged in some of the
subsequent works (see [28] and references therein).

Similar to Theorem 1, the proof of Proposition 6.1 makes use of a mesh

(El)
�ecN �
l=1 in I . Instead of Lemma 2.3, one relies on the following observation:

if an interval (El,El+1) between a pair of adjacent points of the mesh contains ex-
actly one eigenvalue λj (0) of HN,d(0), and for all 0 < g′ < g, the points El,El+1
are not eigenvalues of HN,d(g′), then also λj (g) ∈ [El,El+1] ⊂R.

Beyond the smallest Lyapunov exponent. While in dimension 1, the conclusion
of Proposition 6.1 is similar to that of Theorem 1, we emphasise a distinction be-
tween resolvents and transfer matrices, which becomes essential already for a one-
dimensional strip of width ≥ 2: the decay of the resolvent kernel is only sensitive
to the smallest Lyapunov exponent, whereas the full description of the eigenvalues
of non-Hermitian operators of the form considered here is believed to depend on
all the Lyapunov exponents. Similarly, in higher dimension, the matrices (6.1) are
believed to have some real eigenvalues in the spectral regions in which Anderson
localisation does not hold.
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