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We consider the Degree-Corrected Stochastic Block Model (DC-SBM):
a random graph on n nodes, having i.i.d. weights (φu)nu=1 (possibly heavy-
tailed), partitioned into q ≥ 2 asymptotically equal-sized clusters. The model
parameters are two constants a, b > 0 and the finite second moment of the
weights �(2). Vertices u and v are connected by an edge with probability
φuφv

n a when they are in the same class and with probability φuφv
n b otherwise.

We prove that it is information-theoretically impossible to estimate the
clusters in a way positively correlated with the true community structure
when (a − b)2�(2) ≤ q(a + b).

As by-products of our proof we obtain (1) a precise coupling result for lo-
cal neighbourhoods in DC-SBMs, that we use in Gulikers, Lelarge and Mas-
soulié (2016) to establish a law of large numbers for local-functionals and (2)

that long-range interactions are weak in (power-law) DC-SBMs.

1. Introduction. It is well known that many networks exhibit a community
structure. Think about groups of friends, web pages discussing related topics or
people speaking the same language (for instance, the Belgium population could
be roughly divided into people speaking either Flemish or French). Finding those
communities helps us understand and exploit general networks.

Instead of looking directly at real networks, we experiment first with models for
networks with communities. One of the most elementary models is the Stochas-
tic Block Model1 (SBM) [12]: a random graph on n vertices partitioned into two
equal-sized clusters such that vertices within the same cluster are connected with
probability pin and between the two communities with probability pout. The ques-
tion is now: given an instance of the SBM, can we retrieve the community mem-
bership of its vertices?

Most real networks are sparse and a thorough analysis of the sparse regime in
the SBM, that is, pin = a

n
and pout = b

n
for some constants a, b > 0 will therefore

lead to a better understanding of networks.
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1SBM is standard terminology in the machine learning and statistics community, and is known as

the planted-partition model in theoretical computer science. The SBM is a special case of inhomo-
geneous random graphs; see [3].
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When the difference between a and b is small, the graph might not even contain
enough information to distinguish between the two clusters. In [8], it was first con-
jectured that a detectability phase-transition exists in the SBM: detection would be
possible if and only if (a −b)2 > 2(a +b). The negative side of this conjecture has
been confirmed in [20]. The positive side has been recently confirmed in [17] and
[19] using sophisticated (but still running in polynomial time) algorithms designed
for this particular problem.

In this paper, we study an extension of the SBM: a Degree-Corrected Stochas-
tic Block Model (DC-SBM); see [13]. Our motivation is as follows: although the
SBM is a useful model due to its analytical tractability, it fails to accurately de-
scribe networks with a wide variety in their degree-sequences (because nodes in
the same cluster are stochastically indistinguishable). Indeed, real degree distri-
butions often follow a power-law [2]. Compare this to fitting a straight line on
intrinsically curved data, which is doomed to miss important information.

The DC-SBM on q communities is defined as follows: it is a random graph
on n vertices partitioned into q asymptotically equal-sized clusters by giving
each vertex v a spin σv drawn uniformly from {1, . . . , q}. The vertices have i.i.d.
weights {φu}nu=1 governed by some law ν with support in W ⊂ [φmin,∞), where
0 < φmin < ∞ is a constant independent of n. We assume that the weights are
possibly heavy-tailed with exponent β > 8: for all large enough k,

P(φ1 ≥ k) = ν
([k,∞)

) ≤ 1

kβ
.

An edge is drawn between nodes u and v with probability φuφv

n
a when u and v

have the same spin and with probability φuφv

n
b otherwise. The model parameters a

and b are constant.
We denote the kth moment of the weights by �(k), that is, �(k) = ∫

W xk dν(x).
We further introduce the following shorthand notation: σ = (σ1, . . . , σn) and φ =
(φ1, . . . , φn). For a subset U ⊂ {1, . . . , n} of the vertices, we define σU = {σu}u∈U

and φU = {φu}u∈U .
In the present paper, we extend results in [20] to the degree-corrected setting.

More specifically, we prove that when (a − b)2�(2) ≤ q(a + b), it is information-
theoretically impossible to estimate the spins in a way positively correlated with
the true community structure based only on a single observation of the graph with-
out knowing the weights.

In a follow-up paper [10], we show that in the two-community setting above the
threshold [i.e., (a − b)2�(2) > 2(a + b)], reconstruction is possible based on the
second eigenvector of the so-called nonbacktracking matrix. This is an extension
of the results in [4] for the ordinary stochastic block model.

We note that in the two-community setting there is an interpretation of the
threshold in terms of eigenvalues of the adjacency matrix A given the weights.
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Indeed, if ψ1 and ψ2 are the vectors defined for u ∈ V by ψ1(u) = 1√
2
φu and

ψ2(u) = 1√
2
σuφu, then

E[A|φ1, . . . , φn] = a + b

n
ψ1ψ

∗
1 + a − b

n
ψ2ψ

∗
2 − a

1

n
diag

{
φ2

u

}
.

Thus, for i = 1,2, ψ̂i = ψi‖ψi‖2
are the “mean-eigenvectors” together with corre-

sponding “mean-eigenvalues” λ1 = a+b
2 �(2) and λ2 = a−b

2 �(2):∥∥E[A|φi, . . . , φn]ψ̂i − λiψ̂i

∥∥
2 → 0,

in probability, as n tends to ∞.
We thus observe that the condition (a − b)2�(2) ≤ 2(a + b) is equivalent to

λ2
2 ≤ λ1.

1.1. Our results. In the sparse regime, 	(n) vertices are isolated for which
random guess is the only possible reconstruction-algorithm. In this paper, we there-
fore consider the community detection problem where we ask for a partition posi-
tively correlated with the true community structure.

DEFINITION 1.1. Let G be an observation of the DC-SBM, with true commu-
nities {σu}nu=1. Further, let {σ̂u}nu=1 be a reconstruction of the communities, based
on the observation G. Then we say that {σ̂u}nu=1 is positively correlated with the
true partition {σu}nu=1 if there exists δ > 0 such that

P

(
1

n

n∑
u=1

1{σu=σ̂u} ≥ 1

q
+ δ

)
→ 1,

as n → ∞.

Our main result is the following.

THEOREM 1.2. Assume that (a − b)2�(2) ≤ q(a + b). Let G be an instance
of the DC-SBM. Let u and v be uniformly chosen vertices in G. Then, for any
s ∈ {1, . . . , q},

(1.1) P(σu = s|σv,G)
P→ 1

q
,

as n → ∞.

Thus, it is already impossible to estimate the spin of a random vertex given the
spin of another vertex, which is an easier problem than reconstructing the group
membership of strictly more than a fraction 1/q of the vertices (as explained in
Lemma 4.2).
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THEOREM 1.3. Let G be an observation of the DC-SBM with (a − b)2�(2) ≤
q(a + b). Then no reconstruction {σ̂u}nu=1 based on G is positively correlated with
{σu}nu=1.

As a by-product of our proof, we obtain a precise coupling result for local neigh-
bourhoods in DC-SBMs to weighted branching processes, such that the weights
coincide exactly. This is an ingredient needed to prove a law of large numbers for
local functionals that map neighbourhoods in the graph, together with their spins
and weights to the real numbers. See Propositions 7.1 and 7.2 in [10] for more de-
tails. Further, we also establish that long-range interactions are weak in DC-SBMs
where the degrees follow a power-law with sufficiently large exponent.

1.2. General proof idea. We first note that reconstruction is impossible when
a+(q−1)b

q
�(2) ≤ 1, because in this regime there is no giant component.2 Note fur-

ther that a+(q−1)b
q

�(2) ≤ 1 already implies (a − b)2�(2) ≤ q(a + b).

To establish (1.1) when a+(q−1)b
q

�(2) > 1 and (a − b)2�(2) ≤ q(a + b),
we note that Var(E[σu|σ∂GR

,σv,G]) is asymptotically an upper bound for
Var(E[σu|σv,G]), as conditioning on the boundary spins σ∂GR

of an
R-neighbourhood around u is more informative. Now, we can approximate
Var(E[σu|σv, σ∂GR

,G]) � Var(E[σu|σ∂GR
,G]), because long-range correlations

in this model are weak (Lemma 4.1). Further, local neighbourhoods are w.h.p.
tree-like, so that calculating the latter variance is equivalent to a certain tree-
reconstruction problem discussed in Section 2. More specifically, we shall prove
(Theorem 2.6) that reconstruction of the spin of the root in a q-type tree (with
offspring following a Poisson-mixture) based on the spins at depth R (where R →
∞), is impossible when (a−b)2�(2) ≤ q(a+b). Hence, Var(E[σu|σ∂GR

,G]) → 0
as R → ∞.

1.3. Background. Without the degree correction (i.e., φ1 = · · · = φn = 1), the
authors of [8] were the first to conjecture a phase-transition for the ordinary SBM
based on ideas from statistical physics.

CONJECTURE 1.4 ([8]). Consider a SBM on k balanced communities where
edges inside a cluster are present with probability a/n and between clusters with
probability b/n. Let M be the matrix with a/n on the diagonal and b/n on all
off-diagonal elements. Let λ1 and λ2 be its first, respectively, second eigenvalue

and let SNR = λ2
2

λ1
= (a−b)2

k(a+(k−1)b)
, the signal-to-noise-ratio.

2Indeed, the main result in [3] concerns the existence, size and uniqueness of the giant com-
ponent. In particular, in the setting considered here, a giant component emerges if and only if
a+(q−1)b

q �(2) > 1. We shall henceforth assume a giant component to emerge.
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For any k ≥ 2, if SNR > 1 (which is generally called the Kesten–Stigum condi-
tion), communities can be detected in polynomial time.

For k ≥ 4, it is theoretically possible to detect communities for some SNR < 1.

It is believed that for k ≥ 4, a double phase-transition occurs: Detection should
be easy (i.e., polynomial time) when SNR > 1, much harder (i.e., exponential time)
for SNR ∈ (τ,1], for some 0 < τ < 1, and information-theoretically impossible
when SNR < τ .

The conjecture has been settled in the case of two communities: First, in
[17] by using a matrix counting the number of self-avoiding paths in the
graph, and later, independently, in [19]. Further, [20] shows that for k = 2 it
is information-theoretically impossible to detect communities for SNR below 1.
We shall here extend their results for the DC-SBM by relying on similar tech-
niques.

In [14], the “spectral redemption conjecture” was made: detection using the
second eigenvalue of the so-called nonbacktracking matrix would also establish
the positive part. This has recently been proven3 in [4], for any k ≥ 2 such that λk

is a simple eigenvalue of M .
More recently, [1] gave an algorithm that detects communities when
(a−b)2

k(a+(k−1)b)
> 1.

Determining the “hardness” of the intermediate regime (i.e., detection while
below the Kesten–Stigum threshold) remains an open problem.

Positive results of spectral clustering in the DC-SBM have been obtained by
various authors. The work [7] introduces a reconstruction algorithm based on the
matrix that is obtained by dividing each element of the adjacency matrix by the
geometric mean of its row and column degrees.

A slightly different extended stochastic block model is studied in [6]: an edge is
present between u and v with probability (1{σu=σv}a + 1{σu �=σv}b) · (φuφv)/(φ̄n),
where φ̄ = 1

n

∑n
u=1 φu, the average weight. The main result is a polynomial time

algorithm that outputs a partitioning that differs from the planted clusters on no
more that n log(φ̄)/φ̄0.98 nodes. This recovery succeeds only under certain con-
ditions: the minimum weight should be a fraction of the average weight and the
degree of each vertex is o(n).

The article [15] gives an algorithm based on the adjacency matrix of a graph
together with performance guarantees. The average degree should be at least of
order log(n). However, since the spectrum of the adjacency matrix is dominated
by the top eigenvalues [5], the algorithm does a poor job when the degree-sequence
is very irregular.

3Theorems 4 and 5 in [4] are actually a bit more general.
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We propose in [11] an algorithm that recovers consistently the block-
membership of all but a vanishing fraction of nodes, even when the lowest de-
gree is of order log(n). It outperforms algorithms based on the adjacency matrix
in case of heterogeneous degree-sequences.

1.4. Outline and differences with ordinary stochastic block model. We con-
sider an associated tree reconstruction problem (see, for instance, [9, 18]) neces-
sary for our analysis: given a tree, can we deduce the spin of the root based on all
the spins at some distance R → ∞ from the root?

We shall see that the R-neighbourhood of a vertex looks like a tree labelled with
q colors denoted here by T Poi and defined as follows. We begin with a single parti-
cle, the root o, having spin σo ∈ {1, . . . , q} and weight φo ∈ W ⊂ [φmin,∞) (which
we take random). The root is replaced in generation 1 by Poi( a

q
�(1)φo) particles

of spin σo and by Poi( b
q
�(1)φo) particles of spin s for each s ∈ {1, . . . , q} \ σo.

Further, the weights of those particles are i.i.d. distributed following law ν∗, the
size-biased version of ν, defined for x ∈ [φmin,∞) by

(1.2) ν∗([0, x]) = 1

�(1)

∫ x

φmin

y dν(y).

For generation t ≥ 1, a particle with spin σ and weight φ∗ is replaced in the next
generation by Poi(a

2�(1)φ∗) particles with the same spin and Poi( b
q
�(1)φo) parti-

cles of each of the remaining q − 1 spins. Again, the weights of the particles in
generation t + 1 follow in an i.i.d. fashion the law ν∗. The offspring-size of an
individual is thus a Poisson-mixture with mean a+(q−1)b

q
�(2).

Section 2 deals with branching processes where the offspring is governed by a
Poisson-mixture. The main theorem (i.e., Theorem 2.6) deals with a reconstruction
problem on these branching processes.

In Section 3, we establish a coupling between the local neighbourhood and T Poi.
This result does not follow directly from the coupling in [3], because we need the
weights in the graph and their counterparts in the branching process to be exactly
the same.

Finally, in Section 4 we show that long-range interactions are weak. The proof
of Lemma 4.1 is based on an idea in the proof of Lemma 4.7 in [20]. Note, how-
ever, that (besides the presence of weights) the statement of our Lemma 4.1 is
slightly stronger than Lemma 4.7 in [20]; see below for details.

2. Broadcasting on the branching process. Here, we repeat without changes
the definition of a Markov broadcasting process on trees given in [9, 20]. Let T be
an infinite tree with root ρ. Given a number 0 ≤ ε < 1/(q − 1), define a random
labelling τ ∈ {1, . . . , q}T as follows: first, draw τρ uniformly in {1, . . . , q}. Then,
conditionally independently given τρ , take every child u of ρ and, then with prob-
ability 1− (q −1)ε set τu = τρ , and with probability (q −1)ε choose τu uniformly



3008 L. GULIKERS, M. LELARGE AND L. MASSOULIÉ

from {1, . . . , q} \ τρ . Continue this construction recursively to obtain a labelling τ

for which every vertex, independently, has probability 1 − (q − 1)ε of having the
same label as its parent and probability ε for each of the remaining spins.

Suppose that the labels τ∂Tm at depth m in the tree are known (here, τU = {τi :
i ∈ U} and ∂Tm are all vertices at distance m from the root). The paper [9] gives
precise conditions in the case of two spins as to when reconstruction of the root
label is feasible using the optimal reconstruction strategy (maximum likelihood),
that is, deciding according to the sign of E[τρ |τ∂Tm]. Interestingly, this is com-
pletely decided by the branching number of T and the flip-probability ε. The pa-
per [21] extends the results in [9] to the case of a general number of spins. For
completeness, we state both theorems here.

DEFINITION 2.1. The branching number of a tree T , denoted by Br(T ), is
defined as follows:

• If T is finite, then Br(T ) = 0;
• If T is infinite, then we define the branching number in terms of percolation.

Suppose that we retain each edge in the tree independently with probability p.
Then Br(T ) is the unique number such that: if p < 1

Br(T )
, then all components

of the graph are finite a.s., while if p > 1
Br(T )

, then the graph has infinite com-
ponents a.s.

Remark that [9] does not deal with the trivial case of finite trees. On such trees,
Br(T ) = 0 by convention. This makes sense because, for large m, ∂Tm = ∅, and
consequently P(τρ = +|τ∂Tm) = 1/q .

Theorem 1.1 in [9] and Proposition 1.3 in [21] read and are tailored to our needs.

THEOREM 2.2 (Theorem 1.1 in [9]). For q = 2, consider the problem of re-
constructing τρ from the spins τ∂Tm at the mth level of T . Define �m as the dif-
ference between the probability of correct and incorrect reconstruction given the
information at level m:

�m := ∣∣P(τρ = +|τ∂Tm) − P(τρ = −|τ∂Tm)
∣∣.

If Br(T )(1 − 2ε)2 > 1, then limm→∞E[�m] > 0.
If, however, Br(T )(1 − 2ε)2 < 1 then limm→∞E[�m] = 0.

THEOREM 2.3 (Proposition 4.2 in [21]). For general q ≥ 2, consider the
problem of reconstructing τρ from the spins τ∂Tm at the mth level of T . Define
Ps

m as the conditional distribution of τ∂Tm given that σρ = s. Then limm→∞ ‖Pi
m −

Pj
m‖TV = 0 if Br(T )

(1−qε)2

1−(q−2)ε
< 1.
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REMARK 2.4. Note that if Br(T )
(1−qε)2

1−(q−2)ε
< 1, then

(2.1)

E
[∣∣P(τρ = i|τ∂Tm) − P(τρ = j |τ∂Tm)

∣∣]
= ∑

A

P(τ∂Tm = A)
∣∣P(τρ = i|τ∂Tm = A) − P(τρ = j |τ∂Tm = A)

∣∣
= 1

q

∑
A

∣∣Pi
m(A) − Pj

m(A)
∣∣ → 0,

as m → ∞. Thus Theorem 2.3 implies Theorem 2.2.

Note that in these theorems the tree is fixed, compared to the setting in this paper
where the multi-type branching process of Section 1.4 is considered. But, it can be
easily seen that the spins on a fixed instance T of T Poi are distributed according to
the above broadcasting process.

We thus need to calculate the branching number of a typical instance T .

PROPOSITION 2.5. Consider the multi-type branching process T Poi, where
the root has spin drawn uniformly from {1, . . . , q} and weight governed by ν.
Then, given the event that the branching process does not go extinct, Br(T Poi) ≤
a+(q−1)b

q
�(2) almost surely.

PROOF. Denote the multi-type branching process by T . Assume w.l.o.g. that
the root has D ≥ 1 children denoted as 1, . . . ,D. Denote by T ∗

u the subtree of all
particles with common ancestor u. We observe that if Br(T ∗

u ) < c for all u, then
Br(T ) < c.

Now, conditioned on the spin of the root, (T ∗
u )Du=1 are i.i.d. copies of T Poi with

weight governed by the biased law ν∗. The latter is a Galton–Watson process with
offspring mean a+(q−1)b

q
�(2). If it dies out, then Br(T ∗

u ) = 0 by definition. Hence,

given that the process survives [and thus necessarily a+(q−1)b
q

�(2) > 1], Proposi-

tion 6.4 in [16] entails that Br(T ∗
u ) = a+(q−1)b

q
�(2) a.s. �

Note that it can in fact be easily proved that Br(T Poi) = a+(q−1)b
q

�(2) almost
surely, given that the process survives.

We conclude with the main theorem of this section.

THEOREM 2.6. Consider the multi-type branching process T Poi, where the
root has spin drawn uniformly from {1, . . . , q} and weight governed by ν. Denote
the branching process by T and its spins by τn. Further, let R be an unbounded
nondecreasing function. Assume that (a − b)2�(2) < q(a + b), then, for any s ∈
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{1, . . . , q},
P

(
τρ = s|TR(n), τ∂TR(n)

) P→ 1

q
,

as n → ∞.

PROOF. Since ε = b
a+(q−1)b

, Proposition 2.5 gives that Br(T )
(1−qε)2

1−(q−2)ε
< 1

almost surely. Theorem 2.3 (and Remark 2.4) then completes the proof. �

REMARK 2.7. In (4.19), we use a coupling between the Poisson tree and the
local neighbourhood around a fixed vertex u, while we condition on the spins of
all vertices exactly distance R(n) away from u. If there are no such vertices, that
is, when the neighbourhood “dies out”, then this does not entail extra information.
Hence the convention that Br(T ) = 0 for a finite tree T .

3. Coupling of local neighbourhood. This section has as its objective to es-
tablish a coupling between the local neighbourhood of an arbitrary fixed vertex in
the DC-SBM and T Poi. The main result is the following theorem, where we let T ,
τ and ψ be random instances of T Poi, its spins and its weights, respectively.

THEOREM 3.1. Let ρ be a uniformly picked vertex in V (G), where for each
n, G = G(n) is an instance of the DC-SBM. There exists an unbounded nonde-
creasing function R :N→N such that∥∥(

GR(n)(ρ), σGR(n)
, φGR(n)

) − (TR(n), τTR(n)
,ψTR(n)

)
∥∥

TV = 1 − on(1),

and,

P
(|GR(n)| ≤ n1/9) = 1 − on(1).

REMARK 3.2. In case the weights are bounded by some constant φmax, we
can take R(n) = C log(n), with C <

1−log(4/e)

3 log(2·φ2
max·(a∨b))

and show that the coupling

error is bounded by n− 1
2 log(4/e). See the version of September 2016 of this work

on Arxiv.

We defer its proof to the end of this section. It uses an alternative description of
the branching process in Section 2.

3.1. Alternative description of branching process. For notational conve-
nience, we restrict ourselves here to the case of two communities only. The proof
for a general number of communities follows then analogously. We obtain an al-
ternative description of the graph by considering a particle u with spin σu and
weight φu to be of type xu = φuσu ∈ S = −W ∪ W . We denote the law of xu by
μ, that is, for A ⊂ S, μ(A) = ∫

A
1
2 dν(|x|). Two distinct vertices u and v are then
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joined by an edge with probability κ(xu,xv)
n

, where κ : S × S → R is defined for
(x, y) ∈ S × S by

(3.1) κ(x, y) = |xy|(1{xy>0}a + 1{xy<0}b).

Analogously, we obtain the following equivalent description of the branching
process: We begin with a single particle o of type xo governed by μ, giving birth
to Poi(λxo(S)) children, where for x ∈ S, and A ⊂ S,

(3.2) λx(A) =
∫
A

κ(x, y)dμ(y).

Conditioned on xo the children have i.i.d. types governed by μ∗
xo

,4 where for x ∈ S,
and A ⊂ S,

(3.3) μ∗
x(A) = λx(A)

λx(S)
=

∫
A

(
a

a + b
1xy>0 + b

a + b
1xy<0

)
|y| dν(|y|)

�(1)
.

For generation t ≥ 1, all particles give birth independently in the following way:
A particle with type x∗ is replaced in the next generation by Poi(λx∗(S)) children,
again with i.i.d. types governed by μ∗

x∗ .
In case of a general number of communities, we let μ be the product measure

of the uniform measure on {1, . . . , q} with the measure ν, that is, for s ∈ {1, . . . , q}
and A ⊂ [φmin,∞), we have μ({s} × A) = 1

q
· ν(A).

In [3], it is shown that local neighbourhoods of the graph are described by the
above branching process, if we ignore the types. (To be precise, the equivalent
description used in [3] is that a particle of type x gives birth to Poi(λx(A)) children
with type in A, for any A ⊂ S. Those numbers are independent for different sets A

and different particles.)
The coupling-technique in [3] uses a discretization of κ as an intermediate step,

thereby losing some information: types in the tree deviate slightly from their coun-
terparts in the graph. We shall therefore use another coupling method, presented
below, so that the types in graph and branching process are exactly the same.

3.2. Coupling. We use the following exploration process: At time m = 0,
choose a vertex ρ uniformly in V (G), where G is an instance of the DC-SBM.
Initially, it is the only active vertex: A(0) = {ρ}. All other vertices are neutral at
start: U(0) = V (G) \ {ρ}. No vertex has been explored yet: E(0) = ∅. At each
time m ≥ 0, we arbitrarily pick an active vertex u in A(m) that has shortest dis-
tance to ρ, and explore all its neighbours in U(m), the set of unexplored vertices. If

4Note that if y has law μ∗
x , then for any A ⊂ W , P(sign(y) = sign(x), |y| ∈ A) = a

a+b

∫
A z

dν(z)

�(1) =
P(sign(y) = sign(x))P(|y| ∈ A). Hence, we can identify sign(y) with the particle’s spin and |y| with
its independent weight.
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uv ∈ E(G) for v ∈ U(m), then we set v active in step m + 1, otherwise it remains
neutral. At the end of step m, we designate u to be explored. Thus,

E(m + 1) = E(m) ∪ {u},
A(m + 1) = (

A(m) \ {u}) ∪ (
N (u) ∩ U(m)

)
,

and

U(m + 1) = U(m) \N (u).

Our aim in this section is to show that the exploration process and the branch-
ing process are equal up to depth R(n) (defined in Theorem 3.1) with probability
tending to one for large n. We do this in two steps.

First, we establish that the types of the vertices in U(m) are i.i.d. with law μ(m)

[defined in (3.4) below] such that∥∥μ(m) − μ
∥∥

TV = O
(
n−β/8 + mn−3/4)

.

This is the content of the following.

LEMMA 3.3. The following holds conditioned that all the weights are smaller
than nα , with α = 1/8: Let 1, . . . ,m be the vertices in E(m), with types X1 =
x1, . . . ,Xm = xm. Then the vertices in U(m) have i.i.d. types with law μ(m) =
μ

(m)
x1,...,xm , where

(3.4) dμ(m)(·) = g(·)dμα(·)∫
S g(z)dμα(z)

,

with μα denoting the measure of the types conditioned that all weights are bounded
by nα , and where

(3.5) g(·) =
m∏

i=1

(
1 − κ(xi, ·)

n

)
.

Further, for all (x1, . . . , xm),∥∥μ(m)
x1,...,xm

− μ
∥∥

TV = O
(
n−αβ + mn2α−1)

.

Second, if u has type X = x ∈ S, then its D neighbours in U(m) [i.e., those ver-
tices that will be added to A(m+1)] have i.i.d. types with a law μ

∗(m+1)
x [defined in

(3.6) below], which is O(n−3/8) away from μ∗
x in total variation distance. Further,

the total variation distance between the number of neighbours D and Poi(λx(S))

is O(n−1/4).
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LEMMA 3.4. The following holds conditioned that all the weights are smaller
than nα , with α = 1/8: Assume u has type X = x. Let D be the number of neigh-
bours u has in U(m). Then the types of those neighbours are i.i.d. with law μ

∗(m)
x ,

where

(3.6) dμ∗(m)
x (·) = κ(x, ·)dμ(m)(·)∫

S κ(x, y)dμ(m)(y)
.

For large n and m = o(n1/4),

(3.7)
∥∥μ∗(m)

x − μ∗
x

∥∥
TV = O

(
nα(1−β) + mn3α−1 + n−αβ/2) = O

(
n−3/8)

.

Further,

(3.8)
∥∥D − Poi

(
λx(S)

)∥∥
TV =O

(
n(1−β/2)·1/8 + n−1/4) = O

(
n−1/4)

.

To establish the desired coupling, we need to show that certain events happen
with high probability. To define those events, we need some notation. For u ∈ ∂Gr

(we identify ∂Gr = {1, . . . , |∂Gr |}), put

Du = ∣∣N (u) ∩ U
(|Gr−1| + u − 1

)∣∣.
Conditioned that u has type Xu = xu, let

D̂u = Poi
(
λxu(S)

)
.

Further, for v ∈ {1, . . . ,Du}, let Uuv denote the type of child v of vertex u and let
Ûuv be a random variable with law μ∗

xu
. We assume that {Ûuv}v are independent

conditioned on Xu = xu.
We put the function g : s �→ 2s − 1 and define the events

Ar+1 = {∀u ∈ ∂Gr : Du = D̂u},
Br+1 = {∀u ∈ ∂Gr, v ∈ {1, . . . ,Du} : Uuv = Ûuv

}
,

Cr = {|∂Gs | ≤ logg(s)(n) ∀s ≤ r
}
,

and their intersection

Er =
r⋂

s=1

{As ∩ Bs ∩ Cs}.

Further, we let Kr be the event that no vertex outside Gr has more than one neigh-
bour in Gr and that there are no edges in ∂Gr (this implies that the neighbourhood
is indeed a tree).

The events Er and Kr happen with high probability.

LEMMA 3.5. The following holds conditioned that all the weights are smaller
than nα , with α = 1/8: Fix R ≥ 0. Then, for r ≤ R,

P(Er+1|Er) = 1 − on(1).
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LEMMA 3.6. The following holds conditioned that all the weights are smaller
than nα , with α = 1/8: fix R ≥ 0. Then, for r ≤ R,

P(Kr |CR) = 1 − on(1).

PROOF OF LEMMA 3.3. Recall that we assume that all weights are bounded
by nα . Consider vertex v ∈ U(m) with type Y . We show first that, conditioned on
v /∈ N (1, . . . ,m) and X1 = x1, . . . ,Xm = xm, Y has law μ

(m)
x1,...,xm . From Bayes’

theorem, we have, for y ∈ S,

(3.9)

P
(
Y ≤ y|v /∈ N (1, . . . ,m),X1 = x1, . . . ,Xm = xm

)
= P(Y ≤ y)P(v /∈ N (1, . . . ,m)|Y ≤ y,X1 = x1, . . . ,Xm = xm)

P(v /∈ N (1, . . . ,m)|X1 = x1, . . . ,Xm = xm)
,

since P(Y ≤ y|X1 = x1, . . . ,Xm = xm) = P(Y ≤ y). Recall (3.5) and observe that

g(·) = P
(
v /∈ N (1, . . . ,m)|Y = ·,X1 = x1, . . . ,Xm = xm

)
.

Hence, the denominator in (3.9) is just
∫
S g(z)dμ(z) and evaluating the numerator

yields
∫ y
−∞ g(z)dμ(z). We thus obtain (3.4).

Since for |y| ≤ O(nα), dμα(y) = dμ(y)
P(φ≤nα)

, it follows that ‖μα − μ‖TV =
O(n−αβ).

To bound ‖μα − μ(m)‖TV, note that [in view of (3.1)] g(y) = 1 −O(mn2α−1),
for |y| ≤ O(nα). Thus, I := ∫

S g(z)dμα(z) = 1 −O(mn2α−1). Therefore,∥∥μ(m) − μα

∥∥
TV ≤

∫
S

∣∣∣∣g(y)

I
− 1

∣∣∣∣ dμα(y) = O
(
mn2α−1)

.

We finish by invoking the triangle inequality. �

PROOF OF LEMMA 3.4. Put nm = |U(m)| and let Y1, . . . , YD denote the types
of the neighbours of u.

Let f1, . . . , fn be arbitrary measurable functions. The first claim follows if we
prove that

(3.10) E
[
e−∑D

j=1 fj (Yj )|D = d
] =

d∏
j=1

(∫
S

e−fj (y) dμ∗(m)
x (y)

)
.

Now, abbreviating conditioning on N (u) ∩ U(m) = F by F , we have

E
[
e−∑D

j=1 fj (Yj )1D=d

]
= ∑

F⊂[nm],|F |=d

E
[
e−∑

j∈F fj (Yj )|F ] ·
(

1 − 1

n

∫
S
κ(x, y)dμ(m)(y)

)nm−d

·
(

1

n

∫
S
κ(x, y)dμ(m)(y)

)d

.
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We have

P(D = d) =
(
nm

d

)(
1 − 1

n

∫
S
κ(x, y)dμ(m)(y)

)nm−d

·
(

1

n

∫
S
κ(x, y)dμ(m)(y)

)d

.

Hence,

E
[
e−∑D

j=1 fj (Yj )|D = d
] = 1(nm

d

) ∑
F⊂[nm],|F |=d

E
[
e−∑

j∈F fj (Yj )|F ]
.

Conditioned on F ⊂ [nm], the types (Yj )j∈F are i.i.d., thus

E
[
e−∑

j∈F fj (Yj )|F ] =
d∏

j=1

(∫
S e−fj (y) κ(x,y)

n
dμ(m)(y)∫

S
κ(x,y)

n
dμ(m)(y)

)
,

which combined with (3.6) gives (3.10), our first claim.
Further,

(3.11)

∥∥μ∗(m)
x − μ∗

x

∥∥
TV ≤

∫
S
fx(y)

∣∣∣∣dμ(m)(y)

I
(m)
x

− dμ(y)

Ix

∣∣∣∣
= 1

Ix

∫
S
fx(y)

∣∣ dμ(m)(y)
(
1 +O

(
I (m)
x − Ix

)) − dμ(y)
∣∣,

where fx(y) = (1{xy>0}a + 1{xy<0}b)|y|, I
(m)
x = ∫

S fx(z)dμ(m)(z) and Ix =∫
S fx(z)dμ(z). Now,

(3.12)

∣∣I (m)
x − Ix

∣∣ ≤ O
(
nα) ∫

|z|≤nα

∣∣ dμ(m)(z) − dμ(z)
∣∣ + ∫

|z|>nα
|z|dμ(z)

= O
(
nα−αβ + mn3α−1 + n−αβ/2)

,

where we used the proof of the previous lemma to bound the first term and
Cauchy–Schwarz inequality for the second term. Now, the right-hand side in (3.11)
is thus of the same order (since the weights have expectation).

For the last claim, observe that D = Bin(nm,p), where p = 1
n

∫
S κ(x,

y)dμ(m)(y). Hence, since the weights have bounded first moment,

∥∥Bin(nm,p) − Poi(nmp)
∥∥

TV ≤
nm∑
i=1

p2 =O
(
n−3/4)

.
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Standard bounds for Poisson random variables entail the existence of a constant
CPoi ≥ 1 such that ‖Poi(μ) − Poi(λ)‖TV ≤ CPoi|μ − λ|. Consequently,

1

CPoi

∥∥Poi(nmp) − Poi
(
λx(S)

)∥∥
TV ≤ |nm − n|p + |x|∣∣I (m)

x − Ix

∣∣
≤ |nm − n|

n
nα

+O
(
n2α−αβ + mn4α−1 + nα−αβ/2)

.

Thus, by the triangle inequality,∥∥Bin(nm,p) − Poi
(
λx(S)

)∥∥
TV = O

(
n(1−β/2)·1/8 + n−1/4)

. �

PROOF OF LEMMA 3.5. Write nr = |∂Gr |. We have

P(Er+1|Er) ≥ P(Br+1|Er) − P(¬Ar+1|Er) − P(¬Cr+1|Er).

Now,

(3.13) P(Br+1|Er,nr) ≥ 1 −
nr∑

u=1

P

(
¬B

(u)
r+1

∣∣∣ u−1⋂
v=1

B
(v)
r+1,Er

)
,

where B
(u)
r+1 = {∀w ∈ {1, . . . ,Du} : Uuw = Ûuw}. Denote the already explored ver-

tices by 1, . . . ,m (where m = |Gr−1| + u − 1) and their types as X1, . . . ,Xm.
Conditioned on those types, the vertices in U(m) are i.i.d. with distribution μ(m).
Hence,

(3.14)

P

(
B

(u)
r+1

∣∣∣ u−1⋂
v=1

B
(v)
r+1,Er, nr,X1, . . . ,Xm

)

= P
(
B

(u)
r+1|X1, . . . ,Xm

)
≥ P

(
B

(u)
r+1|Du ≤ log(n) logg(r)(n),X1, . . . ,Xm

)
· P(

Du ≤ log(n) logg(r)(n)|X1, . . . ,Xm

)
.

Now, Du

d≤ ∑n
i=1 Ber((a + b)

φ∗φi

n
), where φ∗ is governed by the size-biased

law ν∗ and {φi}i are i.i.d. and bounded by nα . Hoeffding’s inequality gives that
1
n

∑n
i=1 φi ≤ 2�(1) w.p. at least 1−exp(−n1−2α), and φ∗ ≤ logg(r)(n) w.p. at least

1 − O((logg(r)(n))1−β) (note the exponent β − 1 of the size-biased power-law).
Conditioned on those events, we use a multiplicative Chernoff bound to obtain

(3.15) P
(
Du ≤ log(n) logg(r)(n)|X1, . . . ,Xm

) ≥ 1 −O
((

logg(r)(n)
)1−β)

.

Lemma 3.4 entails, since m = o(n1/4),

(3.16) P
(
B

(u)
r+1|Du ≤ logg(r)+1(n),X1, . . . ,Xm

) ≥ 1 −O
(

logg(r)+1(n)

n3/8

)
.
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Then (3.14)–(3.16) together give

P

(
B

(u)
r+1

∣∣∣ u−1⋂
v=1

B
(v)
r+1,Er,X1, . . . ,Xm

)
≥ 1 −O

((
logg(r)(n)

)1−β)
.

Now, since conditioned on Er , nr ≤ logg(r)(n), (3.13) gives

P(Br+1|Er) ≥ 1 −O
((

logg(r)(n)
)2−β)

.

The growth condition (Cr ) follows also from (3.15).
We take a similar approach to quantify

(3.17) P(Ar+1|Er,nr) ≥ 1 −
nr∑

u=1

P

(
¬A

(u)
r+1

∣∣∣ u−1⋂
v=1

A
(v)
r+1,Er, nr

)
,

where A
(u)
r+1 = {Du = D̂u,Du ≤ logg(r)+1(n)}. Now,

(3.18)
P

(
A

(u)
r+1

∣∣∣ u−1⋂
v=1

A
(v)
r+1,Er

)

≥ 1 −O
(
n(1−β/2)1/8 + n−1/4 + logg(r)(1−β)(n)

)
,

due to Lemma 3.4, since n − |U(m)| = o(n1/4) when r is fixed. Thus, (3.17) gives

P(Ar+1|Er) ≥ 1 −O
(
logg(r)(n)n(1−β/2)1/8 + n−1/4 + logg(r)(2−β)(n)

)
. �

PROOF OF LEMMA 3.6. Fix u, v ∈ ∂Gr . The probability of having an edge
between u and v is smaller than O(n2α−1). For any w ∈ V (G\Gr), the probability
that (u,w) and (v,w) both appear is smaller than O(n4α−2). Now, Lemma 3.5
implies that

|Gr | ≤ log(n)g(R)R = log2R−1(n)R.

Hence, the result follows from a union bound over all triples u, v,w. �

PROOF OF THEOREM 3.1. We can assume that all weights are bounded by
nα . Indeed, by a union bound over all vertices, this happens with probability 1 −
O(n1−αβ) = 1 − on(1). For a fixed integer R > 0, we have

P

(
R⋂

s=1

Ks,ER

)
= 1 − on(1).

We construct a sequence {Nk}∞k=0 inductively as follows: put N0 = 0 and for each
k, Nk > Nk−1 as the smallest number such that

P

(
k⋂

s=1

Ks,Ek

)
≥ 1 − 1

k
and log2k−1(n)k ≤ n1/9,
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for all n ≥ Nk ; put for Nk ≤ n < Nk+1, R(n) = k. Then, for n ≥ Nk ,

P

(
R(n)⋂
s=1

Ks,ER(n), |GR(n)| ≤ n1/9

)
≥ 1 − 1

k
.

�

4. No long-range correlation in DC-SBM. In this section, we establish the
main Theorem 1.2, from which Theorem 1.3 then follows. To this end, we first
condition on both the spins of ∂GR(n) and all weights in G. Lemma 4.1 below
shows that we then can remove the conditioning on σv and the graph structure
outside the R-neighbourhood (including the weights):

(4.1) P(σu = +|σ∂GR
,σv,G,φ) = P(σu = +|σ∂GR

,GR,φGR
) + on(1).

We established in the previous section that a neighbourhood in G looks like a T Poi

tree with a Markov broadcasting process on it. Hence, the right-hand side of (4.1)
converges to 1/q in probability, establishing (1.1). We show in Lemma 4.2 below
that this contradicts the existence of a reconstruction that is positively correlated
with the true type-assignment.

We begin by preparing an auxiliary lemma to prove (1.1), it establishes that
long-range interactions are sufficiently weak. Its proof is inspired by Lemma 4.7
in [20]. However (besides the additional complication of weights), the result stated
here is stronger in the sense that the on(1) terms converge uniformly to 0 and that
“conditioning on G” may now be replaced with “conditioning on GA∪B”.

LEMMA 4.1. The following holds conditioned that all the weights are smaller
than nα , with α = 1/8: Let G be an instance of the DC-SBM. Let s ∈ {1, . . . , q}. Let
u be an uniformly picked vertex in V (G). Let A = A(G), B = B(G), C = C(G) ⊂
V be a (random) partition of V (G), with u ∈ A, such that B separates A and C

in G. Assume that |A∪B| ≤ n1/9 for asymptotically almost every realization of G.
Then there exists a sequence of events (�n)n and a sequence of nonnegative real
numbers (εn)n, such that P(�n) = 1 − on(1), and ε(n) = on(1) and further, for
each n,

(4.2)
∣∣P(σu = s|σB∪C,G,φ) − P(σu = s|σB,GA∪B,φA∪B)

∣∣ ≤ ε(n),

on �n.

PROOF. For a fixed graph g, spin-configuration τ and degree-configuration ψ ,
we make a factorization of P(G = g,σ = τ |φ = ψ) into parts depending on A,B

and C. We claim that the part that measures the interaction between A and C is
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asymptotically independent of τ . Put

�uv(g, τ,ψ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a
ψuψv

n
if (u, v) ∈ E(g) and τu = τv,

b
ψuψv

n
if (u, v) ∈ E(g) and τu �= τv,

1 − a
ψuψv

n
if (u, v) /∈ E(g) and τu = τv,

1 − b
ψuψv

n
if (u, v) /∈ E(g) and τu �= τv.

We define for arbitrary sets U1,U2 ⊂ V ,

QU1,U2 = QU1,U2(g, τ,ψ) = QU1,U2(gU1∪U2, τU1∪U2,ψU1∪U2)

= ∏
u∈U1,v∈U2

�uv(g, τ,ψ),

where the subscript indicates restriction of the corresponding quantities to U1 ∪U2.
Then we have

(4.3) P(G = g|σ = τ,φ = ψ) = QA∪B,A∪BQB∪C,CQA,C.

We begin by demonstrating that QA,C is asymptotically independent of τ : Write

QA,C(g, τ,ψ) = ∏
u∈A,v∈C:τu=τv

(
1 − a

ψuψv

n

) ∏
u∈A,v∈C:τu �=τv

(
1 − b

ψuψv

n

)
,

since A and C are separated by B (there are thus no edges between A and C). The
first product may be rewritten as∏

u∈A,v∈C:τu=τv

(
1 − a

ψuψv

n

)
= exp

( ∑
u∈A,v∈C:τu=τv

log
(

1 − a
ψuψv

n

))

= exp

( ∑
u∈A,v∈C:τu=τv

(
−a

ψuψv

n
+O

(
n4α−2)))

= exp

(
−a

n

∑
u∈A,v∈C:τu=τv

ψuψv +O
(
nAn4α−1))

.

Now, the sum 1
n

∑
u∈A,v∈C:τu=τv

ψuψv tends to ‖A‖�(1)

q
, if (τ,ψ) ∈ �(n), where

‖A‖ = ∑
u∈A

ψu,

and where

(4.4) �(n) =
{(

τ ′,ψ ′) :
∣∣∣∣1

n

∑
τu=k,u∈V

ψu − �(1)

q

∣∣∣∣ ≤ n− 1
4 ,∀k ∈ {1, . . . , q}

}
.
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Indeed,

(4.5)

1

n

∑
u∈A,v∈C:τu=τv

ψuψv =
q∑

k=1

∑
u∈A

1{τu=k}ψu

1

n

∑
v∈C

1{τv=k}ψv

= ‖A‖�(1)

q
+O

(
n− 1

72
)
,

since |V | − |C| ≤ n1/9 and ψu ≤ n1/8.
As a consequence,∏

u∈A,v∈C:τu=τv

(
1 − a

ψuψv

n

)
= exp

(
O

(
n− 1

72
)) · exp

(
−a

‖A‖�(1)

q

)

= (
1 + on(1)

)
exp

(
−a

‖A‖�(1)

q

)
,

where the on term is uniform for all (τ,ψ) ∈ �(n). We carry out a similar calcu-
lation for the other product. Together we obtain

(4.6) QA,C(g, τ,ψ) = (
1 + on(1)

)
exp

(
−a + (q − 1)b

q
‖A‖�(1)

)
,

uniformly for all (τ,ψ) ∈ �(n). This proves that QA,C(g, τ,ψ) is indeed essen-
tially independent of τ for most pairs (τ,ψ).

We use the above to prove that, for u ∈ V ,

(4.7)

P
(
σu = τu|σB∪C = τB∪C,G = g,φ = ψ, (φ,σ ) ∈ �(n)

)
= (

1 + on(1)
)
P

(
σu = τu|σB = τB,GA∪B = gA∪B,

φA∪B = ψA∪B, (φ,σ ) ∈ �(n)
) + on(1).

Fix (τ,ψ) ∈ �(n). Then

(4.8)

P
(
G = g,σ = τ |φ = ψ, (φ,σ ) ∈ �(n)

)
= P(G = g|σ = τ,φ = ψ)f (ψ,n),

where f (ψ,n) = P(σ = τ |φ = ψ, (φ,σ ) ∈ �(n)) = q−n

P((φ,σ )∈�(n)|φ=ψ)
. Hence,

plugging (4.3) and (4.6) in (4.8),

(4.9)

P
(
G = g,σ = τ |φ = ψ, (φ,σ ) ∈ �(n)

)
= QA∪B,A∪B(g, τ,ψ)QB∪C,C(g, τ,ψ)

· (
1 + on(1)

)
exp

(
−a + (q − 1)b

q
‖A‖�(1)

)
f (ψ,n).

Put, for U ⊂ V ,

�U(n) = �U(ψ, τU ,n) = {
τ ′ : τ ′

U = τU ,
(
τ ′,ψ

) ∈ �(n)
}
,
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then, invoking (4.9),

(4.10)

P
(
G = g,σU = τU |φ = ψ, (φ,σ ) ∈ �(n)

)
= ∑

τ ′∈�U(n)

P
(
G = g,σ = τ ′|φ = ψ, (φ,σ ) ∈ �(n)

)
= ∑

τ ′∈�U(n)

QA∪B,A∪B

(
g, τ ′,ψ

)
QB∪C,C

(
g, τ ′,ψ

)
· (

1 + on(1)
)

exp
(
−a + (q − 1)b

q
‖A‖�(1)

)
f (ψ,n)

= (
1 + on(1)

)
exp

(
−a + (q − 1)b

q
‖A‖�(1)

)
f (ψ,n)

· ∑
τ ′∈�U(n)

QA∪B,A∪B

(
g, τ ′,ψ

)
QB∪C,C

(
g, τ ′,ψ

)
,

where we could interchange the order on(1) term and the sum because the former
holds uniformly for all (φ, σ ) ∈ �(n).

We apply (4.10) with U = A and U = A ∪ B , to rewrite the right-hand side of

(4.11)

P
(
σA = τA|σB = τB,G = g,φ = ψ, (φ,σ ) ∈ �(n)

)
= P(G = g,σA∪B = τA∪B |φ = ψ, (φ,σ ) ∈ �(n))

P(G = g,σB = τB |φ = ψ, (φ,σ ) ∈ �(n))

as

(
1 + on(1)

)∑
τ ′∈�A∪B(n) QA∪B,A∪B(g, τ ′,ψ)QB∪C,C(g, τ ′,ψ)∑
τ ′∈�B(n) QA∪B,A∪B(g, τ ′,ψ)QB∪C,C(g, τ ′,ψ)

= (
1 + on(1)

)
× QA∪B,A∪B(g, τ,ψ)

∑
τ ′∈�A∪B(n) QB∪C,C(g, τ ′,ψ)∑

τ ′′′∈�B∪C(n) QA∪B,A∪B(g, τ ′′′,ψ)
∑

τ ′′∈�A∪B(n) QB∪C,C(g, τ ′′,ψ)
,

where we used that QU1,U2(τ
′) depends on τ ′ only through τ ′

U1∪U2
to rewrite the

numerator. Factorization of the denominator is justified as follows: for an arbitrary
τ ′ ∈ �B(n), put τ ′′ = (τA∪B, τ ′

C) ∈ �A∪B(n) and τ ′′′ = (τ ′
A, τB∪C) ∈ �B∪C(n).

Then

(4.12)
QA∪B,A∪B

(
g, τ ′,ψ

)
QB∪C,C

(
g, τ ′,ψ

)
= QA∪B,A∪B

(
g, τ ′′′,ψ

)
QB∪C,C

(
g, τ ′′,ψ

)
.

This proves that the double summation is at least as large as the single sum.
Equality follows upon putting τ ′ = (τ ′′′

A , τB, τ ′′
C) for arbitrary τ ′′ ∈ �A∪B(n) and
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τ ′′′ ∈ �B∪C(n): (4.12) is then again satisfied. Hence, (4.11) is equivalent to

(4.13)

P
(
σA = τA|σB = τB,G = g,φ = ψ, (φ,σ ) ∈ �(n)

)
= (

1 + on(1)
) QA∪B,A∪B(g, τ,ψ)∑

τ ′′′∈�B∪C(n) QA∪B,A∪B(g, τ ′′′,ψ)
.

We shall rewrite the right-hand side of (4.13) to obtain on the one hand

(4.14)
P

(
σu = τu|σB = τB,G = g,φ = ψ, (φ,σ ) ∈ �(n)

)
= (

1 + on(1)
)
F̂ (gA∪B, τu∪B,ψA∪B),

for some function F̂ (·) ≤ 1. And, on the other hand,

(4.15)

P
(
σu = τu|σB = τB,G = g,φ = ψ, (φ,σ ) ∈ �(n)

)
= (

1 + on(1)
)

× P
(
σu = τu|σB∪C = τB∪C,G = g,φ = ψ, (φ,σ ) ∈ �(n)

)
.

To do so, note that∑
τ ′′′∈�B∪C(n)

QA∪B,A∪B

(
g, τ ′′′,ψ

)
= ∑

τ ′′′
A ∈{1,...,q}A

QA∪B,A∪B

(
gA∪B,

(
τ ′′′
A , τB

)
,ψA∪B

)
.

Therefore, (4.13) is equivalent to

P
(
σA = τA|σB = τB,G = g,φ = ψ, (φ,σ ) ∈ �(n)

)
= (

1 + on(1)
)
F(gA∪B, τA∪B,ψA∪B),

for some function F(·) ≤ 1. If we fix u ∈ A and integrate over all possible values
of τA\u while keeping τB∪C and ψ constant, we obtain (4.14).

To establish (4.15), we multiply both denominator and enumerator of (4.13) by
QB∪C,C(g, τ,ψ):

P
(
σA = τA|σB = τB,G = g,φ = ψ, (φ,σ ) ∈ �(n)

)
= (

1 + on(1)
) QA∪B,A∪B(g, τ,ψ)QB∪C,C(g, τ,ψ)∑

τ ′∈�B∪C(n) QA∪B,A∪B(g, τ ′,ψ)QB∪C,C(g, τ ′,ψ)

= (
1 + on(1)

) P(G = g,σ = τ |φ = ψ, (φ,σ ) ∈ �(n))

P(G = g,σB∪C = τB∪C |φ = ψ, (φ,σ ) ∈ �(n))

= (
1 + on(1)

)
P

(
σA = τA|σB∪C = τB∪C,G = g,φ = ψ, (φ,σ ) ∈ �(n)

)
.

Integrating again over τA\u gives (4.15).
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We use (4.14) to obtain

(4.16)

P
(
σu = τu|σB = τB,GA∪B = gA∪B,φA∪B = ψA∪B, (φ,σ ) ∈ �(n)

)
= ∑

ĝ,ψC

P
(
σu = τu|σB = τB,G = ĝ, φ = (ψA∪B,ψC), (φ,σ ) ∈ �(n)

)
· P(

G = ĝ, φC = ψC |σB = τB,GA∪B = gA∪B,

φA∪B = ψA∪B, (φ,σ ) ∈ �(n)
)

= (
1 + on(1)

)
F̂ (gA∪B, τu∪B,ψA∪B) + on(1)

= (
1 + on(1)

)
P

(
σu = τu|σB = τB,G = g,φ = ψ, (φ,σ ) ∈ �(n)

)
+ on(1).

Combining (4.15) and (4.16) gives

P
(
σu = τu|σB∪C = τB∪C,G = g,φ = ψ, (φ,σ ) ∈ �(n)

)
= (

1 + on(1)
)
P

(
σu = τu|σB = τB,G = g,φ = ψ, (φ,σ ) ∈ �(n)

)
= (

1 + on(1)
)
P

(
σu = τu|σB = τB,GA∪B = gA∪B,

φA∪B = ψA∪B, (φ,σ ) ∈ �(n)
)
,

that is, the claim (4.7).
Our last step consists in removing the condition (σ,φ) ∈ �(n): Put ε(n) =

1 − P((σ,φ) ∈ �(n)), then limn→∞ ε(n) = 0. Indeed,
∑

u∈C 1{σu=k}φu =∑
u∈V 1{σu=k}φu + O(n17/72), where the sum over V has n�(1)

q
as a mean. The

claim thus follows upon applying Hoeffding’s inequality (the weights are assumed
to be bounded by nα).

Consider the random variable P((φ, σ ) ∈ �(n)|σB,GA∪B,φA∪B) =
E[1(φ,σ )∈�(n)|σB,GA∪B,φA∪B]. It has expectation 1 − ε(n), so that

(4.17) P
(
E[1(φ,σ )∈�(n)|σB,GA∪B,φA∪B] ≥ 1 − √

ε(n)
) ≥ 1 − 2

√
ε(n).

Indeed, if contrary to our claim f := E[1(φ,σ )∈�(n)|σB,GA∪B,φA∪B] ≥ 1−√
ε(n)

with probability at most 1 − 2
√

ε(n), then

E[f ] ≤ 1 · (
1 − 2

√
ε(n)

) + (
1 − √

ε(n)
) · 2

√
ε(n) < 1 − ε(n).

Similarly, for B ∪ C,

(4.18) P
(
E[1(φ,σ )∈�(n)|σB∪C,G,φ] ≥ 1 − √

ε(n)
) ≥ 1 − 2

√
ε(n).
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It follows that, with probability at least 1 −O(
√

ε(n)),

P(σu = +|σB,GA∪B,φA∪B)

= (
1 −O

(√
ε(n)

))
P

(
σu = +|σB,GA∪B,φA∪B, (φ,σ ) ∈ �(n)

)
+O

(√
ε(n)

)
P

(
σu = +|σB,GA∪B,φA∪B, (φ,σ ) /∈ �(n)

)
= (

1 + on(1)
)
P

(
σu = +|σB∪C,G,φ, (φ,σ ) ∈ �(n)

) + on(1)

= (
1 + on(1)

)
P(σu = +|σB∪C,G,φ) + on(1),

where we used (4.17), (4.7) and (4.18) in the first, second, respectively, last equal-
ity. �

We are now in a position to prove Theorem 1.2.

PROOF OF THEOREM 1.2. Put A = GR−1, B = ∂GR and C = G \ GR . We
use the monotonicity property of conditional variance5 to obtain that, for any s ∈
{1, . . . , q},

0 ≤ Var
(
E[1{σu=s}|σv,G]) ≤ Var

(
E[1{σu=s}|σB∪C,G,φ]) + on(1)

since v ∈ B ∪ C w.h.p. It suffices to show that the right-hand side tends to 0,

because this implies that P(σu = s|σv,G)
P→ 1/q .

To show that the right-hand side tends indeed to 0, it suffices that P(σu =
s|σB∪C,G,φ)

P→ 1/q .
Now, by using the partition A ∪ B ∪ C of V (G) in Lemma 4.1, we have, since

GR ≤ n1/9 w.h.p., and all weights are bounded by nα w.h.p. (this follows from a
union bounded over all vertices),

P(σu = s|σB∪C,G,φ)
w.h.p.= P(σu = s|σ∂GR

,GR,φGR
) + on(1).

Theorem 3.1 entails that the local neighbourhood is w.h.p. equal to T Poi. Let T n be
an independent copy of T Poi with root ρ, spins τn and weights ψn. Note that we
stress the dependence on n, because the Poisson-tree is sampled again for each n,

(4.19)

P(σu = s|σ∂GR
,GR,φGR

) + on(1)

w.h.p.= P
(
τn
ρ = s|τn

∂T n
R
, T n

R,ψT n
R

) + on(1)

= P
(
τn
ρ = s|τn

∂T n
R
, T n

R

) + on(1),

5For random variables X,Y,Z, we have Var(E[X|Y ]) ≤ Var(E[X|Y,Z]). Indeed, put z =
E[X|Y,Z], then by Jensen’s inequality E[z|Y ]2 ≤ E[z2|Y ]. So that, after taking expectations on
both sides, E[E[X|Y ]2] ≤ E[E[X|Y,Z]2]. Writing out the definition of the variance then establishes
the claim.
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due to the coupling from Theorem 3.1. By Theorem 2.6, the right-hand side of
(4.19) tends to 1/q in probability. �

Using the following auxiliary lemma, Theorem 1.3 follows from Theorem 1.2.

LEMMA 4.2. Assume that (a − b)2�(2) ≤ q(a + b). Let G be an observation
of the DC-SBM, with true communities {σi}ni=1. Let u and v be two uniformly
picked vertices. Let {σ̂i}ni=1 be a reconstruction of the communities, based on the
observation G. Assume that there exists δ > 0 such that

f (n) := 1

n

n∑
i=1

1{σi=σ̂i} ≥ 1

q
+ δ,

with high probability. Then there exists s ∈ {1, . . . , q}, such that P(σu = s|σv,G)

does not converge in probability to 1/q .

PROOF. Assume for a contradiction that for every s, P(σu = s|σv,G) tends
to 1/q in probability. Since σ̂u depends on σu only through G, we have for any
s ∈ {1, . . . , q},

(4.20)
Var

(
E[1{σu=s}|σv,G]) = Var

(
E[1{σu=s}|σ̂u, σv,G])

≥ Var
(
E[1{σu=s}|σ̂u]),

where the term on the left tends to zero by assumption. By definition of f (n),

1/q + δ + o(1) ≤ ∑
s

P(σu = σ̂u|σ̂u = s)P(σ̂u = s).

Hence, for large enough n, there must be an s such that P(σu = σ̂u|σ̂u = s) ≥
1/q + δ/2 and P(σ̂u = s) ≥ δ

3q
. As a consequence, the term on the right of (4.20)

does not tend to zero. �

We summarize these results in Theorem 1.3:

PROOF OF THEOREM 1.3. Combine Theorem 1.2 and Lemma 4.2. �
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