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An Apparent Paradox Explained

Wen Wei Loh, Thomas S. Richardson and James M. Robins

We thank Peng Ding for bringing to light a paradox
underlying the conventional conceptualization of Ney-
manian versus Fisherian inference for causal effects:
although the Fisher null is a submodel of the Neyman
null, Ding demonstrates in simulations that the Ney-
man test can reject the Neyman null without the Fisher
test rejecting the Fisher null in two designs: balanced
and unbalanced.

Ding restricts his analysis to asymptotic considera-
tions. In particular, he explains the paradox by differ-
ences in large sample variances. We show that, for the
balanced design, this explanation is incorrect empiri-
cally and also theoretically under Pitman asymptotics,
as the asymptotic variances are equal; rather the para-
dox is wholly due to the Neyman test being anticonser-
vative under the Fisher null in finite samples. Thus the
paradox will disappear in large samples.

We conclude by addressing the implicit question
raised by Ding’s analysis: Are there better choices for
test statistics and reference distributions for testing the
Neyman and Fisher nulls that both avoid the small
sample anticonservative behavior of the Neyman test
against the Fisher null, and at the same time avoid the
paradox at all sample sizes, while providing optimal
test performance against (local) alternatives? We close
by recommending a specific procedure.

1. FREQUENTIST p-VALUES: A REVIEW

Given an observation x°, suppose that we wish to test
the simple null hypothesis that x° arose from a partic-
ular density f(x;6). A test is performed by compar-
ing the observed value of a test statistic 7° = r(x°) to
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a reference distribution m(r), resulting in a candidate
p-value:
pv(r,m, 0;x°) =Pry[R > r°]

(1)
pv(r,m,0;x°) =0,

if f(x°0) > 0;
otherwise,

where R ~ m(-); our notation for “pv”’ emphasizes
that the candidate p-value depends on both the choice
of test statistic and reference distribution. We use
x(r,m,0,a;x°) = I[pv(r,m,8;x°) <a] to be the cor-
responding «-level test. In a slight abuse of notation,
we equivalently write pv(r,m,0;r°) and x (r,m, 0, «;
r®). We use fp(r) = f(r;0) to be the marginal for
R =r(X), when X ~ f(x; 6).

A candidate p-value pv(r,m,0;X) is said to be
conservative (at level a) for 0 if under f(x;6), the
probability Prg[pv(r,m,0;X) < «] is < «, anticon-
servative if > o, exact if = «. For m(r) = fo(r),
pv(r, fp,60;X) is exact at any level a*, such that for
some r*, f(r*;0) > 0and Prg[r(X) > r*] = o*; and is
otherwise conservative. The following lemma demon-
strates that x (7, fg,, 6o, @; X) is at least as powerful as
any other conservative test x (v, m, 6p, ; X).

LEMMA 1. If x(r,m, 6y, a; X) is a conservative -
level test for 0y, then for any x°, if x(r,m, 6, a; X°)
rejects, so does x (r, fa,, 00, @; X°).

PROOF. By definition, x (r,m, 6y, @; X) is a con-
servative o-level test for 6 iff

(2) @ >Prg[r(X) = ca] =pV(r, foy, 005 Ca),

where ¢, is the least ¢* such that Pr,(c*) > 0 and
Pr,[R >c*] <a.

If x(r,m, 0y, a;x°) =1, then either f(x°;0y) =0,
in which case the claim is trivial, or r(x°) > ¢4. In
this case, pv(r, fg,, 6o; r(x°)) < pv(r, fo,, 60; ca) <,
so x(r, foy,00,;x°)=1. [

In what follows, in a minor abuse of notation, we will
often write x (r, m, 0y, a; X) as x (r, m, 6y, @).

We use O to denote a composite null hypothesis and
define:

pv(r, mg, ©¢; x°) = sup pv(r, mg,0;x°) and

He®y

x (r,mg, ©g, a; x°) = I[pv(r, mg, ©g; X°) < «],
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TABLE 1
Components of the two approaches described. To be precise, mz is the distribution of |Z| where Z is standard
normal, sometimes called the folded (standard) normal distribution

“Approach”  Null hypothesis © Test statistic r(-) Reference distribution m(-)
“Fisher” O r: forall i, y; (0) = y; (1) rr(x?) =Tl =y] —¥5| mxp())=randomization
“Neyman” O % > yi0) = % >y D=3l m z(-) = “std. normal”

rN(X )= ,/S%/N1+S3/N0

to be the supremum p-value and test for a composite
null hypothesis ®q based on r and mg; note we allow
mg to depend on #.! By definition, if a supremum test
x (r,mg, ©g, a; X°) rejects, then so do the supremum
tests of subhypotheses y (r, mg, ®6,a;x°) for every
B C . It follows from Lemma 1 that, for any con-
servative test x (r, mg, ©g, o; X), if x (r, mg, O, a; X°)
rejects then so does x (7, fy, ®p, «; X°).

1.1 The Randomization Model

For a binary treatment, the population is defined by
the (matrix) parameter 6 = {y; (0), y; (1)} of 2N poten-
tial outcomes. The Fisher and Neyman nulls are

Or={6:foralli, y;(0)=y;(1)} and

N N
On=10:) 3O =) v

i=1 i=1
respectively. Define y(t) = {#; y; (1) + (1 — ¢;)y;(0)} to
be the set of outcomes that would be observed under as-
signment t. The observed data are x° = (t°, y°), where
y° = y(t°). Similarly, given 6, the randomization dis-
tribution f(t) of T induces a distribution f(t,y;8)
depending on 6 over X = (T, y(T)). Let mp o(x) =
f(t,y; 0) denote this randomization distribution.

By consistency, x° = (t°, y°) determines either y; (0)
if ; =0 or y;(1) if t; = 1. Consequently, there is
only a single 67 € ®x for which x° is in the sup-
port of f(x;0), namely the one in which y;(0) =
yi(1) = y7. Thus for any r, m, pv(r,m, ®F;x°) =
pv(r,m,0%;x°). In this sense, having seen y°, the
Fisher null reduces to the simple null, 6 = 0%. Let
mr(x) = MR, 0% (x) be the Fisher randomization dis-
tribution; note that, although suppressed in this nota-
tion, by definition m £ (-) depends on the observed data
through y°. Given any statistic r(-), pv(r, mr, 0%; X)

UIn this setting some authors also allow the reference distribution
to depend on the observed data; see Bayarri and Berger (2000) and
Robins, van der Vaart and Ventura (2000).

is an exact p-value for the null 6% associated with ob-
served data x°.

In Section 3 below, we briefly describe methods for
computing the supremum p-value for the Neyman null,
pv(r,mp g, ®p; X°), using the randomization distribu-
tion my ¢ under every 6 € ® »r. This is harder because,
in contrast to the Fisher null, the set of 8 € @ for
which x° is in the support of f(x;6) isa N — 1 dimen-
sional subspace. See also Rigdon and Hudgens (2015)
and Chiba (2015) who invert tests based on mp g to
construct exact confidence intervals for the average
causal effect 7.

2. EXPLANATION OF THE “PARADOX” EVENT

Ding writes that the “Fisher approach” differs from
the “Neyman approach” in three ways as indicated in
Table 1: the null hypothesis, the test statistic and the
reference distribution. Ding equates the word “para-
dox” with the event that the Neyman test rejects
[x(ar,mz) = 1], but the Fisher test fails to do so
[x(rz, mz) = 0];> we use quotation marks as we do
not regard the occurrence of this event as particularly
paradoxical. We now explain the source of the phe-
nomena.

2.1 The Balanced Case and Small Samples

Observe that Ding changes both test statistic and ref-
erence distribution simultaneously. As a consequence,
Ding fails to discover that in his balanced Exam-
ple 1 (N; = Ng = 50) the “paradox” does not arise,
as he suggests, from the differences under the alterna-
tive between “variances,” VJ: = Ns? /NoN1 and VN =
sl2 /N1 + s(% / No; rather, it is wholly due to the fact that
p-values based on the reference distribution m z are an-
ticonservative in finite samples.

ZHere  x(rnrmz,a;xX°) = x(rpmz, Op,ax%) =
X(rar,mz, 0%, a;x°), for all 6* € @ 57, such that f(x° 0* > 0).
Likewise, xXrr.mr,a;x°) = x(rrp,mr, O®r a;x°) =

x(rr,mr,07° a;x°). When, as here, we are comparing
tests with the same «-level this is also omitted.
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TABLE 2
Balanced experiments with N1 = No = 50, and
Y; (1) ~N(1/10,1/16) as in Example 1 but with a zero individual
treatment effect Y; (0) = Y; (1) so that both the Fisher and Neyman
nulls hold; the results were based on 15,000 randomizations

(a) Comparing exact p-values resulting from Fisher’s statistic
r 7 under m r and approximate p-values from Neyman’s
statistic 7 A7 under m z

re,mg
N =100, =0.10 Notreject Reject Power
rom Not reject 0.8905 0.000
Nz Reject 0.0029 0.1065  0.1095
Power 0.1065

(b) Comparing exact p-values resulting from Fisher’s test statistic
rz under m 7 and Neyman’s test statistic 7 s under m r

rF,mxr
N =100, =0.10 Notreject Reject Power
rom Not reject 0.8935 0.0000
N>E Reject 0.000 0.1065  0.1065
Power 0.1065

In fact, even in simulations under the Fisher Null,
the “paradox” event occurs in spite of the fact that the
probability limits of N Vi and N Vr are equal; see Ta-
ble 2(a). For o = 0.1, the test x (rar, mr) based on
the Neyman statistic 75 under the Fisher randomiza-
tion distribution m r perfectly agrees with x (rr, mr);
see Table 2(b).? This shows that it is the difference be-
tween reference distributions that is wholly responsi-
ble, not the choice of test statistic. In fact, this per-
fect agreement is true for all balanced designs (lines
1-4 and 9-12) in Table 3. Line 4 corresponds to
Ding’s balanced Example 1 (except for the random
seed used).

Furthermore, since in each design in Table 3, in-
cluding the unbalanced, the event {y(rn;,mz) =1,
x (rn,mry) = 0} occurs, it follows from Lemma 1
(with r =rn, m =mz, 0y = 0%, fg, = mF) that
X (rar, mz) is anticonservative under 6% at o = 0.1 re-
gardless of the design; see also Lang (2015),
page 363.

3This test is described in Ding [(2017), Section 5.3]; see also
references therein.

2.2 Asymptotic Considerations®

It is useful to define the standardized Fisher statis-
tic ry7(x°) = |75 — 551/{VF}/? and recall ry(x°) =
1y] — Yol/ {\7/\/}1/ 2. Given any observed data x° with
Vr > 0, pv(ryr,mr;x°) = pv(rr,mr;x°)  and
x(rsp,mr,0;X°) = x(rF,mr,a;x°) since \7]: is
fixed given x°. Ding shows that for fixed «, under his
asymptotics

X (rsFomF, a;Xy) = x(rsF.mz, a;xy)| = 0

for any sequence X3 and compatible populations

On = {yi(0), y,-(l)}.5 One may also show that
X (rarsmp, o Xy) — x(ra,mz, a;Xy)| — 0 under
the same conditions. Hence as N — oo, any “para-
dox” must be explained by the difference in the test
statistics rsx and rps rather than by the difference in
the reference distributions m r and m z.°

2.2.1 Balanced design. We now return to Ding’s
asymptotic analysis of the “paradox” in the balanced
design. For this design, Ding correctly showed that
VJ: — VN = rZ/N +0p(1/N), but then suggested this
implied that the Neyman test y (rpr, mz) should be
more powerful than the Fisher test x (rs 7, m ) in large
samples. This conclusion is incorrect under asymp-
totics with a fixed «-level. First, under a Pitman alter-
native of order r = N~'/2, t2/N = op(1/N) so the
probability the two tests disagree converges to O (i.e.,
they are asymptotically equivalent), and thus the tests
have the same asymptotic variance and power. In fact,
for the asymptotic variances to differ, T would have to
be order 1. But then the asymptotic power of both tests
would be one. The finite sample exact concordance of
the tests x (rn/, mr) and x (rz, mF) in our simulations
in the balanced case at sample size N =20 and o = 0.1
is already in line with these Pitman asymptotics.

2.2.2 Unbalanced design. In the unbalanced design
with (N;/No — 1) — ¢ > 0, the two tests
x(rn,mz) and x (rgr, my) are asymptotically equiv-
alent (so the paradox occurs with limiting probability
0) unless we are under an alternative with t = kN —1/2

4Our asymptotics assume the regularity conditions in Aronow,
Green and Lee (2014). Further, when we write x (r,m, 6, ), we
view this as a sequence of tests {x(ry,mpy, 0y, a)} where r, m
and 6, but not o, change with the sample size N.

SHere we assume that limy o0 NV}- > 0.

OIf one uses two different test statistics to perform two different
tests of even a single simple null hypothesis, the tests, of course,
may lead to different conclusions. This well-known phenomena is
not normally viewed as a paradox.



TABLE 3

Simulation results based on 15,000 simulations. All tests were performed with a = 0.1. For settings where N1 = Ny, the distribution for Y; (1) was Y; (1) ~ N'(1/10, 1/16);
for settings where N1 # Ny, the distribution for Y; (1) was Y; (1) ~ N'(1/10, 1/4). For the constant Individual Causal Effect, ICE = d, and Y; (0) = Y; (1) — d; for the

settings with non-constant ICE # d, the Average Causal Effect ACE = a, and Y; (0) ~ N'(1/10 — a, 1/16). Rows 4 and 8 correspond to Ding’s Examples 1 and 2.

[A realization in which {x (rnr,mF) =1, x (rar, m z) = 0} was never observed so this column is omitted)

Monte Carlo average Ding’s
Design (empirical rejection rate) “Paradox”
0=x(rF,mF) xr,mF) xopn,mrF) xon,mry) xOn,mz)
No No So S1  ACE ICE  x(rx,mx) xua,smz) xa,mxyp) 1=xn,mz) xa,mzEp) xpn,mz) xorrg,mry) xr,mr)
50 50 025 0.25 0 0 0.1065 0.1095 0.1065 0.0029 0 0.0029 0 0
0.25 0.25 0 #0 0.0101 0.0106 0.0101 0.0005 0 0.0005 0 0
025 025 0.1 0.1 0.6318 0.6357 0.6318 0.0039 0 0.0039 0 0
025 025 0.1 #0.1 0.7202 0.7289 0.7202 0.0087 0 0.0087 0 0
30 70 0.5 0.5 0 0 0.1012 0.1050 0.1008 0.0111 0.0083 0.0042 0.0087 0.0073
025 05 0 #0 0.0012 0.0075 0.0053 0.0063 0.0041 0.0021 0 0
0.5 0.5 0.1 0.1 0.2526 0.2530 0.2415 0.0136 0.0084 0.0115 0.0195 0.0132
0.25 0.5 0.1 #0.1 0.0873 0.3071 0.2928 0.2198 0.2055 0.0143 0 0
10 10 025 0.25 0 0 0.1041 0.1221 0.1041 0.0180 0 0.0180 0 0
0.25 0.25 0 #0 0.0299 0.0389 0.0299 0.0090 0 0.0090 0 0
025 025 0.1 0.1 0.2121 0.2407 0.2121 0.0286 0 0.0286 0 0
025 025 0.1 #0.1 0.1133 0.1376 0.1133 0.0243 0 0.0243 0 0
6 14 0.5 0.5 0 0 0.1047 0.1340 0.1040 0.0333 0.0116 0.0300 0.0123 0.0039
025 05 0 #0 0.0033 0.0291 0.0166 0.0258 0.0133 0.0125 0 0
0.5 0.5 0.1 0.1 0.1229 0.1616 0.1231 0.0453 0.0164 0.0385 0.0161 0.0066
0.25 0.5 0.1 #0.1 0.0059 0.0655 0.0408 0.0597 0.0349 0.0247 0 0

AINIVIdXH XOAVIvd

6S€
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and (SU\//SON)2 —1—>b# 0.7 Under this alternative,
the “paradox” will occur with positive limiting proba-
bility if and only if b > 0. Furthermore, a calculation
shows that x (rsr, mr,a) has asymptotic power less
than 1, in spite of the fact that, since b is nonzero,
this alternative differs from the Fisher null (for which
b = 0) by order 1. It follows that against this alterna-
tive the “paradox” could be prevented asymptotically
by replacing ryr with a different statistic * for which
the associated test x (r*, mr, ) has asymptotic power
1. However, this would introduce other trade-offs that
we discuss below.

3. TOWARD A METHODOLOGICAL SOLUTION TO
THE “PARADOX”

Exact p-values for the Neyman null. A simple so-
lution to avoiding the “paradox” and obtaining tests
that are not anticonservative, is to compute exact p-
values pv(r,mp 9,0, o;x°) for all € O, and then
find the supremum pv(r, mg.g, Onr, @; X°). If the re-
sponse y; € {0, 1}, then ®, is the finite set given by
the intersection of the 2-d integer lattice ({0} U ZT)?,
and the convex polyhedron given by

0 < 6o <no+,

3 0 <61 <min(nyy + ngo, o1 + n10).

0<01 <nmy,
max(ni1,n10) < 6o1 + 611 <min(N — no1, N — noo),

where ny; denotes the number of units i with observed
outcomes y; = y and t; = ¢, while 6,5 is the number
with potential outcomes y; (0) = a, y;(1) = b. Loh and
Richardson (2017) describe algorithms for computing
exact p-values for all 0 € © s for T, rps and the likeli-
hood ratio; the latter is a nonmonotonic function of 7.8

An alternative to rpr. For a continuous outcome,
there will typically be too many populations in ® s to
compute exact p-values for them all, necessitating the
use of asymptotics. To obtain maximum power, while
asymptotically protecting the Neyman null at level «,
one can replace ry by ra(x) = (y; — yo)/{VN 103,
where VH is the variance estimator of Aronow, Green
and Lee (2014) N VN converges in probability to a
limit N V/\/ , which never exceeds N Vs and is a sharp

7Such alternatives are not possible for Y binary since
(S]N/S()N)2 — 1 will be order N~ if 7 is order N—1/2,

8Din‘g’s Theorem 7 is not correct as stated, since for binary out-
comes not all test statistics are equivalent to T. Ding’s proof estab-
lishes the weaker claim that under the Fisher null every statistic is
a (possibly nonmonotonic, noninjective) function of T.

upper bound for N Vz, where Vz = S12/N1 + Sg/No —
SE /N is the unidentified variance of T. x(r4,mz, )
will have strictly greater power asymptotically than
X (rnr, mz, o) against Pitman alternatives to the Ney-
man null,’ except for the subset of those Pitman al-
ternatives that are local to the hypothesis that the
marginal limit d1str1but10ns of y(0) and y(1) are the
same. For binary Y, V/\/ is asymptotically equiva-
lent to the variance estimators of Robins (1988) and
Ding and Dasgupta (2016).'° Finally, like rxs and 7, r,
|x(ra,mr,o;XN°) — x(ra,mz,o;xy°)| — 0. Hence
x(ra,mx) and x(r4, mz) are asymptotically equiva-
lent, but, unlike x (r4,mz), x(r4, mr) is guaranteed
not to be anticonservative under the Fisher null in small
samples.!!

Alternatives to rr and rgr. We have shown that
with Ding’s choice of test statistics (i) the probabil-
ity the “paradox” occurs converges to zero under lo-
cal alternatives to the Fisher null but (ii) the para-
dox can happen with limiting positive probability un-
der certain identifiable nonlocal alternatives!? to the
Fisher null, since Ding’s Fisher test does not have lim-
iting power 1 against these alternatives. It is natural
to ask whether there exist test statistics whose associ-
ated Fisher test might have asymptotic power 1 against
the Fisher null for all identifiable nonlocal alterna-
tives, thereby avoiding the paradox for such alterna-
tives. The test y (r*, m ) with r* a member of the class
of generalized Kolmogorov—Smirnov [KS] test statis-
tics (Praestgaard, 1995) should have this property under
weak regularity conditions. However, use of x (r*, m )
would reintroduce the “paradox” under local alter-
natives when y (rar,mz), x(rar,mx), x(ra,mz) or
X (r 4, mx) is used as a test of the Neyman null because
(a) even under the Fisher null the asymptotic rejection
region of x (r*, mr) is not a subset of the others and
(b) the limiting power of x (r*, mx) will be less than

9See, for example, Table 3 row 6 of Aronow, Green and Lee

(2014), where V/\f} / Vs is significantly less than 1. The calcula-
tions are relevant to a Pitman alternative to the Neyman null as the
means of the Beta distributions generating y(1) and y(0) are the
same, but as the variances are different, it is not local to the Fisher
null.

10The claim made by Ding and Dasgupta that their estimator “im-
proved on” that of Robins (1988) and Aronow, Green and Lee
(2014) is incorrect. Ding has submitted a correction (Ding, 2016).

lgee also Chung and Romano [(2013), Example 2.1], and refer-
ences therein.

12we call a sequence of populations {f} an identifiable nonlocal
alternative to the Fisher null if there exists a consistent test of that
alternative under the Fisher null.
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that of the other four statistics under, for example, a
constant individual treatment effect alternative with
of order N~/2, because x (r*, mr) spreads its power
over many directions.

Summary and Recommendations

Taken together our points above provide answers to
the following:

Q: Can one find a test of the Fisher null and a test
of the Neyman null such that: (i) regardless of sam-
ple size or the true 6 = {y; (0), y; (1)}, the “paradox” of
the Neyman test accepting and the Fisher test rejecting
can never occur; (ii) the Fisher test is never anticonser-
vative under the Fisher null regardless of sample size;
(iii) asymptotically, the Neyman test is a conservative
test of the Neyman null with power at least as great as
that of any other conservative test against any local'?
alternative to the Neyman null?

A: Yes. Select, as both the Fisher and Neyman test,
the single test x (r 4, mr) that uses r4 as test statistic
and the Fisher randomization distribution as reference
distribution.

Q: Can one find a test of the Fisher null and a test of
the Neyman null satisfying (i)—(iii) plus (iv): the Fisher
test has limiting power 1 against all (identifiable) non-
local alternatives to the Fisher null?

A: No. As argued above, to satisfy (iv), any Fisher
test (e.g., a generalized KS test) must have power in
many directions, while to satisfy (ii) and (iii) the Ney-
man test must be x (r 4, m ) which concentrates most
of its power in a single direction. Thus this combina-
tion would reintroduce the “paradox,” violating (i).

Conclusion. In the context of a finite population
causal model, if one is somewhat more interested in
testing for the presence of an average causal effect,
than in testing the Fisher null, and cannot compute ex-
act p-values for all laws in the Neyman null, then we
recommend using x (r 4, m r), which satisfies (i) to (iii)
above.

I3We restrict to local alternatives because if 7 is order 1 then all
test statistics that we consider have limiting power one against the
Neyman null, and hence also the Fisher null.
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