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Abstract: In this paper, we cluster profiles of longitudinal data using a
penalized regression method. Specifically, we allow heterogeneous variation
of longitudinal patterns for each subject, and utilize a pairwise-grouping
penalization on coefficients of the nonparametric B-spline models to form
subgroups. Consequently, we identify clusters based on different patterns of
the predicted longitudinal curves. One advantage of the proposed method
is that there is no need to pre-specify the number of clusters; instead the
number of clusters is selected automatically through a model selection cri-
terion. Our method is also applicable for unbalanced data where different
subjects could have measurements at different time points. To implement
the proposed method, we develop an alternating direction method of multi-
pliers (ADMM) algorithm which has the desirable convergence property. In
theory, we establish the consistency properties for approximated nonpara-
metric function estimation and subgrouping memberships. In addition, we
show that our method outperforms the existing competitive approaches in
our simulation studies and real data example.
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1. Introduction

In longitudinal data studies, distinguishing patterns of longitudinal trajectories
is useful in many practical applications. For example, in personalized medicine,
correctly identifying subgroups is essential for individualized treatment assign-
ment, since distinguishing the dynamics of disease progression status among
patients is critical in evaluating the effectiveness of a certain treatment. In time-
course gene expression studies, grouping genes with similar expression profiles
over time is also useful in association studies to identify crucial genes linked
with certain diseases ([4], [14], [24]).

One way to distinguish longitudinal patterns is to apply cluster analysis
through classical multivariate clustering methods and algorithms by treating re-
peated measurements as multivariate vectors. For example, the K-means method
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[12] is one of the popular dissimilarity-measure-based approaches, which par-
titions subjects into a pre-specified number of clusters based on the Euclidean
distance from each cluster mean. Alternatively, the Gaussian mixture model [11]
assumes a finite mixture of multivariate normal distributions, and estimates the
parameters of the distribution and the conditional membership probabilities.
In addition, [25] provides a comprehensive review of several other applicable
multivariate clustering algorithms.

However, there are several drawbacks to treating longitudinal data as multi-
variate vectors, since this assumes that the multivariate vector is balanced with
the same number of time points. That is, the multivariate clustering approach
cannot be applied directly unless the missing entries are imputed first. Most
critically, the multivariate-vector method does not take the information of time
ordering into account, and consequently, the clustering result is invariant to dif-
ferent permutations of measurements within subjects, which makes little sense
when observations are over time and the trajectory patterns are of our main in-
terest. Alternatively, to capture the growth curves of each subject, we can cluster
the trajectories of subjects with nonparametric smoothing approaches, such as
B-spline techniques. For example, [1] partitions subjects through the K-means
method using B-spline coefficients. [17, 18] and [7] apply spline approximations
under the linear mixed-effects model framework. However, the imposed para-
metric assumption of the mixed effects model, typically a normal distribution,
makes their methods less flexible in practice.

In addition, the aforementioned clustering approaches require one to spec-
ify the number of clusters in advance, which could be problematic in clus-
ter analysis. Recent developments in penalized regression methods allow one
to estimate the cluster centers and select the number of clusters simultane-
ously. [20] models the multivariate vectors assuming an individual center for
each subject and penalizes the pairwise distance between two subjects’ cen-
ters. [5] utilizes a convex penalty and considers the clustering as a convex op-
timization problem. [19] incorporates covariates of interest to model univariate
response data, which assumes different intercepts for different subjects. How-
ever, none of these approaches models trajectories over time for longitudinal
data.

In this paper, we propose a regression-based approach which partitions ob-
servations into subgroups through penalization of pairwise distances between
the B-spline coefficients vectors. One advantage of the proposed approach is
that a pre-specification of the number of clusters is not required; instead, we
select the number of clusters automatically through a model selection criterion.
This allows us to achieve model estimation and subgrouping subjects simulta-
neously. Another advantage is that the proposed method is applicable in char-
acterizing longitudinal trajectories which can include unbalanced longitudinal
data. In addition, we implement an alternating directions and method of mul-
tipliers algorithm (ADMM) [2] to achieve fast convergence of the method. In
theory, we establish the consistency property for the proposed method which
can identify the true underlying subgroup membership asymptotically. Further-
more, our simulation studies and real data analysis also confirm that, compared
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to other existing approaches, the proposed method performs well in identifying
subgroups.

The rest of the article is organized as follows. Section 2 introduces the model
formulation. In Section 3, we propose a nonparametric pairwise-grouping ap-
proach along with the ADMM algorithm, and establish theoretical properties
and implementation strategies. Simulation studies and real data analysis are
presented in Sections 4 and 5. We conclude the article with a brief discussion in
Section 6.

2. A subject-wise model for longitudinal data

The subject-wise model for subject i (i = 1, · · · , n) is formulated as follows:

yij = fi(xij) + εij , (2.1)

where yij is the response at the jth (j = 1, · · · , ni) repeated measurement and
xij is a one-dimensional covariate which defines the pattern of interest, and the
random errors εij are uncorrelated with mean 0 and variance σ2. In this paper,
we only deal with the setting where xij is a covariate of time, and investigate
the patterns of longitudinal trajectories over time. In principle, we can extend
our method to a more general setting with more than one covariate. Without
loss of generality, we assume that the covariates xij can be scaled to a compact
interval X = [0, 1]. For this subject-wise model, each subject has its unique
unknown smoothing function denoted as fi(·) ∈ Cq(X ), which is assumed to be
qth-order continuously differentiable.

The estimation of the subject-wise smoothing functions fi(·) characterizing
the longitudinal profile of a specific covariate is one of our main interests. Here,
we estimate fi by the nonparametric B-spline approach, which flexibly approx-
imates smoothing functions. We define the qth-order B-splines with a set of m
internal knots sequences κ = {0 = κ0 < κ1 < · · · < κm < κm+1 = 1} recursively
[8] as

B1
l (x) =

{
1, κl ≤ x < κl+1

0, o.w.
,

and Bq
l (x) =

x− κl

κl+q−1 − κl
Bq−1

l (x) +
κl+q − x

κl+q − κl+1
Bq−1

l+1 (x).

Then fi(x) can be approximated as fi(x) ≈ si(x) =
∑
l

Bq
l (x)βil = B(x)Tβi

through a linear combination of B-spline bases, where B(x) is a B-spline basis
vector and βi is a p-dimensional coefficient vector with p = m+ q, determined
by the number of knots m and B-spline order q.

Let fi = (fi(xi1), · · · , fi(xini))
T, yi = (yi1, · · · , yini)

T and εi = (εi1, · · · εini)
T .

The matrix form of the model (2.1) can be reformulated as

Y = f + ε,
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where Y =
(
yT
1 , · · · ,yT

n

)T
, f =

(
fT1 , · · · , fTn

)T
, and ε =

(
εT1 , · · · , εTn

)T
. In

addition, the corresponding B-spline approximation is

f ≈ s = Bβ,

where β = (βT
1 , · · · ,βT

n )
T , s = (sT1 , · · · , sTn )T , si = Biβi,B = diag(B1, · · · , Bn),

and Bi = (B(xi1), · · · , B(xini))
T is an ni × p basis matrix for the subject i.

We assume that the subjects share the same smoothing function form if they
are from the same group. That is, fi = fj if subjects i and j are from the same
cluster group. Consequently, let G = {G1, · · · ,GK} be a partition of {1, · · · , n},
where K(K ≤ n) is the number of distinct groups. We define the nonparametric
function subspace Mf

G corresponding to the group partition as

Mf
G =

{
f : fi = f(k), fi ∈ Cq(X ), for any i ∈ Gk, 1 ≤ k ≤ K

}
,

and the subspace of the B-spline coefficients corresponding to the group partition
as

Mβ
G =

{
β : βi = β(k),βi ∈ Rp, for any i ∈ Gk, 1 ≤ k ≤ K

}
.

Our goal is to identify the distinct group patterns of the smoothing functions
for any given subjects. This is equivalent to distinguishing between B-spline
coefficients for each group.

3. Methodology and theory

3.1. A nonparametric pairwise-grouping approach

In this subsection, we propose a pairwise-grouping approach through penaliza-
tion to achieve B-spline coefficient estimation and grouping of subjects simul-
taneously. We adopt a penalized B-spline approach [9] to utilize a relatively
large number of knots, but impose a penalty on the B-spline coefficients. More
specifically, the objective function of the penalized regression spline given the
dth-order difference penalty is

Q(β) =
1

2

∥∥Y −Bβ
∥∥2
2
+

1

2
λ1β

TDdβ =
1

2

n∑
i=1

{∥∥yi −Biβi

∥∥2
2
+ λ1β

T
i Ddβi

}
,

(3.1)
where ‖ · ‖2 is an L2 norm, Dd = diag (Dd, · · · , Dd), Dd = ΔT

d Δd and Δd is a
(p−d)×p matrix presentation of the dth-order difference operator. For example,
the second-order difference operator Δ2 is defined as

Δ2 =

⎛
⎜⎜⎜⎝
1 −2 1

1 −2 1
. . .

. . .
. . .

1 −2 1

⎞
⎟⎟⎟⎠ .
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The penalized B-spline coefficient estimator is obtained by minimizing the
following objective function (3.1):

β̃ = arg min
β∈Mβ

Q(β) =
(
BTB+ λ1Dd

)−1
BTY,

where Mβ = {β : β ∈ Rnp}. Consequently, the estimation of the smoothing
function approximation is f̃ = Bβ̃. Notice that this is equivalent to applying
the penalized B-spline approach for each subject separately under the subject-
wise model framework. In the penalized spline approach, [22] provides a rule-of-
thumb to select about min{ni/4, 35} number of knots for subject i, where the
location of knots can be chosen based on sample quantiles of {xi}.

To identify subgroups corresponding to distinct smoothing functions, we
group subjects together if they possess similar functional forms of nonpara-
metric approximations. Specifically, we penalize pairwise distances of B-spline
coefficients to encourage subjects to fall into the same group. We propose the
corresponding objective function as:

L(β) = Q(β) +
∑
i,j∈L

ρ
(
βi − βj , λ2

)
, (3.2)

where ρ(·, λ2) is a penalty function with a tuning parameter λ2, and L =
{l = (i, j) : 1 ≤ i < j ≤ n} is the index set containing the total number of pos-
sible subject pairs |L| = n(n− 1)/2.

The essence of the proposed approach is to take advantage of the flexibility
of nonparametric approximation while controlling the complexity of the model,
which is also associated with the number of subgroups. Here, the tuning param-
eter λ2 plays such a role to determine the number of subgroups. By minimizing
the objective function (3.2), we simultaneously obtain nonparametric coefficient
estimation and group subjects if their estimated nonparametric coefficient vec-
tors are sufficiently close.

In general, the choice of penalty function ρ(·, λ2) is critical since it results in
different parameter estimation and subgroup selection. For example, a Lasso-
type of penalty leads to a sparse solution, which could be appealing in merging
subjects into groups. However, it is also well-known that the Lasso estimation is
biased. Here, we apply the minimax concave penalty (MCP) [29], which is nearly
unbiased and also has the sparsity property. Specifically, the penalty function is

ρ
(
βi − βj , λ2

)
= ρτ

(
‖βi − βj‖2, λ2

)
,

where ρτ (t, γ) = γ
∫ t

0
(1 − x

τγ )+dx, and the regularization parameter τ controls

the unbiasedness and concavity of the penalty function. We obtain β̂ through
minimizing (3.2) using the MCP penalty, and the corresponding smoothing func-

tion estimation is f̂ = Bβ̂. With this nearly-unbiasedness property, we can
achieve accurate nonparametric coefficient estimation and group membership
recovery.
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In fact, it is challenging to optimize the objective function (3.2) directly, as
the proposed grouping penalty is not separable in terms of βi’s. Here, we develop
an alternative approach which introduces a new set of parameters vl = βi −
βj , l ∈ L, which are equivalent to the pairwise differences of B-spline coefficient
vectors. Consequently, the above optimization problem can be transformed into
the following constrained problem:

minQ(β) +
∑
l∈L

ρτ (‖vl‖2, λ2),

subject to βi − βj − vl = 0.

We solve the above optimization problem using the alternating direction method
of multipliers (ADMM), which is a variant of the augmented Lagrange multipli-
ers (ALM) method. The above constrained problem can be further converted to
an optimization problem through augmenting a quadratic penalty with a fixed
parameter θ:

minQ(β) +
∑
l∈L

ρτ (‖vl‖2, λ2) +
θ

2

∑
l∈L

∥∥βi − βj − vl

∥∥2
2
,

subject to βi − βj − vl = 0.

Notice that the above two problems are equivalent due to the fact that the
imposed quadratic penalty is zero for any feasible β and v = (vT

1 , · · · ,vT
|L|)

T

satisfying the constraint. Therefore, we can estimate parameters by minimizing
the corresponding Lagrangian as follows:

Lθ(β,v,λ) = Q(β) +
∑
l∈L

ρτ (‖vl‖2, λ2)

+
θ

2

∑
l∈L

∥∥βi − βj − vl

∥∥2
2
+

∑
l∈L

λT
l (vl − βi + βj),

where λ = (λT
1 , · · · ,λT

|L|)
T are Lagrange multipliers.

Following the AMDD algorithm, we update the estimates of β,v,λ sequen-
tially at the (s+ 1)th iteration step as follows:

βs+1 = argmin
β

Lθ(β,v
s,λs), (3.3)

vs+1 = argmin
v

Lθ(β
s+1,v,λs), (3.4)

λs+1
l = λs

l + θ(vs+1
l − βs+1

i + βs+1
j ), l ∈ L.

Note that the first minimization function in Eq. (3.3) is equivalent to mini-
mizing a quadratic function:

f(β) =
1

2

∥∥Y −Bβ
∥∥2
2
+

λ1

2
βTDdβ +

θ

2

∑
l∈L

∥∥ṽl −Alβ
∥∥2
2
,
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where ṽl = vl+
1
θλl and Al = (ei−ej)

T⊗Ip, in which⊗ is the Kronecker product
and ei is an n-dimensional vector with one at the ith component and zeros
otherwise. Let A = (AT

1 , · · · , AT
|L|)

T , and ṽ = (ṽT
1 , · · · , ṽT

|L|)
T , then we have

βs+1 =
(
BTB+ λ1Dd + θATA

)−1 (
BTY + θAT ṽs

)
, where ṽs = vs + 1

θλ
s is

estimated in the previous iteration.
As for the second minimization function in Eq. (3.4), it is a convex function

with respect to each vl if τ > 1/θ, even though Lθ(β
s+1,v,λs) involves a non-

convex MCP penalty term. Consequently, we can update vs+1
l explicitly as

vs+1
l =

{
us+1
l if ‖us+1

l ‖2 ≥ τλ2,
τθ

τθ−1 (1−
σ

‖us+1
l ‖2

)+u
s+1
l if ‖us+1

l ‖2 < τλ2,

where σ = λ2/θ and us+1
l = βs+1

i − βs+1
j − λs

l /θ.
In non-convex optimization, it is important to assign appropriate initial val-

ues to obtain a good solution. We choose to initialize the ADMM algorithm
with a warm start which also reduces the number of iterations. Specifically,
we first apply the penalized B-spline for each subject and assign β0 = β̃ =(
BTB+ λ1Dd

)−1
BTY, where λ1 can be selected using the BICλ1 from the

two-step tuning procedure in section 3.3.
The detailed ADMM algorithm is outlined as follows:

Algorithm 1 ADMM algorithm
Initialize:

λ0 = 0 and β0, v0 = argmin
v

Lθ(β
0,v,λ0), θ and τ > 1

θ
are fixed.

for s = 0, 1, 2, · · · do

βs+1 =
(
BTB+ λ1Dd + θATA

)−1 (
BTY + θAT ṽs

)
, where ṽs = vs + 1

θ
λs,

vs+1 = argmin
v

Lθ(β
s+1,v,λs),

λs+1
l = λs

l + θ(vs+1
l − βs+1

i + βs+1
j ), for all l ∈ L.

if stopping criteria are met then
break

end if
end for

In the above algorithm, the stopping criteria are evaluated based on rs+1
l =

βs+1
i −βs+1

j −vs+1
l and ds+1

k = −θ

(∑
i=k

(vs+1
l − vs

l )−
∑
j=k

(vs+1
l − vs

l )

)
. Define

r =
(
rT1 , · · · , rT|L|

)T

and d =
(
dT
1 , · · · ,dT

n

)T
. The algorithm terminates at the

step s∗ if ‖rs∗‖2 ≤ εr and ‖ds∗‖2 ≤ εd, where εr and εd are small numbers
according to [2]:

εd =
√
npεabs + εrel‖Atλs∗‖2, εr =

√
|L|pεabs + εrel max {‖Aβs∗‖2, ‖vs∗‖2} ,

where the parameters εabs and εrel are predetermined small values.

Theorem 3.1. The above ADMM algorithm converges, such that
∥∥rs+1

∥∥2
2
→ 0

and
∥∥ds+1

∥∥2
2
→ 0 for a sufficiently large iteration step s.
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Theorem 3.1 establishes the convergence property of the ADMM algorithm,
indicating that the stopping criteria of the algorithm can be reached as the
number of iteration increases. The proof of Theorem 3.1 is provided in the
appendix A.1.

3.2. Asymptotic properties

In this subsection, we establish the asymptotic properties of the estimators
obtained by the proposed approach. To study the convergence rate of f̂ , we first
provide some regularity conditions.

(C1). Suppose that the design points {xij}n,ni

i=1,j=1 follow a density function fX ,
which is absolutely continuous, and there exist constants c1 and c2 such
that 0 < c1 ≤ min

x∈X
fX(x) ≤ max

x∈X
fX(x) ≤ c2 < ∞.

(C2). The error terms in model (2.1) are uncorrelated with a mean zero and a
variance σ2 > 0.

(C3). For each fi (i = 1, · · · , n), fi ∈ Cq(X ) is a q-th order continuously differ-
entiable function defined on a compact set X = [0, 1].

(C4). The set of knots is defined as κm = {0 = κ0 < κ1 < · · · < κm < κm+1 =
1}. Let δ = max

0≤l≤m
(κl+1 − κl), there exists a constant M > 0 such that

δ/ min
0≤l≤m

(κl+1 − κl) ≤ M , and δ = o(m−1).

(C5). The number of knots m = o(n0), where n0 = min(n1, · · · , nn).
(C6). Assume Nk = O(N), where Nk =

∑
i∈Gk

ni for k = 1, · · · ,K, and N =∑n
i=1 ni.

Conditions (C1) - (C5) are standard assumptions for nonparametric B-spline
smoothing functions. Similar conditions are also given by [6], [30], and [26]. In
(C5), the condition on the number of knots applies for all subjects. In addition,
we impose a constraint on cluster size in (C6), implying that the cluster size
grows as the sample size increases.

We first investigate the convergence property on the estimation of the penal-
ized B-spline approximation f̃ . Let fo be the true function corresponding to the
true group partition G. We establish the estimation consistency in the following
Lemma 3.1.

Lemma 3.1. Under conditions (C1) - (C5), for any fixed n, and given a suf-
ficiently large n0, such that γd = (p − d)(λ1c̃

n0
)1/2d < 1, where c̃ = c {1 + o(1)},

and c = π2d
(∫ 1

0
fX(x)1/2ddx

)−2d

. We establish the following convergence rate

of f̃ : ∥∥f̃ − fo
∥∥2
n
≤ Op(

m

n0
) +Op(

λ2
1

n2
0

m2d) +Op(m
−2q).

Lemma 3.1 shows that the convergence rate of the penalized spline estimator
is determined by three factors. The first term is the average asymptotic variance,
which decreases as the number of repeated measurements grows and increases if
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the nonparametric model is more complex with an increasing number of knots.
The second term is introduced by the shrinkage bias, but vanishes if λ1 → 0. The
last term reflects the nonparametric approximation bias, which is also related
to the model complexity. We show in Lemma 3.1 that the convergence rate also
depends on the minimum number of repeated measurements n0 among subjects.
The proof of Lemma 3.1 is given in the appendix A.2.

When the true group membership is known, we obtain the oracle approxima-
tion by f̃or = Bβ̃

or
, where the corresponding oracle penalized spline estimator

is
β̃
or

= arg min
β∈Mβ

G

Q(β).

Let N0 = min(N1, · · · , NK), we provide the convergence rate of the oracle ap-
proximation in the following Lemma 3.2.

Lemma 3.2. Under conditions (C1) - (C4) and (C6), given a sufficiently large
N0, such that γd = (p− d)(λ1c̃

N0
)1/2d < 1, we have

∥∥f̃or − fo
∥∥2
n
= Op(

m

N
) +Op(

λ2
1

N2
m2d) +Op(m

−2q).

In contrast to the convergence rate in Lemma 3.1 for the penalized B-spline
estimators, Lemma 3.2 establishes a faster convergence rate for the oracle pe-
nalized spline estimators when the true subgroup information is known, since
N > n0. The above convergence property is guaranteed as long as the number
of repeated measurements for each cluster is sufficiently large, as it is equivalent
to obtaining β̃

or
within each subgroup. The proof of Lemma 3.2 is provided in

the appendix A.2.
In the following, let b be the minimum distance between smoothing functions

fo(k) and fo(k′) from any two clusters, that is, b = min
k �=k′

‖fo(k) − fo(k′)‖. We denote

the proposed approximation as f̂ = Bβ̂.

Theorem 3.2. Under conditions (C1) - (C6), and if cb ≥ τλ2 holds for a
constant c > 0 , then for any fixed n, and given a sufficiently large n0, such that
γd = (p− d)(λ1c̃

n0
)1/2d < 1, we have

∥∥f̂ − fo
∥∥2
n
= Op(

m

n0
) +Op(

λ2
1

n2
0

m2d) +Op(m
−2q).

Theorem 3.2 indicates that the convergence rate of the proposed approxima-
tion is the same as the penalized spline estimators as long as there is a sufficiently
large number of repeated measurements for each subject. In addition, the dis-
tance between smoothing functions from any two clusters should be sufficiently
large to achieve the above convergence rate. The details of the proof are given
in the appendix A.3.

Corollary 3.1 (Subgroup membership recovery consistency). Suppose the reg-
ularity conditions in Theorem 3.2 hold, then the subgroup memberships satisfy
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the following properties: for any i, j ∈ Gk,
∥∥f̂i − f̂j

∥∥2
n
≤ Op(m

−2q), and for any

i ∈ Gk, j ∈ Gk′ , k �= k′,
∥∥f̂i − f̂j

∥∥2
n
≥ b2 −Op(m

−2q) as n0 → ∞.

Corollary 3.1 indicates that the recovery of subgroup membership depends
on both the minimum distance b and the nonparametric approximation bias
Op(m

−2q). If the true functions from two clusters are very close to each other,
then the nonparametric approximation needs to be sufficiently accurate with
little bias. Otherwise, a smoother function with fewer knots is adequate to ensure
subgroup membership recovery as long as the distance between two clusters is
sufficiently large. The proof is given in the section A.3.

3.3. Implementation

In this section, we provide the strategy of forming subjects into subgroups based
on parameter estimation. In addition, we provide the tuning parameters selec-
tion criteria.

In fact, we form clusters based on estimated parameters v̂ instead of B-spline
coefficients β̂. In the proposed approach, we encourage closeness between βi

and βj through pairwise grouping penalization. That is, subjects i and j are

expected to be clustered in the same group if β̂i = β̂j . However, this is not
achievable since we impose a quadratic penalty on βi − βj − vl in the ADMM
algorithm when augmenting the optimization constraint βi − βj = vl, and this
makes the implementation problematic for clustering. Therefore, we apply the
MCP penalty to v̂l to enjoy the sparsity property in the algorithm, and merge
subjects i and j into the same cluster if v̂l = 0.

To select the tuning parameters λ1 and λ2, we propose a two-step procedure
to search from a sequence of grid points. Note that λ1 controls the smoothness
of the B-spline approximation, and λ2 controls the number of clusters selected,
denoted as K̂. Traditionally, we can implement a grid search for both tun-
ing parameters simultaneously. However, this increases the computational cost
tremendously. To solve this problem, we propose a two-step procedure which
first searches for an optimal value of λ1 given λ2 = 0, then selects λ2 given the
optimal λ1 from the first step. Although this procedure may not lead to the
optimal selection for both tuning parameters, our numerical studies show that
this strategy works effectively. More specifically, we select λ1 by minimizing

BICλ1 =
n∑

i=1

{
log

(∥∥yi − f̂i
∥∥2
2

ni

)
+

log(ni)

ni
dfi

}
,

where dfi = tr
{
Bi(B

T
i Bi + λ1Dd)

−1BT
i

}
, and λ2 is selected by minimizing

BICλ2 = log

(∥∥Y − f̂
∥∥2
2

n

)
+

log(n) ∗ df
n

,where df =
K̂

n

n∑
i=1

dfi.
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4. Simulation study

In this section, we conduct simulation studies to investigate the performance of
the proposed nonparametric pairwise-grouping approach (NPG) when the sub-
jects have unbalanced numbers of repeated measurements, which often arises
in practice. We compare the proposed method with the smoothing spline re-
gression clustering approach [18], using the original unbalanced data. However,
traditional multivariate-vector approaches are not feasible for handling unbal-
anced data unless imputation for missing entries is implemented. Instead, we
compare our method to the K-means (bKmeans) and the Gaussian Mixtures
(bGM) methods by treating the subject-wise penalized B-spline estimators β̃i’s
as multivariate vectors.

We implement the K-means method with R function kmeans and select the
number of clusters based on the Gap statistic [13] using the R package cluster.
To ensure the robustness of the K-means method, we calculate a mean result
from 10 random picks of initial centers. The Gaussian mixtures approach is
implemented by the R package mclust, and the number of clusters is selected
based on the embedded Bayesian Information Criterion (BIC), which is chosen
from K = 1, 2, · · · , 15 in each simulation. We also implement the smoothing
spline regression clustering approach with the R package MFDA. In addition,
we compare the results with a mixture of mixed-effects method (Mixed) with
P-spline smoothing technique [7]. In our simulation, we fix θ = 1 and τ = 2 to
ensure the convexity of our objective function. For the methods we compare,
the proper tuning parameters are chosen accordingly for each approach. The fi-
nal results are based on 100 simulations. We implement the proposed approach
in R software, and the programming codes are available on Github (https://
github.com/Xiaolu-Zhu/LongitudinalClustering.git).

To evaluate the performance of these clustering algorithms, we calculate
the estimated number of groups K̂ selected and several frequently used ex-
ternal validity measures: the Rand index [21], the adjusted Rand index (aRand)
[15] and the Jaccard index [16]. Let the true positive (TP) be the number
of pairs of subjects from the same cluster and assigned to the same clus-
ter, the true negative (TN) be the number of pairs of subjects from differ-
ent clusters and assigned to different clusters, the false positive (FP) be the
number of pairs of subjects from different clusters but assigned to the same
cluster, and the false negative (FN) be the number of pairs of subjects from
the same cluster but assigned to different clusters. The Rand index is calcu-
lated as Rand = TP+TN

TP + TN + FP + FN , which measures the percentage of pair-
wise agreements between the true and selected clusters. However, Rand tends
to be large even under random partitions. The adjusted Rand (aRand) index

corrects this problem, and is calculated by Rand - E(Rand)
max(Rand) - E(Rand) . The Jaccard in-

dex is calculated as TP
TP+ FN +FP . For these external criteria, a higher value

indicates a better agreement between the selected and the true group member-
ships.

https://github.com/Xiaolu-Zhu/LongitudinalClustering.git
https://github.com/Xiaolu-Zhu/LongitudinalClustering.git
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4.1. Case 1: Independent measurement

In this simulation setting, we generate 15 subjects from each of the following
four distinct functional patterns: f(1)(x) = cos(2πx); f(2)(x) = 1− 2 exp(−6x);
f(3)(x) = −1.5x; and f(4)(x) = −1.5x + 1.5. The continuous response yij for
subject i from the kth subgroup is generated by yij = f(k)(xij) + εij , k =
1, · · · , 4, j = 1, · · · , 10, where random errors within subjects are independent
εij ∼iid N(0, 0.42), and {xij}10j=1 are equally spaced points on [0, 1]. In order to
mimic real data situations, we allow 30% of the subjects from each subgroup to
have 40% missing repeated measurements. The number of knots is recommended
by [22] as min{ni/4, 40} for subject i. We choose the B-spline with an order q = 3
and the number of knots m = 3 for all subjects.

Table 1 shows that the proposed approach performs the best in terms of
three external criteria. Since the K-means and Gaussian mixtures methods ap-
proximate each subject’s pattern individually, the clustering results are not as
good as the proposed method. In addition, the proposed NPG method is able
to identify the true function subgroups more effectively, as it estimates the B-
spline coefficients for all subjects simultaneously and borrows cross-subject in-
formation from the same subgroup. Our simulations show that the mixed-effects
model performs better than the K-means and Gaussian mixtures methods, but
slightly worse than the proposed approach. We also compare the computational
cost among these methods. In this simulation setting, the average computational
time for the “Mixed” method in [7] is 23.13 seconds, the K-means method is
12.53 seconds, the Gaussian mixture method is 1.06 seconds and the MFDA
method is 12.37 seconds, while the proposed NPG approach with fixed tuning
parameters takes about 27.18 seconds.

Table 1

Comparison results from the proposed nonparametric pairwise-grouping (NPG), K-means
(bKmeans), Gaussian Mixtures (bGM), MFDA and mixed-effects (Mixed) method.

Methods K̂ Rand aRand Jaccard

NPG 4.01 0.995 0.986 0.980
bKmeans 1.34 0.317 0.091 0.296
bGM 6.82 0.914 0.745 0.673
MFDA 5.99 0.941 0.823 0.755
Mixed 3.73 0.959 0.904 0.886

As shown in Corollary 3.1, subgroup membership can be recovered success-
fully regardless of the number of knots used in B-spline approximation as long
as the underlying longitudinal function patterns are far from each other. We
illustrate this using various numbers of knots from 1 to 3. Figure 1 and Fig-
ure 2 indicate that the underlying true mean function curves are recovered well
even with one knot, although the non-linear curves can be approximated more
accurately if we increase the number of knots to 3, especially for the nonlinear
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Fig 1. B-spline function recovery and subgrouping in Case 1 when the number of knots is 1.

Fig 2. B-spline function recovery and subgrouping in Case 1 when the number of knots is 3.

patterns in clusters 3 and 4. However, using one or three knots leads to the same
accurate subgrouping identification in this simulation setting.

We also conduct simulation experiments to investigate the effect of tuning
parameter selection. Specifically, we fix the tuning parameter θ = 1 and τ = 2 to
ensure that τ > 1

θ is satisfied. We compare the NPG performance on a range of
τ ∈ (2, 4, 8, 16), which shows that the clustering results are quite stable with the
Rand index range in (0.993, 0.995), the adjusted Rand index in (0.982, 0.986)
and the Jaccard index in (0.975, 0.980).

The clustering performance is also compared under an unbalanced data set-
ting, where we follow the same data generation process, except that the sample
sizes for the four subgroups are 5, 10, 20 and 40, respectively. Table 2 shows
similar clustering accuracy as in the balanced data setting, where both the pro-
posed NPG and Mixed models show robust performance as reflected in the three
different indices.



184 X. Zhu and A. Qu

Table 2

Comparison results from the proposed nonparametric pairwise-grouping (NPG), K-means
(bKmeans), Gaussian Mixtures (bGM), MFDA and mixed-effects (Mixed) method for

unbalanced data setting.

Methods K̂ Rand aRand Jaccard

NPG 4.02 0.990 0.978 0.974
bKmeans 1.13 0.392 0.033 0.385
bGM 5.57 0.848 0.650 0.615
MFDA 5.98 0.838 0.615 0.563
Mixed 3.67 0.966 0.930 0.923

4.2. Case 2: Correlated measurement

In this simulation study, we investigate the performance of the proposed ap-
proach when the repeated measurements are correlated. In particular, we gen-
erate data from the same process as in the Case 1 balanced setting, but allow
random errors to have a certain correlation structure. Specifically, we generate
the true εi ∼ N(0, 0.42R0), where R0 is either AR(1) or exchangeable (EX)
with a 0.7 correlation coefficient.

Since the original NPG approach is based on the independence assumption of
errors from the same subject, we modify the proposed approach by utilizing the
working correlation structure. The corresponding objective function becomes

LR(β) =
1

2

(
Y −Bβ

)T
R−1

(
Y −Bβ

)
+

1

2
λ1β

TDdβ +
∑
i,j∈L

ρ
(
βi − βj , λ2

)
,

where R is a block diagonal matrix with diagonal components of a given work-
ing correlation matrix, such as an AR(1) or exchangeable correlation structure
from each subject. Notice that the modified NPG method with an independent
working correlation matrix is equivalent to the original NPG, where R is the
identity matrix. In practice, we can estimate the working correlation coefficient
using the residuals obtained from the NPG approach. We denote the modified
NPG methods as NPGex and NPGar, corresponding to the exchangeable and
AR(1) working correlation structures, respectively.

Tables 3 and 4 indicate that the proposed method performs similarly using
either AR(1) or exchangeable working correlation structures, but outperforms
other methods in distinguishing different functional patterns. In addition, we
also calculate the average mean square error (AMSE) of the predictions of
outcomes in Tables 3 and 4, showing that the misspecification of error cor-
relation structure may lead to slight loss of estimation efficiency. In fact, [28]
also mentions that we can gain improvement by utilizing a correct correlation
structure when the correlation coefficient is large. However, this does not affect
accuracy very much in identifying true group membership in this simulation
setting.
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Table 3

Comparison results from the proposed nonparametric pairwise-grouping (NPG), the modified
nonparametric pairwise-grouping with AR(1) working correlation (NPGar), the modified
nonparametric pairwise-grouping with exchangable working correlation (NPGex), K-means
(bKmeans), Gaussian Mixtures (bGM), MFDA and mixed-effects (Mixed) methods when the

true correlation structure is AR(1).

Methods K̂ Rand aRand Jaccard AMSE

NPG 4.10 0.983 0.953 0.934 1.510
NPGar 4.05 0.986 0.960 0.943 1.493
NPGex 4.05 0.986 0.960 0.943 1.494
bKmeans 2.48 0.577 0.393 0.491 -
bGM 5.55 0.948 0.847 0.794 -
MFDA 5.97 0.928 0.781 0.706 -
Mixed 3.17 0.879 0.715 0.666 -

Table 4

Comparison results from the proposed nonparametric pairwise-grouping (NPG), the modified
nonparametric pairwise-grouping with AR(1) working correlation (NPGar), the modified

nonparametric pairwise-grouping with exchangeable working correlation (NPGex), K-means
(bKmeans), Gaussian Mixtures (bGM), MFDA and mixed-effects (Mixed) methods when the

true correlation structure is exchangeable.

Methods K̂ Rand aRand Jaccard AMSE

NPG 4.48 0.976 0.933 0.906 1.522
NPGar 4.22 0.983 0.953 0.933 1.500
NPGex 4.18 0.986 0.961 0.944 1.470
bKmeans 2.43 0.529 0.332 0.447 -
bGM 5.93 0.922 0.771 0.706 -
MFDA 5.86 0.926 0.777 0.703 -
Mixed 3.04 0.876 0.712 0.661 -

5. An application to IRI marketing data

In this section, we apply the longitudinal clustering methods on an IRI market-
ing dataset. This dataset was developed by the SymphonyIRI Group [3], and
consists of 11-year (2001-2011) weekly sales data of packaged goods from chain
grocery and drug stores in 47 markets across the country. To better capture the
overall sales pattern for each product category for 11 years at the market level,
we aggregate the data from the weekly level to the yearly level from store specific
to geographic market hierarchy, and from granularly itemized products to prod-
uct category level. In this analysis, we focus on the Los Angeles market, where
we aim to cluster 26 packaged goods categories into subgroups based on their
longitudinal sales units trajectories, where the trajectories are standardized to
remove the mean and control the unit variance.

We compare the clustering results using the proposed method (NPG), the
mixed-effects (Mixed) method, the K-means and Gaussian mixture methods on
B-spline coefficients fitted at subject level. The MFDA method is excluded from
comparison because of too much computation instability to be deliverable. The
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Fig 3. The NPG method clustering results with fitted curves.

Fig 4. The Mixed method clustering results with fitted curves.

NPG approach utilizes 3 knots with an order of 3 for B-spline approximation and
the Mixed approach specifies 5 knots based on its implementation guidelines.

Figures 3 and Figure 4 provide the clustering results and the fitted functional
curves for the NPG and Mixed approaches. Specifically, the NPG method is
able to identify two subgroups of trajectories, where cluster 1 identifies food re-
lated packaged products: beer/ale/alcoholic, cider, coffee, cold cereal, frozen din-
ners/entrees, frozen pizza, hotdogs, mayonnaise, milk, mustard/ketchup, peanut
butter, salty snacks, soup, spaghetti/Italian sauce, sugar substitutes, and yogurt.
Cluster 2 identifies non-food related products: blades, cigarettes, deodorant, di-
apers, facial tissue, paper towels, photography supplies, razors, shampoo, toilet
tissue, and toothpaste. On the other hand, the Mixed method separates the
product categories into 3 clusters, where cluster 3 has food products includ-
ing mayonnaise, milk, and mustard/ketchup, and the non-food product tooth-
paste. The remaining two clusters are subsets of the two clusters from the NPG
method. In addition, the fitted curves in Figures 3 and 4 for two clusters have
similar patterns for these two methods.

The Gaussian Mixture model fails to identify any informative subgroups with
one single cluster, while the K-means method requires random initialization. We
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implement 10 random picks of initial centers for the subject-wise fitted B-spline
coefficient vectors, and the number of selected clusters from K-means ranges
from 2 to 5, which leads to the same clustering result as the NPG method when
the Gap statistic selects 2 clusters given a certain random initialization.

6. Discussion

In this article, we propose a nonparametric pairwise-grouping approach to clus-
ter longitudinal trajectories over time. The new approach captures underlying
functional patterns through utilizing the nonparametric B-spline method. In ad-
dition, we subgroup subjects through penalizing pairwise distances of B-spline
coefficient vectors, which borrows between-subject information to better recover
the true functions. The proposed NPG approach has the advantage of avoiding
overfitting, compared to existing methods which approximate the underlying
functions separately. This strategy works effectively when some of the repeated
measurements are missing.

The proposed approach takes advantage of the MCP penalty, which is nearly
unbiased and also leads to a sparse solution. This is especially important as we
select the optimal tuning parameters through a model selection criterion BIC,
which relies on model estimation accuracy. Note that other non-convex penalty
functions, such as SCAD [10] or TLP [23], can also be applied here to utilize the
unbiasedness property. However, the implementation and convergence property
of the ADMM algorithm based on other viable penalty functions may require
further investigation.

In this paper, although we assume an independence structure of random
errors within subjects, a modified approach utilizing working correlation is also
proposed to account for the correlation information. We show in simulation
studies that the modified approach has similar performance in clustering as
the NPG approach assuming independence, but leads to improved efficiency in
estimation. The theoretical properties of the modified NPG method need to be
further investigated if correlation information is of our interest.

The proposed approach can also be extended to subgroup identification in-
corporating multiple covariates under generalized linear models. One potential
research topic is to extend the proposed framework for binary longitudinal out-
comes, and to identify the subgroups of treatment effects. Identifying subgroups
for binary data could be quite challenging, as specifying the proper loss function
while taking the correlation within subjects into account is nontrivial.

Appendix A: Proofs

A.1. Proof of Theorem 3.1

Proof. Let h(β) = 1
2

∥∥Y−Bβ
∥∥2
2
+λ1

2 βTDβ, g(v) =
∑
l∈L

g(vl) =
∑
l∈L

ρτ (‖vl‖2, λ2),

and m(β,v) = θ
2

∑
l∈L

∥∥βi − βj − vl

∥∥2
2
, we write the Lagrangian Lθ(β,v,λ) =
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h(β)+g(v)+m(β,v)−λT (Aβ − v). Then there exist λ∗ such that Lθ(β,v,λ) is
minimized and Aβ∗ −v∗ = 0, which implies that Lθ(β

∗,v∗,λ∗) ≤ Lθ(β,v,λ
∗)

holds for any other (β,v). Write p∗ = h(β∗) + g(v∗), we have

p∗ ≤ ps+1 +
θ

2

∥∥rs+1
∥∥2
2
− (λ∗)T rs+1, (A.1)

where ps+1 = h(βs+1) + g(vs+1) and Aβs+1 − vs+1 = rs+1.

Let Lβ
θ (β,v,λ) = h(β)+ θ

2

∥∥Aβ−ṽ
∥∥2
2
and Lvl

θ (β,v,λ) = 1
2

∥∥vl−ul

∥∥2
2
+ 1

θg(vl)

which are convex w.r.t β and vl accordingly, where ul = βi − βj − 1
θλl. As

λs+1
l = λs

l − θrs+1
l , it is straightforward that ṽs = vs + 1

θ (λ
s+1 + θrs+1).

By the definition, βs+1 minimizes Lβ
θ (β,v

s,λs) and we have that

0 ∈ ∂Lβ
θ (β

s+1,vs,λs) = ∂h(βs+1) + θ(Aβs+1 − ṽs)TA

= ∂h(βs+1) + θ(vs+1 − vs − 1

θ
λs+1)TA,

which implies that

h(βs+1)+
(
θ(vs+1 − vs)− λs+1

)T
Aβs+1 ≤ h(β∗)+

(
θ(vs+1 − vs)− λs+1

)T
Aβ∗.

Similarly, the following holds:

g(vs+1) +
(
λs+1

)T
vs+1 ≤ g(v∗) +

(
λs+1

)T
v∗.

By some arrangement and simplification, we have that

ps+1 − p∗ ≤ (λs+1)T rs+1 − θ
(
vs+1 − vs

)T (
rs+1 + vs+1 − v∗) . (A.2)

Adding equations (A.1) and (A.2) together, we show that

0 ≤ (λs+1 − λ∗)T rs+1 − θ
(
vs+1 − vs

)T (
rs+1 + vs+1 − v∗)+ θ

2

∥∥rs+1
∥∥2
2
.

Define V s = 1
θ

∥∥λs − λ∗∥∥2
2
+ θ

∥∥vs − v∗∥∥2
2
, we can show that V s − V s+1 ≥

θ
∥∥vs+1 − vs

∥∥2
2
, and that V s decreases in each iteration. Therefore, we have

∞∑
s=0

(
θ
∥∥vs+1 − vs

∥∥2
2

)
≤ V 0, which implies that

∥∥vs+1 − vs
∥∥2
2
→ 0. Results for∥∥rs+1

∥∥2
2
→ 0 can be shown similarly as in [19] which is omitted here.

A.2. Proof of Lemmas 3.1–3.2

Let ‖ · ‖2 be the usual L2 norm for functions or vectors. Let L2(X ) be the space

of all square integrable functions on X = [0, 1], then
∥∥f∥∥2

2
=

∫ 1

0
f(x)2dx for any



Cluster analysis of longitudinal profiles with subgroups 189

f ∈ L2(X ). We define the theoretical and empirical norms as ‖f‖2 = E[f(X)2]

and
∥∥f∥∥2

n
= 1

n

n∑
i=1

f(Xi)
2, where X ′

is are a random sample of size n on X . Let

B be the orthonormal B-spline basis and its corresponding smoothing function
be s(x) = B(x)β.

Lemma A.1. Under condition (C1), there exist constants C ≥ c > 0, such that
for any f ∈ L2(X ), we have c‖f‖2 ≤ ‖f‖ ≤ C‖f‖2.

Proof. This proof is straightforward with the definition of norms and the con-
dition (C1) on the density of the design points.

Lemma A.2. Let β be any p-dimensional vector, there exist constants C ≥ c >

0, such that c
∥∥β∥∥2

2
≤ ‖Bβ‖2 ≤ C

∥∥β∥∥2
2
.

Proof. This result follows from Lemma A.1.

Lemma A.3. There exist constants C ≥ c > 0, such that except in an event

whose probability tends to zero as n → ∞, c‖s‖2 ≤
∥∥s∥∥2

n
≤ C‖s‖2 for any

smoothing function s.

Proof. The proof follows similarly to the proof of Lemma 4 in [27].

Lemma A.4. There exist constants C ≥ c > 0, such that except in an event

whose probability tends to zero as n → ∞, c
∥∥β∥∥2

2
≤

∥∥Bβ
∥∥2
n
≤ C

∥∥β∥∥2
2
for any

p-dimensional vector β.

Proof. The result follows from Lemma A.2 and Lemma A.3.

Proof of Lemma 3.1. Notice that it is equivalent to individually obtaining β̃i =

argmin
βi

Qi(βi), where Qi(βi) = 1
2

∥∥yi − Biβi

∥∥2
2
+ 1

2λ1β
T
i Ddβi. Therefore, the

approximation of the smoothing function for subject i is f̃i = Biβ̃i. According

to [6], we have
∥∥f̃i − foi

∥∥2
n
= Op(

m
ni
) + Op(

λ2
1

n2
i
m2d) + Op(m

−2q) when γd < 1.

Consequently, we show that
∥∥f̃i − foi

∥∥2
n
≤ Op(

m
n0

) +Op(
λ2
1

n2
0
m2d) +Op(m

−2q) for

all i = 1, · · · , n. Thus it can be shown that, for fixed n,

∥∥f̃ − fo
∥∥2
n
=

1

N

n∑
i=1

(f̃i − foi )
T (f̃i − foi ) ≤ Op(

m

n0
) +Op(

λ2
1

n2
0

m2d) +Op(m
−2q).

Proof of Lemma 3.2. When the true group membership is known, it is equiva-

lent to estimating β̃
or

(k) = argmin
β

Q(k)(β), where Q(k)(β) =
∑
i∈Gk

{∥∥yi−Biβ
∥∥2
2
+

λβTDdβ
}
. Let f̃or(k) = (Bi)i∈Gk

β̃
or

k be the estimated functions belonging to the

kth group and correspondingly fo(k) = (foi )i∈Gk
be the true functions in the kth
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group. According to [6], we have
∥∥f̃or(k) − fo(k)

∥∥2
n
= 1

Nk

∑
i∈Gk

(f̃ori − foi )
T (f̃ori − foi ) =

Op(
m
Nk

) +Op(
λ2
1

N2
k
m2d) +Op(m

−2q) when γd < 1. Thus it can be shown that

∥∥f̃or−fo
∥∥2
n
=

1

N

K∑
k=1

∑
i∈Gk

(f̃ori −foi )
T (f̃ori −foi ) = Op(

m

N
)+Op(

λ2
1

N2
m2d)+Op(m

−2q).

A.3. Proofs of Theorem 3.2 and Corollary 3.1

Proof of Theorem 3.2. By the triangular inequality,
∥∥f̂ − fo

∥∥2
n
≤

∥∥f̂ − f̃or
∥∥2
n
+∥∥f̃or − fo

∥∥2
n
. If we can show that

∥∥f̂ − f̃or
∥∥2
n
=

∥∥B(β̂ − β̃
or
)
∥∥2
n
= Op(

m
n0

) +

Op(
λ2
1

n2
0
m2d) + Op(m

−2q), then we can prove the theorem together with Lemma

3.2. That is, we aim to show that for a sufficiently large n0 and any ε > 0, there
exists a sufficiently large constant C such that

P

⎛
⎜⎝ inf∥∥B(β−β̃

or
)
∥∥2

n
=C( m

n0
+

λ2
1

n2
0
m2d+m−2q)

L(β) > L(β̃or)

⎞
⎟⎠ ≥ 1− ε. (A.3)

This implies that there exists a local minimum of L(β) which lies in the ball

B = {β :
∥∥B(β−β̃

or
)
∥∥2
n
≤ C(m

n0
+

λ2
1

n2
0
m2d+m−2q)}. As a result,

∥∥B(β̂−β̃
or
)
∥∥2
n
=

Op(
m
n0

+
λ2
1

n2
0
m2d +m−2q).

From Lemmas 3.1 and 3.2, we have
∥∥f̃ − fo

∥∥2
n

≤ Op(
m
n0

) + Op(
λ2
1

n2
0
m2d) +

Op(m
−2q) and

∥∥f̃or− fo
∥∥2
n
= Op(

m
N )+Op(

λ2
1

N2m
2d)+Op(m

−2q), which indicates

that
∥∥B(β̃ − β̃

or
)
∥∥2
n
=

∥∥f̃ − f̃or
∥∥2
n
≤ Op(

m
n0

) + Op(
λ2
1

n2
0
m2d) + Op(m

−2q) by the

triangular inequality. Thus we have
∥∥B(β̃ − β̃

or
)
∥∥2
n
≤ C1(

m
n0

+
λ2
1

n2
0
m2d +m−2q)

for a constant C1.
As ‖B(β̃

or

(k) − β̃
or

(k′))‖n ≥ ‖fo(k) − fo(k′)‖n − ‖fo(k) − f̃or(k)‖n − ‖fo(k′) − f̃or(k′)‖n,
we have ‖B(β̃

or

(k) − β̃
or

(k′))‖n ≥ b for a sufficiently large N . Lemma A.4 entails

that there exists a constant c, ‖β̃or

(k) − β̃
or

(k′)‖2 ≥ cb. Similarly, for a sufficiently
large n0, we have ‖βi − βj‖2 ≥ cb, for any i ∈ Gk, j ∈ Gk′ and β such that∥∥B(β − β̃

or
)
∥∥2
n
= C(m

n0
+

λ2
1m

2d

n2
0

+m−2d).

Let Pλ2(β) =
∑

i,j∈L
ρτ

(
‖βi − βj‖2, λ2

)
. To show Eq. (A.3), using ρτ (0, λ2) =

0 and ρτ (·, λ2) ≥ 0, we have Pλ2(β̃
or
) =

∑
i∈Gk,j∈Gk′ ,k �=k′

ρτ

(
‖β̃or

i − β̃
or

j ‖2, λ2

)
.

Therefore
L(β)− L(β̃

or
) ≥ Q(β)−Q(β̃

or
)+
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∑
i∈Gk,j∈Gk′ ,k �=k′
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ρτ

(
‖βi − βj‖2, λ2

)
− ρτ (‖β̃

or

i − β̃
or

j ‖2, λ2)
)
.

Since the minimum distance b satisfies cb ≥ τλ2, then we have

L(β)− L(β̃
or
) ≥ Q(β)−Q(β̃

or
).

As β̃ = arg min
β∈Mβ

Q(β), then Q(β) > Q(β̃
or
) for any β such that

∥∥B(β −

β̃
or
)
∥∥2
n
= C(m

n0
+

λ2
1m

2d

n2
0

+ m−2d) if C is sufficiently large. This completes the

proof.

Proof of Corollary 3.1. For any trajectories i and j belonging to the same sub-
group, we have ‖f̂i − f̂j‖2n ≤ ‖f̂i − f0i ‖2n + ‖f̂j − f0j ‖2n + ‖f0i − f0j ‖2n ≤ 2maxi ‖f̂i −
fi‖2n ≤ Op(

m
n0

) + Op(
λ2
1

n2
0
m2d) + Op(m

−2q). As n0 → ∞, it is straightforward

that ‖f̂i − f̂j‖2n ≤ Op(m
−2q). On the other hand, for any i ∈ Gk, j ∈ G′

k, k �= k′,

we have
∥∥f̂i − f̂j

∥∥2
n
≥ min ‖f0i − f0j ‖2n − 2maxi ‖f̂i − f0i ‖2n ≥ b2 − Op(m

−2q) as
n0 → ∞. This completes the proof.
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