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Abstract: We study exchangeable, Markov survival processes – stochas-
tic processes giving rise to infinitely exchangeable non-negative sequences
(T1, T2, . . .). We show how these are determined by their characteristic in-
dex {ζn}∞n=1. We identify the harmonic process as the family of exchange-
able, Markov survival processes that compose the natural set of statistical
models for time-to-event data. In particular, this two-dimensional family
comprises the set of exchangeable, Markov survival processes with weakly
continuous predictive distributions. The harmonic process is easy to gen-
erate sequentially, and a simple expression exists for both the joint prob-
ability distribution and multivariate survivor function. We show a close
connection with the Kaplan-Meier estimator of the survival distribution.
Embedded within the process is an infinitely exchangeable ordered par-
tition. Aspects of the process, such as the distribution of the number of
blocks, are investigated.
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1. Introduction

A fundamental principle underlying statistical modeling is that arbitrary choices
such as sample size or observational unit labels1 should not affect the sense of
a model and meaning of parameters. For example, a priori the labels attached
to observational units (unit 1, 2, . . .) carry no meaning other than to distinguish

1Labels are not always arbitrary (e.g., a time series indexed by the integers).
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among them. This guiding precept gives rise to the study of exchangeable dis-
tributions. Infinite exchangeability captures the idea that the data generating
process should not be affected by choice of sample size or arbitrary unit labeling.

In this paper we are interested in models for infinitely exchangeable non-
negative sequences (T1, T2, . . .) which arise in survival analysis where the obser-
vation values are survival times. We start by introducing exchangeable Markov
survival processes. We show how these are determined by their characteristic
index {ζn}∞n=1. We then identify the family of exchangeable Markov survival
processes whose predictive distributions are weakly continuous. We provide
a sequential description for this family which we call the harmonic process,
whose asymptotic behavior is also derived. The harmonic process is part of
a larger family of beta-splitting processes, which we identify as the set of ex-
changeable, Markov survival processes of Gibbs-type. We show that the process
exhibits markedly distinct asymptotic behavior as a function of a single param-
eter β > −1.

Research on nonparametric Bayesian survival analysis has been based around
the de Finetti approach to constructing exchangeable survival processes by
generating survival times conditionally independent and identically distributed
given a completely random measure, i.e., the cumulative conditional hazard is a
Lévy process (Cornfield and Detre, 1977; Kalbfleisch, 1978; Hjort, 1990; Clay-
ton, 1991). Such processes are sometimes called neutral to the right (Doksum,
1974; James, 2006). The harmonic process corresponds to a particular choice of
Lévy process and thus fits naturally within the existing literature. It has the
added advantage that the probability distribution function can be computed
analytically, and the process can be simulated directly from the predictive dis-
tributions, allowing us to bypass the Lévy process entirely.

2. Exchangeable non-negative sequences

We start by formally defining exchangeable, Markov survival processes. To do
this we introduce the following notation. Define t = (t1, t2, . . .) to be a fixed
non-negative sequence. That is, ti ∈ R+ for each i ∈ N. The infinite sequence t
takes values in R

N
+. We define several operations on t. First, for any finite per-

mutation σ : N → N, the relabeling of t by σ is

tσ := (tσ(1), tσ(2), . . .).

Second, for any finite n = 1, 2, . . . the restriction of t to [n] := {1, . . . , n} is

t[n] := (t1, . . . , tn).

Third, for any s ∈ R+ we write s+ t to mean the addition of s entrywise; that
is,

s+ t = (s+ t1, s+ t2, . . .).

We write s + t[n] to mean the restriction of (s + t) to [n], (i.e., (s + t)[n]).
Finally, for m > n, define the restriction operator Ξm,n(t[m]) to be the further
restriction of t[m] to the first n components.
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A survival process is a sequence of probability distributions (P1, P2, . . .),
where Pn is a distribution on R

n
+. We write T[n] := (T1, . . . , Tn) to be a random

variable with probability distribution Pn. The process is called

• exchangeable if, for each integer n, Tσ[n] is equal in distribution to T[n].
• (Kolmogorov) consistent if, for any m > n, Ξm,n(T[m]) is equal in distri-

bution to T[n].
• Markovian if, for each integer n and s ∈ R+, the distribution Pn satisfies

the following memoryless property

P (T[n] ≥ s+ t[n] | T[n] ≥ s) = Pn(T[n] ≥ t[n]).

We define a survival process satisfying all three of the above properties to be
an exchangeable, Markov survival process. In Section 3, we provide an equiva-
lent representation of exchangeable, Markov survival processes via their risk set
trajectories.

Under the consistency assumption, T [n] satisfies lack of interference; math-
ematically, for integers m > n and sequence of Borel sets A1, . . . , An

P (T [n] ∈ A | H[m](s)) = P (T [n] ∈ A | H[n](s)).

where A = (A1, . . . , An), and H[l](s) is the σ-field generated by the Boolean
variables 1[Ti < u] for i ∈ [l] and u ≤ s. Lack of interference is essential,
ensuring the conditional distribution of T [n] given the joint history of all m
particles up to time s is unaffected by the history for subsequent particles (i.e.,
by particles n+ 1, . . . ,m).

2.1. Censoring

Consider a sample of size n. Let T[n] denote the random survival times and t[n]
their corresponding realizations for the sample [n]. To each unit i ∈ [n], there
often corresponds an observational interval [0, ci] where ci is some arbitrary
positive censoring time. The event time recorded for unit i is Yi = min(Ti, ci).
So if Yi = ci then the event is a censoring time; otherwise, if Yi < ci then
the event is known to be death or failure. For simplicity the description of
exchangeable Markov survival processes below presumes ci = ∞ for all units i.
We revisit censoring in Section 9 as part of a discussion on parameter estimation.
In particular we show that censoring has a relatively trivial effect on probability
calculations and thus on associated statistical procedures.

3. Risk set trajectories

For each unit i, an equivalent representation of the random variable Ti is the
random Boolean function Ri : R+ �→ {0, 1} defined by Ri(t) = 1[t < Ti]. We
write

R[n](t) = {i ∈ [n] : Ri(t) = 1}
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to define the random subset of units of [n] known to be alive at time t, i.e.,
the risk set at time t. The risk set is a stochastic process that is in one-to-one
correspondence with T[n] almost surely.

The stochastic process R[n] = {R[n](t)}t≥0 satisfies R[n](t + s) ⊆ R[n](t)
almost surely for all t, s ≥ 0. We write r[n] = {r[n](t)}t≥0 to denote a real-
ization of the stochastic process R[n]. At each time t ≥ 0, we write B[n](t) =
R[n](t−)\R[n](t) to denote the random subset of particles that fail at time t.
That is, for each i ∈ B[n](t) we have Ti = t almost surely. We write b[n] =
{b[n](t)}t≥0} to denote a realization of the stochastic process B[n] = {B[n](t)}t≥0.
It is worth emphasizing that the subsets B[n](t) and R[n](t) are disjoint for ev-

ery t almost surely. We write R�
[n](t), r

�
[n](t), B

�
[n](t), b

�
[n](t) to denote the cardi-

nality of the risk set (both the random variable and realization) and failure set
(both the random variable and realization) respectively.

We define two operations on r[n](t). First, for each finite permutation σ :
N → N, the relabeling of r[n](t) by σ is

rσ[n](t) = {i ∈ [n] : rσ(i)(t) = 1}

Second, for m > n, we overload notation and define the restriction operator
Ξm,n to be the further restriction of r[m](t) to the first n components.

A survival process induces a distribution on risk set trajectories. That is
for each n ∈ N the random variable T [n] with probability distribution Pn can
be mapped to a random risk set trajectory R[n] = {R[n](t)}∞t=1. Each realiza-
tion t[n] is also in one-to-one correspondence with a realization of the risk set
trajectory r[n]. We call this process the risk set process. This process is called

• exchangeable if, for each integer n, Rσ
[n] = {Rσ

[n](t)}t≥0 is a version of R[n].

• (Kolmogorov) consistent if, for integers m > n, Ξm,n(R[m]) is a version
of R[n].

• Markovian if, for each integer n, the process R[n] evolves as a continuous-
time Markov chain.

A risk set process built from an exchangeable, Markov survival process is
exchangeable, consistent and Markovian. Since R[n] evolves as a continuous-
time Markov chain, we can characterize exchangeable, Markovian survival pro-
cesses by their corresponding exchangeable, Markov risk process. In the next
section, we use the connection to continuous-time Markov chains to describe
the embedded process. Using the embedded process, we fully characterize each
exchangeable, Markov survival process by its characteristic index.

4. Embedded process

In this section, we will show how the continuous-time Markov chain R[n] started
at R[n](0) = [n] (i.e., all particles are at risk initially) can be built as follows:
first, generate a holding time H. In Section 4.3 we will show this can be done by
generating an exponential random variable with the parameter only depending
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on the number of particles at risk. The Markov chain R[n] will remain in state [n]
until time T = H. Second, choose a state R[n](T ) at random according to the

distribution P [n](R[n](T ) = ·), where P r denotes the probability measure under
which the Markov chain starts in state r ⊆ [n]. Third, given that R[n](T ) =
r′ ⊂ [n], build an independent Markov chain started at r′, and attach it to
the initial segment. Iterating on this procedure yields a sequence of holding
times (H1, H2, . . . , Hk) the length of which is random but finite almost surely

as r = ∅ is an absorbing state. Define H̄j =
∑j

i=1 Hi to be the the partial sums
of the holding times. Then the procedure also yields a sequence of successive
states visited

[n] = R[n](0), R[n](H̄1), R[n](H̄2), . . . , R[n](H̄k) = ∅.

This sequence is a discrete-time Markov chain with ∅ as the absorbing state. Note
that the risk process being exchangeable and consistent implies the discrete-time
Markov process of successive states will be exchangeable and consistent.

By the theory of continuous-time Markov chains, each successive state is cho-
sen independently of the previous holding time conditional on the previous state.
That is, R[n](H̄j) ⊥⊥ Hj | R[n](H̄j−1). Therefore, we construct the exchangeable,
Markov risk trajectories in two parts: (1) we first show how to generate the se-
quence of successive states, and (2) conditional on the current state we show
how to generate the holding time in that state.

We start by investigating the embedded discrete-time Markov chain of succes-
sive states. By design, each successive state will be the remaining set of particles
at risk. This sequence of successive states is in one-to-one correspondence with
the random sequence

B = (B[n](H̄1), B[n](H̄2) . . . , B[n](H̄k))

where B[n](H̄i) is the random subset of particles failing at the ith transition
time. The correspondence is due to the fact that the subsets B[n](t) and R[n](t)
are disjoint for every t almost surely and satisfy R[n](t−) = B[n](t)∪R[n](t). We
use this fact below to define the distribution of the discrete-time Markov chain
of successive states via exchangeable, Markov partial rankings.

4.1. Exchangeable, Markov partial rankings

A partial ranking of [n] is an ordered list b[n] = (b1, . . . , bk) satisfying

|bi| ≥ 1, and bi ∩ bj = ∅ for i �= j, and ∪k
i=1 bi = [n].

That is b[n] consists of disjoint non-empty subsets of [n] whose union is [n]. The
elements of [n] are unordered within blocks, but b1 is the subset ranked first, b2
is the subset ranked second, and so on. We let b�i to denote the cardinality of
the ith block.

Let OPn denote the finite set of partial rankings of [n]. A random partial
ranking of [n], denoted B[n], is a random variable taking values in OPn whose
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probability distribution will be denoted by pn. The sequence of distributions
(p1, p2, . . .) is called

• exchangeable if, for each integer n, the probability distribution pn only
depends on block sizes and block order. In general pn(B[n] = b[n]) �=
pn(B

σ
[n] = bσ[n]) for a permutation σ : [n] → [n].

• Markovian if, for each integer n, non-negative integer r ≥ 0, and positive
integer d ≥ 1 such that r + d = n there exists a positive number q(r, d) ∈
[0, 1] (i.e., a splitting rule) such that

pn(B[n] = b[n]) = q(n− b�1, b
�
1)× pn−b�((B2, . . . , Bk) = (b2, . . . , bk))

=

#b∏
j=1

q

(
n−

j∑
i=1

b�i , b
�
i

)
. (1)

Every splitting rule q satisfies q(0, 1) = 1.
• (Kolmogorov) consistent if, for each integer n, pn is the marginal distri-

bution of pn+1 under the restriction map OPn+1 → OPn in which the
element n+ 1 is ignored or deleted.

As we will see below, the Markovian assumption helps lead to mathematically
tractable conclusions. The following proposition is a direct consequence of the
Markovian property.

Proposition 4.1. Every non-negative function q subject to normalization con-
ditions

n∑
d=1

(
n

d

)
q(n− d, d) = 1 (2)

for all n ≥ 0 defines an exchangeable and Markovian sequence of distribution
functions (p1, p2, . . .).

Not all splitting rules q lead to a sequence of consistent distributions (p1,
p2, . . .). The consistency condition is necessary in order for the sequence of dis-
tributions to determine a process. Without it, there is no partial ranking of the
population and there is no possibility of inference using conditional distribu-
tions. Proposition 4.2 details a condition on the splitting rule that guarantees
the associated sequence of distributions are consistent. A sequence of probability
distributions on partial rankings (p1, p2, . . .) that are consistent, exchangeable,
and Markovian defines an exchangeable, Markov partial ranking process.

Proposition 4.2. A splitting rule q gives rise to an exchangeable, Markov par-
tial ranking process if and only if

(1− q(n, 1))q(n− d, d) = q(n− d, d+ 1) + q(n− d+ 1, d) (3)

for all integers n ≥ d ≥ 1. In particular, equation (3) implies that the split-
ting rules are determined by the sequence of singleton splits (q(0, 1), q(1, 1), . . . ,
q(n, 1), . . .).
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Proof. To derive the conditions for consistency proceed by induction supposing
that p1, . . . , pn are mutually consistent in the Kolmogorov sense. Then, in order
for pn+1 to be consistent with pn, it must be for each ordered partition b[n]
of [n],

pn(B[n] = b[n]) =q(n, 1)pn(b[n]) + q(n− b�1, b
�
1 + 1)pn−b�1

((b2, . . . , bk))

+ q(n− b�1 + 1, b�1)
∑
b̃∈A

pn−b�1+1(b̃)

where A is the set of ordered partitions where n + 1 is appended to a block
of (b2, . . . , bk) or inserted as a singleton. That is, removal of n + 1 from b̃
yields (b2, . . . , bk) for all b̃ ∈ A.

The terms on the right are partial rankings in OPn+1 such that deletion
of n + 1 gives rise to the ordered partition b[n] ∈ OPn. Either n + 1 occurs in
the first block as a singleton, which has probability q(n, 1)pn(B[n] = b[n]); or it

occurs appended to b1 as a non-singleton, which has probability q(n−b�1+1, b�1+
1)pn−b�1

(B[n−b�1]
= (b2, . . . , bk)); or it occurs elsewhere either as a singleton or

appended to one of the other blocks of b[n] other than b1, which occurs with

probability q(n− b�1 + 1, b�1)
∑

b̃∈A pn−b�1+1(b̃).

By the induction hypothesis that p1, . . . , pn are mutually consistent, the sum
is equal to the probability pn−b�1

((b2, . . . , bk)). Hence, a splitting rule gives rise

to a consistent, exchangeable Markov partial ranking process if and only if

q(n− b�1, b
�
1)pn−b�1

(b2, . . . ) =q(n, 1)q(n− b�1, b
�
1)pn−b�1

(b2, . . . )

+ q(n− b�1, b
�
1 + 1)pn−b�1

(b2, . . . )

+ q(n− b�1 + 1, b�1)pn−b�1
(b2, . . . ).

Cancelling pn−b�,1(b2, . . .) from both sides yields equation (3).

A splitting rule corresponding to a consistent Markov partial ranking process
is said to be a consistent splitting rule. A nice property of consistent splitting
rules is that they admit an integral representation.

Proposition 4.3. Every consistent splitting rule admits an integral represen-
tation

q(n− d, d) =
1

Zn

(∫ 1

0

xn−d(1− x)d�(dx) + c1d=1

)

where Zn =
∫ 1

0
(1− x)n�(dx) + n · c. The measure �(·) is defined on [0, 1) and

satisfies ∫ 1

0

(1− x)�(dx) < ∞. (4)

The constant, c, is called the erosion coefficient and � is called the dislocation
measure.

In Proposition 4.3, d represents the number of particles observed to fail and
therefore must be positive while n−d is the number of particles still at risk and
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therefore must only be non-negative. That is, d ∈ {1, . . . , n} = [n] and n− d ∈
{0, 1, . . . , n − 1}. Both the condition and integral representation are similar to
equation (4) in McCullagh, Pitman, and Winkel (2008) and to proposition 41 of
Ford (2005). However, the splitting probabilities in these papers are symmetric
and subject to a normalization condition different from (2), so the probabilities
are different.

4.2. The characteristic index

To each exchangeable, Markov partial ranking process we associate a character-
istic index. A relation between the defined characteristic index and the splitting
rule via kth order differences is shown.

Definition 4.4. A characteristic index, ζ, is a sequence ζ0, ζ1, ζ2, . . . beginning
with ζ0 = 0, ζ1 > 0, and subsequently

ζn+1 =
ζn

1− q(n, 1)
= ζ1

n∏
j=1

(1− q(j, 1))−1 (5)

for n ≥ 1. Alternatively we write ζ(n) to denote the characteristic index when
more convenient.

The sequence is said to be in standardized form if ζ1 = 1. Since the stan-
dardized sequence is in one-to-one correspondence with the singleton splits, each
standardized sequence determines an exchangeable, Markov partial ranking pro-
cess provided that the splitting rule in (3) is non-negative.

This multiplicative construction implies that ζ is non-negative and strictly
increasing. A natural question is whether the splitting rules can be reconstructed
from the characteristic index. Proposition 4.5 shows the splitting rule can be
recovered from the characteristic index using kth order forward differences, Δkζ,
defined as

(Δkζ)n =

k∑
j=0

(−1)k−j

(
k
j

)
ζn+j ,

for n ≥ 0, so that Δζn = ζn+1 − ζn is the first difference, (Δ2ζ)n = ζn+2 −
2ζn+1 + ζn is the second, and so on.

Proposition 4.5. Given a characteristic index, ζ, the corresponding splitting
rule is given by

q(r, d) =
(−1)d−1(Δdζ)r

ζr+d
(6)

for r ≥ 0 and d ≥ 1. The splitting probabilities are therefore determined by the
standardized sequence ζ/ζ1.

The proof of Proposition 4.5 can be found in Appendix A. The main advan-
tage of working with the characteristic index is that the Kolmogorov consistency
condition (3) may be written in a more convenient form as a non-negativity con-
dition on forward differences.
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Corollary 4.6. A sequence ζ = (ζ0, ζ1, ζ2, . . . ) beginning with ζ0 = 0 and ζ1 > 0
defines a consistent splitting rule via equation (6) if for r ≥ 0 and d ≥ 1 it
satisfies the following non-negativity condition on forward differences:

(−1)d−1(Δdζ)r ≥ 0.

Under this condition, the sequence ζ is the characteristic index for some ex-
changeable, Markov partial ranking process.

4.2.1. The harmonic process

Since each exchangeable, Markov partial ranking process is associated with a
characteristic sequence (modulo scalar multiplication), the space of Markov par-
tial rankings may be identified with the space of non-negative sequences satis-
fying (6). Evidently this space is a convex cone, closed under positive linear
combinations.

Based on the integral representation in Proposition 4.3 a natural family
of dislocation measures are conjugate measures to the binomial distribution,
�(dx) = xρ−1(1 − x)β−1dx. The integrability condition on the measure given
by equation (4) implies ρ > 0 and β > −1. The characteristic index depends on
the second parameter, β. Here we focus on the setting where β = 0 as we will
show this family composes the natural set of statistical models for time-to-event
data. For β = 0, the characteristic index is

ζn =

∫ 1

0

xρ−1(1 + x+ · · ·+ xn−1) dx

=

n−1∑
j=0

1

ρ+ j
= ψ(n+ ρ)− ψ(ρ), (7)

where ψ is the derivative of the log gamma function. This process is called the
harmonic process.

A very similar process to the harmonic process with dislocation measure
�(dx) = xρ−1dx/(− log(x)) has characteristic index

ζn =

∫ 1

0

(1− xn)xρ−1 dx/(− log x) =

∫ ∞

0

(1− e−nz)z−1e−ρz dz

= log(1 + n/ρ). (8)

This is the characteristic index of the gamma process, which is explored in more
detail in Section 9.2.

4.3. Holding times and continuous-time embedding

We now consider how to generate the holding times conditional on the current
state r ⊂ [n] in order to generate exchangeable, Markov risk set trajectories. In
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the prior section, we used the fact that the random sequence of successive states
visited is in one-to-one correspondence with the random partial ranking B of
the set of particles [n]. In this section, we use the fact that the random sequence
of successive states is a strictly decreasing sequence of subsets almost surely:

[n] ≡ R[n](0) ⊃ R[n](H̄1) ⊃ R[n](H̄2) · · · ⊃ R[n](H̄k) = ∅.

As discussed in Section 4, by assuming each Hi is an independent exponentially
distributed holding time, a continous-time Markov process is constructed which
represents the random risk set trajectory R[n].

The question is how to choose the rate functions for the holding times to en-
sure Ξm,n

(
R[m]

)
is a version of R[n] for all integers m ≥ n. Recall the rate func-

tion is a mapping from the current state to the positive reals τ : P([n]) → R+

where P([n]) is the power set of [n]. Exchangeability implies the rate function
must only be a function of the cardinality of the current state r ⊆ [n]. There-
fore the rate function is the mapping from the natural numbers to the positive
reals τ : N → R+. We write this equivalently as the sequence {τn}∞n=0. An argu-
ment essentially equivalent to that used in Section 4 of McCullagh, Pitman, and
Winkel (2008) leads to the following consistency condition on the rate function.

Proposition 4.7. A sequence of rate functions, {τn}∞n=0, gives rise to an ex-
changeable, Markov risk set process if

τn+1(1− q(n, 1)) = τn.

In other words, the characteristic index is proportional to the exponential failure
rate needed to ensure consistency of the continuous-time Markov process R[n].

Therefore the characteristic index fully characterizes the distribution of the
continuous-time Markov process R[n]. Given the risk set trajectory R[n] is in
one-to-one correspondence with T [n] almost surely the characteristic index also
fully characterizes the probability distributions Pn for each n ≥ 1.

5. Probability distribution function

In Section 4 we described the embedded discrete-time Markov chain within the
continuous-time Markov chain R[n]. Section 4.1 showed how this process is in
one-to-one correspondence with an exchangeable, Markov partial ranking pro-
cess. Section 4.3 proves the characteristic index to be the rate function necessary
to ensure the continuous-time Markov process R[n] is both consistent and ex-
changeable. Here we use this construction of R[n] to give an expression for the
probability distribution function, Pn, of T [n].

Let B ∈ OPn be a random partial ranking with associated consistent splitting
rule q(·, ·). Recall the probability distribution function is given by equation (1).
We re-write here in a more convenient form:

pn(B = b) =

#b∏
i=1

q(r�i , b
�
i) =

#b∏
i=1

λ(r�i , b
�
i)

ζ(r�i + b�i)
=

#b∏
i=1

λ(r�i , b
�
i)

ζ(r�i−1)
.
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where r�i = n−
∑i

j=1 b
�
j . The numerator term λ(·, ·) is the un-normalized splitting

rule, equal to (−1)d−1(Δdζ)r. The second equality is due to r�i−1 = r�i + b�i
for i = 1, . . . ,#b and r�0 = n.

The partial ranking b represents the sequence of subsets of particles that fail
at each consecutive failure time. Therefore ri = [n]\∪i

j=1 bi is the set of particles
still at risk after the ith failure time. Conditional on the partial ranking B = b,
proposition 4.7 yields the exponential failure rate for each holding time. Suppose
the current state R equals r ⊆ [n]. Then for any Borel set A the holding time H
has probability distribution function

P (H ∈ A | R = r) =

∫
u∈A

ζ(r�) exp
(
−ζ(r�)u

)
du

where r� is the cardinality of the set r. The above distribution is absolutely
continuous with respect to Lebesgue measure and therefore has the density g(u |
r) = ζ(r�) exp

(
−ζ(r�)u

)
. Based on this, we can define

fn(b, s1, . . . , s#b) :=Pn(B = b)

#b∏
i=1

g(si − si−1 | ri−1)

=

#b∏
i=1

q(r�i , b
�
i)ζ(r

�
i−1) exp

(
−ζ(r�i−1)(si − si−1)

)

=exp

(
−
∫ ∞

0

ζ(r�(t))dt

) #b∏
i=1

λ(r�i , b
�
i) (9)

where r0 = [n], s0 = 0 < s1 < · · · < s#b are realizations of the partial sums
of the holding times, and the function r�(t) is the cardinality of the risk set at
time t.

We now define the probability distribution, Pn, of T [n] = (T1, . . . , Tn), which
can be easily described in terms of the function fn introduced in (9). For every
sequence of Borel sets A1, . . . , An,

Pn(T1 ∈ A1, . . . , Tn ∈ An) =
∑

b∈OPn

∫
A�(b)

fn(b, s1, . . . , s#b)ds1 . . . ds#b (10)

where

A�(b) = {s1, . . . , s#b ∈ R
#b
+ : s1 < . . . < s#b}

∩ {∩j∈b1Aj × ∩j∈b2Aj · · · × ∩j∈b#b
Aj}.

The n-dimensional joint probability distribution given by equation (10) is
continuous in the sense that it has no atoms. For n ≥ 2, it is not absolutely
continuous with respect to Lebesgue measure in Rn because the distribution
has condensations on all diagonals implying that P (T1 = T2) = q(0, 2) > 0,
and likewise for arbitrary subsets. The one-dimensional marginal distributions
are exponential with rate ζ1. However, under a monotone continuous tempo-
ral transformation that sends Lebesgue measure to the measure ν(·) the risk
set R[n] evolves as an exchangeable, semi-Markov process. If g(t) = ν((0, t)) is
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the associated monotone continuous function then g−1(Ti) is exponential with
rate ζ1.

5.1. Sequential description

We now construct the conditional distribution function for the random vari-
able Tn+1 given T [n] = t[n]. Let b̄ ∈ OPn be the partial ranking induced by t[n]
and s̄1 < · · · < s̄#b̄ be the unique elements of t[n]. We write s̄ = (s̄1, . . . , s̄#b̄)
to denote the vector of unique elements of t[n].

Let t[n + 1] ∈ R
n+1
+ satisfy Ξn+1,n(t[n + 1]) = t[n]. That is, the restriction

to the first n particles is equal to t[n]. Let b ∈ OPn+1 be the partial ranking
induced by t[n+1]. Then the restriction of b to the first n particles is equal to b̄
(i.e., Ξn+1,n(b) = b̄). For each b ∈ Ξ−1

n+1,n(b̄) we write i�(b) to denote the block

that contains the (n+1)st particle. Each ordered partition b in the set Ξ−1
n+1,n(b̄)

either (1) has the same number of blocks as b̄ or (2) has one additional block
with the single element {n+ 1}. We write Ξ−1

n+1,n(b̄) = Φ1 ∪Φ2 to denote these
two disjoint sets. Let s1 < · · · < s#b be the unique elements of t[n + 1]. We
write s = (s1, . . . , s#b) to denote the vector of unique elements of t[n + 1]. If
the induced partial ranking b is an element of Φ1 then s = s̄. If instead b ∈ Φ2

then s−i�(b) = (s1, . . . , si�(b)−1, si�(b)+1, . . . , s#b) = s̄. We now define

g(b, s1, . . . , s#b) = fn+1(b, s1, . . . , s#b)/fn(b̄, s̄1, . . . , s̄#b̄).

Then for any Borel set A the conditional probability distribution function is
given by

P (Tn+1 ∈ A | T [n] = t[n]) =
∑
b∈Φ1

g(b, s̄1, . . . , s̄#b)1[s̄i�(b) ∈ A] (11)

+
∑
b∈Φ2

∫
A�(b,s̄)

g(b, s1, . . . , s#b)dsi�(b)

where 1[·] is the indicator function and

A�(b, s̄) = {s = (s1, . . . , s#b) ∈ R
#b
+ : s1 < . . . < s#b

and s−i�(b) = s̄ and si�(b) ∈ A}

Based on equation (11), we can provide a simple description of the predictive
distribution P (Tn+1 > t | T [n] = t[n]). See Appendix B for a detailed derivation.

First let X
(n+1)
1 and X

(n+1)
2 be independent random variables given T [n] = t[n].

Let the probability distribution forX
(n+1)
1 be absolutely continuous with respect

to Lebesgue measure. Therefore the hazard function is well-defined and set equal
to

h1(s | t[n]) = ζ(r�(s) + 1)− ζ(r�(s)) = (Δζ)(r�(s))

where r�(s) = #{i ∈ [n] : ti > s}. Then the survival distribution is

P (X
(n+1)
1 > t | T [n] = t[n]) = exp

(
−
∫ t

0

(Δζ)(r�(s))ds

)
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Recall s̄ denotes the unique elements of t[n] and b̄ the associated ordered

partition. The probability distribution for X
(n+1)
2 has discrete support s̄ ∪ {∞}.

At each s̄i define ri = r�[n](s̄i) and bi = b�[n](s̄i). We define the probability

distribution via its associated discrete hazard function

P (X
(n+1)
2 = s̄i | T [n] = t[n], X

(n+1)
2 ≥ s̄i) = 1− (Δbiζ)(ri + 1)

(Δbiζ)(ri)
. (12)

The discrete hazard is set equal to one at s̄#b̄+1 = ∞.

Equation (11) implies the distribution of Tn+1 is equal in law to X
(n+1)
1 ∧

X
(n+1)
2 conditional on T [n] = t[n]. This implies the predictive distribution can

be written as:

P (Tn+1 > t |T [n] = t[n]) = P (X
(n+1)
1 ∧X

(n+1)
2 > t | T [n] = t[n])

=P (X
(n+1)
1 > t | T [n] = t[n]) · P (X

(n+1)
2 > t | T [n] = t[n])

= exp

(
−
∫ t

0

(Δζ)(r�(s))ds

)
·
∏

j:s̄j≤t

(Δbjζ)(rj + 1)

(Δbjζ)(rj)
(13)

5.2. Weak continuity of predictions

As seen above, tied failures are an intrinsic aspect of every exchangeable Markov
survival process; in practice, ties usually occur as a result of rounding, and are
not intrinsic. If exchangeable Markov survival processes are to have any role in
applied work, it is essential that the model should not be sensitive to rounding.
Sensitivity to rounding is addressed in this section by asking for exchangeable
Markov survival processes whose predictive distributions are weakly continuous.

Section 5.1 shows the predictive distribution of Tn+1 given the sequence
T [n] = t[n] of previous failures can be described by multiplying the predictive
distributions of two independent random variables: one a discrete probability
distribution with support on the unique failure times of t[n] and ∞, and the
other absolutely continuous with respect to Lebesgue measure. The predictive
distribution is weakly continuous if a small perturbation of the failure times
gives rise to a small perturbation of the predictive distribution. Formally, for
each n ≥ 1, and for each non-negative vector t[n],

lim
ε→0

P (Tn+1 > t | T [n] = t[n] + ε) = P (Tn+1 > t | T [n] = t[n])

at each continuity point, i.e., t > 0 not equal to one of the prior times t[n].
Weak continuity is an additivity condition on the discrete hazard function

given in equation (12). In particular, the conditional survival distribution is
weakly continuous if and only if for every integer r ≥ 0 and d ≥ 1

(Δdζ)r+1

(Δdζ)r
=

(Δζ)r+d

(Δζ)r
.
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The above condition implies equality between d failures occurring as singletons
ε-apart and d failures occurring simultaneously with r particles remaining at
risk in both cases.

Theorem 5.1 (Continuity of predictions). An exchangeable, Markov survival
process has weakly continuous predictive distributions if and only if it is a har-
monic process: ζn ∝ ψ(n+ ρ)−ψ(ρ) for some ρ > 0. The iid exponential model
is included as a limit point.

To see that it is not satisfied by any other exchangeable, Markov survival
process, it is sufficient to consider a sequence in standard form beginning with
(Δζ)0 = 1, (Δζ)1 = ρ/(ρ + 1) < 1. Then the key continuity condition de-
termines the subsequent sequence (Δζ)r = ρ/(ρ + r) in conformity with the
harmonic series. The only exception is the iid exponential process, which arises
in the limit ρ → ∞ in which tied failures occur with probability zero. All other
exchangeable Markov survival processes have conditional survival distributions
that are discontinuous as a function of the configuration t[n]. A detailed proof
of Theorem 5.1 can be found in Appendix C.

6. Key behavior

In this section, we describe key behavior of the harmonic process. Questions of
interest are mostly related to the behavior of the sequences T1, . . . , Tn both for
finite n and the limit as n → ∞. Some very natural questions are related to the
number and the sizes of the blocks. Proofs of these results can be found in the
Appendix.

Remark 6.1. By Sections 5 and 4.2.1, the function fn(b, s1, . . . , s#b) for the
harmonic process is equal to

ν#bρ−↑n exp

(
−ν

∫ ∞

0

(
ψ(r�(s) + ρ)− ψ(ρ)

)
ds

) #b∏
i=1

Γ(bi)

where ρ↑n = ρ(ρ+ 1) . . . (ρ+ n− 1) is the rising factorial, ψ(·) is the derivative
of the log gamma function, and Γ(·) is the gamma function.

Following Section 5.1, the hazard function for X
(n+1)
1 for the harmonic pro-

cess is h(t | t[n]) = ν/(ρ+ r�(t)), implying that the cumulative hazard

H(t | t[n]) = ν
t− s̄j

ρ+ r�(s̄j)
+

∑
i:s̄i<t

ν
s̄i − s̄i−1

ρ+ r�(s̄i−1)

where s̄0 = 0 and s̄j = max{s̄i : s̄i < t}.
The cumulative discrete hazard function for X

(n+1)
2 for the harmonic process

is ∏
i:s̄i≤t

(Δbiζ)(ri + 1)

(Δbiζ)(ri)
=

∏
i:s̄i≤t

ρ+ ri
ρ+ ri + bi

.
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For small ρ, the discrete component is essentially the same as the right-continuous
version of the Kaplan-Meier product limit estimator. Note that exchangeability
implies the joint conditional survival probability, P (Tn+1 > t, Tn+2 > t′ | T [n] =
t[n]) is distinct from the Kaplan-Meier product estimate. Figure 1 shows several
simulated harmonic survival processes for various choices of ρ > 0 along with
the predictive distribution function.

Fig 1. Simulated harmonic process, together with the conditional survival function (right
panel). The lower two series are seeded with 50 initial values, independent, uniform on (1, 2).
Parameter values: ν = ρ = 1 in rows 1, 3; ν = ρ = 10 in rows 2, 4. Among the first 400
failure times, the number of distinct values was 15, 93, 58, 110, respectively, including the
initial seeds.

6.1. Number of blocks & block sizes

Here we investigate the expected number of blocks μn = E[#B] for the random
ordered partition B ∈ OPn with probability distribution pn. This depends
critically on the associated splitting rule q(·, ·). In particular, the mean number
of blocks satisfies the recurrence relation
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μn = 1 +

n∑
d=1

(
n
d

)
q(n− d, d)μn−d

with μ0 = 0 and μ1 = 1. The interest here is in the behavior of μn for large n.

Lemma 6.2. For the harmonic process, the mean number of blocks μn is a
non-decreasing function of n that satisfies the recursion

μn = 1 + ζ−1
n

n∑
d=1

Γ(n+ 1)

Γ(n+ ρ)

Γ(n− d+ ρ)

Γ(n− d+ 1)

μn−d

d
.

This implies μn ∼ log2(n) where xn ∼ yn if limn→∞ xn/yn = C ∈ (0,∞) for xn

and yn two non-negative sequences.

See Appendix D for the proof. Remark 6.3 gives an approximate description
of how the number of blocks of a given size grows as a function of n.

Remark 6.3. The number of blocks of size j is approximately Poisson with
asymptotic rate proportional to log(n)/j with independent components for j �=
j′.

See Appendix E for a sketch of the proof for Remark 6.3. Lemma 6.4 answers
the question of interest of how the block size grows as a function n.

Lemma 6.4. The expected number of particles in the first block satisfies
E[#B1] ∼ n/(ρ log(n)). Asymptotically,

log (#B1)

log(n)

D→ U

where U is the uniform distribution on (0, 1).

See Appendix D for the proof.

7. Beta-splitting processes

As stated in Section 4.2.1, a natural family of dislocation measures are those
conjugate to the binomial splitting probabilities, �(dx) = xρ−1(1 − x)β−1dx
for ρ > 0 and β > −1. We refer to exchangeable Markov survival processes aris-
ing from this conjugate choice of dislocation measure with zero erosion measure
(c = 0) as beta-splitting processes. While the harmonic process (i.e., β = 0) com-
poses the natural subset of beta-splitting processes for time-to-event data, one
may ask whether alternative choices of β may well approximate the behavior
of the harmonic process. In this section, we answer in the negative. Lemma 7.1
shows that the asymptotic behavior is a discontinous function of β. In particular,
we see marked difference in asymptotic behavior for β > 0 and β < 0.

Lemma 7.1. Let μn(ρ, β) denote the expected number of blocks given n particles
for the beta-splitting process with ρ ∈ (0,∞) and β ∈ (−1,∞). Then
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1. For β > 0, the characteristic index is

ζn = B(ρ, β)−B(ρ+ n, β) = B(ρ, β)

(
1− ρ↑n

(ρ+ β)↑n

)

where ρ↑k = ρ · (ρ+1) . . . (ρ+k−1) is the ascending factorial and B(ρ, β)
is the beta function. The expected number of blocks satisfies

μn(ρ, β) ∼ log(n)

where xn ∼ yn if limn→∞ xn/yn = C ∈ (0,∞) for xn and yn two non-

negative sequences. For β > 0 we have C = B(ρ,β)
ψ(ρ+β)−ψ(ρ) .

The fraction of particles in the first block, n−1#B1,n, is asymptotically
distributed Beta(β, ρ). Therefore, the relative frequencies within each block
are given by

(P1, P2, . . .) = (W1, W̄1W2, W̄1W̄2W3, . . .)

where Wi are independent beta variables with parameters (β, ρ), and W̄i =
1 − Wi. The number of blocks of size j is approximately Poisson with
asymptotic rate proportional to 1/j with independent components for j �=
j′.

2. For β ∈ (−1, 0), the characteristic index is

ζn =

n−1∑
j=0

Γ(j + ρ)Γ(β + 1)

Γ(j + 1 + β + ρ)
.

The expected number of blocks satisfies μn ∼ n−β where C = −Γ(ρ+ β +
1)/(Γ(ρ)β). For all ρ > 0,

lim
n→∞

P (#B1,n = d) = gβ(d)

where gβ(d) is defined by

gβ(d) =
−β · Γ(d+ β)

Γ(d+ 1) · Γ(1 + β)
=

−β

Γ(1 + β)
dβ−1

for large d. So the number of particles in the first block has a power law
distribution of degree 1− β.

Proof can be found in Appendix F.

7.1. Splitting rules of Gibbs-type

A question of interest is whether the family of beta-splitting processes can be
characterized in a similar manner to Aldous’ beta-splitting models for Gibbs
fragmentation trees (McCullagh, Pitman, and Winkel, 2008). Proposition 7.2
below states that like in the fragmentation tree setting, the family of beta-
splitting processes are the only exchangeable, Markov survival processes with
Gibbs-type splitting rules.
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Proposition 7.2. Define splitting rules of Gibbs-type to be consistent splitting
rules of the form

q(r, d) =
w1(r)w2(d)

Z(r + d)
for all r ≥ 0, d ≥ 1 (14)

for two non-negative sequences of weights w1(r) ≥ 0 with r ≥ 0, w2(d) with
d ≥ 1, and normalization constants Z(n), n ≥ 1. Then the beta-splitting rules
are the only consistent splitting rules of Gibbs-type.

By the integral representation, the beta-splitting process has splitting rule:

q(r, d) =
1

Z(r + d)

∫ 1

0

xr+ρ−1(1− x)d+β−1dx

=
Γ(r + ρ)Γ(d+ β)

Γ(r + d+ ρ+ β) · ζr+d
=

Γ(r + ρ)Γ(d+ β)

Z(r + d)
.

for all r ≥ 0, d ≥ 1. The coefficients satisfy ρ > 0 and β > −1. Therefore, we can
see the beta-splitting rules are a two-parameter family of Gibbs-type. It rests
to show that these are the only splitting rules of Gibbs-type.

Proof. Start from equation (14) and assume w1(0) = w2(1) = 1 (i.e., Z(1) = 1
and q(0, 1) = 1 which is true for all splitting rules). For any consistent splitting
rule, this implies wl(j) > 0 for all j ≥ 1. The consistency criterion (3) in terms
of Wl(j) = wl(j + 1)/wl(j) now gives

W1(r) +W2(d) =
Z(r + d+ 1)− w1(r + d)

Z(r + d)
= f(r + d)

for all r ≥ 0 and d ≥ 1. The righthand side is a function of r+ d, f(r+ d). This
implies that for j′ ≥ 0 and j ≥ 1

W1(j
′) +W2(j + 1) = f(j′ + j + 1) = W1(j

′ + 1) +W2(j)

⇒ W2(j + 1)−W2(j) = W1(j
′ + 1)−W1(j).

Therefore W2(j + 1) −W2(j) for j ≥ 1 and W1(j
′ + 1) −W1(j

′) for j′ ≥ 0 are
all equal to the same constant b ∈ R. Hence, W1(j

′) = a1 + b · j′ for j′ ≥ 0 and
a1 > 0, and W2(j) = a2 + b · j for j ≥ 1 and a2 > −b. Now, either b = 0 or we
have

w1(j) = W1(0) · · ·W1(j − 1) =

j−1∏
q=0

(a1 + b · q)

= bj
j−1∏
q=0

(a1
b

+ q
)
= bj

Γ(a1/b+ j)

Γ(a1/b)

and

w2(j) = W2(1) · · ·W2(j − 1) =

j−1∏
q=1

(a2 + b · q)
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= bj−1

j−1∏
q=1

(a2
b

+ q
)
= bj−1Γ(a2/b+ j)

Γ(a2/b+ 1)

Reparameterizing by β = a2/b and ρ = a1/b yields

q(r, d) =
w1(r)w2(d)

Z(r + d)
=

1

Z(r + d)

brΓ(r + ρ)

Γ(ρ)

bd−1Γ(d+ β)

Γ(1 + β)
.

Setting Z̃(r+d) = Z(r+d)b1−r−dΓ(ρ)Γ(1+β) to be the normalization constant
then q(r, d) = Z̃−1(r+ d)Γ(r+ ρ) · Γ(d+ β). The case b = 0 is the limiting case
of the beta-splitting rules where β → ∞ and ρ → ∞ such that β/ρ → θ.
Then q(r, d) ∝ θd−1.

8. Connections to the literature

8.1. Bayesian survival analysis

In this paper we have characterized the class of exchangeable, Markov sur-
vival processes – stochastic processes giving rise to infinitely exchangeable non-
negative sequences (T1, T2, . . .). By de Finetti’s theorem (see, e.g., Aldous (1985)),
the distribution of every such countably infinite sequence can be expressed as a
mixture of independent, identically distributed (i.i.d.) sequences. Based on the
de Finetti approach, Doksum (1974) introduced a class of random distribution
functions F (t) which are said to be neutral to the right (NTR) if the normalized
increments

F (t1),
F (t2)− F (t1)

1− F (t1)
, . . . ,

F (tk)− F (tk−1)

1− F (tk−1)

are independent for all t1 < t2 < · · · < tk. A key property of random NTR
distribution functions, is that the posterior distribution is also NTR (Doksum,
1974, Theorem 4.2). Doksum (1974, Theorem 3.1) showed that an NTR distri-
bution function F on R+ can be written in terms of a positive Lévy process Z
on R+:

F (t) = 1− exp(−Z(t))

The Lévy process Z is assumed to have non-negative independent increments, be
non-decreasing a.s., be right continuous a.s., Z(0) = 0 a.s., and limt→∞ Z(t) =
∞ a.s.. We limit focus to stationary Lévy processes which are invariant under
translation in R+. The non-negative random sequence (T1, T2, . . .) given Z is
then a sequence of independent random variables each with cumulative distri-
bution function F (·).

As these processes are positive, it is natural to work with the cumulant func-
tion

K(t) = log
(
E
[
e−Z(t)

])
= log

(
E
[
e−tX

])
.

for t ≥ 0 where X = Z(1) is an infinitely divisible distribution. The Lévy-
Khintchine characterization for positive, stationary, Lévy processes implies
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K(t) = −
[
γ · t+

∫ ∞

0

(1− e−ty)w(dy)

]
(15)

for some γ ≥ 0 and some measure w on R+, called the Lévy measure, such that
the integral is finite for t > 0. The unconditional multivariate survival function
is

P (T1 > t1, . . . , Tn > tn) =E [P (T1 > t1, . . . , Tn > tn | Z)]

=E

[
n∏

i=1

exp(−Z(ti))

]

=exp

(∫ ∞

0

K(r�n(s))ds

)

where r�n(t) = #{i ∈ [n] : ti > t}. For example, the cumulant function and
the Lévy measure for the gamma process considered by Kalbfleisch (1978) and
Clayton (1991) are

K�(t) = −ν log(1 + t/ρ) and w�(dy) = νy−1e−ρy dy.

The cumulant function and the Lévy measure for the harmonic process are

K(t) = −ν (ψ(ρ+ t)− ψ(ρ)) and w(dy) = νe−ρy dy/(1− e−y),

where ψ is the derivative of the log gamma function.
Processes of this type have been investigated by Doksum (1974), Ferguson

and Phadia (1979), Kalbfleisch (1978), Clayton (1991), Walker and Muliere
(1997), and James (2006). In particular, Hjort (1990) built the associated Lévy
process Z indirectly by constructing a prior distribution, termed the beta pro-
cess, on the space of cumulative hazard functions. Walker and Muliere (1997) in-
stead constructed priors directly on the cumulative distribution function (cdf) F .
Termed beta-Stacy processes, Walker and Muliere construct the random cumu-
lative distribution function via the associated Lévy process Z. In both instances,
the process is defined via the Lévy process, its associated Lévy measure, and
the representation of NTR processes introduced by Doksum (1974).

By standard Bayesian calculations it can be shown that the sequence of un-
conditional distributions for the random variables T [n] generated via the above
Lévy process construction are exchangeable, Markov survival processes with
characteristic index ζn = −K(n) evaluated at n = 1, 2, . . .. See, for instance,
the proof of Proposition 1 in Lijoi, Prunster, and Walker (2008). The converse is
also true. Namely every exchangeable, Markov survival process can be generated
via the above Lévy process construction. See Appendix G for details. Therefore
every exchangeable Markov survival process corresponds to a particular choice
of Lévy process and thus fits naturally within the existing literature.

8.2. Regenerative composition structures

As stated previously, an exchangeable Markov survival process is an exchange-
able Markov partial ranking process embedded in continuous time. The unla-
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belled exchangeable Markov partial ranking counting only block sizes embedded
within the survival process is equivalent to a particular regenerative composition
structure (Gnedin and Pitman, 2005). A composition of n is an order-dependent
integer partition λ = (n1, . . . , nk) where

∑
j nj = n. A random composition of n

is a random variable Cn taking values in the space of compositions of n. A com-
position structure is a sequence of random compositions (Cn)∞n=1. The structure
is regenerative if given the first part of Cn is m, then the remaining composition
of n−m is distributed like Cn−m.

9. Parameter estimation

Consider the problem of parameter estimation for a two parameter Markov sur-
vival process with characteristic index of the form ζn = νΨ(n; ρ) where Ψ(n; ρ) =
Φ(n+ρ)−Φ(ρ) for ν > 0, ρ > 0 with Φ(·) given. Such a family is generated from
a family of Lévy measures proportional to w(dy)e−ρy, so the Lévy process Z is
expected to have larger atoms if ρ is small. The gamma and harmonic processes
are of this form with w((0, 1)) and w((1,∞)) both infinite.

The goal in this section is estimation of the parameters ρ and ν from ob-
servations t[n] = (t1, . . . , tn). In this paper, we consider maximum likelihood
estimation. Let b and s = (s1, . . . , s#b) be the ordered partition and the ordered
unique times (i.e., s1 < · · · < s#b) induced by t[n]. Then the log-likelihood is
given by:

log(fn(b, s1, . . . , s#b; ν, ρ))

= (#b) log(ν)− ν

∫ ∞

0

(
Ψ(r�(u); ρ)

)
du+

#b∑
i=1

log (λ(ri, bi; ρ))

where ri = r�(si) and bi = b�(si). Note that the second term is only a function
of ρ. Therefore, for fixed ρ, the log-likelihood as a function of ν has a two-
dimensional sufficient statistic:

#b,

∫ ∞

0

Ψ(r�(u); ρ)du.

Taking the first derivative of the log-likelihood the maximum-likelihood estimate
is the ratio

ν̂ =

[
1

#b

∫ ∞

0

Ψ(r�(u); ρ)du

]−1

.

The Fisher information for log(ν) is E[#B], suggesting the asymptotic variance
of log(ν̂) is 1/E[#B]. As shown in section 6.1, for the gamma and harmonic
process E[#B] ∝ log2(n). Therefore, in the absence of censoring, the estimator
is consistent but the rate of convergence is very slow.

One natural alternative to maximum likelihood estimation for the parame-
ter ρ is to consider the product of the per-particle death rate νΨ(1; ρ) and the
total particle time at risk

∫
R�(t) dt, and to estimate ρ by setting the product

to the observed number of deaths, i.e.,
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#b = ν̂Ψ̂(1; ρ)

∫ ∞

0

r�(t) dt. (16)

In the absence of censoring, this is equivalent to setting the mean survival time
T̄n to its expected value 1/ζ̂1. But cov(Ti, Tj) = 1/ζ22 for each pair i �= j implies
that

var(T̄n) = 1/(nζ21 ) + (n− 1)/(nζ22 ) → 1/ζ22

does not tend to zero as n → ∞. Nonetheless, this second equation is less sen-
sitive than the first to rounding of survival times, which is a desirable property
for applied work. The parameter pair can then be estimated by iteration. We
present both maximum likelihood estimates for the parameter pair and esti-
mates using the natural relation in the numerical example below.

9.1. Impact of censoring on parameter estimation

To each unit i ∈ [n], there often corresponds an observational interval [0, ci]
where ci is some arbitrary positive censoring time. The event time recorded
for unit i is Yi = min(Ti, ci). So if Yi = ci the event is a censoring time;
otherwise, if Yi < ci, the event is known to be death or failure. To each unit,
let Δi = 1[Yi = c] be the indicator of whether the event is a censoring time.

Let (Y [n],Δ[n]) be the random pair of event times and censoring indicators.
Then we re-define the random Boolean function Ri : R+ → {0, 1} to be a
function of (Yi,Δi)

Ri(t) = 1[Yi > t]1[Δi = 0] + 1[Yi ≥ t]1[Δi = 1].

That is, the particle i is “at risk” at time t if it is known to be alive at time t,
which includes being censored at time t.

Given a realization (y[n], δ[n]), we now consider how to construct the inputs to
fn(b, s1, . . . , s#b). First, the order partition b is induced by the restriction of y[n]
to the set of failure times {i ∈ [n] : δi = 0}. Similarly the ordered sequence s =
(s1, . . . , s#b) is also induced by this restricted set. The cardinality of the risk
set is given by r�(t) =

∑n
i=1 ri(t) where ri the re-defined risk trajectory. Then

equation (9) is correct with the above adjustments to the definition of the risk
set trajectory r(t), ordered partition b, and ordered sequence s.

Thus censoring has a relatively trivial effect on probability calculations and
thus on associated statistical procedures. A more general condition on the cen-
soring mechanism is introduced in Appendix H. The condition includes inde-
pendent censoring (Anderson et al., 1993) and allows generalization from deter-
ministic censoring.

9.2. Numerical example

Consider parameter estimation for a set of failure and censoring times (in weeks)
of the 6-MP subset of leukemia patients taken from Gehan (1965):

6, 6, 6, 6�, 7, 9�, 10, 10�, 11�, 13, 16, 17�, 19�, 20�, 22, 23, 25�, 32�, 32�, 34�, 35�
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There are 9 uncensored observations, and a total risk time of 359 weeks. As-
suming the survival times are iid exponential with rate parameter, θ, then the
maximum likelihood estimate of θ is given by 9/359, or an expected survival
time of 39.89 weeks.

Consider the two-parameter Markov survival process defined in Section 9,
specifically the harmonic and gamma processes. Table 1 provides maximum
likelihood estimates for ρ and ν. For the gamma process, the empirical Bayes
estimate of the rate is then ν̂ · log(1+ ρ̂−1) ≈ 2.47×10−2, implying the expected
survival time is 40.52 weeks. The expected time is the same for the harmonic
process.

Table 1

Maximum likelihood estimates for two processes

Harmonic process Gamma process
Parameter Est. Std. Error Est. Std. Error

ρ 21.45 19.63 20.95 19.61
ν 0.53 0.44 0.53 0.44

Estimation using the maximum likelihood estimate of ν given ρ and the
natural relation between the marginal survival rate associated with the gamma
process and θ̂

ν̂(ρ) (Φ(1 + ρ)− Φ(ρ)) = θ̂ = 9/359

yields (ρ̂, ν̂) = (19.24, 0.49) for the gamma process and (19.73, 0.49) for the
harmonic process. Supplementary figure 1 shows that the profile likelihood for ρ
is relatively flat for values sufficiently removed from the origin. For the harmonic
process, the figure suggests a 95% confidence interval of approximately [1.3, 5.1]
for log(ρ), while under the gamma process, there is an approximate confidence
interval of [1.2, 5.1]. Twice the difference in the log-likelihoods at their respective
maxima is 8.12× 10−5.

Figure 2 shows the conditional survival distribution given the observed risk
set trajectory. The empirical Bayes estimate of the conditional distribution for
the harmonic process is approximately equal to that of the gamma process.
Both are approximately an average of the Kaplan-Meier product limit estimator
and the maximum likelihood exponential estimator of the conditional survival
distribution.

Appendix I discusses the Markov survival process and parameter estimation
when covariate effects are included.

9.3. Ties as a result of numerical rounding

In Section 9, individuals having the same recorded survival time are regarded as
failing simultaneously. This viewpoint assumes that the data are exact survival
times generated by the underlying exchangeable Markov survival process. In
practice, grouped data are observed due to rounding of intrinsically continuous-
time processes. Rounding reflects the granularity at which the data is collected;
for example, failure may only be known up to the day. In our numerical exam-
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Fig 2. Conditional survival distribution for leukemia patients

ple, remission was known up to the week. Ideally exact survival times would
be observed, but this is often not the case unless patients are under intense
supervision.

Here we consider the effect on the likelihood when actual failure times are in
fact distinct, so that tied values arise solely as a result of numerical rounding
(e.g., grouping). The integral in the exponent of the joint density is a continuous
function of the risk set trajectory R(t), so an ε-perturbation of failure times has
an O(ε) effect on the integral, which is ignored. However, the remaining term is
not a continuous function of the observations, so an ε-perturbation by rounding
may have an appreciable effect on the likelihood. Most obviously, the statistic
#b, the number of distinct failure times, is not continuous as a function of t[n];
if ties are an artifact of rounding, then #b is the total number of failures.

While the likelihood and parameter estimation are affected by ties as a result
of numerical rounding, the conditional survival distribution for the harmonic
process given ρ and ν is unaffected due to the weak continuity of predictive
distributions. This suggests it may be best to regard ρ as a fixed “tuning pa-
rameter”. As all other processes have discontinuous predictive distributions, the
use of the harmonic process in applications where ties are the result of numerical
rounding (e.g., grouping) seems most natural.

Appendix A: Proof of Proposition 4.5

Proof. By Proposition 4.2, we know consistent splitting rules are completely
determined by the set of singleton splitting rules, {q(n, 1) | n ≥ 0} where
q(0, 1) = 1 by definition. By construction in Definition 4.4, we have q(r, 1) =
Δζr/ζr+1 = 1− ζr/ζr+1. Considering the standardized sequence and using this
relation yields a one-to-one correspondence between the set of singleton splitting
rules and the characteristic index. Therefore the characteristic index completely
determines a splitting rule.
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Showing equation (6) yields a splitting rule that satisfies the consistency
condition (3) completes the proof. The left hand side is given by

(1− q(n, 1))q(n− d, d) =
ζn

ζn+1

(−1)d−1(Δdζ)n−d

ζn

=
(−1)d−1(Δdζ)n−d

ζn+1

The right hand side is given by

q(n− d+ 1, d) + q(n− d, d+ 1) =
(−1)d−1(Δdζ)n−d+1

ζn+1
+

(−1)d(Δd+1ζ)n−d

ζn+1

=
(−1)d−1

ζn+1
·
[
(Δdζ)n−d+1 − (Δd+1ζ)n−d

]
=

(−1)d−1

ζn+1
· (Δdζ)n−d

So the splitting rule satisfies the consistency condition (3). By definition, the
splitting rule must be non-negative, and therefore the sequence defines a consis-
tent splitting rule if the forward differences are non-negative – i.e.,
(−1)d−1(Δdζ)r ≥ 0 for all r ≥ 0, d ≥ 1.

Appendix B: Sequential description – technical details

Here we provide a detailed derivation of the conditional survival distribution
P (Tn+1 > t | T [n] = t[n]). First, for A = (t,∞) each term within the first sum
in equation (11) satisfies

g(b, s̄1, . . . , s̄#b)1[s̄i�(b) > t]

= exp

(
−
∫ t

0

(Δζ)(r�(s))ds

) ∏
j:s̄j≤t

[
λ(rj + 1, bj)

λ(rj , bj)

]

× exp

(
−
∫ s̄i�(b)

t

(Δζ)(r�(u))du

)
λ(ri�(b), bi�(b) + 1)

λ(ri�(b), bi�(b))

×
∏

j<i�(b):t>s̄j

λ(rj + 1, bj)

λ(rj , bj)
1[s̄i�(b) > t]

The second term is equal to∫
A�(b)

g(b, s1, . . . , s#b)dsi�(b)

= exp

(
−
∫ t

0

(Δζ)(r�(s))ds

) ∏
j:s̄j≤t

[
λ(rj + 1, bj)

λ(rj , bj)

]
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×
∫
A�(b)

exp

(
−
∫ si�(b)

t

(Δζ)(r�(u)du)

)
λ(ri�(b), 1)

×
∏

j<i�(b):t>s̄j

λ(rj + 1, bj)

λ(rj , bj)
dsi�(b).

So each term contains

exp

(
−
∫ t

0

(Δζ)(r�(s))ds

) ∏
j:s̄j≤t

[
λ(rj + 1, bj)

λ(rj , bj)

]
(17)

We start by factoring out this common term. We then note that the denominator
for every term can be written in terms of the function f from equation (9). First,
let r(t) = {i ∈ [n] : t[n] > t}. Then define b̄t = b̄

∣∣
r(t)

to be the restriction of the

ordered partition b̄ to the particles in r(t). If r(t) = ∅ then the denominator is
equal to one (i.e., f0(∅) = 1). Otherwise, define j� = argmini∈[n]{ti : ti > t}.
Then the denominator is equal to

fr�(t)(b̄t, s̄j� − t, . . . , s̄j�+#b̄t − t) = exp

(
−
∫ ∞

t

(Δζ)(r�(s))ds

) ∏
j:s̄j>t

λ(rj , bj).

(18)
In other words, the denominator is the function f evaluated at the ordered
partition and unique times induced by t[r(t)]−t. We factor out this denominator
as well. The remaining terms in the sum are given by

∑
b∈Φ1

exp

(
−
∫ s̄i�(b)

t

ζ(r�(u) + 1)du

)
λ(ri�(b), bi�(b) + 1)

×
∏

j<i�(b):t>s̄j

λ(rj + 1, bj)1[s̄i�(b) > t]

×
∏

j>i�(b):t>s̄j

λ(rj , bj) · exp
(
−
∫ ∞

s̄i�(b)

ζ(r�(u))du

)

+
∑
b∈Φ2

∫
A�(b)

exp

(
−
∫ si�(b)

t

ζ(r�(u) + 1)du

)
λ(ri�(b), 1)

×
∏

j<i�(b):t>s̄j

λ(rj + 1, bj)

×
∏

j>i�(b):t>s̄j

λ(rj , bj) · exp
(
−
∫ ∞

si�(b)

ζ(r�(u))du

)
dsi�(b).

The above is equivalent to marginalizing over the n + 1st particle in the joint
distribution of Tn+1 and T [r(t)] with origin t instead of 0. The linear time-
change preserves the consistency and Markovian properties and so the above
sum is equal to equation (18). Therefore, these terms cancel and we are left
with equation (17) equal to P (Tn+1 > t | T [n] = t[n]).
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Appendix C: Proof of Theorem 5.1

Here we present the conditions for the predictive distribution, P (Tn+1 >t|T [n] =
t[n]), to be a weakly continuous function of t[n]. For the predictive distribution
to be right continuous, the atomic component (second term in equation (13)) of
the predictive distribution must satisfy

(Δd−1ζ)(r + 2)

(Δd−1ζ)(r + 1)
· (Δζ)(r + 1)

(Δζ)(r)
=

(Δdζ)(r + 1)

(Δdζ)(r)

for r ≥ 0 and d > 1. On the other hand, for the function to be left continuous,
the atomic component must satisfy

(Δζ)(r + d)

(Δζ)(r + d− 1)
· (Δ

d−1ζ)(r + 1)

(Δd−1ζ)(r)
=

(Δdζ)(r + 1)

(Δdζ)(r)

Recursive substitution shows the two conditions to be equal and weak continuity
holds if

(Δζ)(r + d)

(Δζ)(r)
=

(Δdζ)(r + 1)

(Δdζ)(r)
(19)

It is now shown that such a condition is uniquely satisfied by the harmonic
process.

Proof. Recall the definition of the kth order forward differences

λ(r, d) = (Δdζ)(r) =

d∑
j=0

(−1)d−j

(
d

j

)
ζr+j

which implies that this forward difference is a linear function of the set {ζr, . . . ,
ζr+d}. Start by considering the standardized characteristic index (ζ1 = 1). First,
let ζ2 > 0 be fixed.

Let n = r + d > 2 and d ≥ 1. Then equation (19) becomes

(Δζ)(n)

(Δζ)(r)
=

(Δdζ)(r + 1)

(Δdζ)(r)

⇒ (Δζ)(n) · (Δdζ)(n− d) = (Δdζ)(n− d+ 1) · (Δζ)(n− d)

By definition, (Δζ)(n) is a linear function of {ζn, ζn+1} while (Δdζ)(r) is a
function of {ζr, . . . , ζn}. Therefore, the left hand side is a linear function of
ζn+1 given {ζi}i≤n. On the right hand side, (Δdζ)(n − d + 1), is a function
of {ζn−d+1, . . . , ζn+1} while (Δζ)(n − d) is a function of {ζn−d, ζn−d+1}. Since
d ≥ 1, both sides are linear in ζn+1. Therefore solving for ζn+1 shows the
characteristic index is a deterministic function of the previous characteristic
index values {ζ1, . . . , ζn}.

The above argument holds if the coefficient of ζn+1 is nonzero. The coefficient
is equivalently zero if λ(n− d, d) = λ(n− d, 1). Now, suppose equality holds for
all d ∈ [n]. By definition, the splitting rule satisfies
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1 =

n∑
d=1

(
n

d

)
q(n− d, d)

ζn =

n∑
d=1

(
n

d

)
λ(n− d, d) by definition

ζn =

n∑
d=1

(
n

d

)
λ(n− d, 1) by assumption

ζn =

n∑
d=1

(
n

d

)
(ζn−d+1 − ζn−d) by definition

ζn =
1

n− 1

[
n · ζn−1 −

n∑
d=2

(
n

d

)
(ζn−d+1 − ζn−d)

]

which implies that ζn is again a function of the previous characteristic indices.
The above argument shows ζk is a deterministic function of {ζ1, ζ2} for k ≥ 3.

However, ζ2 is constrained by choice of ζ1. In particular, the holding times satisfy
ζn+1 = ζn/(1− q(n, 1)). Moreover, the splitting rule must satisfy 0 ≤ q(n, 1) ≤
1/(n+ 1). Therefore

ζn ≤ ζn+1 ≤
(
1 +

1

n

)
ζn

This translates to ζ2 = ζ1(1 + c) for some c ∈ [0, 1]. It rests to show a corre-
spondence between c and the parameter ρ controlling the harmonic process.

For the harmonic process,

νΓ(1)/ρ = ζ1

so that ζ1ρ = ν. Then due to the normalization of the splitting rule

ζ2 =

(
2

1

)
νΓ(1)

(1 + ρ)
+

(
2

2

)
νΓ(2)

ρ · (1 + ρ)

= ζ1

[
1 +

ρ

1 + ρ

]

This establishes the correspondence between c and ρ and therefore between all
{ζ1, ζ2} that define continuous survival functions and the set of all harmonic
processes with parameters ρ and ν.

Proposition C.1. If λ(m − d, d) = 0 for fixed m ≥ 1 and for all 2 ≤ d ≤ m,
then ζn ∝ n for all n. Thus the only process with trivial forward differences is
when Ti are iid exponential.

Proof. Consider the standardized sequence, ζ1 = 1, and start by showing that
λ(m − d, d) = 0 implies that ζk = k for k ≤ m. Indeed, the condition implies
that ζm = m and q(m− 1, 1) = 1/m. Consistency implies

(1− q(m− 1, 1)) · q(m− 1− d, d) = q(m− 1− d, d+ 1) + q(m− 1− d+ 1, d)
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= q(m− (d+ 1), (d+ 1)) + q(m− d, d)

= q(m− d, d)

=

{
0 if d ≥ 2

1/m if d = 1

This implies q(m − 1 − d, d) = 0 for d ≥ 2 which implies q((m − 1) − 1, 1) =
1/(m − 1) which is equivalent to ζm−1 = m − 1. Recursively applying this
argument yields ζk = k for all k ≤ m.

It rests to show that ζk = k for k < n implies ζn = n. The normalization
condition of the splitting rule implies

n∑
d=1

(
n

d

)
(Δdζ)(n− d) = ζn

Now study the dth forward differences:

(Δdζ)(n− d) =
d∑

k=0

(−1)d−k

(
d

k

)
ζn−d+k

= ζn +

d−1∑
k=0

(−1)d−k

(
d

k

)
(n− d+ k)

= ζn − n+ 1[d = 1] by Lemma C.2

Plugging into the normalization condition yields

ζn =

n∑
d=1

(
n

d

)
[ζn − n+ 1[d = 1]]

= 2nζn − n · (2n − 1)

⇒ ζn = n

which completes the proof.

Lemma C.2.

d−1∑
k=0

(−1)d−k

(
d

k

)
(n− d+ k) = −n+ 1[d = 1]

Proof. First note
∑d

k=0(−1)d−k
(
d
k

)
= 0 and therefore

d−1∑
k=0

(−1)d−k

(
d

k

)
(n− d) = −(n− d)

It was previously shown that
∑d

k=0(−1)d−k
(
d
k

)
k = 1[d = 1] which implies

d−1∑
k=0

(−1)d−k

(
d

k

)
k =

{
0 if d = 1
−d if d �= 1

Adding these together proves the lemma.
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Appendix D: Proofs of Lemma 6.2 and 6.4

We begin with the following lemma.

Lemma D.1. Let an,d and bn,d be two non-negative, double-indexed sequences.
That is, for each n ≥ 1 we have two sequences an,1, . . . , an,n and bn,1, . . . , bn,n.
Suppose for each n that there exists a non-decreasing sequence mn ≥ 1 such that

lim
n→∞

n∑
d=mn

an,dbn,d = 1.

Then suppose there exists another non-negative doubly-indexed sequence ãn,d
such that

ãn,d

an,d
converges uniformly to one for d ≥ mn. That is, for all ε > 0

there exists Nε > 0 such that for all n > Nε∣∣∣∣ ãn,dan,d
− 1

∣∣∣∣ < ε. (20)

for each d ≥ mn. Then

lim
n→∞

n∑
d=mn

ãn,dbn,d = 1.

Proof. Let ε > 0 and n > Nε then equation (20) implies

|ãn,d − an,d| < an,dε.

for all d ≥ mn. Then

n∑
d=mn

ãn,dbn,d =

n∑
d=mn

(ãn,d − an,d + an,d)bn,d

≤
n∑

d=mn

|ãn,d − an,d|bn,d +
n∑

d=mn

an,dbn,d

<
n∑

d=mn

εan,dbn,d +
n∑

d=mn

an,dbn,d

= (1 + ε)

n∑
d=mn

an,dbn,d.

where the second inequality is due to equation (20). On the other hand,

n∑
d=mn

ãn,dbn,d =

n∑
d=mn

(ãn,d − an,d + an,d)bn,d

≥ −
n∑

d=mn

|ãn,d − an,d|bn,d +
n∑

d=mn

an,dbn,d
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> −
n∑

d=mn

εan,dbn,d +

n∑
d=mn

an,dbn,d

= (1− ε)
n∑

d=mn

an,dbn,d.

Therefore, for every ε > 0 there exists Nε such that for n > Nε

(1− ε)

n∑
d=mn

an,dbn,d <

n∑
d=mn

ãn,dbn,d < (1 + ε)

n∑
d=mn

an,dbn,d

and therefore

lim
n→∞

n∑
d=mn

ãn,dbn,d = lim
n→∞

n∑
d=mn

an,dbn,d = 1.

The following theorem will also be employed in the below.

Theorem D.2 (The Stolz-Cesaro Theorem). If (bn)
∞
n=1 is a strictly increasing

sequence with limn→∞ bn = ∞, then for any sequence (b̃n)
∞
n=1 the following

inequalities hold:

lim sup
x→0

b̃n
bn

≤ lim sup
x→0

b̃n − b̃n−1

bn − bn−1

lim inf
x→0

b̃n
bn

≥ lim inf
x→0

b̃n − b̃n−1

bn − bn−1

In particular, if the sequence
(

b̃n−b̃n−1

bn−bn−1

)∞

n=1
has a limit, then

lim
n→∞

b̃n
bn

= lim
n→∞

b̃n − b̃n−1

bn − bn−1

We now prove Lemma 6.2, which we re-write below as Proposition D.3.

Proposition D.3. Let μn(ρ) denote the expected number of blocks given n
individuals and ρ ∈ (0,∞) for the harmonic process. As n → ∞,

μn(ρ) ∼ log2(n)

where the ratio tends to a constant equal to 1
2·Ψ1(ρ)

where Ψ1 is the trigamma

function. The same holds for the gamma process.

Proof. In this proof we write xn ∼ yn if limn→∞ xn/yn = C ∈ (0,∞) for xn

and yn two non-negative sequences.
For the gamma process, the recurrence relation of the expected number of

blocks is given by:

μn = 1 +

n∑
d=1

(
n

d

)
q(n− d, d) · μn−d
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= 1 +

n∑
d=1

(
n

d

)
(−1)d−1(Δdζ)n−d

log(1 + n
ρ )

· μn−d

which gives the following approximation:

(−1)d−1(Δdζ)n−d =

d−1∑
i=0

(
d− 1

i

)
(−1)i log

(
1 +

1

n− d+ i+ ρ

)

∼
d−1∑
i=0

(
d− 1

i

)
(−1)i

1

n− d+ i+ ρ

=
Γ(d)Γ(n− d+ ρ)

Γ(n+ ρ)
=

Γ(d)

(n− d+ ρ)↑d
.

This is the exact expression for the harmonic process. The second line is due to
Taylor’s remainder theorem. In particular the approximation of log(1+ x) by x
has error bounded by |x|2. Therefore, the error for d ≤ n can be bounded by

d−1∑
i=1

(n− d+ i+ ρ)−2 <

n−1∑
x=1

(x+ ρ)−2 <

∞∑
x=1

(x+ ρ)−2 < ∞.

Therefore, the approximation error is finite and so the ratio of the left hand side
and right hand side will tend one as n goes to infinity (i.e., (−1)d−1(Δdζ)n−d ∼

Γ(d)
(n−d+ρ)↑d with C = 1 for the characteristic index of the gamma process).

So for both processes, the above implies that the probability of d individuals
in block 1 is proportional to:(

n

d

)
(−1)d−1(Δdζ)n−d =

Γ(n+ 1)

Γ(n+ ρ)
· Γ(n− d+ ρ)

Γ(n− d+ 1)
· 1
d

∼
(
n− d

n

)ρ−1

· 1
d

where the approximation
Γ(x+ a)

Γ(x+ b)
∼ x1−ρ

is used. Again the constant in this case is C = 1.
We now investigate the recurrence relation:

μn = 1 +
1

ψ(n+ ρ)− ψ(ρ)

n∑
d=1

(
n− d

n

)ρ−1

· μn−d

d

Substitute c log2(n) in for μn. and approximating the sum by an integral
yields:

1 +
c

log
(
1 + n

ρ

) ∫ 1

0

(1− x)
ρ−1

log(1− x)

x
(2 log(n) + log(1− x)) dx
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→1 + 2 · c ·
∫ 1

0

(1− x)
ρ−1

log(1− x)

x
dx

=1− 2 · c ·Ψ1(ρ)

Giving us c = 1
2·Ψ1(ρ)

. Then bn,d = c
(
log2(n− d)− log2(n)

)
satisfies

lim
n→∞

n∑
d=1

an,dbn,d = 1

where

an,d =
1

log
(
1 + n

ρ

) ·
(
n− d

n

)ρ−1

· 1
d
.

In order to invoke lemma D.1, we must show that for

ãn,d =
1

ψ(n+ ρ)− ψ(ρ)

Γ(n+ 1)

Γ(n+ ρ)
· Γ(n− d+ ρ)

Γ(n− d+ 1)
· 1
d

the uniform convergence statement holds for d ≥ mn. Here we set mn = �nγ�
for 0 < γ < 1. Then for ε > 0 there exists N ′ such that for n ≥ N ′

(1− ε) ≤ (n− d)ρ−1(
Γ(n−d+ρ)
Γ(n−d+1)

) ≤ (1 + ε)

for mn ≤ d ≤ n. Then

log
(
1 + n

ρ

)
ψ(n+ ρ)− ψ(ρ)

1

nρ−1
· Γ(n+ 1)

Γ(n+ ρ)
(1− ε)

≤ an,d
ãn,d

≤
log

(
1 + n

ρ

)
ψ(n+ ρ)− ψ(ρ)

1

nρ−1
· Γ(n+ 1)

Γ(n+ ρ)
(1 + ε)

for all n > N ′ and mn ≤ d ≤ n. For all ε > 0 there exists N such that for n ≥ N

(1− ε) ≤
log

(
1 + n

ρ

)
ψ(n+ ρ)− ψ(ρ)

≤ (1 + ε)

and N ′′ such that for n ≥ N ′′,

(1− ε) ≤ 1

nρ−1
· Γ(n+ 1)

Γ(n+ ρ)
≤ (1 + ε)

Let n ≥ max(N,N ′, N ′′) then

(1− ε)3 ≤ an,d
ãn,d

≤ (1 + ε)3.
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Therefore, for all ε > 0 there exists N such that for n > N and mn < d < n∣∣∣∣an,dãn,d
− 1

∣∣∣∣ < ε

as desired.
For mn = nγ for 0 < γ < 1, we have already shown that the sum can be

well-approximated by the integral. In particular, this implies

lim
n→∞

mn∑
d=1

an,dbn,d = 0 and lim
n→∞

n∑
d=mn

an,dbn,d = 1.

That is, the left-tail of the sum converges to zero and so can be ignored. By
Lemma D.1 we therefore have

lim
n→∞

1

ψ(n+ ρ)− ψ(ρ)

n∑
d=mn

Γ(n+ 1)

Γ(n+ ρ)
· Γ(n− d+ ρ)

Γ(n− d+ 1)
· 1
d
bn,d = 1

where bn,d = c log2(n − d) − c log2(n). Now we address the component of the
sum for 1 ≤ d ≤ mn. First we have

Γ(n+ 1)

Γ(n+ ρ)
· Γ(n− d+ ρ)

Γ(n− d+ 1)
≤ Γ(n+ 1)

Γ(n+ ρ)

(
Γ(n− nγ + ρ)

Γ(n− nγ + 1)
∨ Γ(n− 1 + ρ)

Γ(n− 1 + 1)

)
→ 1

for 1 ≤ d ≤ nγ and

0 ≤ log2(n)− log2(n− d) ≤ log2(n)− log2(n− nγ)

= −2 log(n) log(1− nγ−1)− log2(1− nγ−1) → 0.

Moreover,

1

ψ(n+ ρ)− ψ(ρ)

mn∑
d=1

d−1 =
ψ(nγ + ρ)− ψ(ρ)

ψ(n+ ρ)− ψ(ρ)
.

For 0 < γ < 1 by above we have each term tends to either a constant or zero.
Therefore we have

lim
n→∞

1

ψ(n+ ρ)− ψ(ρ)

mn∑
d=1

Γ(n+ 1)

Γ(n+ ρ)
· Γ(n− d+ ρ)

Γ(n− d+ 1)
· 1
d
bn,d = 0.

This implies

lim
n→∞

1

ψ(n+ ρ)− ψ(ρ)

n∑
d=1

Γ(n+ 1)

Γ(n+ ρ)
· Γ(n− d+ ρ)

Γ(n− d+ 1)
· 1
d
bn,d = 1.

as desired. Note the approximation error of the ratio between an,d and ãn,d for
d ≤ mn does not go to one. Instead it is simply the case that both left-tail sums
converge to zero and therefore the approximation error is unimportant.
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Recall that the recursion relation for all n ≥ 0 implies

n∑
d=1

Γ(n+ 1)

Γ(n+ ρ)
· Γ(n− d+ ρ)

Γ(n− d+ 1)
· 1
d
(μn−d − μn) = 1.

Therefore both {bn,d} and {b̃n,d = μn−d − μn} satisfy the relation for large n.
This implies

lim
n→∞

(μn − μn−d)

c log2(n)− c log2(n− d)
= 1

for any d ≥ 1. By the Stolz-Cesaro Theorem, this implies

lim
n→∞

μn

c · log2(n)
= 1

as desired.

A similar argument can be used to obtain the asymptotic expected fraction of
particles in the first block. We omit the technical details (invoking Lemma D.1
and the Stolz-Cesaro theorem) as it follows in the same manner as in the proof
above. We now prove Lemma 6.4, which we re-write below as Proposition D.4.

Proposition D.4. The expected number of particles in the first block satisfies
E[#B1] ∼ n/(ρ log n) for the harmonic and gamma process. Asymptotically, for
integer values of ρ,

logB1

logn

D→ U

where U has the uniform distribution on (0, 1).

Proof. By the same rationale as above, the expected number of particles in the
first block is given by

n∑
d=1

d

(
n

d

)
q(n− d, d) ∼ 1

log(1 + n
ρ )

n∑
d=1

d

(
n− d

n

)ρ−1
1

d

→ n

log(1 + n
ρ )

∫
(1− x)

ρ−1
dx

∼ n

log(n)

1

ρ

So the fraction of particles in the first block is roughly (ρ log(n))−1. For z ∈
(0, 1), the asymptotic distribution is given by

P

[
logB1

logn
≤ z

]
=

1

log(n)

∫ nz−1

1/n

x−1(1− x)ρ−1dx

=
1

logn

⎡
⎣ρ−1∑
j=0

cjx
j + log(x)

⎤
⎦
nz−1

1/n
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→ 1

logn
[(z − 1) log(n)− log(1/n))] = z

where the second line is true for ρ ∈ Z. The result holds for general ρ > 0 by
the squeezing theorem.

Appendix E: Sketch proof of Remark 6.3

The splitting rule for the pilgrim process is

q(r, d) =
1

ψ(r + d+ ρ)− ψ(ρ)
·
(
1− d

n

)ρ−1
1

d

When n = r+d is large, ψ(n+ρ)−ψ(ρ) ≈ log(n). Moreover, the number of blocks
grows at a rate of log2(n). Let m = log2(n). Then if we thin the process by an
additional 1/ log(n) = m−1/2, for large n the sequence of splits is approximately
binomial with success probability m−1/2q(r, d). Since m · m−1/2q(r, d) → c/d,
we have the number of blocks of size d is approximately Poisson with rate
parameter c/d. This implies that the rate parameter for the un-thinned process is

λn ≈ c ·m1/2

d
=

c · log(n)
d

.

The constant can be derived via the expected number of blocks. In this case,
c = 1

2Ψ1(ρ)
is a constant dependent on ρ, where Ψ1 is the trigamma function.

Appendix F: Proof of Lemma 7.1

We now consider the number of blocks and block sizes for the general beta-
splitting rules. We now prove Lemma 7.1, which we write as a series of propo-
sitions below.

Proposition F.1. Define μn(ρ, β) denote the number of blocks given n individ-
uals for the beta process. For β > 0 as n → ∞,

μn(ρ, β) ∼ log(n)

where the ratio tends to a constant c = 1
ψ(ρ+β)−ψ(ρ)) . The fraction of edges in

the first block, #B1, is distributed Beta(ρ, β). Therefore, the relative frequencies
within each block is given by

(P1, P2, . . .) = (B1, B̄1B2, B̄1B̄2B3, . . .)

where Bi are independent beta variables with parameters (ρ, β). The number of
blocks of size j is approximately Poisson with asymptotic rate proportional to
1/j with independent components for j �= j′.

Proof. The probability of d individuals in the first block is given by(
n

d

)
q(n− d, d) ∼ 1

Zn

Γ(n+ 1)

Γ(d+ 1)Γ(n− d+ 1)

Γ(n− d+ ρ)Γ(d+ β)

Γ(n+ ρ+ β)
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where Zn =
∫ 1

0
(1 − sn)sρ−1(1 − s)β−1ds = B(ρ, β) − B(ρ + n, β). As n → ∞,

for ρ, β > 0 the normalization constant converges to B(ρ, β). Therefore, the
expected number of blocks is given by

0 = 1 +
1

Zn

n∑
d=1

(
n− d

n

)ρ−1 (
d

n

)β−1

n−1 (μn−d − μn)

Writing μn ∼ c log(n) then as n → ∞ we have the above equation becomes

0 = 1 +
c

B(ρ, β)

∫ 1

0

(1− x)ρ−1xβ−1 log(1− x)dx

= 1 + c · E[log(1−X)]

= 1 + c · (ψ(ρ)− ψ(ρ+ β))

as desired. That μn ∼ c log(n) for the beta-splitting rule with β > 0 follows
from the same argument provided in the prior section for β = 0.

The probability of d out of n particles in block one is given by

n

Zn

(
n− d

n

)ρ−1 (
d

n

)β−1

n−1 → n

B(ρ, β)
(1− x)ρ−1xβ−1dx

So the fraction of particles in block one is distributed beta with parameters
(ρ, β).

We end by proving the number of blocks of size j is approximately Poisson
with asymptotic rate proportional to 1/j with independent components for j �=
j′. The splitting rule for β > 0 is given by

q(r, d) =
1

B(ρ, β)(1− ρ↑n/(ρ+ β)↑n)
·
(
1− d

n

)ρ−1 (
d

n

)β−1
1

n

∼ d−1 1

B(ρ, β)
·
(
1− d

n

)ρ−1 (
d

n

)β

Let ni = ri + di and d > 0 a fixed constant. Then define

ai =
1

B(ρ, β)
·
(
1− d

ni

)ρ−1 (
d

ni

)β

Then
1

d

∑
ai

denotes the expected number of blocks of size d where the random sequence
(n1, n2, . . .) satisfies

∑
ni = n. As n → ∞, we want to show

∑
i ai < ∞. By the

ratio test

(ai)
1/i →

(
1

ni

)β/i
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≈ n
−β/(c·log(i))
i

→ e−β/c < 1 for β, c > 0

where we have used ni ∼ c log(i) for c > 0. Therefore, the sequence converges
almost surely and we have the expected number of blocks of size d is proportional
to d−1.

Since the expected number of blocks is 1/(ψ(β+ρ)−ψ(ρ)) log(n) we see that
the expected number of blocks of size d is

1

ψ(β + ρ)− ψ(ρ)
d−1

In particular, for β = 1 then we have the expected number of blocks is ρ/d
which is equivalent to the one parameter Chinese restaurant process.

The final case is when β ∈ (−1, 0). Then the number of blocks grows poly-
nomially in n.

Proposition F.2. Define μn(ρ, β) denote the number of blocks given n individ-
uals for the beta process. For β ∈ (−1, 0), as n → ∞,

μn(ρ, β) ∼ n−β

where the ratio tends to a constant c = −Γ(ρ + β + 1)/(Γ(ρ)β2). The fraction
of edges in the first block is asymptotically proportional to nβ. Asympotically,

pr[B1 = d] =
−β · Γ(d+ β)

Γ(d+ 1) · Γ(1 + β)
=

−β

Γ(1 + β)
dβ−1

for large d.

Proof. For β ∈ (−1, 0), the characteristic index is given by

ζn =

∫ 1

0

(1− sn)sρ−1(1− s)β−1ds

=

∫ 1

0

n−1∑
j=0

sj+ρ−1(1− s)βds

=

n−1∑
j=0

Γ(j + ρ)Γ(β + 1)

Γ(j + 1 + ρ+ β)

∼ Γ(1 + β)

−β
n−β

Plugging this into the recursive formula, while assuming μn ∼ cn−β yields

0 = 1 + c
−β nβ

Γ(1 + β)

n∑
d=1

(
n− d

n

)ρ−1 (
d

n

)β−1

n−1
(
(n− d)−β − n−β

)
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= 1− c β

Γ(1 + β)

n∑
d=1

(
n− d

n

)ρ−1 (
d

n

)β−1

n−1

(
(1− d

n
)−β − 1

)

= 1− c β2

Γ(1 + β)

n∑
d=1

(
n− d

n

)ρ−1 (
d

n

)β

n−1

→ 1− c β2

Γ(1 + β)

∫
(1− x)

ρ−1
(x)

β
dx

= 1 + c
β2 Γ(ρ)

Γ(ρ+ β + 1)

where for large n the approximation (1− d
n )

−β = 1 + β d
n is used. The result is

immediate. The fraction of edges in the first block is given by

−β nβ

Γ(1 + β)

n∑
i=1

(
d

n

)β (
n− d

n

)ρ−1

n−1 ∼ −β nβ

Γ(1 + β)

∫
(1− x)

ρ−1
(x)

β
dx

=
−β Γ(ρ)

Γ(ρ+ β + 1)
nβ

Finally, the asymptotic distribution comes from

pr(B1 = d) = ζ−1
n

Γ(d+ β)Γ(n− d+ ρ)

Γ(n+ ρ+ β)
·
(
n

d

)

∼ −β · nβ

Γ(1 + β)
· Γ(n+ 1)

Γ(n+ ρ+ β)

Γ(d+ β)

Γ(d+ 1)

Γ(n− d+ ρ)

Γ(n− d+ 1)

∼ −β

Γ(1 + β)

Γ(d+ β)

Γ(d+ 1)

(
1− d

n

)ρ−1

→ −β

Γ(1 + β)

Γ(d+ β)

Γ(d+ 1)

as n → ∞.

Appendix G: Bayesian survival analysis

Proposition G.1. Every exchangeable, Markov survival process can be gener-
ated via the Lévy process construction.

Proof. Every exchangeable, Markov survival process is determined by the split-
ting rule q(·, ·) and parameter ν. Without loss of generality we consider the
case where ν = 1. For a particular splitting rule, we show how to construct a
Lévy process Z such that the unconditional risk set evolves as an exchangeable,
Markov survival process with splitting rule q.

In Section 8.2, we stated the Lévy-Khintchine representation for non-negative
Lévy processes. The converse is also true. Namely any pair (γ, w) such that γ ≥ 0
and w such that ∫ ∞

0

(1− e−y)w(dy) < ∞
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determine a non-negative Lévy process Z such that X = Z(1) has cumulant
function determined by (15). Therefore for a particular exchangeable, Markov
survival process, we must construct a pair (γ, w) that satisfies the above require-
ments. This will ensure the pair (γ, w) determine a non-negative Lévy process.

We already know that the sequence of unconditional distributions for the ran-
dom variables T [n] generated via the Lévy process construction are exchange-
able, Markov survival processes with characteristic index ζn = −K(n). So then
for any Lévy process Z with cumulant generating function K(·) by the Lévy-
Khintchine characterization we must have

·q(n, 1) = (Δζ)n
ζn+1

=
ζn+1 − ζn

ζn+1

=
K(n+ 1)−K(n)

K(n+ 1)
.

The first equality is due to Proposition 4.5. Then the Lévy-Khintchine repre-
sentation implies

K(n) = −
(
γn+

∫ ∞

0

(1− e−ny)w(dy)

)

⇒ −(K(n+ 1)−K(n)) =

(
γ +

∫ ∞

0

(e−(n+1)y − e−ny)w(dy)

)

The second equality holds as the integrals are both non-negative and so∫ ∞

0

(1− e−(n+1)y)w(dy)−
∫ ∞

0

(1− e−ny)w(dy) =

∫ ∞

0

(e−ny − e−(n+1)y)w(dy).

Recall that consistent splitting rules admit an integral representation (i.e., Propo-
sition 4.3). The integral representation of the singleton split is given by

q(n, 1) =
1

Zn+1

(∫ 1

0

xn(1− x)�(dx) + c

)
.

Given the erosion measure c ≥ 0 and dislocation measure �(·), we set γ =
c, Zn = −K(n), and define w(dy) = e−z�(− log(x) ∈ dy). Then re-writing the
integral representation in these terms we have

q(n, 1) =
1

Zn+1

(
γ +

∫ ∞

0

e−ny(1− e−y)w(dy)

)
.

We thus have selected a pair (γ, w) such that γ ≥ 0. It rests to check the
integrability condition for the measure w to ensure the associated process Z is
a Lévy measure. First,

∫ ∞

0

(1− e−y)w(dy) =

∫ 1

0

(1− x)�(dx) < ∞
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Equality is due to the change of variables y → log(x). The integral is finite due
to the integrability condition for the dislocation measure in Proposition 4.3.
Finally, ∫ ∞

0

(1− e−y)w(dy) < ∞ ⇒
∫ ∞

0

(1− e−yt)w(dy) < ∞

for all t > 0. So we have found the pair (γ, w) such that the associated pro-
cess Z is (1) a Lévy process and (2) the unconditional risk sets evolve with
the singleton splitting rules q(n, 1). But by Proposition 4.2 we know that the
splitting rule q(·, ·) is completely determined by the singleton splits. Therefore,
the unconditional risk sets evolve with the correctly specified splitting rule q
and therefore we have generated an exchangeable, Markov survival process with
associated splitting rule q as desired.

Appendix H: Stochastic censoring patterns

In section 2.1, we considered the setting where censoring times are arbitrary pos-
itive numbers and are known for each particle. Here we define a general notion
of stochastic censoring under which the likelihood construction is preserved.

Definition H.1 (Relative exchangeability and censoring). Let R[n] =
{R[n](t)}t≥0 be the risk set trajectory restricted to the set of particles, [n].
Then the censoring mechanism is exchangeability preserving if for each t, the
particles still at risk, Rn(t), are exchangeable.

In other words: the additional knowledge of the right-censoring times up until
time t should not affect the exchangeability of particles still at risk at time t. We
require the particles that survive are homogeneous and thus only distinguished
by their labelling. Simple type I censoring obviously preserves exchangeability,
as does independent censoring.

Equation (9) in Section 5 is still correct if we assume that the parameters
underlying the exchangeable, Markov survival process remain unchanged after
each censoring time (e.g., the process is still a harmonic process with the same
parameter values). This statistical assumption is valid under noninformative
right-censoring.

Appendix I: Covariate effects

We briefly introduce a limiting case of the harmonic process. Specifically, the
inverse linear characteristic index, ξ, is defined as

ξn = lim
ρ→0

ρ · ζ(ρ · n) = lim
ρ→0

ρ · [ψ(ρ(n+ 1))− ψ(ρ)]

= − 1

n+ 1
+ 1 =

n

n+ 1

This corresponds to the beta-splitting rule with ρ = β = 1. The inverse linear
process arises in connection with the proportional conditional hazards described
below.
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I.1. Proportional conditional hazards

Now consider the proportional conditional hazards model as described by
Kalbfleisch (1978), Hjort (1990) and Clayton (1991). It is sufficient to con-
sider only the stationary version because the non-stationary version involves a
relatively straightforward monotone temporal transformation.

Let Λ be a stationary, completely independent random measure on R with
characteristic exponent ζ(t). In the proportional conditional hazards model, the
cumulative hazard for individual i is wiΛ((0, t]) for some wi > 0, typically
wi = exiβ depending on covariate xi. Thus, the ratio wi/wj = e(xi−xj)β of con-
ditional hazards for particles i and j is non-random and constant over time; the
marginal distributions are exponential with rates ζ(wi), ζ(wj), so the hazard ra-
tio ζ(wi)/ζ(wj) is also constant over time. If Λ is a nonstationary measure then
the marginal hazard rate for particle i is ζ(wi)ν(ds). Therefore, the marginal
distributions satisfy the proportional hazards assumption independent of assum-
ing the measure, Λ, is stationary. However, the marginal and conditional hazard
ratios need not be equal. For ρ sufficiently large, the gamma and harmonic
processes satisfy approximate equality, wi/wj ≈ ζ(wi)/ζ(wj).

Survival times are conditionally independent given Λ, and the conditional
survival density for particle i is

e−wiH(t)
(
1− exp(−wiΛ(dt))

)
.

Consequently, the conditional joint density is

exp

(
−
∫ ∞

0

R�(t) dΛ

) k∏
r=1

∏
i∈Dr

(
1− e−wiΛ(dtr)

)

where R(t) is the risk set as previously defined, Dr = R(t−r ) \ R(tr) is the set
of individuals failing at time tr, and

R�(t) = w(R(t)) =
∑

i∈R(t)

wi

is the sum of the risk-set weights. The argument used to obtain the joint
marginal density (2.9) is essentialy unchanged. The only difference occurs in
the definition of the intensities associated with a failure time at which R ≡ R(t)
and D are disjoint subsets

λ(R,D) = E

(
e−R�Λ(dt)

∏
i∈D

(
1− e−wiΛ(dt)

))

= dt
∑
d⊂D

(−1)#d−1ζ�(R ∪ d),

where ζ�(R) = ζ(R�). Note that λ is a function of two disjoint subsets, whose
value depends only on the weights assigned by w to R and the various subsets



5448 W. Dempsey and P. McCullagh

of D. With this modification, the joint marginal density (2.9) applies also to the
inhomogeneous case:

fn(R) = exp
(
−
∫ ∞

0

ζ�(R(s)) ds
)
×

k∏
j=1

λ(Rj , Dj).

The Bayes estimate of the survival distribution depends on the value wn+1

attached to the new particle:

pr(Tn+1 >t | R[n]) = exp

(
−
∫ t

0

(Δζ�)(R(s)) ds

)
×

∏
j:tj≤t

λ(R(tj) ∪ {n+1}, Dj)

λ(R(tj), Dj)

where (Δζ�)(R) = ζ�(R∪ {n+1})− ζ�(R) is the increment associated with the
new particle.

I.2. Numerical example

The leukemia data of Gehan (1965) reproduced in Section 3.5 in the paper and
Table 2 in this supplementary material is used to illustrate parameter estimation
in the proportional conditional hazards model. Each patient is assigned to either
the control or 6-MP treatment group specificed below by an indicator, Z. Table 2
is the survival and censoring times (in weeks) associated with the control group.

Table 2

Times of remission in weeks of leukemia patients

Control (Z = 0) 1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 8, 11, 11, 12, 12,
15, 17, 22, 23

Consider the three-parameter Markov survival processes with characteristic
index

ζ(t) = κρ (Φ(ρ(γt+ 1))− Φ(ρ))

where Φ is given. The gamma, harmonic, and inverse linear processes are all of
this form. As ρ tends to zero, the harmonic process tends to the inverse linear
process with ρ = 1. At the other extreme, as ρ tends to infinity, the harmonic
process tends to the gamma process with ρ = 1. The parameter ρ is interpreted
as a measure of proximity of the harmonic process to these limiting cases.

The weight for individual i is taken to be wi = exp(β0+β1Zi). The parameter
γ is equal to exp(β0) implying β0 and ρ are not separately identifiable under the
gamma process. Therefore set β0 to zero and find maximum likelihood estimates
of the remaining parameters.

For the harmonic process, the log-likelihood is maximized at the inverse linear
boundary. Table 3 summarizes the parameter estimates for (β, κ, γ). The esti-
mate of the treatment parameter, β1, for the inverse linear process is close to
the estimate under the gamma process. Supplementary figure 3 shows the profile
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Table 3

Maximum likelihood estimates for two processes

Inverse linear process Gamma process
Parameter Est. Std. Error Est. Std. Error

κ 1.76 0.57 0.20 0.11
γ 0.07 0.03 0.13 0.05

β0 0.00 - 0.00 -
β1 −1.61 0.41 −1.63 0.41

likelihood for β1 under the inverse linear process and gamma process. It suggests
a 95% confidence interval of approximately [−2.4,−0.9] in both instances.

The maximum partial likelihood coefficient is −1.63 using the exact method
for breaking ties with a standard error of 0.43. This is comparable to estimates
under both processes, with the estimate under the gamma process closer to the
partial likelihood estimate.

The empirical Bayes estimate of the conditional survival function for each
group is shown in Figure 1. Each curve has discontinuities at observed survival
times. At the maximum observed survival time, the estimated conditional sur-
vival function is 4.8% (4.3%) and 53.7% (52.7%) for the control and treatment
groups respectively under the inverse linear (gamma) process. After the max-
imum observed time, the conditional distribution for the treatment group is
exponential with rate 2.55 × 10−2 and 2.59 × 10−2 for the inverse linear and
gamma process respectively, corresponding to an additional expected survival
times of approximately 39.14 and 38.63. The expected survival time for the
control group is 8.28 and 8.17 under the inverse linear and gamma processes
respectively.

Appendix J: Supplementary figures

Supplementary Figure 1. Proportional hazards conditional survival distributions
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Supplementary Figure 2. Profile Log-Likelihood of log(ρ)

Supplementary Figure 3. Profile log-likelihood of β1
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