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Abstract: The field of discrete event simulation and optimization tech-
niques motivates researchers to adjust classic ranking and selection (R&S)
procedures to the settings where the number of populations is large. We
use insights from extreme value theory in order to reveal the asymptotic
properties of R&S procedures. Namely, we generalize the asymptotic result
of Robbins and Siegmund regarding selection from independent Gaussian
populations with known constant variance by their means to the case of se-
lecting a subset of varying size out of a given set of populations. In addition,
we revisit the problem of selecting the population with the highest mean
among independent Gaussian populations with unknown and possibly dif-
ferent variances. Particularly, we derive the relative asymptotic efficiency
of Dudewicz and Dalal ’s and Rinott’s procedures, showing that the former
can be asymptotically superior by a multiplicative factor which is larger
than one, but this factor may be reduced by proper choice of parameters.
We also use our asymptotic results to suggest that the sample size in the
first stage of the two procedures should be logarithmic in the number of
populations.
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1. Introduction

Selecting and ranking items from a set based on incomplete and noisy infor-
mation is a natural problem arising in many domains with limited resources.
Examples include selecting students for a program from a list of candidates based
on their prior grades, ranking web-pages based on their relevance to a query and
displaying the top pages to a user, or finding the best (or near the best) system
design with respect to some measure of performance. Discrete event simulation
is a popular methodology for studying such system design problems, with some
reviews of applications in [19, 31, 37, 44]. Fundamental texts summarizing the
basics of this approach are [22] and [32]. More general references for stochastic
simulations are given in [3, 9, 23, 24, 36].
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The modern literature about discrete event simulation is strongly related to
the theory of ranking and selection (R&S) procedures. This literature considers
a set of populations and a user who wants to select the populations associ-
ated with a specific relative stochastic property such as the highest mean, the
smallest variance, etc. With regard to this task, the R&S literature is devoted
to development of useful procedures, i.e. sampling policies and selection rules
to pinpoint the target populations with some performance guarantee and low
sampling cost. A nice glance into the R&S theory is provided in [5] while exten-
sive summary can be found in the books [27, 30]. Major fields of this research
include Bayesian and indifference-zone (IZ) formulations. Recent work in the
Bayesian context is summarized by [11, 12], and an extension to the case of
multiple attributes appears in [20]. Similarly, recent contributions regarding the
IZ formulation are described in [35].

As demonstrated by [28], the R&S literature offers attractive procedures for
the case where the number of alternative designs is relatively small and there is
no strong functional relationship among them. However, as pointed by [34], this
situation is not frequent in practice. In particular, the number of alternative
designs is usually large which means that classical R&S procedures cannot be
applied directly with no proper adjustments. Motivated by this issue, several
authors introduced improvements of the classic R&S procedures as a solution
for this problem [1, 7, 10, 41, 21]. These improvements were mostly compared
to their classic R&S ancestors by simulations (although rigorous bounds were
derived in [21] for the fully sequential case). While simulations can be carried
out to study these modern procedures, they do not provide insights or rigorous
bounds regarding the performance as a function of procedures’ choices and pa-
rameters, and become computationally intensive as the number of populations
and sample size grow. A complementary and attractive approach is to evaluate
the quality of R&S procedures by investigating their asymptotic behavior, with
the goal being providing rigorous analytic bounds and approximations for the
procedures’ performance, thus gaining insights into their dependence on various
parameters and on the relative efficiency of different procedures. The fundamen-
tals of the asymptotic theory of R&S procedures appear in the book [40]. This
work makes more contributions to this theory.

In details, Section 2 applies insights from extreme value theory to specify
the asymptotic behavior of linear combinations of maxima. Sections 3 and 4
use these results in order to derive new asymptotic results for well-known R&S
procedures through the IZ approach of Bechhofer [4]. Namely, Section 3 gen-
eralizes the result of Robbins and Siegmund [43] who considered the problem
of selection from k independent normal homoscedastic populations with known
variance by their means. Robbins and Siegmund provided a first order approx-
imation for the minimal sample-size which controls the probability for correct
selection (PCS) of the single population with highest mean as the total num-
ber of populations tends to infinity. This work generalizes their results to the
case where the number of selected populations can be determined as a func-
tion of the total number of populations, and deriving the asymptotic sample
size required to achieve a desired PCS as a function of the number of selected
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populations. In addition, we present a new proof for the original result. Sec-
tion 4 starts by brief review of two well-known two-stage procedures which
were proposed respectively by Dudewicz and Dalal [16] and Rinott [42]. Both
procedures were designed for the problem of selecting the Gaussian population
with the highest mean for independent populations with unknown and possibly
different variances. We derive first order approximations for these procedures
asymptotic efficiencies, measured in terms of the expected sample size required
to achieve a desired PCS, as the total number of populations grows to infin-
ity. A corollary of these results is that asymptotically, Rinott’s procedure is
relatively less efficient than the procedure of Dudewicz and Dalal by a multi-
plicative factor depending on the initial sample size used in stage one of both
procedures. However, our asymptotic analysis motivates a conjecture that the
optimal sample size in the first stage of both procedures grows logarithmically
in the number of populations, and with this optimal choice the multiplicative
factor approaches one and the two procedures may be asymptotically equiva-
lent.

We performed numerical computations in order to highlight and complement
our analytic asymptotic results - Matlab code for these computations, including
a script reproducing all figures in the paper is available from github.

2. Asymptotics of linear combinations of partial maxima

Let {Xm;m = 1, 2, . . .} be an infinite sequence of identically independently
distributed (i.i.d) continuous random-variables (r.v’s) with cumulative distribu-
tion function (c.d.f) F such that F (−∞) = 0 and lim

x→∞
F (x) = 1. Let T ∈ N

and for each k > T let 1 =: s
(0)
k < s

(1)
k < . . . < s

(T−1)
k < s

(T )
k := k be an

increasing integer sequence defining a partition of {1, .., k} into T sub-groups.
Define the partial maxima of {Xm;m = 1, . . . , k} with respect to this parti-

tion by M
(t)
k := max{Xj ; s

(t−1)
k + 1 ≤ j ≤ s

(t)
k }, t ∈ T := {1, . . . , T}. With

regard to this sequence of partitions assume that for each t ∈ T the difference

δ
(t)
k := s

(t)
k − s

(t−1)
k converges in the broad sense, i.e. there exist δ(t) ∈ N ∪ {∞}

such that δ
(t)
k

k→∞−→ δ(t). Moreover, let F be max-stable in the sense that it is
associated with an extreme value distribution, i.e. there are two sequences of
normalizing constants {ak} and {bk} such that:

1. There exists K ∈ N such that ak > 0 for any k > K.
2. {ak} is weakly-monotonic.

3. ak
(

max
j=1,...,k

Xj − bk
) L−→ Y where the notation

L−→ denotes convergence in

law of r.v’s and Y ∼ FY is a continuous r.v, i.e. its c.d.f FY is characterized
by Fisher-Tippet-Gnedenko’s theorem.

Considering the deterministic sequence {ξk; k ∈ N} ⊂ R and some vector
α := (α1, . . . , αT ) ∈ R

T , the goal of this section is to calculate the following

https://github.com/orzuk/MatUtils/tree/master/stats/ranking_selection
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limit:

L := L
(
{δ(1)k }, . . . , {δ(T )

k }, {ξk}, α;F, FY

)
= lim

k→∞
P
( T∑
t=1

αtM
(t)
k ≤ ξk

)
. (2.1)

To phrase the main results, consider the partition T = T1 ∪ T2 defined by
the sets T2 := {t ∈ T ; δ(t) = ∞} and T1 := T \ T2. For t ∈ T1, the limit
lim
k→∞

a
δ
(t)
k

= aδ(t) ∈ R++ exists. In addition, since {ak} is positive and weakly-

monotonic, the limit a∞ := lim
k→∞

ak ∈ [0,∞] exists in the broad sense. With

regard to this framework, our main theorems provide sufficient conditions under
which L exists and can be calculated:

Theorem 2.1. Let F be a max-stable distribution associated with sequences
{ak}, {bk} such that a∞ ∈ (0,∞]. For each t ∈ T1, let Mt be a random variable
distributed as the maximum of δ(t) i.i.d. random variables with c.d.f. F , i.e.

Mt ∼ F δ(t) and for each t ∈ T2, let Yt ∼ FY such that {Mt; t ∈ T1}∪{Yt; t ∈ T2}
is a set of independent r.v’s. Define V as

V :=
∑
t∈T1

αtMt +
∑
t∈T2

αt

a∞
Yt (2.2)

and suppose that the limit

L∗ := lim
k→∞

{
ξk −

∑
t∈T2

αtbδ(t)k

}
(2.3)

exists in the broad sense, i.e. L∗ ∈ R̄. Then:

L = FV (L
∗). (2.4)

Theorem 2.2. Suppose that F is associated with {ak}, {bk} such that a∞ = 0,
there exists an index t∗ ∈ T2 such that

λt := lim
k→∞

a
δ
(t∗)
k

a
δ
(t)
k

∈ R+ , ∀t ∈ T2 , (2.5)

V is given by

V :=
∑
t∈T2

αtλtYt s.t. Yt
i.i.d.∼ FY , t ∈ T2 (2.6)

and the limit

L∗∗ := lim
k→∞

ak(ξk −
∑
t∈T2

αtbδ(t)k

) (2.7)

exists in the broad sense, i.e. L∗∗ ∈ R̄. Then:

L = FV (L
∗∗). (2.8)
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2.1. Proofs

The proofs of Theorems 2.1 and 2.2 are based on the following two lemmata on
convergence in law:

Lemma 1. If V is a finite r.v and V1, V2 . . . are r.v’s such that

1. Vk
L−→ V .

2. FV is continuous on C ⊆ R.
3. {xk; k ∈ N} is a deterministic sequence such that xk → x̄ where x̄ ∈

C ∪ {−∞,∞}.

Then FVk
(xk) −−−−→

k→∞
FV (x̄).

Lemma 2. Let s ∈ N. If ∀k ∈ N, Z
(1)
k , . . . , Z

(s)
k are independent r.v’s such that

Z
(i)
k

L−−−−→
k→∞

Zi, ∀i = 1, . . . , s, then

Z
(1)
k + . . .+ Z

(s)
k

L−−−−→
k→∞

Z1 + . . .+ Zs (2.9)

where Z1, . . . , Zs are independent r.v’s.

Lemma 1 is a known result about convergence in law. More details are pro-
vided in [6]. Lemma 2 is obtained by a straightforward application of the mul-

tivariate continuous mapping theorem for the vector (Z
(1)
k , . . . , Z

(s)
k ), noticing

that due to independence we have (Z
(1)
k , . . . , Z

(s)
k )

L−→ (Z1, . . . , Zs).

Proof. (Theorem 2.1)
Assume first that αt

a∞
�= 0, ∀t ∈ T and express the limit L as follows:

L = lim
k→∞

P
( T∑
t=1

αtM
(t)
k ≤ ξk

)
= lim

k→∞
P
( ∑
t∈T1

αtM
(t)
k +

∑
t∈T2

αtM
(t)
k ≤ ξk

)
= lim

k→∞
P
( ∑
t∈T1

αtM
(t)
k +

∑
t∈T2

αt

a
δ
(t)
k

a
δ
(t)
k

(M
(t)
k − b

δ
(t)
k

) ≤ ξk −
∑
t∈T2

αtbδ(t)k

)
.

(2.10)

For any t ∈ T2, known properties of convergence in law imply that

αt

a
δ
(t)
k

a
δ
(t)
k

(M
(t)
k − b

δ
(t)
k

)
L−→ αt

a∞
Yt (2.11)

In addition, ∀t ∈ T1, αtM
(t)
k

pointwise−−−−−−→ αtMt and hence αtM
(t)
k

L−→ αtMt. For

any k ∈ N, the random variables M
(1)
k , . . . ,M

(T )
k are determined by disjoint
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subgroups of i.i.d sequence of r.v’s and consequently ∀k ∈ N, M
(1)
k , . . . ,M

(T )
k

are independent r.v’s. Therefore, Lemma 2 implies that∑
t∈T1

αtM
(t)
k +

∑
t∈T2

αt

a
δ
(t)
k

a
δ
(t)
k

(M
(t)
k −b

δ
(t)
k

)
L−→

∑
t∈T1

αtMt+
∑
t∈T2

αt

a∞
Yt = V (2.12)

where {Mt; t ∈ T1} ∪ {Yt; t ∈ T2} is a set of independent r.v’s.
At this stage, assume that ∃t′ ∈ T2 for which αt′

a∞
= 0. The LHS of eq.

(2.12) can be represented as the sum of two finite sums S1 + S2, where S1

includes all summands that converge in law to zero and S2 includes all other
summands. Recalling that convergence in law to a constant implies convergence
in probability, then each of the summands in S1 converges in probability to zero,

and since the number of summands is finite, S1
P→ 0. Similarly, by the arguments

used under the simplifying assumption that αt

a∞
�= 0, ∀t ∈ T2, S2

L→ V . Therefore,
by Slutsky’s Lemma (see Chapter 6 in [18]), the total sum converges in law to V .
The distribution of Y is characterized by Fisher-Tippet-Gnedenko’s Theorem
hence Y is a continuous r.v. In addition, Mt is distributed like a maximum
of a finite number of i.i.d continuous r.v’s, and is a continuous r.v. Therefore,
deduce that V is a finite sum of independent continuous r.v’s and hence it is
a continuous r.v. Finally, since L∗ exists in the broad sense, the needed result
follows directly from Lemma 1.

Proof. (Theorem 2.2) In the spirit of the proof of Theorem 2.1, it is enough to
prove the theorem under the simplifying assumption αtλt �= 0, ∀t ∈ T2. Under
this assumption, the limit L can be expressed as follows:

L = lim
k→∞

P
( T∑
t=1

αtM
(t)
k ≤ ξk

)
= P

( ∑
t∈T1

αtM
(t)
k +

∑
t∈T2

αtM
(t)
k ≤ ξk

)

= lim
k→∞

P

( ∑
t∈T1

αtaδt∗k
M

(t)
k +

∑
t∈T2

αt

aδt∗k
a
δ
(t)
k

a
δ
(t)
k

(M
(t)
k − b

δ
(t)
k

)

≤ aδt∗k

(
ξk −

∑
t∈T2

αtbδ(t)k

))
. (2.13)

By similar arguments as in the proof of Theorem 2.1,

1. αtaδt∗k
M

(t)
k

L−→ 0, ∀t ∈ T1.
2. αt

a
δt

∗
k

a
δ
(t)
k

a
δ
(t)
k

(M
(t)
k − b

δ
(t)
k

)
L−→ αtλtYt, ∀t ∈ T2.

3. For any k ∈ N, M
(1)
k , . . . ,M

(T )
k are independent r.v’s.

Since all the preconditions of Lemma 2 are satisfied, deduce that

∑
t∈T2

αt

aδt∗k
a
δ
(t)
k

a
δ
(t)
k

(M
(t)
k − b

δ
(t)
k

)
L−→

∑
t∈T2

αtλtYt = V . (2.14)
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where {Yt; t ∈ T1} are independent r.v’s. On the other hand, because conver-
gence in law to a constant implies convergence in probability,∑

t∈T1

αtaδt∗k
M

(t)
k

P−→ 0. (2.15)

Thus, Slutsky’s Lemma can be applied to obtain the following limit:∑
t∈T1

αtaδt∗k
M

(t)
k +

∑
t∈T2

αt

aδt∗k
a
δ
(t)
k

a
δ
(t)
k

(M
(t)
k − b

δ
(t)
k

)
L−→ 0 + V = V. (2.16)

Fisher-Tippet-Gnedenko’s Theorem implies that {Yt; t ∈ T1} are continuous
r.v’s. Therefore, V is a finite sum of finite continuous independent r.v’s, so it is
also a finite continuous r.v. Finally, since L∗ exists in the broad sense, Lemma
1 implies the needed result.

3. Generalized Robbins-Siegmund result

This Section demonstrates an application of Theorem 2.1 to the problem of
selection from homoscedastic independent Gaussian populations with known
variance by their means. Subsection 3.1 depicts the relevant statistical model.
Subsection 3.2 includes a short review of the original result [43] as well as our
generalization of this result to the case of selecting more than one population.

3.1. Statistical framework

Let Xij ∼ N(θi, σ
2); i = 1, . . . , k, j = 1, . . . , N be independent univariate Gaus-

sian r.v’s with known variance σ2 > 0 and unknown means θ = (θ1, . . . , θk) ∈
R

k. The task is to find the 1 ≤ s ≤ 
k
2 � populations with the largest means.

An intuitive procedure for this purpose is to compute the empirical means
X̄i :=

1
N

∑N
j=1 Xij , ∀i = 1, . . . , k and select the s populations associated with

the highest values. This procedure can be justified theoretically as explained in
Chapter 3 of [30]. Our goal is to find the minimal N which ensures correct se-
lection of all of the required s populations with probability of at least p ∈ (0, 1)
for this procedure.

It is not possible to control the probability of correct selection (denoted by
P(CS)) without further assumptions. To see this, take populations with equal
means, θγ := γ · 1k; γ ∈ R. There is no way to distinguish between the popu-
lations by sampling from them and the P(CS) is not sensitive to N . In order
to allow the user to distinguish between populations, the indifference-zone ap-
proach of Bechhofer [4] is adopted, i.e. the parameter-space is restricted in the
following way

θ ∈ Θ(Δ, k) := {θ̃ ∈ R
k; θ̃[k−s+1] − θ̃[k−s] ≥ Δ} (3.1)

where θ̃[1] ≤ . . . ≤ θ̃[k] are the ordered means and Δ > 0 is a known param-
eter indicating the minimal difference in mean between the top s and bottom



5382 R. Jacobovic and O. Zuk

k − s populations. Δ can also be interpreted as the indifference level of the
experimenter, i.e. if the absolute value of the difference between the means of
two different population is less than Δ, the experimenter will consider them
as equivalent populations. Since (X̄1, . . . , X̄k) is a consistent estimator for any
θ ∈ Θ(Δ, k), the probability of correct selection tends to 1 as N → ∞, regard-
less of the true parametrization. Thus, the minimal sample size which ensures
correct selection with probability p is well-defined.

3.2. Asymptotic sample-size

Fix Δ > 0 and denote by N∗
k,s(p) the minimal N ∈ N for which the probability

of correct selection is above p. For simplicity, we follow [30] and ignore the
rounding error, i.e. N∗

k,s(p) is defined as the solution of the following equation

P(CSs
k,N∗

k,s
; Δ, θ∗) = p (3.2)

where CSs
k,N is the event of making correct selection of the s out of k populations

with the highest means based on N samples from each population. In addition,
θ∗ is some least favorable configuration (LFC), i.e. it is a parametrization which
satisfies

P(CSs
k,Nk,s

; Δ, θ∗) = inf
θ̃∈Θ(Δ,k)

P(CSs
k,Nk,s

; Δ, θ̃) . (3.3)

With regard to this model, it was shown in [43] that for s = 1 and k → ∞,

N∗
k,s=1(p) ∼ 2σ2

Δ2 ln(k − 1) regardless of the value of p ∈ (0, 1). The asymptotic
notation ∼ is interpreted in its classical terminology, i.e. for any two sequences

ak ∼ bk if and only if ak

bk

k→∞−→ 1.

We study the more general settings where the inequality 1 ≤ s := sk < k−sk
holds asymptotically and both limits sk → s̄ ∈ N ∪ {∞} and ln(sk)

ln(k−sk)
→ C ∈

[0, 1] exist (e.g. sk ≡ s̄ ∈ N, sk := ln(k) and sk := ψkβ ; 0 < ψ, 0 < β ≤ 1
with ψ < 1

2 for β = 1). To simplify notation, let N∗
k (p) := N∗

sk,k
(p) when sk

is understood from context. Theorem 3.1 shows that for each combination of
p ∈ (0, 1) and k � 1, N∗

k (p) is well defined and gives the asymptotics of N∗
k (p)

as k → ∞, showing that the first order does not depend on p. Observe that in
the following statement we can replace ln(k − sk) by ln(k) in the asymptotic
expression Ñ∗

k because the assumption that asymptotically 1 ≤ sk ≤ k
2 implies

ln(k − sk) ∼ ln(k).

Theorem 3.1. Let sk be a sequence such that: (i) ∀k ∈ N, 1 ≤ sk ≤ k − sk.

(ii) sk → s̄ ∈ N ∪ {∞}, and (iii) ln(sk)
ln(k−sk)

→ C ∈ [0, 1]. Then, ∀p ∈ (0, 1) the

following statements hold:

1. There exists Kp ∈ N such that N∗
k (p) exists for any k > Kp.

2. N∗
k (p) ∼ Ñ∗

k := 2σ2(1+
√
C)2

Δ2 ln(k − sk) as k → ∞.
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Proof. 1. Recall the definition of Θ(Δ, k) and the fact that the Xij ’s are
Gaussians with equal variances. Under these assumptions, the collection
of all of the least favorable configurations is given by:

Θ∗(Δ, k) := {θc ∈ R
k; θc[i] = c+Δ · 1{i>k−sk}; c ∈ R}. (3.4)

where 1A denotes the standard indicator function returning 1 for any
input x ∈ A and 0 otherwise. Consequently, w.l.o.g. set c = 0, Z =
(Z1, . . . , Zk) ∼ Nk(0, I) and define the function

f(n, k) := inf
θ̃∈Θ(Δ,k)

P(CSsk
k,n; Δ, θ̃) = P (CSsk

k,n; θ
0)

= P(X̄i < X̄j , ∀1 ≤ i ≤ k − sk < j ≤ k)

= P( max
i=1,...,k−sk

X̄i ≤ min
j=k−sk+1,...,k

X̄j)

= P

( σ√
n

max
i=1,...,k−sk+1

Zi ≤
σ√
n

min
j=k−sk+1,...,k

Zj +Δ
)
. (3.5)

Denote the partial maxima by M
(1)
k := max

i=1,...,k−sk
Zi; M

(2)
k :=

max
i=k−sk+1,...,k

Zi. Since the univariate centered Gaussian is symmetric

around zero, it is possible to express f(n, k) in terms of a linear combina-

tion of M
(1)
k and M

(2)
k . Since M

(1)
k ,M

(2)
k are random variables determined

by disjoint subsets of Z1, . . . , Zk, they are independent. Therefore, f(n, k)
can be expressed by the following convolution in terms of the p.d.f φ(·)
and c.d.f Φ(·) of the standard Gaussian distribution,

f(n, k) = P

[
M

(2)
k +M

(1)
k ≤ Δ

√
n

σ

]
=

∫ ∞

−∞
Φk−sk

(Δ√
n

σ
− t

)
skΦ

sk−1(t)φ(t)dt. (3.6)

Using this representation of f(n, k) as a continuous c.d.f. for fixed k, we
observe that:

(a) f(∞, k) := lim
n→∞

f(n, k) = 1, ∀k ∈ N.

(b) For fixed k and fk(n) := f(n, k) is continuous function in n on (0,∞).

(c) As mentioned in [38], page 20, Example 1.7.1, the normalizing se-
quences of the maximum of standard Gaussian r.v’s are given by:

ak =
√
2 ln(k) , ∀k ∈ N

bk =
√
2 ln(k)− ln ln(k)− ln(4π)

2
√

2 ln(k)
, ∀k ∈ N. (3.7)

Thus, since the univariate Gaussian is a continuous r.v and ak → ∞,
lim
k→∞

f(1, k) can be phrased in the form described by Theorem 2.1:
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set α = (1, 1), ξk ≡ Δ
σ and define V according to the description of

Theorem 2.1. Observe the following limit

L∗ = lim
k→∞

{Δ
σ

− bk−sk − bsk
}
= −∞, (3.8)

i.e. Theorem 2.1 implies lim
k→∞

f(1, k) = 0.

To end the proof of the first statement, fix p ∈ (0, 1). By Observation (c),
∃Kp ∈ N such that fk(1) = f(1, k) < p, ∀k > Kp. Let k > Kp. According
to Observation (a), there is n̄ > 1 such that fk(n̄) > p. Since Observation
(b) states that fk is continuous on [1, n̄] ⊂ (0,∞), by the intermediate-
value theorem ∃n∗ > 1 with f(n∗, k) = p. Thus, ∀k > Kp there exists a
solution for the equation fk(n) = p, i.e. {N∗

k ; k > Kp} is well defined.
2. We prove the statement for two separate cases: (1.) sk → ∞, and (2.)

sk → s̄ ∈ N. In the proof of both cases define the function υ(·) as follows:

υ(r) :=
ln ln(r)− ln(4π)

2
√

2 ln(r)
, ∀r > 0 (3.9)

Case 1: For any τ ∈ (0, 1) define the following sequences:

N±
k (τ) :=

σ2

Δ2

[√
(1± τ)2 ln(k − sk)−υ(k−sk)+

√
(1± τ)2 ln(sk)−υ(sk)

]2
.

(3.10)
Recalling the normalizing sequences used in the proof of Statement 1,
basic limit arithmetics lead to the following limits:

L∗(N±
k (τ)

)
:= lim

k→∞

{Δ
√

N±
k (τ)

σ
− bk−sk − bsk

}
= ±∞. (3.11)

As mentioned in the proof of Statement 1, all the preconditions of Theorem
2.1 are satisfied. Therefore, Theorem 2.1 implies the next two limits for
f(n, k):

lim
k→∞

f
(
N−

k (τ), k
)
= 0

lim
k→∞

f
(
N+

k (τ), k
)
= 1. (3.12)

In addition, by definition, ∀k > Kp, N
∗
k satisfies f(N∗

k , k) = p ∈ (0, 1).
Hence, ∃K1

τ ≥ Kp such that

f
(
N−

k (τ), k
)
< f

(
N∗

k , k
)
< f

(
N+

k (τ), k
)

, ∀k > K1
τ . (3.13)

Now, since f(n, k) is nondecreasing in n,

N−
k (τ) ≤ N∗

k ≤ N+
k (τ) , ∀k > K1

τ . (3.14)

Recalling the exact expressions of N±
k (τ), then

lim
k→∞

N±
k (τ)

2σ2(1+
√
C)2

Δ2 ln(k − sk)
= 1± τ. (3.15)
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Fix ε > 0. Since k − sk > sk → ∞, the denominator of the two limits in
eq. (3.15) is positive for any large enough k. Therefore, eq. (3.14) implies
that ∃K2

τ ≥ K1
τ such that

1− τ − ε

2
≤ N∗

k

2σ2(1+
√
C)2

Δ2 ln(k − sk)
≤ 1 + τ +

ε

2
, ∀k > K2

τ . (3.16)

Thus, by rearranging this inequality and setting τε = min{ ε
4 ,

1
2} ∈ (0, 1),

∃Kε := K2
τε such that∣∣∣∣∣ N∗

k

2Δ2(1+
√
C)2

σ2 ln(k − sk)
− 1

∣∣∣∣∣ ≤ min
{3ε
4
,
1

2
+

ε

2

}
< ε , ∀k > Kε (3.17)

which ends the proof of this case.

Case 2: The sequence of naturals {sk; k ∈ N} satisfies sk → s̄ ∈ N

hence sk = s̄ ∈ N up to some finite prefix. Therefore, since this claim
is about the asymptotic behavior of {N∗

k ; k ∈ N} as k → ∞, define the
following sequences

N±
k (τ) :=

σ2

Δ2

[√
(1± τ)2 ln(k − s̄)− υ(k − s̄)

]2
(3.18)

and observe that the following limits exist:

L∗(N±
k (τ)

)
:= lim

k→∞

{Δ
√
N±

k (τ)

σ
− bk−s̄

}
= ±∞. (3.19)

Therefore, Case 2 is proven using exactly the same arguments used previ-
ously for Case 1.

3.3. Numerical results

We next tested the accuracy of the asymptotic result in Theorem 3.1 for finite
k. To this end, we solved numerically eq. (3.2) to get the values of N∗

k (p), and

compared it to the asymptotic approximation Ñ∗
k . Figure 1 shows the approxi-

mation quality for different values of p, with specific values displayed in Table 1.
The results confirm our analytic asymptotic predictions, yet the rate at which
the numerical results approach the asymptotic limit depends on p and the size
sk of the selected set.

4. Two-stage procedures

This Section revisits two well-known two-stage procedures which were suggested
respectively in [16] and by [42]. Both procedures were developed for the prob-
lem of selecting the population with the largest mean from k + 1 independent
Gaussian populations with unknown and possibly different variances. Sections
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Fig 1. Asymptotic approximation of N∗
k (p) for Δ = σ2 = 1 and for the LFC θ[i] :=

Δ1{i>k−sk}. (a.) The asymptotic approximation Ñ∗
k (dashed lines) and the exact sample

size N∗
k (0.95) (solid lines) vs. k (on log-scale) for sk ∝ kα for different values of α. For

all choices of sk, the slopes of the Ñ∗
k lines, 2(1 +

√
α)2, match the observed slope for true

sample size N∗
k (0.95), indicating that their ratio approaches 1 as k → ∞ (b.) The relative

error of the asymptotic approximation Ñ∗
k vs. the true sample size N∗

k (p) for sk = 1
2
k

1
2 for

different values of p. While for small k the probability of correct selection p greatly affects the
sample size, as k → ∞ the sample size N∗

k (p) becomes insensitive to p, and the asymptotic

approximation Ñ∗
k gives the correct first order behavior for any fixed p ∈ (0, 1).

k \ p 0.5 0.9 0.95 0.99
10 2.487 0.219 -0.030 -0.336
100 1.055 0.219 0.064 -0.167
1000 0.637 0.175 0.069 -0.105
10000 0.461 0.149 0.069 -0.071
100000 0.367 0.132 0.067 -0.049
1000000 0.305 0.118 0.064 -0.035
10000000 0.261 0.107 0.061 -0.025

Table 1

Relative error of asymptotic approximation
Ñ∗

k−N∗
k (p)

N∗
k
(p)

for specific values in Figure 1.b

4.1–4.3 introduce the statistical settings and the two procedures. In Section 4.4
we use Theorem 2.2 to analyze their asymptotic statistical efficiency as k → ∞.
Since both procedures draw a random number of samples, statistical efficiency
is measured in terms of expected sample-size. Our major conclusion states that

as k → ∞, the procedure in [16] is relatively more efficient by a factor of 2
2

N0−1 ,
where N0 is the sample size used by both procedures in the first stage.

4.1. Statistical framework

Let Xij ∼ N(θj , σ
2
j ); i = 1, . . . , k+1, j ∈ N be independent univariate Gaussian

r.v’s from the population Πi with unknown means θi and variances σ2
i . Denote
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the ordered means by θ[1] ≤ . . . ≤ θ[k+1]. The goal is to select the best popula-
tion, namely the population whose mean is θ[k+1]. The settings here is similar to
that of Section 3, except that the variances are unknown and may be different.
We consider general selection procedures, namely multi-stage procedures which
sequentially draw samples from the populations where the number of samples
drawn from each population at any stage may depend on the sampling results
of previous stages.

In Section 3 we analyzed a single-stage procedure. Considering the known
indifference parameter Δ > 0 and the restricted parameter-space (see eq. (3.1))
Θ(Δ, k + 1) :=

{
(θ1, . . . , θk+1); θ[k+1] − θ[k] ≥ Δ

}
, it was proven in [15] that

no single-stage procedure controls the probability of correct selection above a
prescribed value p ∈ (0, 1) for any parametrization (θ1, . . . , θk+1) ∈ Θ(Δ, k +
1), (σ2

1 , . . . , σ
2
k+1) ∈ R

k+1
++ .

Consequentially, [16, 42] provided two versions of two-stage procedures and
have shown that they are guaranteed to control P(CS) above a prescribed value
p ∈ (0, 1). We focus here on these two-stage procedures and describe them in
details in the next subsections.

4.2. Dudewicz and Dalal ’s procedure

Dudewicz and Dalal [16] suggested a two-stage procedure PE which generalizes
the approach of Stein [45], and described in Algorithm 1.

Stage Two of Algorithm 1 requires calculating the numbers {aij} and h
(1)
k .

As mentioned in [16] a set of numbers {aij} almost surely exists and is easy

to compute. The constant h
(1)
k is chosen to guarantee a desired probability of

correct selection p. This probability is bounded from below by the following
integral

P(CS|PE) ≥
∫ ∞

−∞
Gk

ν(t+ h
(1)
k )gν(t)dt (4.3)

where Gν and gν are the c.d.f. and p.d.f. of Student’s t-distribution with ν =
N0 − 1 degrees of freedom (d.f’s). Therefore, in order to ensure that the proba-

bility of correct selection remains above p ∈ (0, 1), h
(1)
k := h

(1)
k (ν) is determined

as the solution of the following equation in h:

f1(h, k) :=

∫ ∞

−∞
Gk

ν(t+ h)gν(t)dt = p. (4.4)

Although h
(1)
k (ν) depends on the initial sample size N0 = ν+1, we usually omit

ν and use the notation h
(1)
k since ν is pre-defined and obvious from context. The

next lemma ensures the validity of the asymptotic results in Subsection 4.4.

Lemma 3. There exists K > 0 such that ∀k > K eq. (4.4) has a unique positive
solution.

Proof. Gν is strictly increasing hence f1(h, k) is strictly increasing in h, ∀k ∈ N.
Since Gν is bounded and satisfies G(−∞) = 0, Gν(∞) = 1, by the bounded
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Algorithm 1 Dudewicz and Dalal ’s Two-Stage Procedure PE

Input: Δ - indifference parameter, N0 ≥ 2 - initial sample size, p - desired P(CS)
Output: î - selected population
Stage One:

1. Draw N0 observations from each population Πi; i = 1, . . . , k + 1

2. Compute the casual unbiased estimate S2
i for σ2

i from the initial sample taken for
each Πi

Stage Two:

1. For each i = 1, . . . , k + 1 draw Ni −N0 more samples from Πi, where Ni is given by

Ni = max

{
N0 + 1,

⌈(
h
(1)
k

Δ

)2

S2
i

⌉}
. (4.1)

Here �y	 denotes the smallest integer which is ≥ y, and the constant h
(1)
k is specified

in eq. (4.4).

2. Select numbers {aij ; j = 1, . . . , Ni}k+1
i=1 such that ∀i = 1, . . . , k + 1:

(a) S2
i

∑Ni
j=1 a

2
ij =

(
Δ

h
(1)
k

)2

(b)
∑Ni

j=1 aij = 1

(c) ai1 = . . . = aiN0

3. Select the population î by the rule

î := argmax
i=1,...,k+1

{ Ni∑
j=1

aijXij ;
}

(4.2)

convergence theorem f1(−∞, k) = 0, f1(∞, k) = 1. Similarly, the continuity of
f1(·, k) on R can be also justified by the bounded convergence theorem and hence

by the intermediate value theorem ∀k ∈ N there exists unique h
(1)
k ∈ R such

that f1(h, k) = p. In addition, Gk
ν(t)

k→∞−−−−→ 0, ∀t ∈ R and hence by the bounded

convergence theorem, f1(0, k)
k→∞−−−−→ 0 < p. Therefore, since f1(h, k) is strictly

increasing in h, deduce that ∃K ∈ N such that f1(h, k) < p, ∀h ≤ 0, k > K.

Finally, because ∀k > K, ∃h(1)
k which satisfies f1(h

(1)
k , k) = p, the constant h

(1)
k

must be positive ∀k > K.

4.3. Rinott’s procedure

Since the procedure PE allows some means to be negatively weighted, Rinott [42]
stated that as pointed in [45], a similar procedure based on ordinary means may
be more appealing. Rinott introduced such a procedure PR which guarantees a
probability of correct selection above p and shares the same steps of PE except

two differences: First, in Step 3 set aij =
1
Ni

, ∀i, j; second, in Step 2 replace h
(1)
k

by another well-defined sequence h∗
k ≥ h

(1)
k which is determined as a solution of

a certain integral equation specified by Rinott. Practically, Rinott suggested to
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use another sequence h
(2)
k := h

(2)
k (ν) ≥ h∗

k which is defined for each k ∈ N as
the solution of the following simpler equation

f2(h, k) :=
[ ∫ ∞

−∞
Gν(t+ h)gν(t)dt

]k
= p. (4.5)

The same arguments used in Lemma 3 for {h(1)
k }k∈N show that {h(2)

k }k∈N is also
well-defined and positive up to a finite prefix. Consequently, since our analysis
performs an asymptotic comparison of the procedures PE and PR, w.l.o.g. we

make the simplifying assumption that 0 < h
(1)
k ≤ h

(2)
k , ∀k ∈ N.

4.4. Asymptotic efficiency

Since both of the procedures depicted previously draw random number of sam-
ples, it is convenient to determine their asymptotic efficiency by the expected
sample-size required in order to satisfy the P(CS) criterion as k → ∞. To see

how this expected sample size relates to h
(j)
k , j = 1, 2, observe that both proce-

dures draw an infinite number of samples as k → ∞. Therefore, regardless the
value of N0, for any large enough k, the procedures PE and PR are associated re-

spectively with expected sample-sizes of
(
h
(1)
k

)2 ∑k+1
i=1

σ2
i

Δ2 and
(
h
(2)
k

)2 ∑k+1
i=1

σ2
i

Δ2 ,
up to rounding errors. Consequently, in order to analyze the asymptotic rela-
tive efficiency in terms of expected sample-size, it is enough to determine the

asymptotic behavior of the ratio
(

h
(2)
k

h
(1)
k

)2

as k → ∞. Theorems (4.1) and (4.2)

make the first order approximations h
(1)
k ∼ h̃

(1)
k ;h

(2)
k ∼ h̃

(2)
k as k → ∞ with

h̃
(2)
k := 2

1
ν h̃

(1)
k := 2

1
ν γνk

1
ν qp, where qp is the p’th quantile of ν-Fréchet distribu-

tion and γν is some function of ν to be specified later. This result implies that

for any initial sample size h
(2)
k −h

(1)
k → ∞. Therefore, regardless the exact value

of p, the numerical insight made in the last paragraph of Subsection 4.1 of [42]

which states that for p ≥ 0.75, the difference between h
(1)
k and h

(2)
k should be

small, is incorrect for large enough values of k unless the sample size N0 = ν+1
is also increased.

Theorem 4.1. Let qp be the p’th quantile of ν-Fréchet distribution and let γν
be defined as follows

γν :=

[
Γ(ν+1

2 )

ν1−
ν
2
√
πΓ(ν2 )

] 1
ν

. (4.6)

Then h
(1)
k ∼ h̃

(1)
k := γνk

1
ν qp.

Proof. Set some τ ∈ (0, p ∧ 1− p) and define the following sequences:

h±
k (τ) := γνk

1
ν qp±τ (4.7)

where γν has already been defined in the statement of the theorem and qp±τ

are the p± τ ’th quantiles of the ν-Fréchet distribution.
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The Fréchet distribution is nonnegative and continuous and hence its quan-
tiles are simply defined by the inverse of the ν-Fréchet c.d.f e−x−ν

, ∀x > 0, for

any τ > 0 such that 0 < p− τ < p+ τ < 1. In addition, let X1, . . . , Xk+1
i.i.d∼ tν

be a sequence of k + 1 i.i.d Student’s t r.v’s with ν d.f’s. By the convolution
formula for difference of independent r.v’s, f1(h, k) can be expressed as follows:

f1(h, k) =

∫ ∞

−∞
Gk

ν(t+ h)gν(t)dt = P

(
max

j=1,...,k
Xj −Xk+1 ≤ h

)
. (4.8)

Recall a known result (see e.g. Proposition 2.5 in [29]) which states that the
extreme value distribution of a sequence of i.i.d Student’s t random variables
with ν d.f’s is a ν-Fréchet distribution with the normalizing constants ak :=
γ−1
ν k−

1
ν and bk ≡ 0. Denote the following limits

L∗∗(h±
k (τ)

)
= lim

k→∞
γ−1
ν k−

1
ν γνk

1
ν qp±τ = qp±τ . (4.9)

The c.d.f of ν-Fréchet distribution is continuous on R and in particular on
{qp−τ , qp+τ}. Therefore, Theorem 2.2 can be used to obtain that

lim
k→∞

f1
(
h+
k (τ), k

)
= p+ τ > p

lim
k→∞

f1
(
h−
k (τ), k

)
= p− τ < p. (4.10)

By definition, f1(h
(1)
k , k) = p, ∀k ∈ N and hence by simple limit rules ∃Kτ ∈ N

such that

f1
(
h−
k (τ), k

)
< f1(h

(1)
k , k) < f1

(
h+
k (τ), k

)
, ∀k > Kτ . (4.11)

Since for any k ∈ N, f1(h, k) is strictly increasing in h, then

h−
k (τ) < h

(1)
k < h+

k (τ) , ∀k > Kτ . (4.12)

The Frećhet distribution is nonnegative and hence qp > 0, i.e. ∀k ∈ N, γνk
1
ν qp >

0. Thus, dividing eq. (4.12) by γνk
1
ν qp gives

qp−τ

qp
≤ h

(1)
k

γνk
1
ν qp

≤ qp+τ

qp
, ∀k > Kτ . (4.13)

Since the ν-Fréchet distribution is continuous, the inverse function theorem
states that qp+τ and qp−τ are continuous functions of τ on (0, p∧1−p). Therefore,
by taking τ ↓ 0 both boundaries approach to 1, i.e. ∀ε > 0, ∃τε ∈ (0, p ∧ 1− p)
which satisfies

max
{
|qp−τε

qp
− 1|, |qp+τε

qp
− 1|

}
< ε (4.14)

and respectively

− ε <
h
(1)
k

γνk
1
ν qp

− 1 < ε , ∀k > Kτε (4.15)

which, by definition, is an equivalent writing of the needed result h
(1)
k ∼ h̃

(1)
k :=

γνk
1
ν qp.
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Theorem 4.2. With the same notations of Theorem 4.1, h
(2)
k ∼ h̃

(2)
k :=

2
1
ν γνk

1
ν qp.

Proof. Let T
(j)
i

i.i.d∼ tν ; i = 1, . . . , k; j = 1, 2 be Student’s t r.v’s. Due to the
symmetry of Student’s t-distribution around zero, we can expressed f2(h, k)
using the convolution formula for difference of independent r.v’s as follows:

f2(h, k) :=
[ ∫ ∞

−∞
Gν(t+ h)gν(t)dt

]k
= P

(
max

i=1,...,k
{T (1)

i − T
(2)
i } ≤ h

)
= P

(
max

i=1,...,k
{T (1)

i + T
(2)
i } ≤ h

)
. (4.16)

Let g̃ν be the density associated with the distribution of a sum of two i.i.d
Student’s tν r.v’s. This density is given in eq. (2.1) of [26]

g̃ν(t) =
Γ(ν+1

2 )Γ(ν + 1
2 )

2νν
1
2Γ2(ν2 )Γ(

ν
2 + 1)

( 4ν

4ν + t2

)1+ν

2F1

(1

2
, ν+

1

2
;
ν

2
+1;

t2

4ν + t2

)
(4.17)

where 2F1(a, b; c; z) is the hypergeometric function with parameters a, b, c eval-
uated at z with |z| < 1. We next use Euler’s transformation for the hypergeo-
metric function,

2F1(a, b; c; z) = (1− z)c−a−b
2F1(c− a, c− b; c; z) (4.18)

to get:

g̃ν(t) =
Γ(ν+1

2 )Γ(ν + 1
2 )

2νν
1
2Γ2(ν2 )Γ(

ν
2 + 1)

( 4ν

4ν + t2

)1+ ν
2

2F1

(ν + 1

2
,
1− ν

2
;
ν

2
+ 1;

t2

4ν + t2

)
.

(4.19)

We have t2

4ν+t2 −→
t→∞

1 therefore,

2F1

(ν + 1

2
,
1− ν

2
;
ν

2
+ 1;

t2

4ν + t2

)
−→
t→∞ 2F1

(ν + 1

2
,
1− ν

2
;
ν

2
+ 1; 1

)

=
Γ(ν2 + 1)Γ(ν2 )

Γ( 12 )Γ(ν + 1
2 )

(4.20)

where the value of the hypergeometric function evaluated at 1 is an analytical
continuation which is provided by Gauss’ Theorem. Plugging eq. (4.20) into eq.
(4.19) and taking t → ∞ we get:

g̃ν(t) ∼
2Γ(ν+1

2 )

ν
−ν
2
√
πΓ(ν2 )

t−(1+ν) ∼ 2gν(t). (4.21)

Since the asymptotic values of the densities g̃ν(t), gν(t) for large t are the same
up to a multiplicative factor of 2, we can follow Propositions 2.3 of [29] to get
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the asymptotic cumulative distribution function of g̃ν(t) for t → ∞:

1− G̃ν(t) ∼
2Γ(ν+1

2 )

ν1−
ν
2
√
πΓ(ν2 )

t−ν = 2γν
ν t

−ν ∼ 2
(
1−Gν(t)

)
(4.22)

and follow Propositions 2.5 of [29] to get that the extreme value distribution
for g̃ν(t) is the ν-Fréchet distribution with the normalizing constants ak :=

2−
1
ν γ−1

ν k−
1
ν and bk ≡ 0.

Next, set some τ ∈ (0, p ∧ 1− p) and define the following sequences:

h±
k (τ) = a−1

k qp±τ . (4.23)

Finally, the arguments used to prove Theorem 4.1 hold for this case too and
hence imply the needed result.

Corollary 1. Using the same notations of Theorem 4.1, h∗
k−h

(1)
k = O(γνk

1
ν qp)

as k → ∞.

Proof. In [42], it was shown that ∀k ∈ N, h
(1)
k ≤ h∗

k ≤ h
(2)
k , therefore ∀k ∈ N:

0 ≤ h∗
k − h

(1)
k

γνk
1
ν qp

≤ h
(2)
k − h

(1)
k

γνk
1
ν qp

k→∞−−−−→ 2
1
ν − 1. (4.24)

This limit implies that

0 ≤ lim sup
k→∞

h∗
k − h

(1)
k

γνk
1
ν qp

≤ 2
1
ν − 1 < ∞ (4.25)

and the corollary follows from the definition of the big O notation.

Theorems 4.1, 4.2 show the dependency of the asymptotics of h
(1)
k (ν), h

(2)
k (ν)

on the initial sample size N0 = ν + 1. In particular, the asymptotic relative
efficiency of the two procedures satisfies

lim
ν→∞

lim
k→∞

(h
(2)
k (ν)

h
(1)
k (ν)

)2

= lim
ν→∞

2
2
ν = 1. (4.26)

The next theorem reveals that surprisingly, when we fix first ν = ∞ and then
let k → ∞, the limit is given by:

lim
k→∞

(h
(2)
k (∞)

h
(1)
k (∞)

)2

= 2 (4.27)

i.e. ν = ∞ is a discontinuity point of the asymptotic relative efficiency as a
function of ν.

Theorem 4.3. For ν = ∞ we have h
(2)
k (∞) ∼

√
2h

(1)
k (∞) ∼ 2

√
ln(k) .
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Proof. 1. To derive the asymptotics of h
(2)
k (∞), recall that a standard Stu-

dent’s t-distribution with ν = ∞ d.f’s is a standard Gaussian distribution.
Thus, let X1, X2, . . .

i.i.d.∼ N(0, 2) and observe that

f2(h, k) := P

(
max

j=1,...,k
Xj ≤ h

)
= P

(
max

j=1,...,k
Zj ≤

h√
2

)
(4.28)

where Z1, Z2, . . .
i.i.d.∼ N(0, 1). As mentioned in Section 3, the normaliz-

ing constants of the standard Gaussian distribution are ak =
√

2 ln(k)

and bk ∼
√

2 ln(k). Thus, for any τ ∈ (0, p ∧ 1 − p) define hk(τ)
+ :=√

2(bk − gp±τ

ak
) where gp±τ is the p± τ ’s quantile of the standard Gumbel

distribution. Since the extreme value distribution of the standard Gaussian
distribution is a standard Gumbel distribution, this implies that

lim
k→∞

f2
(
h±
k (τ), k

)
= p± τ. (4.29)

Therefore, by the same technique which was used in the proof of Theorem

4.1, deduce that h
(2)
k (∞) ∼

√
2(bk − qp

ak
) ∼

√
2bk ∼ 2

√
ln(k).

2. To derive the asymptotics of h
(1)
k , set an arbitrary τ ∈ (0, p ∧ 1− p) and

define h±
k (τ) = bk − zp±τ where zp is the p’th quantile of the standard

Gaussian distribution. Let Z1, Z2, . . .
i.i.d∼ N(0, 1). For

f1(h, k) := P

(
max

j=1,...,k
Zj + Zk+1 ≤ h

)
(4.30)

Theorem 2.1 implies that

lim
k→∞

f
(
h±
k (τ), k

)
= p± τ. (4.31)

Thus, the same technique used to prove Theorem 4.1 shows that h
(1)
k (∞) ∼

bk ∼
√
2 ln(k).

Remark 1. Theorems 4.1–4.3 state that the relative asymptotic efficiency of
the procedures is invariant to the value of p.

Remark 2. For both procedures, the guaranteed lower bounds on the probabil-
ity of correct selection may not be tight and hence an empirical comparison of
sample sizes giving the same probability of correct selection in practice may give
different conclusions and should be studied separately. This issue was studied
using simulations in [8, 46]. Lately, [21] gave new theoretical insights regarding
this phenomenon.

4.5. Numerical results

We solved numerically eq. (4.4) and (4.5) to get the values of h
(1)
k and h

(2)
k ,

respectively, and compared them with the asymptotic results in Theorems 4.1,
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4.2 for finite k. Figure 2 shows the relative efficiency of the two procedures,
with specific values displayed in Table 2. The results confirm our asymptotic
predictions. The rate at which the numerical results approach the asymptotic
limit varies with ν and p.

k
h̃
(1)
k

−h
(1)
k

h
(1)
k

, p = 0.5
h̃
(2)
k

−h
(2)
k

h
(2)
k

, p = 0.5
h̃
(1)
k

−h
(1)
k

h
(1)
k

, p = 0.95
h̃
(2)
k

−h
(2)
k

h
(2)
k

, p = 0.95

10 0.975 0.537 0.079 0.084
100 0.375 0.107 0.009 -0.010
1000 0.186 -0.003 -0.012 -0.034
10000 0.101 -0.033 -0.016 -0.032
100000 0.056 -0.033 -0.014 -0.022
1000000 0.032 -0.023 -0.010 -0.013
10000000 0.018 -0.014 -0.007 -0.008

Table 2

Relative error of asmymptotic approximation for two procedures (h̃
(i)
k − h

(i)
k )/h

(i)
k for

specific values in Figure 2

4.6. Choosing the parameter ν

The statistical efficiency of the two procedures in [16, 42] depend on the choice
of the parameter ν. In this section we derive for each procedure an asymptotic
approximation for the optimal ν minimizing the expected sample size as k →
∞. Define the expected sample size for the two procedures when choosing the
parameter ν,

μ
(j)
k := μ

(j)
k (ν) = E[N

(j)
k ] =

k+1∑
i=1

E[N
(j)
i,k ], j = 1, 2 (4.32)

where N
(j)
i,k = max

(
N0 + 1,

(
Sih

(j)
k

Δ

)2
)

is the sample size for population i out

of k in the second state (see eq. (4.1) for j = 1), and N
(j)
k =

∑k+1
i=1 N

(j)
i,k is the

actual (random) sample size. Since μ
(j)
k (ν) → ∞ as ν → ∞, a minimizer ν

(j∗)
k

must exist. Thus, we may define the optimal parameter choice and the optimal
sample size attained for the two procedures

ν
(j∗)
k := argmin

ν∈N

μ
(j)
k (ν) ; μ

(j∗)
k := min

ν∈N

μ
(j)
k (ν) = μ

(j)
k (ν

(j∗)
k ). (4.33)

Finding the optimal parameter ν
(j∗)
k leads to both conceptual and technical

difficulties. First, the optimum depends on the unknown variances σ2
i . Second,

even if the variances σ2
i were known, the maximization operation and the non-

explicit form of h
(j)
k makes the optimization problem computationally challeng-

ing.
To overcome these difficulties, we propose a parameter choice for ν based on

two simplifications: (i) We ignore the maximization with N0+1 in the definition

of N
(j)
i,k and optimize only the second term as we take k → ∞, and (ii) we replace
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Fig 2. Comparison of relative efficiency of two procedures for p = 0.5, 0.95 for different values

of ν. (a.) The relative error of the asymptotic approximation h̃
(1)
k vs. the exact (numeric)

integral h
(1)
k for Dudewicz and Dalal ’s procedure. For k ∼ 102 − 104 the relative error of the

asymptotic approximation is only a few percents; the approximation accuracy decreases when

ν is increased. (b.) The relative error of the asymptotic approximation h̃
(2)
k vs. the exact

(numeric) integral h
(2)
k for Rinott’s procedure. The qualitative behavior of the approximation

is similar to that of h
(1)
k , with larger relative error as ν is increased. (c.) The relative efficiency

of the two procedures approaches the asymptotic value of 2
2
ν as k → ∞. For larger values

of ν, larger k values are needed to get an accurate approximation. (d.)–(f.) The same as
(a.)–(c.) but for p = 0.95, showing improved accuracy for the asymptotic approximation is

for larger p. The approximation accuracy for h̃
(1)
k here is not monotonic with ν.

h
(j)
k by its asymptotic approximation h̃

(j)
k . With these two simplifications, we

define the approximate expected sample size

μ̃
(j)
k (ν) :=

(
h̃
(j)
k (ν)

)2 ∑k
i=1 σ

2
i

Δ2
, j = 1, 2 . (4.34)

and the approximate optimal parameter

ν̃
(j∗)
k := argmin

ν∈N

μ̃
(j)
k (ν) ; μ̃

(j∗)
k := min

ν∈N

μ̃
(j)
k (ν) = μ̃

(j)
k (ν̃

(j∗)
k ). (4.35)

ν̃
(j∗)
k , μ̃

(j∗)
k do not depend on the unknown variances σ2

i and can be found by
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minimizing

h̃
(j)
k (ν) = 2

j−1
ν γvk

1
ν qp =

[
2j−1Γ(ν+1

2 )k

−ν1−
ν
2
√
πΓ(ν2 ) ln(p)

] 1
ν

; j = 1, 2. (4.36)

Theorem 4.4. For k large enough, eq. (4.36) has a unique minimizer ν̃
(j∗)
k .

Moreover, as k → ∞: ν̃
(j∗)
k ∼ 2 ln(k), h̃

(j∗)
k ∼

√
2e ln(k) and μ̃

(j∗)
k ∼

2e ln(k)
∑k

i=1 σ2
i

Δ2 .

Proof. We prove the Theorem for j = 1. The proof for j = 2 is similar. Differ-
entiating the logarithm of eq. (4.36),

ln
(
h̃
(1)
k (ν)

)
=

1

ν

[
ln

( −k√
π ln(p)

)
+ ln

(
Γ(

ν + 1

2
)
)
− ln

(
Γ(

ν

2
)
)
+ (

ν

2
− 1) ln(ν)

]
(4.37)

gives the first order condition:

0 =
d ln h̃

(1)
k (ν)

dν
=

1

2ν2
Hk(ν) (4.38)

where

Hk(ν) := −2−2 ln
( −k√

π ln(p)

)
+ν+2 ln(ν)+2 ln

( Γ(ν2 )

Γ(ν+1
2 )

)
+ν

(
Ψ

(ν + 1

2

)
−Ψ

(ν
2

))
(4.39)

and Ψ is the digamma function. Since ν > 0 we have sign
(d ln h̃

(1)
k (ν)

dν

)
=

sign
(
Hk(ν)

)
and the first order condition is satisfied if and only if Hk(ν) = 0.

The derivative of Hk is

dHk(ν)

dν
= 1 +

2

ν
+

ν

2

(
Ψ′(

ν + 1

2
)−Ψ′(

ν

2
)
)
. (4.40)

By Lemma 1 in [2], Ψ′ is strictly monotonically decreasing in R+. Therefore,
using the recurrence relation for polygamma functions Ψ′(z + 1) = Ψ′(z) − 1

z2

we get the bound

Ψ′(
ν + 1

2
) > Ψ′(

ν

2
+ 1) = Ψ′(

ν

2
)− 4

ν2
. (4.41)

Plugging eq. (4.41) into eq. (4.40) gives dHk(ν)
dν > 1, ∀ν > 0, hence Hk is

monotonically increasing. We use the following bounds,

−2 ln(ν) < 2 ln
( Γ(ν2 )

Γ(ν+1
2 )

)
< 0

0 < ν
(
Ψ

(ν + 1

2

)
−Ψ

(ν
2

))
< 1 (4.42)
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to bound Hk(ν)

− 2− 2 ln
( −k√

π ln(p)

)
+ ν < Hk(ν) < −1− 2 ln

( −k√
π ln(p)

)
+ ν+2 ln(ν). (4.43)

For k large enough the right bound in eq. (4.43) shows that Hk(1) < 0. For any
fixed k, eq. (4.43) givesHk(ν) ∼ ν → ∞ as ν → ∞. SinceHk(ν) is monotonically
increasing for ν > 0, the first order condition in eq. (4.39) has a unique solution

which is the global minimum of ln
(
h̃
(1)
k (ν)

)
in ν ∈ (1,∞).

We can solve eq. (4.39) numerically to get the optimal ν for any given k and
p. To get the asymptotic solution as k → ∞ we set Hk(ν) = 0 in eq. (4.43),

−2− 2 ln(
√
π ln(p)) + ν < 2 ln(k) < −1− 2 ln(

√
π ln(p)) + ν + 2 ln(ν)

=⇒ ν̃
(1∗)
k ∼ 2 ln(k). (4.44)

Plugging the asymptotic solution ν̃
(1∗)
k ∼ 2 ln(k) into the asymptotic expression

for h
(1)
k yields

h̃
(1)
k

(
2 ln(k)

)
= γ2 ln(k)k

1
2 ln(k) qp

=

[
Γ
(
ln(k) + 1

2

)
k

−
(
2 ln(k)

)1−ln(k)√
πΓ

(
ln(k)

)
ln(p)

] 1
2 ln(k)

∼
√
2e ln(k). (4.45)

Thus, for the choice ν̃
(1∗)
k = 2 ln(k) the approximate expected asymptotic sample

size for Dudewicz and Dalal ’s procedure is μ̃
(1∗)
k ∼ 2e ln(k)

∑k
i=1 σ2

i

Δ2 .

Remark 3. It is instructive to compare Theorem 4.4 in the case of equal vari-
ances σi ≡ σ to Robbins and Siegmund ’s one-stage procedure applied when the

variance is known. Robbins and Siegmund ’s procedure [43] requires ∼ 2 ln(k) σ2

Δ2

samples from each population in order to ensure correct selection with a pre-
scribed probability p, i.e. the overall sample size summing over all populations

is ∼ 2k ln(k) σ2

Δ2 . Hence the approximate asymptotic sample size for the case of
unknown variance is within a multiplicative factor of e of the sample size for
the case of known variance.

Theorem 4.4 shows that while for every fixed ν Dudewicz and Dalal ’s proce-
dure is asymptotically more efficient by a factor of 2

1
ν , as k → ∞, the approxi-

mations of the optimal ν’s for both procedures are equivalent up to a first order
error term. The reason is that as ν = 2 ln(k) increases, the asymptotic ratio

2
1

2 ln(k) goes to 1. Although to the first order the two sample sizes are identical,

taking a multiplicative factor 2
1

2 ln(k) into account for Rinott’s procedure may
yield more accurate results.

We next study the asymptotic behavior of h
(2)
k for fixed k as ν → ∞. Lemma

4 shows a useful monotonicity property of Student’s t r.v’s, which is used to

show the monotonicity of h
(2)
k in ν.
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Lemma 4. Let T
(j)
i ∼ tνi ; i, j = 1, 2 be four independent Student’s t r.v’s. with

ν1 ≤ ν2. Then ∀h > 0

P(T
(1)
1 + T

(2)
1 ≤ h) ≤ P(T

(1)
2 + T

(2)
2 ≤ h). (4.46)

Proof. Let ν1 < ν2. Using the symmetry of the Student’s t densities gνj ; j = 1, 2
around zero, we get

P(T
(1)
2 + T

(2)
2 ≤ h) =

∫ ∞

−∞
Gν2(h− t)gν2(t)dt

=

∫ ∞

−∞
Gν2(t)gν2(t− h)dt

=

∫ ∞

0

Gν2(t)gν2(t− h)dt+

∫ ∞

0

Gν2(−t)gν2(t+ h)dt

=

∫ ∞

0

Gν2(t)[gν2(t− h)− gν2(t+ h)]dt+ 1−Gν2(h)

≥
∫ ∞

0

Gν1(t)[gν2(t− h)− gν2(t+ h)]dt+ 1−Gν2(h)

=

∫ ∞

−∞
Gν1(h− t)gν2(t)dt

=

∫ ∞

−∞
Gν2(t)gν1(t− h)dt

≥
∫ ∞

−∞
Gν1(h− t)gν1(t)dt

= P(T
(1)
1 + T

(2)
1 ≤ h) (4.47)

where Gν1(t) < Gν2(t), ∀t > 0 and gν2(t − h) − gν2(t + h) ≥ 0, ∀t, h > 0
together imply the first inequality appearing in the fifth line of eq. (4.47) above.
To obtain the second inequality, repeat lines 2-6 of eq. (4.47) with gν2 replaced
by gν1 .

Corollary 2. ∃K > 0 such that ∀k > K, h
(2)
k (ν) is monotonically non-

increasing in ν.

Proof. By Lemma 3, ∃K > 0 such that ∀k > K, h
(2)
k (ν1), h

(2)
k (ν2) > 0. Using

eq. (4.5) for h = h
(2)
k (ν2) > 0 and representing the probabilities in Lemma 4 as

convolutions,∫ ∞

−∞
Gν1(h

(2)
k (ν2)− t)gν1(t)dt ≤

∫ ∞

−∞
Gν2(h

(2)
k (ν2)− t)gν2(t)dt = p

1
k (4.48)

and because Gν1 is monotonically increasing we get h
(2)
k (ν1) ≥ h

(2)
k (ν2).

Remark 4. The order of limits of k, ν → ∞ matters. Eq. (4.26) shows that

for fixed finite ν, h̃
(j)
k (ν) ∼ h

(j)
k (ν) as k → ∞. Now, for fixed k, h̃

(j)
k (ν) and
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h
(j)
k (ν) behave differently as ν → ∞. The approximation h̃

(j)
k (ν) has a unique

minimum ν̃
(j∗)
k ∈ (1,∞) as we have shown above, and deriving the asymptotics

of eq. (4.36) shows

h̃
(j)
k (ν) ∼ 2

j−1
ν

ν(
1
ν −1)/2

∼
√
ν

ν→∞−−−−→ ∞. (4.49)

In contrast, for k fixed and large enough, Corollary 2 implies that the exact

h
(2)
k (ν) for Rinott’s procedure is monotonically non-increasing in (1,∞) such

that lim
ν→∞

h
(2)
k (ν) = Φ−1(p

1
k )√

2
. In addition, since h

(1)
k (ν) ≤ h

(2)
k (ν) by Proposi-

tion 3 in [42], h
(1)
k (ν) is bounded from above by a monotonically non-increasing

function of ν, and lim sup
ν→∞

h
(1)
k (ν) ≤ Φ−1(p

1
k )√

2
implying lim

ν→∞
h
(j)
k (ν)

h̃
(j)
k (ν)

= 0 for any k

large enough. Thus, the asymptotic convergence lim
k→∞

h
(j)
k (ν)

h̃
(j)
k (ν)

= 1 shown in The-

orems 4.1, 4.2 for any fixed ν, is therefore not uniform. In particular, as shown
in Figure 3, the asymptotic result in Theorem 4.4 does not necessarily imply

h
(1)
k

(
2 ln(k)

)
∼

√
2e ln(k) and μ

(1)
k

(
2 ln(k)

)
∼ 2e ln(k)

∑k
i=1 σ2

i

Δ2 .

Finally, recall that our simplification defined μ̃
(j)
k as an approximate expected

sample size, while ignoring the maximization in the definition of N
(j)
i,k . In Theo-

rem 4.5 we define an approximate sample size which does take the maximization
into account and show optimality with respect to this definition. For bounded
sequences {νk} with lim sup

k→∞
νk = ν ∈ N, Theorems 4.1 and 4.2 have shown that

h̃j
k(νk) = Ω(k

1
ν ), ∀j = 1, 2 which tends to infinity faster than ln(k). Therefore,

we consider only sequences {νk} such that νk → ∞. For any such sequence we
give conditions ensuring that, almost surely for each population the asymptotic
approximate sample size as k → ∞: (i) converges to its expectation, and (ii)

cannot be improved compared to {ν̃(1∗)k }.
Theorem 4.5. Consider a sequence {νk} such that νk → ∞ and for each k ∈ N

and j = 1, 2 let

1. Ñ
(j)
i,k := max

{
νk + 2,

[
h̃
(j)
k (νk)

]2 S2
i

Δ2

}
, ∀i = 1, . . . , k + 1.

2. Ñ
(j∗)
i,k := max

{
ν̃
(j∗)
k + 2,

[
h̃
(j)
k (ν̃

(j∗)
k )

]2 S2
i

Δ2

}
, ∀i = 1, . . . , k + 1.

If σ2
i e > Δ2, ∀i ∈ N, then

1. Ñ
(j∗)
i,k ∼

[
h̃
(j)
k (ν̃

(j∗)
k )

]2 σ2
i

Δ2 as k → ∞ , ∀i ∈ N , P− a.s.

2. Moreover, if there exists K > 0 such that νk ≤
[
h̃
(j)
k (νk)

]2 σ2
i

Δ2 , ∀k > K,

then lim inf
k→∞

Ñ
(j)
i,k

Ñ
(j∗)
i,k

≥ 1 , ∀i ∈ N , P− a.s.

Proof. We prove for the case j = 1 while the case j = 2 may be treated by
similar arguments. Since νk → ∞ and the S2

i ’s are unbiased estimators of σ2
i ’s
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Fig 3. Optimal choice of parameters for Dudewicz and Dalal ’s procedure for different values

of p and k, for σ2
i ≡ Δ2 = 1. (a.) The exact h

(1)
k (ν) for different values of p (solid lines of

different colors) vs. the asymptotic h̃
(1)
k (ν) (dashed orange line), for k = 105, as a function

of ν. The orange diamond represent the minimum (ν̃
(1∗)
k , h̃

(1∗)
k ) as found by the first order

condition in eq. (4.38). The other colored diamonds are the optimal values (ν
(1∗)
k , h

(1∗)
k ) mini-

mizing h
(1)
k (ν)2 for different values of p. In all cases the computed h

(1)
k (ν)2 was monotonically

decreasing in ν, and ν
(1∗)
k was the solution of ν + 2 = h

(1)
k (ν)2. (b.) The optimal parameter

ν
(1∗)
k for different values of p, and the approximate optimal value ν̃

(1∗)
k , as a function of k,

shown on a log-scale. The slope for the approximation is lower than the slope of the exact

lines, indicating that for large k, ν̃
(1∗)
k underestimate ν

(1∗)
k for this case. (c.) The resulting

optimal expected sample size μ
(1∗)
k as function of k. For the approximation the approximate

sample size μ̃
(1∗)
k (dashed orange) and the exact expected sample size for p = 1

2
, evaluated at

the approximate optimum, μ
(1)
k (ν̃

(1∗)
k ) (solid orange) are shown. The slope for the approxi-

mation μ̃
(1∗)
k is higher than the slope of the exact expected sample sizes. However, the exact

expected sample size at our approximate solution μ
(1)
k (ν̃

(1∗)
k ) matches for this case the optimal

exact expected sample size for p = 1
2
.

computed using independent samples from independent populations, we may
use the strong law of large numbers throughout the proof.

1. The following approximation stems from the strong law of large numbers
and eq. (4.49):

[
h̃
(1)
k (νk)

]2 S2
i

Δ2
∼

[
h̃
(1)
k (νk)

]2 σ2
i

Δ2
as k → ∞ , ∀i ∈ N , P− a.s. (4.50)



Asymptotic efficiency of selection procedures 5401

Let i ∈ N and consider the sequence {ν̃(1∗)k }. Theorem 4.4 states that

ν̃
(1∗)
k ∼ 2 ln(k) and h̃

(1)
k (ν̃

(1∗)
k ) ∼

√
2e ln(k), hence the fact that

σ2
i

Δ2 e > 1
implies that almost surely, up to a finite prefix

ν̃
(1∗)
k + 2 ≤

[
h̃
(1)
k (ν̃

(1∗)
k )

]2 S2
i

Δ2
. (4.51)

Thus, almost surely, up to a finite prefix Ñ
(1∗)
i,k is given by its second

argument, i.e.

Ñ
(1∗)
i,k ∼

[
h̃
(1)
k (ν̃

(1∗)
k )

]2 σ2
i

Δ2
as k → ∞ , P− a.s. (4.52)

Therefore, since the intersection of a countable number of events of prob-
ability one is a an event of probability one, the claim follows.

2. Let i ∈ N. Since the inequality νk ≤
[
h̃
(1)
k (νk)

]2 σ2
i

Δ2 holds for every k which

is large enough, the strong law of large numbers implies that Ñ
(1)
i,k ∼[

h̃
(1)
k (νk)

]2 σ2
i

Δ2 and hence:

lim inf
k→∞

Ñ
(1)
i,k

Ñ
(1∗)
i,k

= lim inf
k→∞

[h̃
(1)
k (νk)

]2 σ2
i

Δ2

[h̃
(1)
k (ν

(1∗)
k )

]2 σ2
i

Δ2

≥ 1. (4.53)

5. Discussion

In this work we proved limit theorems for linear combinations of partial max-
ima, and demonstrated their utility by using them to derive the asymptotic
behaviors of several selection procedures under different statistical frameworks.
The specific contributions to the R& S theory in Sections 3 and 4 shed new light
on existing popular procedures, and offer natural avenues for future research.
In particular, Section 3 studies a new asymptotic regime where the number
of populations to be selected is determined as a function of the total number
of populations. Studying the behavior of other R&S procedures in this regime
can lead to similar generalization of other known results. In Section 4 we have
shown that the guarantees of the procedure of Dudewicz and Dalal [16] are
asymptotically superior to that of Rinott [42]. While several authors proposed
new procedures based on Rinott’s procedure [1, 7, 41], it would be interesting to
develop R&S procedures based on Dudewicz and Dalal ’s procedure. If such new
procedures are found, would they be better than the current Rinott’s-based pro-
cedures? More questions related to the comparison between the two procedures
in [16, 42] are

1. Can one apply the techniques we used for studying h
(1)
k , h

(2)
k to derive

similar asymptotic results for h∗
k?

2. Can one prove rigorously that our conjecture that N0 ∼ 2 ln(k) samples for
the first stage of both procedures is optimal, hence the relative efficiency
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of the two procedures under optimal choice of ν is one? can similar results
be proven for the asymptotic expected sample size of the two procedures
under optimal choice of the N0 parameter?

3. What is the relative efficiency of the two procedures when considering the
actual probability for correct selection instead of its bounds?

Beyond the procedures discussed in this work, it would be interesting to apply
our approach more generally to study the asymptotic attributes of other, more
modern, R&S procedures such as the ones proposed in [21, 33, 41].

Other asymptotic regimes for R&S procedures can also be studied using tools
from extreme value theory - for example, in [39] it was shown that Rinott’s
procedure is asymptotically inefficient in the sense of [13], i.e. in the asymp-
totic regime where Δ∗ ↓ 0. As the number of items k is increased, it is of
interest to study the case where the indifference parameter Δ∗ is decreased,
for example Δ∗(k) ∝ k−1. This case arises naturally when the populations
have parameters θi within a prespecified range, or drawn from a certain prior
distribution in a Bayesian setting, as was studied for example in [17, 47]. As
the number of selected items sk is increased, it is also of interest to relax
the requirement for correct selection, and allow approximate correct selection,
for example requiring correct selection of (1 − δ)sk items for some predefined
δ > 0.

Taking a broader view, this work points to an interesting relation between
extreme value theory (a nice introduction is provided by the books [25, 38])
and the asymptotic behavior of R&S procedures. Therefore, other results from
extreme value theory can be naturally applied to R&S procedures - for example,
it would be interesting yet challenging to develop and apply limit theorems for
maxima of dependent random variables, in order to study R&S procedures for
dependent populations.

Finally, the limit theorems proved in Section 2 may be applied to other fields
beyond that of R&S procedures. In a well known application of extreme value
theory, it is used to calculate the statistical significance of a local sequence align-
ment in computational biology [14]. In this application, deriving the distribution
of the best (maximal) sequence alignment under the null is required in order
to establish whether two aligned sub-sequences are significantly similar, in an
hypothesis testing framework. Sometimes a single sequence alignment does not
provide sufficient statistical evidence against the null, and pooling information
from several local sequence alignments in the same region is required - hence
the need to calculate the distribution of the sum of several maxima under the
null, which can hopefully be achieved using our theorems. We hope that the
current work will stimulate search for further applications and generalizations
of our theorems.
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