Correction to: Nonparametric Laguerre estimation in the multiplicative censoring model

Denis Belomestny
Duisburg-Essen University, D-45127 Essen, Germany IITP RAS, Moscow 127051, Russia
e-mail: denis.belomestny@uni-due.de

Fabienne Comte ${ }^{\dagger}$
Sorbonne Paris Cité, Université Paris Descartes, MAP5, UMR CNRS 8145, Paris, France
e-mail: fabienne.comte@parisdescartes.fr
and
Valentine Genon-Catalot
Sorbonne Paris Cité, Université Paris Descartes, MAP5, UMR CNRS, Paris, France
e-mail: valentine.genon-catalot@parisdescartes.fr

Abstract

The paper "Nonparametric Laguerre estimation in the multiplicative censoring model", Electronic Journal of Statistics, 2016, 10, 31143152, contains a wrong statement. We localize the place of the error and give a correct proof.

Received October 2017.

1. Introduction

Observations are either i.i.d. nonnegative data X_{1}, \ldots, X_{n}, with unknown density f, or drawn from the model $Y_{i}=X_{i} U_{i}, i=1, \ldots, n$ where the U_{i} 's are i.i.d. with $\beta(1, k)$ density, $k \geq 1$. The sequences $\left(X_{i}\right),\left(U_{i}\right)$, are independent.

The paper [2] studies projection estimators of f using Laguerre basis and proves upper bounds for the integrated \mathbb{L}^{2}-risk. These upper bounds allow to compute rates on Sobolev-Laguerre balls. Corresponding lower bounds are stated in the case of direct observations and indirect observations with uniform noise.

In Comte and Genon-Catalot (2017), we prove that the upper bounds can be improved, thanks to more precise properties of the Laguerre functions (Askey and Wainger (1965)). They yield better rates on Sobolev-Laguerre balls. In the case of direct observations, these rates turn out to be the classical ones, even

[^0]though the regularity spaces are not the standard ones. Consequently, the lower bounds proved in the paper (Theorem 3.1 and 3.2) do not hold true.

Section 2 presents the improved upper bounds. For what concerns the lower bounds, we point out the error of the published proof, and give a correct one in Section 3.

2. Improved upper bounds

Consider X_{1}, \ldots, X_{n} i.i.d. nonnegative random variables with unknown density f belonging to $\mathbb{L}^{2}\left(\mathbb{R}^{+}\right)$. For each $m \geq 0$, a projection estimator of f is defined by $\hat{f}_{m}^{X}=\sum_{j=0}^{m-1} \hat{a}_{j}^{X} \varphi_{j}$, where $\hat{a}_{j}^{X}=\frac{1}{n} \sum_{i=1}^{n} \varphi_{j}\left(X_{i}\right), j=0, \ldots, m-1$, and $\left(\varphi_{j}\right)_{j \geq 0}$ is the Laguerre basis defined in Section 2.1 of [2]. The following risk bound is proved in [3].
Proposition 2.1. If $\mathbb{E}\left(1 / \sqrt{X_{1}}\right)<+\infty$, we have, for m large enough,

$$
\begin{equation*}
\mathbb{E}\left(\left\|\hat{f}_{m}^{X}-f\right\|^{2}\right) \leq\left\|f-f_{m}\right\|^{2}+C \frac{\sqrt{m}}{n} \tag{2.1}
\end{equation*}
$$

for C a constant depending on $\mathbb{E}\left(1 / \sqrt{X_{1}}\right)$, but not on m, where $\|$.$\| is the \mathbb{L}^{2}$ norm on $\mathbb{L}^{2}\left(\mathbb{R}^{+}\right)$.

Compared with Proposition 2.4 p. 3120 of [2] with $k=0$ which is the case of direct observations, the variance term here is upper bounded by \sqrt{m} / n instead of m / n. On the other hand, we did not assume $\mathbb{E}\left(1 / \sqrt{X_{1}}\right)<+\infty$. Note that the function proposals of Theorem 3.1 in [2] satisfy this additional moment assumption.

Now, for $f \in W^{s}(D)$, the Sobolev Laguerre ball being defined by

$$
\begin{equation*}
W^{s}(D)=\left\{h:(0,+\infty) \rightarrow \mathbb{R}, h \in \mathbb{L}^{2}((0,+\infty)),|h|_{s}^{2}:=\sum_{k \geq 0} k^{s} a_{k}^{2}(h) \leq D\right\} \tag{2.2}
\end{equation*}
$$

we have $\left\|f-f_{m}\right\|^{2}=\sum_{j \geq m} a_{j}^{2}(f) \leq D m^{-s}$. Therefore, choosing $m_{\mathrm{opt}}=$ $\left[n^{1 /(s+1 / 2)}\right]$ in the r.h.s. of (2.1) implies

$$
\mathbb{E}\left(\left\|\hat{f}_{m_{\mathrm{opt}}}^{X}-f\right\|^{2}\right) \lesssim n^{-s /(s+1 / 2)}=n^{-2 s /(2 s+1)}
$$

This upper bound is thus better than the one obtained in Corollary 3.1 p .3122 for $k=0$. This is why the lower bound stated in Theorem 3.1 p .3123 is not correct. Note that the new rates can not be improved as they reach the standard rates on classical Sobolev spaces.

Assume now that the observations are $Y_{i}=X_{i} U_{i}$ with U_{i} i.i.d. with $\left(X_{i}\right)_{1 \leq i \leq n}$ and $\left(U_{i}\right)_{1 \leq i \leq n}$ independent. We restrict ourselves to $U_{1} \sim \mathcal{U}([0,1])$. We recall that in this case the projection estimator is defined by $\hat{f}_{m}(x)=\sum_{j=1}^{m} \hat{a}_{j} \varphi_{j}(x)$, with $\hat{a}_{j}=\frac{1}{n} \sum_{i=1}^{n}\left[Y_{i} \varphi_{j}^{\prime}\left(Y_{i}\right)+\varphi_{j}\left(Y_{i}\right)\right]$. Then the following risk bound holds (see [3]).

Proposition 2.2. Assume that $\mathbb{E}\left(X_{1}\right)<+\infty$ and $\mathbb{E}\left(1 / \sqrt{X_{1}}\right)<+\infty$. For m large enough, we have

$$
\begin{equation*}
\mathbb{E}\left(\left\|\hat{f}_{m}-f\right\|^{2}\right) \leq\left\|f-f_{m}\right\|^{2}+c \frac{m^{3 / 2}}{n} \tag{2.3}
\end{equation*}
$$

where c is a constant which depends on $\mathbb{E}\left(X_{1}\right)$ and $\mathbb{E}\left(1 / \sqrt{X_{1}}\right)$, but not on m.
The rate obtained in Proposition 2.4 p. 3120 for the variance term for $k=1$, which is the case of U_{i} following a uniform distribution, was m^{3} / n, without moment assumptions. Here, the variance term is proved to be of order $m^{3 / 2} / n$.

Now, for $f \in W^{s}(D)$ defined by (2.2), choosing $m_{\mathrm{opt}}=\left[n^{1 /(s+3 / 2)}\right]$ in the r.h.s. of (2.3) implies

$$
\mathbb{E}\left(\left\|\hat{f}_{m_{\mathrm{opt}}}-f\right\|^{2}\right) \lesssim n^{-s /(s+3 / 2)}=n^{-2 s /(2 s+3)}
$$

This implies that the lower bound stated in Theorem 3.2 p .3124 is not correct.

3. Lower bounds

3.1. What is wrong?

We made a wrong use of Theorem 2.6 p. 100 in Tsybakov (2009). This theorem requires (Condition (ii)), that

$$
\frac{1}{M} \sum_{j=1}^{M} \chi^{2}\left(P_{\boldsymbol{\theta}^{(j)}}, P_{\boldsymbol{\theta}^{(0)}}\right) \leq \alpha M, \quad 0<\alpha<\frac{1}{2}
$$

where $P_{\boldsymbol{\theta}^{(j)}}, j=0,1, \ldots, M$ are the law of $\left(X_{1}, \ldots, X_{n}\right)$ when the X_{i} 's are i.i.d. with density $f_{\boldsymbol{\theta}^{(j)}}$. This means that $P_{\boldsymbol{\theta}^{(j)}}=f_{\boldsymbol{\theta}^{(j)}}^{\otimes n}$. Observe that (see p. 86 of Tsybakov (2009)):

$$
\chi^{2}\left(f_{\boldsymbol{\theta}^{(j)}}^{\otimes n}, f_{\boldsymbol{\theta}^{(0)}}^{\otimes n}\right)=\left(1+\chi^{2}\left(f_{\boldsymbol{\theta}^{(j)}}, f_{\boldsymbol{\theta}^{(0)}}\right)\right)^{n}-1
$$

For $x_{n} \geq 0$, we have $\left(1+x_{n}\right)^{n}-1=\exp \left(n \log \left(1+x_{n}\right)\right)-1 \leq e^{n x_{n}}-1$. If $x_{n} \lesssim$ $\log (M) / n$, then $e^{n x_{n}}-1 \lesssim M$. Thus if we prove that $\chi^{2}\left(f_{\boldsymbol{\theta}^{(j)}}, f_{\boldsymbol{\theta}^{(0)}}\right) \lesssim \log (M)$, condition (ii) holds and we can apply Theorem 2.6 of Tsybakov (2009).

On the other hand, if $x_{n} \lesssim \log ^{a}(M) / n$, with $a>1$, $e^{n x_{n}}$ has order $e^{\log ^{a}(M)} \gg$ M, and condition (ii) is not satisfied. In other words, Lemma 6.5 p .3137 and Lemma 6.12 p. 3146 do not hold true, as only the univariate χ^{2} is studied and bounded by $\log ^{a}(M)$ with $a>1$. The extrapolation we did to the n-sample is not correct.

3.2. Corrected lower bounds

Thanks to constructive discussions with Cristina Butucea ${ }^{1}$ and Céline Duval ${ }^{2}$, we found the error and a new proof corresponding to the correct lower bound.

[^1]We treat the case $k=0$ (direct observations of X_{i}). The case of indirect observations can be dealt with analogously.
Theorem 3.1. Assume that s is an integer, $s \geq 1$ and that a n sample $\left(X_{1}, \ldots, X_{n}\right)$ is observed. Then for any estimator \hat{f}_{n} of f based of X_{1}, \ldots, X_{n}, and for n large enough,

$$
\sup _{f \in W^{s}(D)} \mathbb{E}_{f}\left[\left\|\hat{f}_{n}-f\right\|^{2}\right] \succsim n^{-2 s /(2 s+1)}
$$

4. Proofs of Theorem 3.1

Let $f_{0}(x)$ be defined by

$$
f_{0}(x)=\frac{1}{2} \mathbf{1}_{[0,1]}(x)+P(x) \mathbf{1}_{] 1,2]}(x)
$$

where P is a polynomial such that $P(x) \geq 0, \int_{1}^{2} P(x) d x=1 / 2, P(1)=1 / 2$, $P(2)=0$ and $P^{(k)}(1)=P^{(k)}(2)=0$ for $k=1, \ldots, s+1$.

Next we consider the functions, for $K \in \mathbb{N}$,

$$
f_{\boldsymbol{\theta}}(x)=f_{0}(x)+\delta K^{-\gamma} \sum_{k=0}^{K-1} \theta_{k+1} \psi(x K-k)
$$

for some $\delta>0, \boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{K}\right) \in\{0,1\}^{K}, \gamma>0$ to be chosen and ψ is bounded, has support $[0,1]$, admits bounded derivatives up to order s and $\int_{0}^{1} \psi(x) d x=0$. The moment condition of Proposition 2.1 holds for these densities.

Lemma 4.1. Let s integer, $s \geq 1$. Then f_{0} and $f_{\boldsymbol{\theta}}$ are densities belonging to $W^{s}(D)$ provided that $\gamma \geq s$ and δ well chosen.

Proof of Lemma 4.1. First f_{0} is a density, and $\int_{\mathbb{R}^{+}} f_{\boldsymbol{\theta}}(x) d x=\int_{\mathbb{R}^{+}} f_{0}(x) d x=1$ by construction.

We now prove that $f_{\boldsymbol{\theta}}$ is nonnegative. For any $x \in[0,1]$, then there exists k_{0} such that $x \in\left[k_{0} / K,\left(k_{0}+1\right) / K\right]$ and we have

$$
f_{\boldsymbol{\theta}}(x)=\frac{1}{2}+\delta K^{-\gamma} \theta_{k_{0}+1} \psi\left(x K-k_{0}\right) \geq \frac{1}{2}-\delta\|\psi\|_{\infty} K^{-\gamma}
$$

Thus $f_{\boldsymbol{\theta}}(x) \geq 0$ as soon as $\gamma>0$ and $\delta<1 /\left(2\|\psi\|_{\infty}\right)$.
Now we prove that f_{0} and $f_{\boldsymbol{\theta}}$ belong to $W^{s}(D)$. The computation of norms in Sobolev-Laguerre spaces are detailed in paragraph 7.2 of [2]. For f_{0}, we recall that
$\left\|f_{0}\right\|_{s}^{2}=\int_{0}^{+\infty}\left(x^{s / 2} \sum_{j=0}^{s}\binom{s}{j} f_{0}^{(j)}(x)\right)^{2} d x \leq 2^{s} \sum_{j=0}^{s}\binom{s}{j} \int_{0}^{2}\left(x^{s / 2} f_{0}^{(j)}(x)\right)^{2} d x$
for $j=0, \ldots, s$ and there exists a constant $B(s)$ such that $\left\|f_{0}\right\|_{s}^{2} \leq B(s)$. It follows, by Lemma 7.5 of [2], that $\left|f_{0}\right|_{s}^{2} \leq \tilde{B}(s)$, for a constant $\tilde{B}(s)$. We take $D / 4 \geq \tilde{B}(s)$.

$$
\begin{aligned}
\left\|f_{\boldsymbol{\theta}}-f_{0}\right\|_{s}^{2} & =\delta^{2} K^{-2 \gamma} \int_{0}^{+\infty}\left(x^{s / 2} \sum_{j=0}^{s}\binom{s}{j} \sum_{k=0}^{K-1} \theta_{k+1} K^{j} \psi^{(j)}(x K-k)\right)^{2} d x \\
& \leq \delta^{2} K^{-2 \gamma} 2^{s} \sum_{j=0}^{s}\binom{s}{j} \int_{0}^{+\infty}\left(x^{s / 2} \sum_{k=0}^{K-1} \theta_{k+1} K^{j} \psi^{(j)}(x K-k)\right)^{2} d x
\end{aligned}
$$

We now use that $\psi^{(j)}(x K-k), \psi^{(j)}(x K-\ell)$ have disjoint supports and are bounded (say by c). We get

$$
\begin{aligned}
\left\|f_{\boldsymbol{\theta}}-f_{0}\right\|_{s}^{2} & \leq \delta^{2} 2^{s} K^{-2 \gamma} c^{2} \sum_{j=0}^{s}\binom{s}{j} \sum_{k=0}^{K-1} K^{2 j} \int_{k / K}^{(k+1) / K} x^{s} d x \\
& \leq \delta^{2} 2^{2 s} K^{-2 \gamma} c^{\prime} \sum_{j=0}^{s} \sum_{k=0}^{K-1} K^{2 j-1} \leq C(s) \delta^{2} K^{-2 \gamma+2 s}
\end{aligned}
$$

Thus, for δ small enough, $\left|f_{\boldsymbol{\theta}}-f_{0}\right|_{s}^{2} \leq D / 4$ as $\gamma \geq s$.
Next we have:
Lemma 4.2. For any $\boldsymbol{\theta}, \boldsymbol{\theta}^{\prime} \in\{0,1\}^{K}$,

$$
\begin{equation*}
\int_{0}^{\infty}\left(f_{\boldsymbol{\theta}}(x)-f_{\boldsymbol{\theta}^{\prime}}(x)\right)^{2} d x=\delta^{2}\|\psi\|^{2} K^{-2 \gamma-1} \rho\left(\boldsymbol{\theta}, \boldsymbol{\theta}^{\prime}\right) \tag{4.1}
\end{equation*}
$$

where $\rho\left(\boldsymbol{\theta}, \boldsymbol{\theta}^{\prime}\right)=\sum_{k=1}^{K} \mathbf{1}_{\theta_{k} \neq \theta_{k}^{\prime}}$ is the so-called Hamming distance.
Proof of Lemma 4.2.

$$
\begin{aligned}
\left\|f_{\boldsymbol{\theta}}-f_{\boldsymbol{\theta}^{\prime}}\right\|^{2} & =\delta^{2} \int_{0}^{+\infty}\left(\sum_{k=0}^{K-1}\left(\theta_{k+1}-\theta_{k+1}^{\prime}\right) K^{-\gamma} \psi(x K-k)\right)^{2} d x \\
& =\delta^{2} \sum_{k=1}^{K}\left(\theta_{k}-\theta_{k}^{\prime}\right)^{2} K^{-2 \gamma-1}\|\psi\|^{2}=\delta^{2}\|\psi\|^{2} K^{-2 \gamma-1} \rho\left(\boldsymbol{\theta}, \boldsymbol{\theta}^{\prime}\right)
\end{aligned}
$$

We recall the Varshamov-Gilbert bound (see Lemma 2.9 p. 104 in [4]).
Lemma 4.3. Fix some even integer $K>0$. There exists a subset $\left\{\boldsymbol{\theta}^{(0)}, \ldots, \boldsymbol{\theta}^{(M)}\right\}$ of $\{0,1\}^{K}$ and a constant $A_{1}>0$, such that $\boldsymbol{\theta}^{(0)}=(0, \ldots, 0), \rho\left(\theta^{(j)}, \theta^{(l)}\right) \geq$ $A_{1} K$, for all $0 \leq j<l \leq M$. Moreover it holds that, for some constant $A_{2}>0$,

$$
\begin{equation*}
M \geq 2^{A_{2} K} \tag{4.2}
\end{equation*}
$$

Therefore

$$
\left\|f_{\boldsymbol{\theta}^{(j)}}-f_{\boldsymbol{\theta}^{(l)}}\right\|^{2} \geq C \delta^{2} K^{-2 \gamma}
$$

Then we have the following Lemma.
Lemma 4.4. For $j \in\{1, \ldots, M\}$, $\chi^{2}\left(f_{\boldsymbol{\theta}^{(j)}}, f_{\boldsymbol{\theta}^{(0)}}\right) \lesssim \delta^{2} \log (M) K^{-2 \gamma-1}$, where M comes from the Varshamov-Gilbert Lemma.
Proof of Lemma 4.4. We have $f_{0}=f_{\boldsymbol{\theta}^{(0)}}$, and

$$
\begin{aligned}
\chi^{2}\left(f_{\boldsymbol{\theta}}, f_{0}\right) & =\int_{0}^{1} \frac{\left(f_{\boldsymbol{\theta}}(x)-f_{0}(x)\right)^{2}}{f_{0}(x)} d x \\
& \lesssim \delta^{2} \sum_{k=0}^{K-1} \theta_{k+1}^{2} K^{-2 \gamma} \int_{0}^{1} \psi^{2}(x K-k) d x \lesssim \delta^{2} K^{-2 \gamma}\|\psi\|^{2}
\end{aligned}
$$

Thus

$$
\chi^{2}\left(f_{\boldsymbol{\theta}^{(j)}}, f_{\boldsymbol{\theta}^{(0)}}\right) \lesssim \delta^{2} \log (M) K^{-2 \gamma-1}
$$

So if δ^{2} is a well chosen constant, $\gamma=s$ and $K=n^{1 /(2 \gamma+1)}=n^{1 /(2 s+1)}$ we get

$$
\frac{1}{M} \sum_{j=1}^{M} \chi^{2}\left(\left(f_{\boldsymbol{\theta}^{(j)}}\right)^{\otimes n},\left(f_{\boldsymbol{\theta}^{(0)}}\right)^{\otimes n}\right) \leq \alpha M
$$

for $0<\alpha<1 / 8$, and

$$
\left\|f_{\boldsymbol{\theta}^{(j)}}-f_{\boldsymbol{\theta}^{(l)}}\right\|^{2} \geq C \delta^{2} K^{-2 \gamma} \propto n^{-2 s /(2 s+1)}
$$

Applying Theorem 2.6 of Tsybakov (2009) gives the result of Theorem 3.1.

References

[1] Askey, R. and Wainger, S. (1965) Mean convergence of expansions in Laguerre and Hermite series. Amer. J. Math. 87, 695-708. MR0182834
[2] Belomestny, D., Comte, F. and Genon-Catalot, V. (2016) Nonparametric Laguerre estimation in the multiplicative censoring model, Electronic Journal of Statistics, 10, 3114-3152. MR3571964
[3] Comte, F. and Genon-Catalot, V. (2017) Laguerre and Hermite bases for inverse problems. Preprint hal-01449799, V2, and Preprint MAP5 2017-05.
[4] Tsybakov, A. B. (2009) Introduction to nonparametric estimation. Springer Series in Statistics. Springer, New York, 2009. MR2724359

[^0]: *Main article 10.1214/16-EJS1203.
 ${ }^{\dagger}$ Corresponding author.

[^1]: ${ }^{1}$ CREST, ENSAE, Université Paris-Saclay, Saclay, FRANCE
 ${ }^{2}$ MAP5 UMR CNRS 8145, Université Paris Descartes, Sorbonne Paris Cité, FRANCE

