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Abstract: The single index model is an intuitive extension of the linear
regression model. It has become increasingly popular due to its flexibility
in modeling. Similar to the linear regression model, the set of predictors for
the single index model can contain a large number of irrelevant variables.
Therefore, it is important to select the relevant variables when fitting the
single index model. However, the problem of variable selection for high-
dimensional single index model is not well settled in the literature. In this
work, we combine the idea of applying cubic B-splines for estimating the
single index model with the idea of using the family of the smooth inte-
gration of counting and absolute deviation (SICA) penalty functions for
variable selection. We propose a new method to simultaneously perform
parameter estimation and model selection for the single index model. This
method is referred to as the B-spline and SICA method for the single index
model, or in short, BS-SIM. We develop a coordinate descent algorithm
to efficiently implement BS-SIM. We also show that under certain condi-
tions, the proposed method can consistently estimate the true index and
select the true model. Simulations with various settings and a real data
analysis are conducted to demonstrate the estimation accuracy, selection
consistency and computational efficiency of BS-SIM.
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1. Introduction

Consider a univariate response Y and a p-dimensional predictor X. The single
index model takes the following form

Y = f(XT θ0) + ε, (1)

where T indicates the transpose of a matrix, θ0 is a vector of length p and
referred to as the index, f is an unknown smooth function, and ε denotes the
random error term. The single index model generalizes the linear model by
incorporating a non-parametric link function f , and it has applications in a
wide range of fields.

A number of methods have been proposed to estimate the true index θ0 in the
literature. Härdle and Stoker [5] introduced the Average Derivative Estimation
(ADE) method. It relies on an intrinsic property of the single index model that
θ0 is proportional to the gradient ∂f/∂X. Several modified ADE methods have
been proposed later, including the density-weighted ADE method [16] and the
out-product of gradients method [26]. Another category of estimation methods
consist of methods that simultaneously estimate θ0 and f . The Minimum Aver-
age Variance Estimation (MAVE) method proposed by Xia et al. [27] enjoys the
most popularity among these methods. One major drawback of the ADE-based
methods and the MAVE method is that they all use high dimensional kernels
in estimation, and thus suffer from the curse of dimensionality. Consequently,
they do not perform well in estimation even when the dimension p is moderate.
To overcome this, Xia et al. [27] also proposed the refined MAVE (rMAVE)
method by replacing the high dimensional kernel with a lower dimensional pro-
jection kernel. However, the computational complexity of MAVE and rMAVE
still grows rapidly with the sample size n, and they can become unstable when
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p increases. Recently, Wang and Yang [23] proposed the Single-Index Prediction
(SIP) estimator by using the cubic B-splines to estimate θ0 and f simultane-
ously. The application of the cubic B-splines circumvents the drawbacks suffered
by high dimensional kernels, and as expected, simulation studies showed that
SIP is considerably faster than MAVE, especially in the high dimensional case.

In practice, a large number of variables among the predictors may not be
related to the response. Similar to the linear regression, it is important to select
the relevant variables when fitting the single index model. Various traditional
variable selection methods have been extended to the single index model; for ex-
ample, AIC [11] and cross-validation [6]. However, these methods suffer from the
same drawbacks as in the linear regression. They are intensive in terms of com-
putation. Furthermore, it is infeasible to develop the large sample properties for
the resulting estimates. Tibshirani [20] introduced the least absolute shrinkage
and selection operator (LASSO) as a regularization method for simultaneous
parameter estimation and variable selection in the linear models. LASSO has
gained huge popularity since it was proposed, due to its succinctness and compu-
tational efficiency. Zhao and Yu [29] studied the sufficient and almost necessary
condition, namely the Irrepresentable Condition, under which LASSO can con-
sistently select the true model. Several attempts have been made to incorporate
LASSO or its variants into the single index model; see [24, 14, 28, 25]. All of
these methods combine some penalty function with MAVE, thus they inherit
the drawbacks of MAVE. They are computationally inefficient for increasing
sample size and become unstable when the dimensionality is high.

There are various extensions or variants of LASSO proposed in the literature;
see [3, 31, 1] among others. Lv and Fan [9] considered a unified framework for
regularized least squares methodology with a family of concave penalty func-
tions. This family of penalty functions forms a smooth homotopy between the
L0 and L1 penalities and thus is referred to as smooth integration of count-
ing and absolute deviation (SICA) penalty functions. It includes LASSO as a
limiting case. Lv and Fan [9] also developed the properties of the resulting esti-
mator under the linear model and the SICA penalty function. More specifically,
they obtained the conditions on the design matrix under which the estimator
can recover the true model. These conditions on the design matrix are less re-
strictive than the Irrepresentable Condition, which may make the SICA penalty
more appealing in cases where the Irrepresentable Condition does not hold and
LASSO is not consistent in variable selection.

In this paper, we propose a new method to simultaneously perform param-
eter estimation and model selection for the single index model. This method
combines the idea of using B-splines for estimating the single index model with
the idea of using the SICA penalty for variable selection. We refer to it as the
B-spline and SICA method for the single index model, or in short, BS-SIM. We
develop a coordinate descent algorithm to efficiently implement our method for
both low and high dimensionality. We prove that under mild regularity con-
ditions, our method is consistent in estimation and can achieve the optimal
estimation rate. We further show that with more conditions on the structure
of f and the design matrix X, our method also has the ability to correctly
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identify the true model. As mentioned in the previous paragraph, the LASSO
penalty is a limiting case of the family of the SICA penalty functions. There-
fore, the algorithm and the properties of BS-SIM are also applicable to LASSO.
When LASSO is applied, the method is referred to as the B-spline and LASSO
method for the single index model, or BL-SIM. The simulation studies and a
real data example demonstrate that BS-SIM provides excellent computational
efficiency, estimation accuracy and selection consistency for data of low to high
dimensionality.

The rest of the paper is organized as follows. Section 2 describes BS-SIM
and BL-SIM, and outlines an efficient algorithm to implement them. Section 3
presents the theoretical properties of the proposed methods. Section 4 and Sec-
tion 5 illustrate the performance of the proposed methods in various simulation
studies, as well as a real data example. The technical proofs are given in the
Supplementary Material [32].

2. Methods

2.1. Spline estimation and regularization

Suppose a random sample of n observations is generated from the single index
model

yi = f(xT
i θ0) + εi,

i = 1, 2, · · · , n, where θ0 = (θ0,1, θ0,2, . . . , θ0,p)
T is the true index, and εi’s

are i.i.d random variables with mean 0 and a common variance σ2. Let Y =
(y1, · · · , yn)T denote the n × 1 reponse vector, and X = (x1, x2, · · · , xn)

T be
the n × p matrix with xi representing its i-th row. The true index θ0 is only
identifiable up to a scale constant without further constraint. In the literature,
there are two popularly used identifiability constraints:

Identifiability Constraint 1: θ0,1 = 1;
Identifiability Constraint 2: ‖θ0‖2 = 1 and θ0,1 > 0.

In this work, we consider any general and feasible constraint on the scale of θ0.
We work with the nontrivial case that there is at least one non-zero component
in θ0. Thus, for any constraint, it is important to first identify one component
θ0,k that is non-zero. This component θ0,k can be assumed as known or identified
by methods such as marginal correlation. Without loss of generality, we assume
k = 1. Although a large number of general identifiability constraints can be
used, in Section 4, we show with simulation studies that different constraints
can have different impacts on the performance of the used method in various
aspects.

Suppose one specifies the following identifiability constraint: C(θ) = 1, where
θ = (θ1, θ2, . . . , θp)

T , and C is an explicit function on the scale of θ. Then
θ1 can be expressed as a function of the remaining components, that is, θ1 =
C1(θ2, θ3, . . . , θp). Let φ = (θ2, θ3, . . . , θp)

T be the (p−1)-dimensional sub-vector
of θ by excluding the first component, and let tθ = XT θ. Let φ0 denote the
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last (p − 1) components of θ0. Let Φ be the space for φ. With an appropriate
identifiability constraint imposed, φ and θ have a one-to-one association. Then
the goal of inference under the single index model is to estimate φ0 (and thus
θ0) and the true link function f .

For a given θ, let tiθ = xT
i θ be the projected data onto the direction of

θ, i = 1, 2, . . . , n. Let tθ(min) = min
i

tiθ and tθ(max) = max
i

tiθ. The inter-

val [tθ(min), tθ(max)] is partitioned into (N + 1) subintervals. Let TN be the
sequence of the N interior knots that separate the subintervals. Let B4 =
(B4,1, B4,2, . . . , B4,N+4)

T be the cubic B-spline basis functions on [tθ(min),
tθ(max)] with knots TN . The explicit form of B4 can be derived recursively
[2]. Here we slightly abuse the notations in the sense that θ and TN are omit-
ted in the representation of the basis functions. The evaluations of the ba-
sis functions on the projected data points are denoted as Bθ. That is, Bθ =
(B4(t

1
θ), . . . , B4(t

n
θ ))

T , where B4(t) denotes the evaluation of the cubic B-spline
basis functions at t.

The cubic B-spline estimator of f is defined as f̂θ(·) = α̂TB4(·), where α̂ =
(α̂1, . . . , α̂N+4)

T , and can be obtained by solving the following least-squares
problem

min
α∈RN+4

1

n

n∑
i=1

(
yi − αTB4(t

i
θ)
)2

.

It immediately follows that α̂ = (BT
θ Bθ)

−1BT
θ Y. Note that f̂θ(·) depends on θ.

Wang and Yang [23] further proposed to use the following least-squares method
to estimate θ0

θ̂un = argmin
θ∈Θ

1

n

n∑
i=1

(yi − f̂θ(t
i
θ))

2,

where θ̂un denotes the unpenalized estimator of θ0, and Θ = {θ : ‖θ‖22 = 1, θ1 >
0}. As discussed in Section 1, the dimension p can be high in practice, and the set
of predictors can include a large number of irrelevant variables. Therefore, it is of
interest to produce a sparse estimator of θ0, and thus achieve automatic variable
selection. This motivates us to utilize the spline estimator f̂θ(·) for f described
above, coupled with the regularized least squares method for estimating θ0 to
achieve efficient and simultaneous parameter estimation and variable selection.

Since θ0,1 is assumed to be non-zero, we penalize φ instead of θ. We further
use the family of the SICA penalty functions. That leads us to the following
objective function R(φ;λ).

R(φ;λ) =
1

n

n∑
i=1

(
yi − f̂θ(t

i
θ)
)2

+ λ

p−1∑
j=1

ρa(|φj |),

where f̂θ is the cubic B-spline estimator of f for a given θ, λ is a tuning param-
eter, and ρa(u) denotes the SICA penalty function with the following form

ρa(u) =

(
u

a+ u

)
I(u �= 0) +

(
a

a+ u

)
u, u ∈ [0,∞),
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where I is the indicator function. For simplicity, we do not include a in the
notation of R, and write R(φ;λ) as R(φ) when there is no confusion. For a fixed
λ, we define the following estimator of φ0,

φ̂ = argmin
φ∈Φ

R(φ), (2)

The corresponding estimator for θ0 is denoted as θ̂, and is referred to as the
BS-SIM estimator.

As discussed in [9], the SICA family of penalty functions provides a smooth
homotopy between the L0 and L1 penalties, and we have

ρ0(u) = lim
a→0+

ρa(u) = I(u �= 0), and ρ∞(u) = lim
a→∞

ρa(u) = u.

That means, the LASSO penalty is the limiting case of the SICA penalty. In
some applications, the LASSO penalty can also be of interest, and the estimator
based on LASSO is defined separately below. We denote the objective function
when a = ∞ as RL(φ;λ). That is,

RL(φ;λ) =
1

n

n∑
i=1

(
yi − f̂θ(t

i
θ)
)2

+ λ‖φ‖1,

where ‖·‖1 denotes the L1 norm. We write it asRL(φ) when there is no confusion.
For a fixed λ, we define the following estimator of φ0,

φ̂L = argmin
φ∈Φ

RL(φ), (3)

and the corresponding estimator for θ0 is denoted as θ̂L. We refer to θ̂L as the
BL-SIM estimator. It can be expected that the BS-SIM estimator can converge
to the BL-SIM estimator as a approaches ∞.

2.2. Coordinate descent algorithm

For ease of representation, we define H(φ) = 1
n

∑n
i=1(yi − f̂θ(t

i
θ))

2. Then the

objective function R(φ) can be expressed as R(φ) = H(φ)+λ
p−1∑
j=1

ρa(|φj |). Next,

we develop a coordinate descent algorithm to find φ̂ (or φ̂L) for any given λ on
a dense grid.

Since H(φ) is a complicated function of φ, we further use a local quadratic ap-
proximation strategy to iteratively solve Problem (2). Let H(1)(·) = ∂H(·)/∂φ
and H(2)(·) = ∂2H(φ)

∂φ∂φT (·), which are the gradient and Hessian matrix of H, re-

spectively. Then, given a current estimate φ̂(0), the quadratic approximation to
H(φ) at φ(0) is given as follows.

H(φ) ≈ H(φ(0)) + (φ− φ(0))TH(1)(φ(0)) +
1

2
(φ− φ(0))TH(2)(φ(0))(φ− φ(0))

=
1

2
φTH(2)(φ(0))φ− φT

(
H(2)(φ(0))φ(0) −H(1)(φ(0))

)
+ constant.

(4)
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In addition, we use a local approximation to the SICA penalty function sug-
gested by [9] as follows.

p−1∑
j=1

ρa(|φj |) =
p−1∑
j=1

[ρa(|φ(0)
j |) + ρ′a(|φ

(0)
j |)(|φj | − |φ(0)

j |)], (5)

where φ(0) = (φ
(0)
1 , φ

(0)
2 , · · · , φ(0)

p−1)
T .

These two approximations entail that for a given φ(0), Problem (2) can be
approximated by

min
φ∈Φ

1

2
φTH(2)(φ(0))φ− φT

(
H(2)(φ(0))φ(0) −H(1)(φ(0))

)
+ λ

p−1∑
j=1

wj |φj |, (6)

where wj = ρ′a(|φ
(0)
j |) for j = 1, 2, · · · , p−1. To solve Problem (6), we cyclically

update each component of φ while holding the other components fixed. That
means, for j = 1, 2, · · · , p− 1, we solve the following univariate problem

min
φj

1

2
hjjφ

2
j +

⎛
⎝ p−1∑

k=1,k �=j

hjkφk − βj

⎞
⎠φj + λwj |φj |+ constant, (7)

where hkl denotes the component in the kth row and the lth column ofH(2)(φ(0)),
and βj denotes the jth element of H(2)(φ(0))φ(0)−H(1)(φ(0)). Notice that Prob-
lem (7) is essentially a univariate LASSO problem, and the solution can be
written down explicitly as

φj = sign(aj)
(|aj | − λwj)+

hjj
=

⎧⎨
⎩

(aj − λwj)/hjj , if aj > λwj ;

(aj + λwj)/hjj , if aj < −λwj ; (8)

0, otherwise.

where aj = βj −
∑
k �=j

hjkφk. We repeatedly iterate through j and update the

estimate of φ0, until some convergence criterion is met.
When implementing Algorithm 1, there are two issues that require further

attention. First, during the sth cycle of j, line search method is applied [12]. We

start with φ̂(s), and obtain a tentative update φ̂(s+1). Before setting φ̂(s+1) as the
most current estimate of φ0, we need to check that the objective function R is
indeed decreasing. If it is not, the step δ = φ̂(s+1)− φ̂(s) is repeatedly multiplied
by 0.8, until the amount of movement along the direction δ that can result in
a decrease in R is obtained. Here, 0.8 is chosen for the purpose of convenience,
and may not be optimal. A more sophisticated choice can be further explored;
see the previously mentioned reference on line search. The other issue faced
during the implementation is that the optimization over φ should be carried out
in the space Φ. However, the algorithm described above does not consider any
constraint on the space over which the optimization is executed. For some iden-
tifiability constraints, such as the Identifiability Constraint 1 mentioned earlier,



BS-SIM 3529

Φ is actually R
p−1; for other identifiability constraints, such as the Identifiability

Constraint 2 in the previous section, Φ is a constrained subspace of Rp−1. In
the former case, no adjustment is needed; in the latter case, there requires an
additional step that ensures that the updated φ̂ is in the constrained space Φ.
For instance, it needs to be checked that the updated φ̂ satisfies ‖φ̂‖2 < 1, for
Identifiability Constraint 2. If it does not, the step δ needs to be shortened such
that φ̂ falls within Φ. Algorithm 1 outlines the search for φ̂ at a given λ in more
detail. Problem (3) can be solved in a similar fashion. The only difference is that
for Problem (3), there is no need to use the local linear approximation to the

penalty function. Therefore, the algorithm of searching for φ̂L is not separately
displayed.

Algorithm 1 Coordinate Descent Algorithm
For any λ,

1. Initialize φ to be φ̂(0) and let s = 0.

2. Given φ̂(s) = (φ̂
(s)
1 , φ̂

(s)
2 , . . . , φ̂

(s)
p−1)

T , calculate the quadratic approximation (4) to

H(φ) and the linear approximation (5) to pλ(φ).

3. For j = 1, 2, . . . , p− 1, update φ̂j by the following formulars:

φj = sign(aj)
(|aj | − λwj)+

hjj
=

⎧⎪⎨
⎪⎩

(aj − λwj)/hjj , if aj > λwj ;

(aj + λwj)/hjj , if aj < −λwj ;

0, otherwise.

If needed, check whether φ is within Φ. If it is not, adjust it to fall within Φ.

4. After one cycle of j, a tentative update φ̂(s+1) and the corresponding R(φ̂(s+1)) are

obtained. If R(φ̂(s+1)) > R(φ̂(s)), calculate δ = φ̂(s+1) − φ̂(s), and check the objective
function for

φ̂(s+1) = φ̂(s) + (0.8)kδ,

for k = 1, 2, . . . until R(φ̂(s+1)) is smaller than R(φ̂(s)).

5. Calculate Δ = R(φ̂(s)) − R(φ̂(s+1)). If Δ is below a prespecified threshold, then stop

and set φ̂ = φ̂(s+1) and calculate the corresponding θ̂; otherwise, set s = s+ 1 and go
back to Step 2.

2.3. Tuning parameter selection

For regularization-based approaches, it is crucial to choose the tuning parame-
ters, namely λ and a in our case. We start with the discussion of the selection
of λ. We consider two types of methods for determining λ. The first one is m-
fold cross-validation, denoted as CV hereafter. In CV, the sample is randomly
partitioned into m subsamples of equal size. Among these m folds, m − 1 of
them are treated as the training set, and the remaining one is treated as the
validation set. At each given candidate value for λ, the proposed approach is
applied to the training set, and a fitting is obtained. Subsequently, the test set
is used to assess the predictive accuracy of the obtained model. The residual
sum of squares can be used as the assessment. This process is repeated m times
until each fold of the sample is used as the test set exactly once. For a given λ,
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the m results on the assessment are then averaged. The value of λ that yields
the smallest average is regarded as optimal.

The second type is the Bayesian Information Criterion (BIC) and its variants
[19]. For variable selection under the linear model Y = XTβ + ε, we examine
the following four BIC-based criteria (9)-(12).

BIC = RSSλ/n+ dσ2log(n)/n, (9)

logBIC = log(RSSλ/n) + dlog(n)/n, (10)

GIC = RSSλ/n+ dσ2kn/n, (11)

logGIC = log(RSSλ/n) + dkn/n, (12)

where RSSλ denotes the residual sum of squares at a given λ, σ2 denotes the
error variance, and d is the size of the identified model at a given λ. Furthermore,
for criteria (11) and (12), kn represents the additional penalty imposed on the
size of the model. In practice, σ2 is rarely known. On the other hand, according
to [18], under certain conditions, the BIC defined in (9) has the same asymptotic
behavior as the one defined in (10). Thus, it is more convenient to rely on logBIC
in (10) to select the tuning parameter λ. It has been previously proved that,
when the number of predictors p is fixed as the number of observations n grows,
one can identify the true model with probability tending to 1 in the linear models
by using the logBIC criteria [22]. Nevertheless, when p diverges, the logBIC
criterion (10) tends to yield a model that contains many irrelevant predictors.
Several adjustments have been proposed in the literature to circumvent this
issue [22, 4]. The common approach these adjustments take is to place more
penalty on the model complexity d. This idea naturally leads us to consider
the GIC criterion in (11) and the logGIC criterion in (12). It is clear that GIC
and logGIC include BIC and logBIC as a special case, respectively. Thus, GIC
and logGIC can be regarded as the unified criteria to achieve the selection of λ
for any p, and they can be extended to models other than the linear regression
models. It is also worth noting that GIC involves σ2. When σ2 is unknown,
there are various ways to obtain an estimate σ̂2 and replace σ2 with σ̂2 in GIC.
We will elaborate on it in the next paragraph.

In order to choose a proper type of method for determining λ under our
framework, we carry out extensive simulation studies under both the linear
model and the single index model. We try different settings of p and the size
of the true model. In the simulation studies, we use σ̂2 = RSS0/(n − p) when
n > p, and σ̂2 = RSSλcv/(n − dcv) otherwise, where λcv denotes the value of
λ selected by CV, and dcv denotes the size of the model selected by CV. For
all settings, CV generally leads to an overfitted model. When the true model is
sparse, logGIC with an appropriate kn performs the best in terms of identifying
the true model for any p. GIC is a close second. As the number of relevant
variables grows, the performance of GIC surpasses that of logGIC, and GIC
becomes the most preferable. For the moderately sparse scenario, logGIC starts
to break down as p increases. When the size of the true model is large, logGIC
fails to work in the sense that it leads to either a very large model, or a very
small model. Meanwhile, GIC can still produce significant improvement over



BS-SIM 3531

CV when p is not large. When p also becomes large, the problem itself becomes
too difficult that all of the methods rarely perform satisfactorily.

Based upon these observations, we propose the following rule of thumb prin-
ciple for the selection of λ under our framework. When sparsity of the true
model is assumed, we use logGIC; when the size of the true model is relatively
large, we use GIC. An example illustrating the breakdown of logGIC and the
advantage of using GIC under the violation of the sparsity assumption is given
in Section 4 of the Supplementary Material [32].

As for the selection of a, it can generally be accomplished by m-fold cross-
validation. Since the focus of this work is to study the properties of θ̂ and θ̂L,
we do not intensively examine the selection of a.

3. Theoretical properties

Before stating the theoretical properties of BS-SIM and BL-SIM, we first need
to impose the following regularity conditions (A1)-(A3).

(A1) The link function f has continuous and bounded second order derivative.
(A2) Let R∗(φ) = E[Y − f(XT θ)]2 be the population risk function. Define

H∗(2)(φ) = ∂2R∗(φ)
∂φ∂φT as the Hessian matrix of R∗(φ). H∗(2)(φ0) is positive

definite, and its smallest eigenvalue is ρ(min), for some ρ(min) > 0.
(A3) The number of interior knots N satisfies N ∼ n1/5.

3.1. Estimation consistency

To begin with, we show that, under mild conditions, θ̂ is consistent in terms of
estimation, and can achieve the optimal

√
n rate for a well-selected λ. Moreover,

as a special case, θ̂L share the same property on parameter estimation. We will
also show the theoretical property of f̂ in terms of estimating f .

Theorem 1. Suppose the regularity conditions (A1)–(A3) hold.

(a) If λ = O(n−1/2), there exists a local minimum φ̂ of R(φ), such that φ̂ is√
n-consistent. Consequenly, the BS-SIM estimator θ̂ is a

√
n-consistent

estimator of θ0;
(b) If λ = O(n−1/2+δ) for some δ ∈ (0, 1/2), there exists a local minimum

φ̂ of R(φ), such that ‖φ̂ − φ0‖2 = Op(n
−1/2+δ). As a result, ‖θ̂ − θ0‖2 =

Op(n
−1/2+δ);

(c) As a special case, the BL-SIM estimator θ̂L possesses the above properties.

Theorem 1 is expected and standard. Part (b) of Theorem 1 also facilitates
the derivations on the selection consistency given in the next subsection. The
next theorem characterizes the convergence rate of f̂ as an estimator of the
regression function f .
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Theorem 2. Suppose Conditions (A1)–(A3) hold. If λ = O(n−1/2+δ) for some

δ ∈ [0, 1/2), there exists a local minimum φ̂ of R(φ) such that

∥∥∥f(tθ0)− f̂θ̂(tθ̂)
∥∥∥
l2
= Op

(
(nh)−1/2logn+ h4 + n−1/2+δ/2(logn)1/2

)
,

where
∥∥∥f(tθ0)− f̂θ̂(tθ̂)

∥∥∥2
l2
= 1

n

∑n
i=1

(
f(tiθ0)− f̂θ̂(t

i
θ̂
)
)2

.

3.2. Intuition and notations for selection consistency

Observe that if no identifiability constraint is imposed, we have f(tθ)−f(tθ0) ≈
D′

θ(tθ0)(θ − θ0), where D′
θ(tθ0) =

(
∂f(tθ0 )

∂θ1
,
∂f(tθ0 )

∂θ2
, . . . ,

∂f(tθ0 )

∂θp

)
. By simple cal-

culations, we obtain
∂f(tiθ0)

∂θj
= h(tiθ0)Xij � gij ,

where h(tiθ0) = f ′|t=tiθ0
for j = 1, 2, . . . , p, and i = 1, 2, . . . , n. Let

F =

⎛
⎜⎜⎜⎜⎜⎝

∂f(t1θ0 )

∂θ1
,

∂f(t1θ0 )

∂θ2
, · · · , ∂f(t1θ0 )

∂θp
∂f(t2θ0

)

∂θ1
,

∂f(t2θ0
)

∂θ2
, · · · , ∂f(t2θ0

)

∂θp

· · · · · · · · · · · ·
∂f(tnθ0

)

∂θ1
,

∂f(tnθ0
)

∂θ2
, · · · , ∂f(tnθ0

)

∂θp

⎞
⎟⎟⎟⎟⎟⎠

n×p

= (gij)i=1,2,...,n;j=1,2,...,p .

By the definition of gij , it is apparent that F is a weighted design matrix. That
is, F is computed by multiplying row i of X with the corresponding derivative
of f at tiθ0 , h(t

i
θ0
), for i = 1, 2, · · · , n. When f is flat at tiθ0 , this data point does

not contain much information on θ0, and the weight placed on row i is small;
on the other hand, when f is steep at tiθ0 , this data point is informative, and
the corresponding row is scaled with a larger weight. In the special case of the
linear models, F reduces to X.

However, θ0 is not free of identifiability constraint, and only the last p − 1
elements of θ0 are of interest. Consequently, we consider

F0 =

⎛
⎜⎜⎜⎜⎜⎝

∂f(t1θ0 )

∂θ2
,

∂f(t1θ0 )

∂θ3
, · · · , ∂f(t1θ0 )

∂θp
∂f(t2θ0

)

∂θ2
,

∂f(t2θ0
)

∂θ3
, · · · , ∂f(t2θ0

)

∂θp

· · · · · · · · · · · ·
∂f(tnθ0 )

∂θ2
,

∂f(tnθ0 )

∂θ3
, · · · , ∂f(tnθ0 )

∂θp

⎞
⎟⎟⎟⎟⎟⎠

n×(p−1)

.

Here, F0 depends on the design X, the true link function f , and the true index
θ0. To some extent, F0 can be treated as the design matrix in the single index
models, and it can play a crucial role in the subsequent analysis. For a given
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identifiability constraint, we can express θ1 as a function of the rest (p−1) com-
ponents of θ, that is θ1 = C1(θ2, . . . , θp). Let J be the corresponding Jacobian
matrix for θ0, that is,

J =

⎛
⎜⎜⎝

∂C1(φ0)
∂θ2

, ∂C1(φ0)
∂θ3

, · · · ∂C1(φ0)
∂θp

1, 0, · · · 0
· · · · · · · · · · · ·
0, 0, · · · 1

⎞
⎟⎟⎠

p×(p−1)

.

And it follows that F0 = FJ . For simplicity, here we omit the dependence of
J on the identifiability constraint in the notation. The forms of F0 for the two
popular identifiability constraints are illustrated in Section 1 of the Supplemen-
tary Material [32]. Notice that F0 is essentially a scaled and adjusted version of
the design matrix X.

Without the loss of generality, let θ0 = (θ0,1, θ0,2, . . . , θ0,q, θ0,q+1, . . . , θ0,p)
T

where θ0,j �= 0 for j = 1, 2, . . . , q and θ0,j = 0 for j = q + 1, q + 2, . . . , p.
Let A1 = {2, 3, . . . , q} and A2 = {q + 1, q + 2, . . . , p}. For any φ, we also
decompose it into two sub-vectors as follows φ(1) = (θ2, θ3, . . . , θq)

T , and φ(2) =
(θq+1, . . . , θp)

T . Let C0 = 1
nF

T
0 F0. Let F0(1) and F0(2) be the first q−1 and the

last p − q columns of F0. Let C0(11) =
1
nF

T
0 (1)F0(1), C0(21) =

1
nF

T
0 (2)F0(1),

C0(12) = 1
nF

T
0 (1)F0(2) and C0(22) = 1

nF
T
0 (2)F0(2). Then we can decompose

C0 into the following four blocks

C0 =

(
C0(11) C0(12)
C0(21) C0(22)

)
.

In the following subsections, we also rely on this decomposition to formulate the
results on the selection consistency of the proposed estimators.

3.3. Selection consistency

As detailed earlier, we use the cubic spline function to estimate the true link
function f . For any θ, let Γ(θ) be the cubic spline space defined according to Sec-
tion 2.1. We denote the projection matrix onto Γ(θ) as Pθ = Bθ(B

T
θ Bθ)

−1BT
θ .

Thus,

f̂θ =
(
f̂θ(tθ,1), . . . , f̂θ(tθ,n)

)T

= PθY.

Consequently, we have

E

(
f̂θ(t

i
θ)
)
= Pθf(t

i
θ0) � f̄θ(t

i
θ),

for i = 1, 2, · · · , n. Then, for any given θ, we can similarly define F̄θ and C̄θ as

F̄θ =

(
∂f̄θ(t

i
θ)

∂θj

)
i=1,2,...,n;j=2,3,...,p

,
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and C̄θ = 1
n F̄

T
θ F̄θ. For succinctness, we write F̄θ0 and C̄θ0 as F̄0 and C̄0. Dif-

ferent from F0, F̄0 not only depends on X, f and θ0, it also relies on the spline
approximation of the link function. We decompose C̄0 into four blocks in the
same way we decompose C0. With the notations introduced above, we can im-
pose the following crucial conditions on C̄0 to establish the selection consistency
of BS-SIM.

Condition 1 (Irrepresentable Conditions for BS-SIM). C̄0 satisfies that

‖C̄−1
0 (11)‖∞ � L̄1,

‖C̄0(21)C̄
−1
0 (11)‖∞ � L̄2,

where L̄1 ∈ (0,∞), L̄2 ∈
(
0, L̄ ρ′(0+)

ρ′(b0−λL̄3)

)
for some L̄ and L̄3 ∈ (0,∞), and

b0 = min
j∈A1

|θ0,j |.

Note that C̄0 is related to the spline estimator of f , and thus it depends
on the number and the location of the knots. That means the conditions given
above are not free of the sample size n. On the other hand, F̄0 is a scaled and
adjusted version of the design matrix X. Hence, the Irrepresentable Conditions
for BS-SIM are similar to the conditions by [9] in the sense that the above
conditions replace the design matrix X in [9] with F̄0. With the Irrepresentable
Conditions for BS-SIM, we are ready to state our theorem next.

Theorem 3. Assume the Irrepresentable Conditions for BS-SIM hold, and the
regularity conditions (A1)-(A3) are satisfied. Then for λ = O(nc−2/5), with

some c ∈ (0, 2/5), there exists a local minimum φ̂ of R(φ) such that

P
(
sign(φ̂) = sign(φ0)

)
= 1− o(e−nc

), as n → ∞,

where sign(s) is the sign function that equals 1 when s is positive, equals -1 when
s is negative, and equals 0 when s = 0.

Theorem 3 characterizes the behaviour of BS-SIM in recovering the true
model. It suggests that, if the Irrepresentable Conditions for BS-SIM hold, then
the probability that BS-SIM is able to identify the true model converges to 1
exponentially. It can be easily shown that ρ′(0+) = 1+a−1. As noted by [9], the
conditions for SICA to identify the true model in the linear regression becomes
less restrictive as a decreases, at the sacrifice of computational convenience. This
statement also holds in the context of the single index model. That means, with
smaller a, the Irrepresentable Conditions for BS-SIM are less restrictive, but it
is harder to find φ̂. As pointed out earlier, LASSO is a limiting case of the SICA
penalty. Therefore, it is expected that the BL-SIM estimator φ̂L would possess
the similar properties as given in Theorem 3. To present the properties for φ̂L,
we start with the following assumption on C̄0.

Condition 2 (Irrepresentable Condition for BL-SIM). There exists a positive
constant vector η̄, such that the following inequality holds component-wise



BS-SIM 3535

∣∣C̄0(21)C̄
−1
0 (11)sign(φ0(1))

∣∣ � 1p−q − η̄,

where 1p−q denotes a vector of 1’s of length p− q.

Again, the Irrepresentable Condition for BL-SIM resembles the Irrepresent-
able Condition in [29], and the major difference is that the Irrepresentable Con-
dition for BL-SIM replaces X with F̄0.

Theorem 4. Assume the Irrepresentable Condition for BL-SIM holds, and the
regularity conditions (A1)-(A3) are satisfied. Then for λ = O(nc−2/5), with

some c ∈ (0, 2/5), there exists a local minimum φ̂L of RL(φ) such that

P
(
sign(φ̂L) = sign(φ0)

)
= 1− o(e−nc

).

Theorem 4 demonstrates that with the Irrepresentable Condition for BL-
SIM imposed, the probability that BL-SIM selects the true model approaches
1 exponentially. Consistent with the monotonicity of the restrictiveness of the
conditions, the Irrepresentable Condition for BL-SIM is more restrictive than
the Irrepresentable Conditions for BS-SIM with finite a. This observation is also
in line with that in the linear regression scenario, and it implies that BS-SIM
may be able to recover the true model when BL-SIM fails.

Recall that the conditions presented previously rely on the sample size n.
In what follows, we show that if C̄0 satisfies certain regularity condition, the
selection consistency of the proposed methods can be achieved under conditions
that are independent of n. From [23], we have

sup
j=2,3,...,p

sup
θ:‖θ‖2=1

max
i

∣∣∣∣ ∂

∂θj
(f̄θ − f)(tiθ)

∣∣∣∣ = O
(
h3

)
,

where h = 1/(N + 1) is the bandwith for the cubic B-spline functions. This
means that (F̄0)i → (F0)i, as n → ∞, for any i, and (·)i denotes the ith row of
a matrix. Based on this result, the following regularity condition can be imposed,

C̄0 → C, as n → ∞,

for some matrix C free of n. We decompose C into four blocks in the same way
we decompose C0. Next, we show that if the Irrepresentable Conditions on C
are imposed, the proposed methods can consistently select the true variables.

Condition 3 (Limiting Irrepresentable Conditions for BS-SIM). C satisfies
that

‖C−1(11)‖∞ � L1,

‖C(21)C−1(11)‖∞ � L2,

where L1 ∈ (0,∞), and L2 ∈
(
0, L ρ′(0+)

ρ′(b0−λL3)

)
for some L and L3 ∈ (0,∞).
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Condition 4 (Limiting Irrepresentable Condition for BL-SIM). There exists a
positive constant vector η, such that the following inequality holds component-
wise ∣∣C(21)C−1(11)sign(φ0(1))

∣∣ � 1p−q − η,

where 1p−q denotes a vector of 1’s of length p− q.

Corollary 5. (a) Assume that λ satisfies that λ ∼ nc−2/5, for some c ∈ (0, 2/5),
and the Limiting Irrepresentable Conditions for BS-SIM hold. Under regularity
conditions (A1)-(A3), there exists a local minimum φ̂ of R(φ) such that

P
(
sign(φ̂) = sign(φ0)

)
= 1− o(e−nc

).

(b) Assume that λ satisfies that λ ∼ nc−2/5, for some c ∈ (0, 2/5), and the Lim-
iting Irrepresentable Condition for BL-SIM holds. Under regularity conditions
(A1)-(A3), there exists a local minimum φ̂L of RL(φ) such that

P
(
sign(φ̂L) = sign(φ0)

)
= 1− o(e−nc

).

Corollary 5 suggests that under the corresponding Limiting Irrepresentable
Conditions, BS-SIM and BL-SIM can consistently recover the true model. On
the other hand, same as the statements given in the last subsection, the Limit-
ing Irrepresentable Conditions for BS-SIM become less restrictive as a decreases.
As a result, the Limiting Irrepresentable Condition for BL-SIM is more restric-
tive than those for BS-SIM with finite a. The proofs of the theorems and the
corollaries can be found in Section 2 of the Supplementary Material [32].

Remark 1. In the technical proofs provided in Section 2 of the Supplementary
Material [32], we use the identifiability constraint that ‖θ0‖2 = 1 and θ0,1 > 0.
Nevertheless, the properties presented above should hold for any reasonable
constraint, and one should be able to derive the proof for other conditions
without much difficulty.

4. Simulation results

In this section, we present the results from five simulation studies. We demon-
strate that the proposed regularization approach used is indeed beneficial in
several aspects. We also look at the impact of the tuning parameter a on the
performance of the resulting estimator, and point out a reasonable choice of a in
practice. Subsequently, we compare the performance of the proposed methods
to other existing methods for moderate to large p. For the comparison when
p is small, we refer to Section 3 of the Supplementary Material [32]. The last
simulation example is concerned about the impact that the Irrepresentable Con-
dition has on our proposed method’s ability of recovering the true model. For
the purpose of succinctness, we use V1 and V2 to denote the Identifiability Con-
straint 1 and Identifiability Constraint 2 in this section, respectively. For the
link function, we consider the following three models:
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1. Y = XT θ0 + 4
√

|XT θ0 + 1|+ ε;
2. Y = 1 + 2(XT θ0 + 3)log(3|XT θ0|+ 1) + ε;
3. Y = (XT θ0)

2 + ε.

The models above are refered to as Model 1, Model 2, and Model 3, respec-
tively. Furthermore, let Σ be a p-by-p matrix with the diagonal elements equal
1 and the off-diagonal element in kth row and lth column equal ρkl. Each xi is
sampled from N(0,Σ). The errors εi’s are independently sampled from N(0, 1).
We examine the following three forms of Σ:

1. (No correlation) ρkl = 0, for k �= l;
2. (Constant correlation) ρkl = 0.3, for k �= l;
3. (Decaying correlation) ρkl = 0.5|k−l|, for k �= l.

We denote these three types of correlation structure as COR1, COR2, COR3,
respectively.

For the first four examples, four metrics are used to assess the performance
of an estimator, which are Angle, False Positive Rate (FPR), Ture Positive
Rate (TPR) and Computing Time (Time), respectively. Angle is defined as

Angle = arccos(θT0 θ̂), where θ0 is the true index and θ̂ is an estimate, and they
are standardized to have unit norm. FPR is defined as the ratio of the number
of falsely identified predictors to the total number of identified predictor. TPR
is the ratio of the number of correctly identified predictors to the total number
of true relevant predictors. Finally, Time is the average time (in seconds) needed
to obtain the estimate for one data set. In Examples 2–4, we search the best es-
timate on a dense grid of λ, and thus, Time represents the total amount of time
consumed to find the estimate on the whole grid and yield the final estimate.
On the other hand, in Example 1, Time refers to the amount of time used to
find the estimate for a particular λ. In the tables presented in this section, the
best performance on each metric is highlighted.

Example 1. This example compares the performance of the proposed estimator
to that of the unpenalized estimator. We consider a moderate dimension p =
70 with q = 8 and θ0 = (2.0,−1.0, 0.5, 1.0,−1.5, 1.0,−0.3, 1.2, 0, · · · , 0)T . 100
samples of size n = 100 are generated from Model 1 with COR1. The coordinate
descent algorithm described in Section 2.2 is used to implement BS-SIM with
a = 0.1. The tuning parameter λ is chosen by three criteria, denoted as logBIC,
logGIC1, and logGIC2, respectively. They correspond to three choices of kn for
logGIC defined in Section 2.3, which are k0n = log(n), k1n = loglognlogp, and
k2n = logp

√
logn, respectively. Our method with λ = 0 is also applied to obtain

the unpenalized estimate for θ0. In this example, only V2 is used.
Table 1 shows the comparison results on the four aforementioned assessments.

In terms of estimation accuracy and computing efficiency, both the BL-SIM esti-
mators and the BS-SIM estimators are considerably better than the unpenalized
estimator. It is a strong sign that the proposed regularization approach substan-
tially helps with efficiently providing a more accurate estimator. Comparing the
two proposed estimators, the BS-SIM estimators slightly outperform the BL-
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Model 1, COR1, p = 70
Method Selection of λ Angle FPR TPR Time

logBIC 4.836 (2.309) 0.124 0.984 0.781
BS-SIM-V2 logGIC1 4.529 (1.868) 0.050 0.976 0.701

logGIC2 4.526 (1.976) 0.015 0.968 0.610
logBIC 7.010 (5.421) 0.466 0.995 0.796

BL-SIM-V2 logGIC1 6.828 (4.178) 0.457 0.995 0.577
logGIC2 6.228 (3.114) 0.428 0.975 0.453

Unpenalized λ = 0 50.350 (7.587) NA NA 12.749
Table 1

Comparison between the penalized estimator and the unpenalized estimator.

SIM estimators in estimation. In terms of the performance on variable selection
consistency, the BS-SIM estimators are dramatically better. More specifically,
the BL-SIM estimators have a more than 3-fold higher average FPR, indicating
applying LASSO is more likely to lead to an overfitted model. In the compu-
tational efficiency aspect, BS-SIM is slightly faster than BL-SIM. As for the
comparison among the three BS-SIM estimators, the estimator using logBIC
has a noticeably higher average FPR than the estimators with λ chosen by log-
GIC1 and logGIC2. Since the number of predictors is not that small (p = 70) in
this example, this observation on FPR is consistent with the fact that logBIC
yields a overfitted model when the dimension p increases. The performance of
the two penalized estimators with λ chosen by logGIC1 and logGIC2 are similar
in terms of the four metrics.

Example 2. This example examines the performance of the proposed estimator
for several choices of a. 100 samples of size 100 are simulated from Model 2 with
COR1. The other settings are θ0 = (2.0,−1.0, 0.5, 1.0,−1.5, 1.0,−0.3, 1.2, 0,
· · · , 0)T and p = 50, q = 8. BL-SIM and BS-SIM with several choices of a
are applied, and their performance on the four assessments introduced previ-
ously is compared. We rely on both logBIC and logGIC2 defined in Example 1
to choose the tuning parameter λ, and only use V2 in this example.

The comparison results are shown in Table 2. It can be observed that as a in-
creases, both Angle and FPR decrease first, then increase. Furthermore, when a
continues to increase, the performance of the BS-SIM estimator approaches that
of the BL-SIM estimator. In theory, the performance of the BS-SIM estimator
in terms of variable selection should improve when a decreases. Nevertheless,
the pattern shown in Table 2 implies that there exists certain computational
difficulty in finding a consistent estimate when a is extremely small. On the
other hand, the BS-SIM estimator with a = 0.1 outforms the rest in terms of
selection consistency. When it comes to estimation accuracy, the performance
of the BS-SIM estimator with a = 0.1 is also satisfactory. Therefore, we recom-
mend to use a = 0.1 in practice. For the remaining examples, we fix a at 0.1,
unless otherwise specified.

Example 3. This example illustrates the performance of the proposed estimator
for moderate p. We focus on the comparison between our method and other
existing methods. In this example, we implement the proposed BS-SIM method
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Model 2, COR1, p = 50
Method Selection of λ Angle FPR TPR Time
BS-SIM-V2 logBIC 1.392 (0.578) 0.075 1 26.00
(a = 0.01) logGIC2 1.160 (0.440) 0.013 1
BS-SIM-V2 logBIC 1.178 (0.396) 0.029 1 32.78
(a = 0.05) logGIC2 1.122 (0.381) 0.005 1
BS-SIM-V2 logBIC 1.197 (0.399) 0.029 1 38.65
(a = 0.10) logGIC2 1.164 (0.397) 0.004 1
BS-SIM-V2 logBIC 1.503 (0.468) 0.140 1 77.70
(a = 0.50) logGIC2 1.504 (0.474) 0.132 1
BS-SIM-V2 logBIC 1.639 (0.472) 0.384 1 103.97
(a = 1.00) logGIC2 1.630 (0.470) 0.383 1
BL-SIM-V2 logBIC 1.938 (0.557) 0.417 1 103.63
(a = ∞) logGIC2 1.925 (0.541) 0.413 1

Table 2

Comparison between the LASSO and the SICA penalties with various choices of a for
moderate p.

Model 1, COR2, p = 50
Method Angle FPR TPR Time
BS-SIM-V1 4.866 (2.850) 0.019 0.963 34.463
BS-SIM-V2 4.819 (2.749) 0.017 0.963 25.262
BL-SIM-V1 13.269 (3.956) 0.347 0.963 64.532
BL-SIM-V2 8.626 (3.121) 0.160 0.968 52.522
SIM-LASSO-V2 7.476 (2.085) 0.552 0.990 56.845
SMAVE-V2 12.493 (9.445) 0.316 0.898 39.747
SIM-Bridge-V2 7.686 (4.434) 0.058 0.901 102.349

Table 3

Comparison between the proposed methods and the other existing methods in moderate
dimensional scenario: Setting 1.

with a = 0.1, and the proposed BL-SIM method, as well as the SIM-LASSO
method proposed by [28], the SMAVE method proposed by [24], and the MAVE
method coupled with the Bridge penalty, proposed by [25]. The last method
is denoted as SIM-Bridge hereafter. For SIM-LASSO, the tuning parameter is
chosen by 10-fold cross-validation, and for SMAVE and SIM-Bridge, the tun-
ing parameter is selected based on BIC, as suggested in the original papers.
Moreover, all of these three methods only use V2. In this example, we let p be
moderate and vary it from 50 to 70. 100 data sets of size 100 are simulated from
the following settings:

Setting 1: Model 1, COR2, and p = 50;
Setting 2: Model 2, COR3, and p = 70;
Setting 3: Model 3, COR1, and p = 50.

Note that Model 3 is the most difficult one, thus its dimensionality is set to
50. Under each setting, let q = 8, and θ0 = (2,−1, 1,−0.5, 0,−1.5, 1.0,−0.3, 1.2,
· · · , 0)T . In this example, logGIC2 is used to choose λ. The comparison results
are given in Tables 3 – 5

For both Setting 1 and Setting 2, the BS-SIM estimators outperform the
rest in terms of both estimation accuracy and selection consistency. They are
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Model 2, COR3, p = 70
Method Angle FPR TPR Time
BS-SIM-V1 2.250 (0.959) 0.012 0.999 146.390
BS-SIM-V2 2.429 (0.951) 0.025 0.999 169.485
BL-SIM-V1 7.569 (2.160) 0.694 0.994 519.186
BL-SIM-V2 5.060 (1.673) 0.728 1.000 494.885
SIM-LASSO-V2 6.602 (1.920) 0.684 0.993 212.528
SMAVE-V2 9.275 (4.629) 0.784 0.995 65.740
SIM-Bridge-V2 6.775 (4.114) 0.094 0.906 166.558

Table 4

Comparison between the proposed methods and the other existing methods in moderate
dimensional scenario: Setting 2.

Model 3, COR1, p = 50
Method Angle FPR TPR Time
BS-SIM-V1 10.003 (21.004) 0.147 0.956 466.565
BS-SIM-V2 9.346 (19.750) 0.142 0.965 218.957
BL-SIM-V1 22.328 (27.810) 0.644 0.979 1037.898
BL-SIM-V2 35.757 (29.855) 0.705 0.979 413.221

Table 5

Comparison between the proposed methods and the other existing methods in moderate
dimensional scenario: Setting 3.

followed by the SIM-Bridge estimator in terms of selection performance. The
other three methods do not produce satisfactory performance on variable selec-
tion, as they tend to result in overfitted models. In the computational efficiency
aspect, the proposed BS-SIM method is also among the best. For Setting 3,
the quadratic link function is used. Since Xi’s are generated from a multivari-
ate normal distribution, they concentrate around 0. However, the MAVE based
methods rely on local linear expansion, thus they do not perform well around the
origin, and break down for this quadratic link function. Hence, only the results
from the proposed methods are presented for this setting. It can be observed
that the proposed BS-SIM method exhibits acceptable performance in each as-
pect, and considerably outperforms the proposed BL-SIM method. Lastly, it is
also worth pointing out that satisfactory performance can be maintained for the
proposed methods under other combinations of model setting and correlation
structure.

Example 4. This example demonstrates the performance of the proposed es-
timator for large p. In this example, two choices of the dimension, p = 200
and p = 400, are examined. The other settings are q = 10, n = 100 and
θ0 = (2,−1, 0.5, 1,−1.5, 1.2,−0.8, 0.6, 1,−1, 0, 0, · · · , 0)T . For p = 200, the re-
sults under all of the three aforementioned correlation structures are exhibited;
for p = 400, the proposed method cannot produce acceptable results when there
exists correlation among the predictors. Nevertheless, with more data points, the
proposed BS-SIM method can still handle this high dimensional scenario with
correlation among the predictors. However, we exclusively focus on COR1 and
n = 100 for p = 400 here. The proposed BL-SIM method suffers greatly from
overselection and is too time-consuming in the large p scenario, and SIM-LASSO
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p Model COR Method Angle FPR TPR Time
BS-SIM-V1 5.355 (5.188) 0.001 0.972 490.5

1 1 BS-SIM-V2 7.086 (8.536) 0.004 0.945 858.1
SIM-Bridge-V2 30.585 (12.085) 0.292 0.662 2216.0
BS-SIM-V1 8.696 (9.836) 0.007 0.919 870.0

1 2 BS-SIM-V2 10.552 (11.822) 0.021 0.894 894.8
SIM-Bridge-V2 35.201 (11.743) 0.317 0.585 2196.0

200 BS-SIM-V1 16.904 (16.423) 0.013 0.792 498.6
1 3 BS-SIM-V2 15.974 (17.906) 0.024 0.808 707.4

SIM-Bridge-V2 47.550 (11.925) 0.438 0.381 2222.0
2 1 BS-SIM-V2 2.124 (0.644) 0.137 1.000 1823.6

SIM-Bridge 3.617(2.258) 0.041 0.991 1841.0
2 2 BS-SIM-V2 2.231 (0.680) 0.039 1.000 1510.9

SIM-Bridge-V2 4.365 (3.029) 0.034 0.984 2262.0
2 3 BS-SIM-V2 2.724 (1.497) 0.057 0.999 1786.1

SIM-Bridge-V2 12.435 (9.140) 0.227 0.898 2415.0
1 1 BS-SIM-V1 17.533 (16.648) 0.060 0.775 2296.7

400 BS-SIM-V2 12.837 (15.665) 0.035 0.855 1991.8
2 1 BS-SIM-V2 2.508 (2.258) 0.213 1.000 6519.0

Table 6

Performance of BS-SIM with a = 0.1 under several settings in high dimensional scenario.

and SMAVE break down in this example. Therefore, only the results from the
proposed BS-SIM method and SIM-Bridge are presented. Since V1 poses no
restriction on the magnitude of φ, the estimation with V1 becomes noticeably
more unstable, and slower for some models, as p increases. Therefore, it is rec-
ommended to use V2 when p is large. Based on our simulation studies, V1 and
V2 lead to comparable results under Model 1; whereas for Model 2, V2 is much
more preferable. As for the choice of kn, it is recommended to use k3n = logplogn.

Table 6 shows the results on the four metrics. In terms of estimation accu-
racy and selection consistency for Model 1 and p = 200, the proposed BS-SIM
method yields reasonably accurate estimates, while SIM-Bridge does not per-
form well under all of the three correlation structures. For Model 2 and p = 200,
comparable results on selection consistency are obtained. However, the proposed
BS-SIM method produces more accurate estimate than SIM-Bridge, especially
under COR3. When p = 400, SIM-Bridge fails, while the proposed BS-SIM
method can still yield satisfactory results. In terms of computational capac-
ity, for the proposed BS-SIM method, it takes about 20 minutes on average
to complete one run for p = 200, and takes less than two hours for p = 400.
Considering that this amount of time encompasses the search for the optimal λ
on a dense grid, this computational efficiency is still acceptable. Moreover, the
proposed BS-SIM method is noticeably more efficient than SIM-Bridge in this
example.

Example 5. This example focuses on the impact of the Irrepresentable Con-
ditions. In this example, let n = 200, p = 30, q = 6 N = 5 and θ0 =
(2.0,−1.0, 0.5, 1.0, 0.3,−0.7, 0, · · · , 0)T , and we exclusively focus on Model 1.
It is clear that, for a given combination of design matrix X, link function
f and true index θ0, the Irrepresentable Conditions depend on the choice of
a and the Identifiability Constraint used. The following sequence of a, a =
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(0.05, 0.1, 0.3, 0.5, 1.0, 2.0, 5.0), as well as a = ∞, are examined, and V1 and V2
are applied.

The simulation scheme is as follows. A covariance matrix Σ is first generated
from Wishart(p,p), as done in [29]. Then we generate a sample of 100 obser-
vations of X from N(0,Σ), and standardize them. 100 normalized designs are
generated in this way. Next, for each generated design, we run the following
simulation 100 times. During each simulation, n copies of εi are sampled from
N(0, 0.32), and yi’s are calculated according to Model 1. Subsequently, the pro-
posed method with the various choices of a specified above are applied, and the
percentage of times that the applied method can identify the true model along
the solution path is recorded.

Since it is difficult to quantify the Irrepresentable Conditions for BS-SIM, we
compute

η̄∞ = 1− ‖C̄0(21)C̄
−1
0 (11)sign(φ0(1))‖∞,

associated with the Irrepresentable Condition for BL-SIM for each design, in-
stead. The sign of η̄∞ indicates whether the Irrepresentable Condition for BL-
SIM holds. That is, if η̄∞ > 0, the Irrepresentable Condition for BL-SIM holds;
otherwise, it fails to hold. Considering the fact that the Irrepresentable Con-
ditions for BS-SIM are more relaxed than that for BL-SIM, η̄∞ also implies
how strongly the Irrepresentable Conditions for BS-SIM satisfy or fail, to some
extent. η̄∞ is computed for each generated design according to each Identifiabil-
ity Constraint. The summary can be found in Section 5 of the Supplementary
Material [32].

We first look at how the magnitude of η̄∞ affects the performance of the
proposed BL-SIM method in selecting the true model. On the two top graphs in
Figure 1, the percentage of times that the true model can be identified by the
proposed BL-SIM method is plotted against the corresponding η̄∞, for the two
Identifiability Constraints separately. It can be observed that the percentage
increases as η̄∞ increases, for both Identifiability Constraints. The increase is
the sharpest around 0, as expected. On the two bottom graphs in Figure 1, the
percentage of times of achieving selection consistency for the proposed BS-SIM
method with a = 2 is plotted against η̄∞, for the two Identifiability Constraints
separately. It is obvious that the percentage for BS-SIM is larger than that for
BL-SIM at any η̄∞ for both constraints. It is consistent with our expectation
that BS-SIM with finite a should perform better in terms of variable selection
than BL-SIM.

Next, we examine how a affects the proposed method in terms of selection
consistency in more detail. The average percentages of times that the true model
can be selected with various choices of a are shown in Table 7. In theory, the
Irrepresentable Conditions become more restrictive when a increases. Thus, it
is expected that it is less likely to choose the true model when a increases. How-
ever, as indicated in Table 7, when a gets larger, the percentage of runs that the
true model can be identified increases slightly first, then decreases; and when
a continues to increase, the percentage for the BS-SIM estimator approaches
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Fig 1. The percentages that the proposed BL-SIM method and the proposed BS-SIM method
with a = 2 select the true model versus η̄∞ for both Identifiability Constraints.

a 0.05 0.10 0.30 0.50 1.00 2.00 5.00 ∞
V1 0.9995 1.0000 1.0000 0.9924 0.8741 0.6548 0.4665 0.3382
V2 0.9990 0.9999 0.9997 0.9956 0.9562 0.8786 0.7850 0.6909

Table 7

Average percentages of times that the true model can be selected with various choices of a.

that for the BL-SIM estimator. This particular pattern for the performance of
BS-SIM implies that for extremely small a, it is computationally slightly more
difficult to find a consistent estimator, although the Irrepresentable Conditions
are relaxed. These observations on the impact of a are in line with those stated
in [9].

The results in Table 7 also cast light on the role that the Identifiability Con-
straint plays. In most cases shown in Table 7, using V2 leads to a higher chance
of recovering the true model. The difference of the chances becomes larger as
a increases. This observation is consistent with the observation on the rela-
tive magnitude on η̄∞. Among the 100 designs generated above, 92% of them
have larger η̄∞ for V2. It is probably due to the fact that the Irrepresentable
Conditions for V2 contains more information than those for V1.
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5. Real data application

We then apply the proposed BS-SIM method to the Skin Cutaneous Melanoma
data downloaded from the TCGA data portal (https://tcga-data.nci.nih.
gov/tcga/findArchives.htm). On the clinical data, there are in total 433 pa-
tients. Their demographic information, tumor status, vital status and survival
time are recorded. On a separate set of files, the expression levels of 181 proteins
are measured for 207 patients using the M.D. Anderson Reverse Phase Protein
Array Core platform (http://www.mdanderson.org/education-and-research
/resources-for-professionals/scientific-resources/core-facilities-

and-services/functional-proteomics-rppa-core/index.html). The goal
here is to study how the expression levels of the measured proteins influence
the survival time of the patients. That means, we only retain those patients
that failed to survive and had protein expression level measured for further
analysis. After pre-processing, we have 94 patients, and the expression levels of
181 proteins. The expression levels are subsequently standardized and used as
the predictors. The survival time is taken logarithm, and treated as the response.
We apply the proposed BS-SIM method with a = 0.1 and 2 interior knots. Since
we speculate there exists a relatively large number of relevant proteins, the GIC
criterion introduced at the end of Section 2.3 with kn = log(n)loglog(p) is used
to choose the tuning parameter λ. The behaviour of the logGIC criterion also
to some extent confirms that the number of relevant proteins is relatively large,
as it fails to effectively yield a reasonable model.

Based on the combination mentioned in the last paragraph, we are able
to select 30 proteins, which are P21-R-V, 4E-BP1-pT37-T46-R-V, ACC1-R-
E, Beclin-G-C, Dvl3-R-V, Notch1-R-V, p27-pT157-R-C, p53-R-E, Paxillin-R-
C, PEA15-R-V, PTEN-R-V, Smad1-R-V, Smad4-M-V, Src-pY527-R-V, Syk-
M-V, Tuberin-R-E, YB-1-pS102-R-V, FoxM1-R-V, MYH11-R-V, RBM15-R-V,
Rictor-R-C, SCD1-M-V, TAZ-R-V, TSC1-R-C, Tuberin-pT1462-R-V, VHL-M-
C, 53BP1-R-E, c-Jun-pS73-R-V, Caveolin-1-R-V and Rb-pS807-S811-R-V. The
final fitted regression function is plotted against the estimated index in Figure 2.

Out of these detected proteins, the irregular expression of the p21, p27, p53,
PTEN, TAZ, Notch1, Caveolin, 53BP1, TSC1, Rb and Tuberin proteins have
been shown to be related to the survival or occurence of the Skin Cutaneous
Melanoma [10, 15, 17, 8, 7]. This partially demonstrates the effectiveness of the
proposed method in selecting the relevant variables.

6. Conclusion

In this article, we propose a regularization based approach for variable selection
in the single index model, named BS-SIM. It can achieve simultanoues and effi-
cient parameter estimation and variable selection for low to high dimensionality.
A coordinate descent algorithm is outlined to implement the BS-SIM method.
The algorithm is implemented in R, and the associated codes are available free
online at http://www.stat.purdue.edu/~cheng70/code.html. Extensive sim-

https://tcga-data.nci.nih.gov/tcga/findArchives.htm
https://tcga-data.nci.nih.gov/tcga/findArchives.htm
http://www.mdanderson.org/education-and-research/resources-for-professionals/scientific-resources/core-facilities-and-services/functional-proteomics-rppa-core/index.html
http://www.mdanderson.org/education-and-research/resources-for-professionals/scientific-resources/core-facilities-and-services/functional-proteomics-rppa-core/index.html
http://www.mdanderson.org/education-and-research/resources-for-professionals/scientific-resources/core-facilities-and-services/functional-proteomics-rppa-core/index.html
http://www.stat.purdue.edu/~cheng70/code.html
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Fig 2. The plot of the fitted regression function and the observed log survival time vesus the
estimated index for the Skin Cutaneous Melanoma data.

ulation studies are carried out to validate the proposed method and the devel-
oped algorithm. Furthermore, we show the conditions under which the BS-SIM
method can consistently estimate the true index and select the true variables.
These conditions generalize the conditions developed under the linear model,
and are novel for the single index model.

In Section 2.3, we briefly discuss the problem of choosing the tuning param-
eter under different settings, and the breakdown of BIC-type method under the
violation of the sparsity condition. A systematic study on the tuning parameter
selection for the linear model and the single index model with a finite sample
would be an interesting future research topic. Furthermore, in this work, the lo-
cation and the number of knots for the cubic B-spline functions are determined
by rule of thumb. There are more sophisticated methods for choosing the knots
in the literature, for instance, see [13] and [30]. How to develop a novel knots
placement method for BS-SIM is another interesting future research topic.
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Supplementary Material

Supplementary Material to “BS-SIM: An Effective Variable Selection
Method for High-dimensional Single Index Model”
(doi: 10.1214/17-EJS1329SUPP; .pdf). The supplementary material contains
the technical proofs and additional simulation results.
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