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Abstract: For a general class of stationary random fields we study asymp-
totic properties of the discrete Fourier transform (DFT), periodogram,
parametric and nonparametric spectral density estimators under an easily
verifiable short-range dependence condition expressed in terms of functional
dependence measures. We allow irregularly spaced data which is indexed
by a subset Γ of Zd. Our asymptotic theory requires minimal restriction on
the index set Γ. Asymptotic normality is derived for kernel spectral density
estimators and the Whittle estimator of a parameterized spectral density
function. We also develop asymptotic results for a covariance matrix esti-
mate.
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1. Introduction

Analysis of irregularly spaced data has been attracting considerable attention
from researchers in various fields, ranging from environmental science to eco-
nomics. The origin of irregular data is in fact the limit theorem for random
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fields with continuous parameter where the sets of integration in the limit the-
orems approach to infinity in Van Hove sense, see for example, Ivanov and
Leonenko (2012). In a broad sense, there are two different approaches to deal
with the irregularly spaced spatial data. The classical and more popular Kriging
or interpolation approach (Cressie (1988)) is parametric in nature. A nonpara-
metric or a frequency domain approach was considered by Fuentes (2007) which
revolves around the assumption that the sampled locations are fixed and not
random. Vidal-Sanz (2009) also considered nonparametric estimation of spectral
densities for second-order stationary random fields on a d-dimensional lattice.
In that paper, the author proposed modified estimator classes with improved
bias convergence rate. In a much recent work, Bandyopadhyay et al. (2015) for-
mulated a spatial frequency domain empirical likelihood method for irregularly
spaced data. Other works in the frequency domain can be found in Hall and
Patil (1994), Bandyopadhyay and Lahiri (2009) and the references therein.

Spectral domain methods to approximate the Gaussian likelihood for irregu-
larly spaced datasets were proposed by Matsuda and Yajima (2009) where the
sampled locations are assumed random with a particular distribution having a
continuous density function. Their non-parametric and parametric estimators of
the spectral density function of the underlying random fields are similar to those
in classical time series analysis. The parametric spectral density was estimated
by minimizing the Whittle likelihood while the non-parametric spectral density
estimator was a spectral window estimator, and they studied the asymptotic
properties of those estimators.

In spatial data analysis one usually deals with irregularly spaced data. To set
the notation, let (Γn)n≥1 be a sequence of finite subsets of Zd representing the
sampling locations or design points. Our goal here is to work with an asymptotic
regime which imposes minimal restrictions on the sampling set and its boundary:

Assumption 1. (Asymptotic regime) Let Γn = {Ln,1, . . . , Ln,n} ⊂ Zd be
the set of sampling locations such that the choice of Γn satisfies the property
|Γn| → ∞.

For simplicity, from now on, we would write Lk = Ln,k. It is instructive to
compare the above regime with the Matsuda and Yajima (2009) setup where
each sampling location ti is obtained from a randomly generated d-dimensional
vector ui = (ui,1, . . . , ui,d) by tij = Ajuij for j = 1, 2, . . . , d. They further
assumed that the coefficient Aj ’s and the sample size (nk), if expressed as a
function of k, satisfy the condition |Sk| /nk → 0 as k goes to infinity, where |Sk|
is the area of the rectangle [0, A1]× . . .× [0, Ad].

Other examples with special constraints on the sample set can be found
in Jones (1962), Neave (1970a), Neave (1970b), Parzen (1963), Clinger and
Van Ness (1976). A related study with irregularly spaced observations for an
increasing spatio-temporal domain can be found in Li et al. (2008). Similar to
Matsuda and Yajima (2009), they also viewed the spatial locations at which
the data is observed as random in number and location; generated from a ho-
mogeneous 2-dimensional Poisson process. As an interesting feature, our theory
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requires a minimal condition on the set Γn, which is an attractive property in
spatial applications in which the underlying observation domains can be quite
irregular.

For a given Γn, the discrete Fourier transform (DFT) is defined by

Sn(θ) =
1√
n

∑
j∈Γn

Xj exp(−ıj′θ) =
1√
n

n∑
k=1

XLk
exp(−ıL′

kθ), (1.1)

where ı =
√
−1 and θ = (θ1, . . . , θd) ∈ R

d. The periodogram of the data is
defined by

In(θ) = |Sn(θ)|2 =
1

n

[{∑
j∈Γn

Xj cos(j
′θ)

}2

+

{∑
j∈Γn

Xj sin(j
′θ)

}2]
. (1.2)

We will study aspects of both parametric and nonparametric estimators of
the spectral density functions of stationary random fields. We begin by find-
ing asymptotic results for the discrete Fourier transform (DFT) for irregularly
spaced random fields, and then study the asymptotic properties of the spectral
density estimates. As pointed out earlier, an important feature of our approach
is that we do not impose any restriction on the index set Γn, other than the
natural requirement |Γn| → ∞.

The paper is structured as follows: Section 2 presents the setup, assumptions
and some preliminary results regarding short-memory stationary random fields.
The discrete Fourier transform of the data and its asymptotic properties are
presented in Section 3 while the Whittle likelihood and parametric spectral
density estimator are discussed in Section 4. In Section 5, we will present the
nonparametric spectral density estimator and the covariance function and its
different aspects (e.g. consistency, asymptotic normality). We will also discuss
the estimation of covariances matrices for an irregular set-up in Section 6. All
proofs are provided in Appendix.

2. Short-range dependent random fields

We shall consider a very general class of stationary random fields which are
functions of independent and identically distributed (iid) random variables. In
related works, Whittle (1954) considered two-dimensional linear auto-regression
fields and Besag (1974) discussed stationary auto-normal processes and pro-
posed estimation methods and goodness-of-fit tests applicable to spatial Markov
schemes defined over a rectangular lattice. Other noteworthy examples may be
found in Guyon (1982) and Kashyap (1984). Our setup is general enough to
include the most common linear and nonlinear processes.

Assumption 2. Let εj , j ∈ Z
d, be iid random variables. Define

Xi = g(εi−s; s ∈ Z
d), i ∈ Z

d, (2.1)

where g is a measurable function such that Xi is well-defined.
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Throughout the paper, we work with short-range dependent stationary pro-
cesses. We use the idea of coupling (Wu (2005)) to define dependence measures.
Let ε′i, εj , i, j ∈ Zd be iid.

Definition 2.1. (Functional dependence measure) Let Xi ∈ �Lp, p ≥ 1. Define

δi,p = ‖Xi −X∗
i ‖p, where X∗

i = g(ε∗i−s; s ∈ Z
d), (2.2)

and ε∗j = εj if j 	= 0 and ε∗0 = ε′0. Also let p′ = min{2, p} and define

Θm,p =
∑

|j|>m

δj,p and Ψm,p =

( ∑
|j|>m

δp
′

j,p

)1/p′

.

Definition 2.2. (Stability) The random field (Xi) defined in (2.1) is said to be
p-stable if

Δp :=
∑
i∈Zd

δi,p < ∞.

Two concrete examples of such processes are given next.

Example 1. (Linear process) Let Xi =
∑

s∈Zd asεi−s, where (εj)j∈Zd are iid
random variables with mean 0 and ε0 ∈ �Lp, p ≥ 2, and as are real coefficients
such that

∑
s∈Zd |as| < ∞. Then δi,p = |ai|‖ε0 − ε∗0‖p = O(|ai|). For the nonlin-

early transformed process Yi = K(Xi), where K(·) is Lipschitz continuous, its
functional dependence measure δi,p(Y ) is also of order O(|ai|).

Example 2. (Spatial Autoregressive Scheme) Let N ⊂ Z
d be a finite set and

0 	∈ N . Consider the spatial process in the form of nonlinear autoregressive
scheme

Xi = G((Xi−j)j∈N ; εi),

where the function G is such that there exists nonnegative numbers �j , j ∈ N ,
with

∑
j∈N �j < 1 and the following holds: for all (x−j)j∈N and (x′

−j)j∈N ,

|G((x−j)j∈N ; εi)−G((x′
−j)j∈N ; εi)| ≤

∑
j∈N

�j |x−j − x′
−j |. (2.3)

Also assume that there exists (x−j)j∈N such that G((x−j)j∈N ; ε0) ∈ Lp. Then
following the argument in Shao and Wu (2004), we have δi,p = O(ρ|i|) for some
0 < ρ < 1.

3. Asymptotic theory of the DFT

In this section, under some regularity conditions on the data-generating process
we study the asymptotic distribution of DFT. These are the key ingredients for
developing the spectral analysis of stationary processes. Peligrad and Wu (2010)
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proved a central limit theorem for the Fourier transform of a stationary process
in the regular case. Other works related to bias and variance of periodogram
estimates for a regular set-up can be found in Pukkila (1979) and Lin and Liu
(2009).

3.1. Asymptotic normality of the DFT

We establish the asymptotic normality of the DFT defined in (1.1) using the
Cramer-Wold device. To this end, instead of the DFT we consider the more
general expression

Wn =
∑
j∈Γn

cjXj where |cj | ≤ 1 for all j ∈ Γn, (3.1)

and wish to find the asymptotic joint distribution of (Yn(θ), Zn(θ))/
√
n where

Yn(θ) =
∑
j∈Γn

Xj cos(j
′θ), Zn(θ) = −

∑
j∈Γn

Xj sin(j
′θ),

are the cosine and sine transforms of the data. As mentioned earlier, we are
interested in linear combinations aYn(θ)+bZn(θ) (without loss of generality, we
can assume that a2 + b2 = 1) which is of the form (3.1). For k ≥ 1, let us use
Nk(0,Σ) to denote the k-variate normal distribution with 0 mean vector and
variance-covariance matrix Σ.

Theorem 3.1. (Central limit theorem for DFT). Suppose (Xi)i∈Zd is a sta-
tionary centered random field defined by (2.1) satisfying

Δ2 :=
∑
i∈Zd

δi,2 < ∞. (3.2)

Also assume that v2n = E(W 2
n) → ∞. Then, the following central limit theorem

(CLT) holds:
L
[
Wn/

√
n,N

(
0, v2n/n

)]
→ 0 as n → ∞, (3.3)

where L(., .) is the Levy distance between distributions. Consequently, we have

L
[(
Yn(θ), Zn(θ)

)
/
√
n,N2

(
0,Σn(θ)/n

)]
→ 0, (3.4)

where Σn(θ) = cov((Yn(θ), Zn(θ))
T .

The above theorem gives the joint asymptotic distribution of the discrete
Fourier transform. For the regular set-up, we can further show that the two
coordinates (Yn(θ), Zn(θ)) are asymptotically independent and the same will
happen at two different frequencies.

Proposition 1. Consider the regular set-up Γn =
∏d

l=1{1, 2, . . . , nl}, with nl →
∞ for all l ≤ d. Let θ, φ ∈ [−π, π)d with θ, φ 	= 0, θ 	= φ and θ + φ 	= 0.
Then (Yn(θ), Zn(θ), Yn(φ), Zn(φ))/

√
n are asymptotically independent Gaussian

random variables with asymptotic variances equal to (f(θ), f(θ), f(φ), f(φ))/2,
where f(·) is the spectral density function.
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3.2. Bias of the periodogram

It is known that for regularly observed stationary time series the periodogram
is an asymptotically unbiased estimator of the spectral density function. This is
not the case for irregular spatial data. In this section, we provide an expression
for the bias of the periodogram.

For the process (Xi) given in (2.1), assume that the mean is 0 and define the
covariance function γk = E(X0Xk), k ∈ Z

d. By (3.2), we have
∑

k∈Zd |γk| < ∞.
Define the spectral density

f(θ) =
∑
k∈Zd

γk cos(k
′θ). (3.5)

In the literature the scaled form by (2π)−d is also widely used. In this paper
we use the form (3.5). Recall that Γn = {L1, . . . , Ln}. Let J = {k ∈ Zd :
∃ i, j with Li − Lj = k} and mk = #{(i, j) : Li − Lj = k}. We define the
location adjusted spectral density function by

fJ(θ) = E[In(θ)] =
1

n

∑
j∈J

mjγj cos(j
′θ). (3.6)

The bias of In(θ) is

Bn(θ) = f(θ)− E[In(θ)] =
∑
k∈Zd

(
1− mk

n

)
γk cos(k

′θ). (3.7)

If, for any fixed k, mk/n → 1 (which holds for the regular rectangle index

set Γn =
∏d

i=1{1, 2, . . . , Ji}, where Ji � n1/d and
∏d

i=1 Ji = n), then by the
Lebesgue dominated convergence theorem, Bn(θ) → 0 as n → ∞. However,
the same cannot be said for the irregular spatial case. In particular, if for each
k ∈ Z

d, the ratio mk/n approaches rk as n → ∞ and these rk’s are constant,
then the asymptotic bias is given by B(θ) =

∑
k∈Zd(1− rk)γk cos(k

′θ).

4. Whittle likelihood and parametric spectral estimate

In this section we shall discuss a parametric estimator of the spectral density
function f(θ). In what follows, we write the spectral density f(θ) (where θ ∈ R

d)
as fα(θ) for a certain parameter vector α ∈ Rp. Since the spectral density
governs the covariance function of a stationary process, γk will also be a function
of α. Therefore, the location adjusted spectral density function fJ (θ) and the
bias Bn(θ) discussed in the previous section are functions of both θ and α. We
will denote them by fJ,α(θ) and Bn,α(θ), respectively.

A widely used approach to estimate the unknown parameter α is to minimize
the (negative) Whittle’s likelihood or an approximation to the Gaussian log
likelihood which is of the form

pn(α) =

∫
D

{
log fα(θ) +

In(θ)

fα(θ)

}
dθ, where D = [−π, π]d. (4.1)



Spectral analysis of random fields 4303

Dahlhaus and Künsch (1987) developed an asymptotic theory for Whittle es-
timator for regularly spaced time series data using a bias-adjusted periodogram
in place of In(θ). We will adopt their technique to correct for the bias of the
periodogram. The Whittle likelihood for the irregularly spaced data is

pn(α) =

∫
D

[
log fJ,α(θ) +

In(θ)

fJ,α(θ)

]
dθ. (4.2)

We denote the Whittle estimator that minimizes pn(α) by α̂n and study the
asymptotic behavior of this estimator. Suppose the parameter space for α is A.
Let the true value of the parameter be α0, and suppose that the Whittle estimate
α̂n exists in the parameter space A for all n. Before stating the theorem for the
Whittle estimator, in addition to the asymptotic regime (Assumption 1) and
the nonlinear nature of the stationary random field (Assumption 2), we list a
few more assumptions:

Assumption 3. The parameter space A ⊂ R
p is compact, and D ⊂ R

d is
symmetric and compact such that the spectral density function (now denoted as
fJ,α(θ), defined on A×D) is twice differentiable with respect to α and the first
and second order derivatives are continuous for θ ∈ D.

Assumption 4. (Identifiability condition) For α1 	= α2, fJ,α1(θ) 	= fJ,α2(θ) on
a subset of D with positive Lebesgue measure.

Assumption 5. If ∇ denotes the first order derivative of a function, then
∫
D

|∇fJ,α0(θ)|
{fJ,α0(θ)}2

dθ < ∞ and

∫
D

(
|∇fJ,α0(θ)|
fJ,α0(θ)

)2

dθ < ∞.

Finally, let us use p(α) to denote the limit of the Whittle likelihood pn(α)
defined by (4.2). Note that fJ,α(θ) and consequently, p(α) depends on the index
set Γn. Also, for any Γn, we can say that p(α) > p(α0), for any α 	= α0.

We now discuss the connection with the regularity assumptions. If the func-
tional dependence measure δi,p satisfies the summability condition∑

i∈Zd

|i|2δi,2 < ∞,

then the spectral density function is a bounded, twice partially differentiable
function in view of∑

i∈Zd

|i|2|γi| ≤
∑
i∈Zd

|i|2δi,2
∑
i∈Zd

δi,2 < ∞.

Assumptions 3 to 5 are similar to the ones used in Matsuda and Yajima (2009).
Theorem 4.1 below concerns the asymptotic properties of the Whittle estimator.

Theorem 4.1. Let fJ,α(θ) be the location adjusted spectral density function
(3.6) and denote the true value of the parameter α by α0 and assume that the
Whittle estimator α̂n exists in the parameter space A for all large n. Then,
under Assumptions 1-5, the estimator α̂n satisfies the following:
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(a) (Consistency) α̂n → α0 in probability as n → ∞.
(b) (Asymptotic normality) Suppose, hα(θ) = ∇(fJ,α(θ))

−1. Then, the
Whittle estimator α̂n satisfies the following (L(., .) is the Levy distance):

L

(√
n(α̂n − α0)

fJ,α0(0)
, Np

(
0, 2Γ(α0)Σ

2
nΓ(α0)

))
→ 0 as n → ∞ (4.3)

where nΣ2
n =

∑
j,k∈Γn

(
∫
D

exp{ı(k−j)′θ}hα0(θ)dθ)(
∫
D

exp{ı(k−j)′θ}hα0(θ)dθ)
′,

and Γ(α)−1 =
∫
D
∇fJ,α(θ)∇(fJ,α(θ))

−1 dθ.

Remark 1. If for any fixed k, mk/n → 1, then fJ,α(θ) converges to fα(θ).
Hence, in the regular setup, as n → ∞,

√
n(α̂n − α0) ⇒ Np

(
0, 2f2

α(0)Γ(α0)Σ
2
nΓ(α0)

)
.

From a practical point of view, it is not possible to use the above theorem
directly to find a confidence set for the true value of the parameter α0, for the
covariance matrix in the above theorem depends on α0. Next, we describe a
subsampling procedure to find a confidence set of α. However, for irregularly
spaced stationary random field, a subsampling method will not work in most
cases. Here, we describe a method only for a regular random field.

For the following discussion, let us assume that we have data (Xi)i∈I from
a random field indexed by a rectangle I in Z

d. For convenience, since we are
going to consider regular spaced data, let us assume that I = {1, 2, . . . , l}d. And
suppose the Whittle likelihood estimator for this data is α̂l.

To use the subsampling procedure, we will be considering smaller blocks
from I. For a point t = (t1, . . . , td), α̂l,t,b will denote the Whittle likelihood esti-

mator based on the data (Xi)i∈It,b where It,b =
∏d

i=1{ti, . . . , ti + b}. Naturally,
these estimates can be obtained for all t such that It,b ⊂ I. Let us use Ql,b to
denote all such t’s.

We are going to show that an adjusted empirical distribution of the Whittle
likelihood estimators for all possible blocks is essentially an approximation for
the limiting distribution of α̂l, described in the previous theorem. To do that, we
will look at indicators of Borel sets. For any Borel set A ∈ R

p, let us use F (A)
to denote the limiting value of P [cl(α̂l − α0) ∈ A] where cl is an appropriate
scaling constant (see Remark 1). Analogously, Fb(A) denotes the same for the
subsamples and so, Fb(A) → F (A), as b → ∞. We are going to consider the
following empirical distribution of the subsampled Whittle likelihood estimators:

Ll,b(A) =
1

|Ql,b|
∑

t∈Ql,b

I{cb(α̂l,t,b − α̂l) ∈ A}. (4.4)

Then, the following theorem proves the consistency of the above approximation
and helps us determine a confidence set for α0.

Theorem 4.2. Assume that b → ∞, b/n → 0 as n → ∞. Then, Ll,b(A) in the
above definition goes to F (A) in probability, for each Borel set A whose boundary
has mass zero under F (·).
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5. Non-parametric estimator of spectral density function

In this section, we shall study non-parametric kernel spectral density estimators
of f and their large-sample properties such as consistency and asymptotic nor-
mality. For a symmetric kernel function K(·) and for bandwidth Bn we define
the kernel spectral density estimator

fn(θ) =
1

n

n∑
j=1

n∑
k=1

XLjXLk
K

(
Lj − Lk

Bn

)
eı(Lj−Lk)

′θ. (5.1)

For the consistency of the above estimator, we choose the kernel K to satisfy
the following

Condition 1. The kernel function K is symmetric, has support [−1, 1], K(0) =
1, and sup|x|<1 |K ′(x)| < ∞.

The above condition readily implies that κ =
∫∞
−∞ K2(x)dx < ∞, a quantity

that will be needed later. A simple choice that satisfies the above properties
is the rectangular kernel K(x) = I{|x|≤1}. The following theorem asserts the
consistency result of the nonparametric estimator above.

Theorem 5.1. Assume that E(Xk)= 0, Xk ∈ �Lp, p≥ 2 and Θ0,p =
∑∞

j=0 δj,p <
∞, the bandwidth Bn → ∞ and Bn = o(n) as n → ∞. Then, under Condition 1,

sup
θ∈Rd

‖fn(θ)− Efn(θ)‖p/2 → 0.

Corollary 5.1. Assume there exists a constant c > 0 such that fn(0) > c. Let
conditions in Theorem 5.1 be satisfied and let X̄n be the mean of the sample
{Xi, i ∈ Γn}. Then,

√
nX̄n√
fn(0)

⇒ N(0, 1). (5.2)

Proof. Let vn = nE(X̄2
n). By the Lebesgue dominated convergence theorem,

vn − E
(
fn(0)

)
=

1

n

∑
k∈Zd

mk

[
1−K(k/Bn)

]
γk → 0,

where mk is as defined in Section 3.2. By Theorem 3.1,
√
nX̄n/

√
vn ⇒ N(0, 1).

Hence by Theorem 5.1 and Slutsky’s theorem, (5.2) follows.

One can apply Corollary 5.1 to construct confidence intervals for the mean
μ based on irregularly spaced data XL1 , . . . , XLn . Let f̃n(θ) be defined as fn(θ)
in (5.1) with Xj therein replaced by Xj − X̄n. Given 0 < α < 1, the (1− α)th

confidence intervals for the mean μ is X̄n ± z1−α/2

√
f̃n(0)/n.

Next, we discuss the asymptotic distribution of the non-parametric spectral
density estimator in (5.1). The proof of the theorems are given in the Appendix.
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Theorem 5.2. Let Condition 1 be satisfied and define κ =
∫∞
−∞ K2(x)dx < ∞.

Assume E(Xk) = 0, E(X4
k) < ∞, Θ0,4 < ∞, Bn → ∞ and Bn = o(n) as

n → ∞. Then, for any fixed θ ∈ R
d,√

n

Bn

(
fn(θ)− E[fn(θ)]

fn(θ)

)
⇒ N

(
0, κ

)
. (5.3)

Remark 2. An interesting observation is that the variance of the estimate fn(θ)
is asymptotically equal to E(fn(θ))

2, multiplied by an appropriate scaling term.
Therefore, the concepts of variance stabilizing transformation and delta method
tell us that we can take the logarithm of the estimate to obtain√

n

Bn

(
log fn(θ)− logE[fn(θ)]

)
⇒ N

(
0, κ

)
.

This result can be used to form a confidence interval for E(fn(θ)) of the form
exp(log fn(θ)± z1−α/2

√
κBn/n).

6. Estimation of covariance matrices

In spatial statistics, a fundamentally important problem is to estimate the co-
variance matrix of the data. It is useful in many aspects of multivariate analysis
including principal component analysis, linear discriminant analysis and graph-
ical modeling. One can infer dependence structures among variables by esti-
mating the associated covariance matrices. In this section, we will discuss the
estimation of the covariance matrix of an irregular spaced data (XL1 , . . . , XLn).
Now, to judge the quality of a matrix estimate, we will use the operator norm.
For an estimate of the covariance matrix, we are going to use the l2 “operator
norm” and give an upper bound for this. Recall that l2 norm or spectral radius
of a matrix A is defined as ρ(A) = max|x|=1 |Ax|.

Let Σn = (γLi−Lj )1≤i,j≤n be the covariance matrix to be estimated. Its

estimator Σ̂n is defined by

Σ̂n = (γ̂Li−Lj )1≤i,j≤n where γ̂k =
1

mk

∑
i,j:Li−Lj=k

(XLi − X̄)(XLj − X̄).

In the above, mk = #{(i, j) : Li − Lj = k}. Based on the known inconsistency

results for the periodogram estimate, it can be shown that Σ̂n is not a con-
sistent estimate (Wu and Pourahmadi (2009)). So, instead of this, we will use
non-parametric kernel-based estimators, similar to what was used for the spec-
tral density. More precisely, we define the following estimate for the covariance
matrix:

Σ̂n,Bn =

(
γ̂Li−LjK

(
Li − Lj

Bn

))
1≤i,j≤n

, (6.1)

where K is a kernel function and Bn is a bandwidth sequence satisfying ap-
propriate conditions, as discussed below. For this banded covariance matrix
estimate, we prove the following
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Theorem 6.1. Suppose {Xt}t∈Zd is a stationary process and each Xi ∈ �Lp for
some p ∈ (2, 4]. If mk � n, the kernel K satisfies Condition 1, the bandwidth
Bn satisfies the conditions Bn → ∞ and Bn/n

δ → 0 for some δ > (1− 2/p)/d,
then the estimator Σ̂n,Bn in equation (6.1) is consistent and the spectral radius

ρ(Σ̂n,Bn − E(Σ̂n,Bn)) has a convergence rate of OP (B
d
nn

2/p−1).

Remark 3. Note that the above covariance matrix estimate is not necessarily
non-negative definite. If we define a matrix Kn,Bn = (K((Li−Lj)/Bn))1≤i,j≤n,

then the covariance matrix estimate can be written as Σ̂n,Bn = Σ̂n � Kn,Bn ;
where � is the Hadamard or Schur product, which is formed by the element-wise
multiplication of matrices.

By Schur Product theorem, since Σ̂n is already non-negative definite, the
Schur product will be non-negative whenever Kn,Bn is non-negative definite.
One particular example is the triangular kernel K(u) = max(0, 1 − |u|) which
would lead to a positive definite weight matrix Kn,Bn . Thus, using this kernel

function will give us a non-negative definite covariance matrix estimate Σ̂n,Bn .

7. A simulation study

In this section, we assess empirically the impact of the sampling index set Γn on
the parameter estimation procedure. For that, we consider an isotropic spatial
auto-regressive (AR) model in a two-dimensional setting. This model is similar
to the isotropic spatial AR model discussed by Azomahou (2009) and Lavancier
(2011). More precisely, in our spatial AR model, each observation is dependent
on the four neighbors in the following way:

Xi,j = c(Xi−1,j +Xi+1,j +Xi,j+1 +Xi,j−1) + εi,j + εi,j−1εi,j+1, for i, j ∈ Z,
(7.1)

where the parameter c gauges the strength of dependence of an observation on
its four neighbors, and the innovations εi,j are generated independently from a
standard normal distribution. Note that this model is an example of non-linear
random fields. For more detailed information on such models; see (Cressie, 2015,
Chapter 6).

We start with a full grid of size n-by-n from which we would like to generate
sample data of different sizes. In order to generate the full data, we consider it in
a vector form X, such that the above model helps us write it as X = AX+e, and
thereby, X = (I −A)−1e. Here, A an n2 × n2 sparse matrix (non-zero elements
are the parameter of the model) and e is a vector such that each component is
of the form εi,j + εi,j−1εi,j+1.

In our simulation study, we generate a data-set on a grid of 75 × 75. Then,
we take different samples of varying sizes to estimate the parameter c using
the Whittle likelihood approach and calculate the mean squared error (MSE)
of the estimates. For each of the sample sizes, we also choose a regular grid and
compare the performances of the regular setup to that of the irregular setup.
The parameters and the set-up of the simulation are described below:
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• We used the parameter c = 0.2.
• The innovations εi,j are generated independently from a N(0, 1) distribu-

tion.
• The grid consists of 75× 75 data points and we take samples of different

sizes (between 102 and 402). First, these samples are chosen randomly from
the whole grid, to ensure that we have an irregularly spaced data. And
then, we choose a regular grid of similar size to compare the performances.

• For each sample size, the experiment is repeated multiple times, and the
mean squared error for the parameter estimate (error calculated from the
actual value c = 0.2) is calculate for the regular and irregular data. For
the irregular set-up, the Whittle likelihood is defined using the location
adjusted spectral density, as shown in equation (4.2). In addition to that,
we also perform same analysis for Whittle likelihood defined in the original
way (4.1). The results are shown in Table 1 below.

Table 1

Mean squared error in estimating parameter c using simulated data.

Sample Size Regular Irregular (location adjusted) Irregular (original)

100 0.0004 0.0015 0.0239
225 0.0004 0.0012 0.0158
400 0.0001 0.0009 0.0148
625 0.0004 0.0005 0.0117
900 0.0009 0.0003 0.0109
1225 0.0004 0.0002 0.0096
1600 0.0001 0.0001 0.0081

The results of the simulation confirm that the estimation performance in the
irregular set-up is comparable to the regular set-up when the sample size is
larger than 202. However, the regular set-up outperforms the irregular one for
smaller sample sizes. On the other hand, when we perform the simulation for the
original definition of the Whittle likelihood, the results are not at par with the
location adjusted version. In fact, the mean squared error is very big for smaller
sample sizes, but it reduces steadily as we take bigger samples. For sample size
402, it is about 0.0081, which clearly establishes that as more and more samples
are taken, the location adjusted spectral density approaches the true value of the
spectral density. This is expected, and follows what was discussed in Section 4.

8. Appendix

8.1. Proofs of theorems

Proof of Theorem 3.1. It is worth mention that this proof is somewhat sim-
ilar to theorem 1 in El Machkouri et al. (2013). However, for completeness of
our paper, we are giving a detailed proof here.

At first, assume that lim infn v
2
n/n > 0. Then, there exists a constant c0 > 0

and n0 ∈ N such that n/v2n ≤ c0 for any n ≥ n0.
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Let (mn)n≥1 be a sequence of positive integers going to infinity and denote

X̃j = E(Xj | Fmn(j)) where Fmn(j) = (εj−s; |s| ≤ mn). So, there exists a

measurable function h such that X̃j = h(εj−s; |s| ≤ mn). Similarly, for a coupled
process (see Definition 2.1), we can write

X̃∗
j = h(ε∗j−s; |s| ≤ mn) = E

(
X∗

j | F∗
mn

(j)
)
,

where F∗
mn

(j) = (ε∗j−s; |s| ≤ mn). Also, for any j ∈ Z
d, define

δ
(mn)
j,p =

∥∥(Xj − X̃j)− (Xj − X̃j)
∗∥∥

p
.

In order to prove the theorem, we will need the following results.

• Using lemma 8.1, denoting Δ
(mn)
p =

∑
j∈Zd

δ
(mn)
j,p , for any n ∈ N and any

p ≥ 2, ∥∥∥∥
∑
i∈Γn

ai(Xi − X̃i)

∥∥∥∥
p

≤
(
2p

∑
i∈Γn

a2i

)1/2

Δ(mn)
p . (8.1)

• If Δp < ∞, then for any fixed p ≥ 0, Δ
(mn)
p → 0 as n → ∞. To this end,

note that

δ
(mn)
j,p ≤

∥∥Xj −X∗
j

∥∥
p
+

∥∥X̃j − X̃∗
j

∥∥
p

= δj,p +
∥∥E(Xj | Fmn(j),F∗

mn
(j))− E(X∗

j | F∗
mn

(j),Fmn(j))
∥∥

≤ 2δj,p.

Since limn→∞ δ
(mn)
j,p = 0 and

∑
j∈Zd δj,p = Δp < ∞, using the dominated

convergence theorem, we can say that limn→∞ Δ
(mn)
p = 0.

• Define W̃n =
∑

j∈Γn
cjX̃j . Then, using the last two results, we can write

∥∥Wn − W̃n

∥∥
2

vn
=

1

vn

∥∥∥∥
∑
i∈Γn

ci(Xi − X̃i)

∥∥∥∥
2

≤ 2Δ
(mn)
2

vn

(∑
i∈Γn

c2i

)1/2

≤
(
2Δ

(mn)
2

)( n

v2n

)1/2

.

And hence, using the assumption mentioned earlier,

lim sup
n→∞

∥∥Wn − W̃n

∥∥
2

vn
= 0. (8.2)

• We will also use the following central limit theorem, due to Heinrich (1988).

Theorem 8.1. Let (Γn)n≥1 be a sequence of finite subsets of Zd with
|Γn| → ∞ as n → ∞ and (mn)n≥1 be a sequence of positive integers. For
each n ≥ 1, let {Un(j), j ∈ Z

d} be an mn-dependent random field with



4310 S. Deb et al.

E(Un(j)) = 0 for all j ∈ Z
d. Also, assume that E(

∑
j∈Zd Un(j))

2 → σ2 as

n → ∞ where σ2 is finite. Then,
∑

j∈Zd Un(j) converges in distribution

to N(0, σ2) if there exists a finite constant c > 0 such that for any n ≥ 1,∑
j∈Zd E(U2

n(j)) ≤ c and for any ε > 0 it holds that

lim
n→∞

Ln(ε) := m2d
n

∑
j∈Zd

E

(
U2
n(j)I{|Un(j)| ≥ εm−2d

n }
)

= 0. (8.3)

We now apply the above results to prove our theorem. At first, define Un(j) :=
cjX̃j/vn, where cj is same as the coefficient ofXj inWn. Note that this definition
satisfies the criteria that {Un(j), j ∈ Z

d} is an mn-dependent random field with
E(Un(j)) = 0 for all j ∈ Z

d. Further,

E

(∑
j∈Zd

Un(j)

)2

=
1

v2n
E

(∑
j∈Zd

cjX̃j

)2

=
E
(
W̃ 2

n − v2n
)

v2n
+ 1.

Now,∣∣∣E(W̃ 2
n − v2n

)∣∣∣ =
∣∣∣E(W̃ 2

n −W 2
n

)∣∣∣
≤

∥∥W̃n +Wn

∥∥
2

∥∥W̃n −Wn

∥∥
2

≤
∥∥W̃n −Wn

∥∥
2

(∥∥W̃n −Wn

∥∥
2
+ 2‖Wn‖2

)
≤ 2Δ

(mn)
2

(∑
i∈Γn

c2i
)1/2(

2Δ
(mn)
2

(∑
i∈Γn

c2i
)1/2

+ 4Δ2

(∑
i∈Γn

c2i
)1/2)

= 4Δ
(mn)
2

(∑
i∈Γn

c2i
)(
Δ

(mn)
2 + 2Δ2

)

Thus, using our assumptions, |E(W̃ 2
n−v2n)/v

2
n| ≤ 4Δ

(mn)
2

(
Δ

(mn)
2 +2Δ2

)
(n/v2n) →

0. And hence, as n → ∞, E
(∑

j∈Zd Un(j)
)2 → 1. On the other hand, for any

n ≥ n0,

∑
j∈Zd

E(U2
n(j)) =

1

v2n

∑
j∈Zd

c2jE(X̃
2
j ) ≤

n

v2n
E(X̃2

0 ) ≤ c0E(X̃
2
0 ).

Finally, let ε > 0 be fixed. Since |cj | ≤ 1, we have

I

{
|Un(j)| ≥ εm−2d

n

}
= I

{
|X̃j | ≥

εvn
|cj |

m−2d
n

}
≤ I

{
|X̃j | ≥

εvn
m2d

n

}
,

and then, we get

Ln(ε) ≤ m2d
n

v2n

∑
j∈Zd

E

(
X̃2

j I

{
|X̃j | ≥

εvn
m2d

n

})

≤ c0m
2d
n E

(
X̃2

0 I

{
|X̃0| ≥

εvn
m2d

n

})
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≤ c0m
2d
n ×

[
vnP

(
|X̃0| ≥

εvn
m2d

n

)
+ E

(
X2

0 I

{
|X0| ≥

√
vn

})]

≤ c0m
6d
n E(X2

0 )

ε2vn
+ c0m

2d
n ψ(

√
vn), where ψ(x) = E

(
X2

0 I{|X0| ≥ x}
)
.

In order to ensure that Ln(ε) → 0, define the sequence (mn)n≥1 by

mn =

⎧⎪⎪⎨
⎪⎪⎩
min

{[
ψ
(√

vn
)− 1

4d

]
,

[
v

1
12d
n

]}
if ψ

(√
vn

)
	= 0[

v
1

12d
n

]
if ψ

(√
vn

)
= 0

where [.] is the greatest integer function. Since vn → ∞ and ψ
(√

vn
)
→ 0, it is

easy to observe that

mn → ∞,
m6d

n

vn
≤ 1√

vn
→ 0 and m2d

n ψ(
√
vn) ≤

√
ψ(

√
vn) → 0.

Hence, applying Theorem 8.1 and using (8.2), we derive that

W̃n

vn

L−−−−→
n→∞

N(0, 1) which implies that
Wn

vn

L−−−−→
n→∞

N(0, 1).

So, we have proved required result (3.3) assuming that lim infn v
2
n/n > 0. If

this condition fails, we can get a subsequence n′ → ∞ such that

L

[
Wn′/

√
|Γn′ |, N

(
0, v2n′/|Γn′ |

)]
→ l, as n′ → ∞, (8.4)

for some l ∈ [0,∞]. Furthermore, if v2n′/|Γn′ | does not converge to 0, we can get
a further subsequence n′′ such that lim infn′′(v2n′′/|Γn′′ |) > 0, implying

L

[
Wn′′/

√
|Γn′′ |, N

(
0, v2n′′/|Γn′′ |

)]
→ 0, as n′′ → ∞. (8.5)

The above can be shown using the method we adopted previously and this
contradicts (8.4). Consequently, we can say that v2n′/|Γn′ | converges to 0 and

thus, Wn′/
√
|Γn′ | converges to 0 in probability, implying that the Levy distance

between Wn′/
√

|Γn′ | and N(0, v2n′/|Γn′ |)] goes to 0, again contradicting (8.4).
So, finally, proof of the first part of the theorem 3.1 is complete. The second
part is just a corollary that follows easily from the first part.

Proof of Proposition 1. Observe that E[Sn(θ)Sn(φ)] =
∑

k∈Zd γkan,k, where

the coefficient an,k is equal to n−1
∑

j,l∈Γn:j−l=k e
−ı(j′θ+l′φ). Clearly |an,k| ≤ 1.

Under the condition θ 	= φ, θ, φ ∈ (−π, π]d, θ + φ 	= 0, we have for any fixed
k, limn→∞ an,k = 0. By (3.2), we have

∑
k∈Zd |γk| < ∞, and by Lebesgue

dominated convergence theorem, E[Sn(θ)Sn(φ)] → 0 as n → ∞. Similarly,
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E[Sn(θ)Sn(−φ)] → 0. Note that the conjugate of Sn(θ) is Sn(−θ). Hence the co-
variance matrix of (Yn(θ), Zn(θ), Yn(φ), Zn(φ))/

√
n is asymptotically diagonal.

That the diagonal elements are equal to f(·)/2 can be obtained by noting that

E[|Sn(θ)|2] → f(θ) and E[Yn(θ)
2 − Zn(θ)

2] → 0. The proposition then follows
from Theorem 3.1.

Proof of Theorem 4.1, part (a). Define

p(α) :=

∫
D

[
log{fJ,α(θ)}+

fJ,α0(θ)

fJ,α(θ)

]
dθ.

So, for any α 	= α0, we can get

p(α)− p(α0) =

∫
D

[
log

fJ,α(θ)

fJ,α0(θ)
+

fJ,α0(θ)

fJ,α(θ)
− 1

]
dθ > 0. (8.6)

because the integrand is 0 for α = α0 and otherwise always positive. Observe
that pn(α) → p(α) in probability, in view of Lemma 8.4 and the assumptions
mentioned in Section 4. Thus, there exists a positive constant Cα such that

lim
n→∞

P
[
pn(α0)− pn(α) < −Cα

]
= 1. (8.7)

Now, consider any two α1, α2 such that ‖α1 − α2‖ < δ for some small positive
constant δ, fixed a priori. Then, using the continuity of the functions, we can
get that

|pn(α1)− pn(α2)| ≤
∣∣∣∣
∫
D

log
fJ,α1(θ)

fJ,α2(θ)
dθ

∣∣∣∣+
∫
D

In(θ)

∣∣∣∣ 1

fJ,α1(θ)
− 1

fJ,α2(θ)

∣∣∣∣dθ
≤ δ

(
K1 +K2

∫
D

In(θ)dθ

)
, (8.8)

where K1,K2 are constants. Let us denote the above bound by Kn(δ) and
observe that one can always find δ such that

lim
n→∞

P
[
Kn(δ) < Cα

]
= 1. (8.9)

Now, for any particular α1, consider all points α2 such that ‖α1 − α2‖ < δ.
Then, using (8.8) and (8.9), we can say that for large n, pn(α1)− pn(α2) ≤ Cα

with probability going to 1. Combining this with (8.7) for α = α1, we get that
for any α1

lim
n→∞

P

[
sup

α2:‖α1−α2‖<δ

{pn(α0)− pn(α2)} < 0

]
= 1. (8.10)

For an α1, let us denote the above sets of the form {α2 : ‖α1 − α2‖ < δ} by
S(α1). To remain consistent with out notation, for α0, let us consider S(α0) =
{α2 : ‖α0 − α2‖ < γ}. Observe that the above result is true for any possible
value of γ. Now, for the whole parameter space A, if we consider the collection
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of subsets {S(α) : α ∈ A}, this forms an open cover of the whole parameter
space and since A is compact, it will have a finite cover. Let us denote this as
{S(αi) : i = 0, 1, 2, . . . ,m and αi ∈ A ∀ i}. Note that from (8.10),

lim
n→∞

P

[
sup

α∈∪m
i=0S(αi)

{pn(α0)− pn(α)} < 0

]
= 1. (8.11)

Now, A = ∪m
i=0S(αi) and from the above equation, we get that as n → ∞,

pn(α0) < infA pn(α) with probability going to 1. Thus,

lim
n→∞

P

[
inf

α∈S(α0)
pn(α) = inf

α∈A
pn(α)

]
= 1. (8.12)

Therefore, clearly, as n → ∞, the minimizer will always be in S(α0) and since
we can fix γ as small as possible, we can say that limn→∞ P

[
|α̂n − α0| < γ

]
= 1

and so, α̂n
P−→ α0. Hence, the Whittle likelihood estimate is consistent.

Proof of Theorem 4.1, part (b). Since α̂n is the minimizer for the Whittle
likelihood, we will start with the Taylor series expansion and we get

α̂n − α0 = −
(
∂2pn(α

∗)

∂α ∂α′

)−1
∂pn(α0)

∂α
. (8.13)

Now, we would consider the two terms on the right hand side separately. For
the second term, using the assumptions, we have,

∂pn(α0)

∂α
=

∫
D

[
1

fJ,α0(θ)
− In(θ)

{fJ,α0(θ)}2
]
∂

∂α
{fJ,α0(θ)} dθ

=

∫
D

{In(θ)− E(In(θ))}
∂

∂α
{fJ,α0(θ)}−1 dθ

Let us use ∇g and ∇2g to denote the first order derivative and the Hessian of
a function g. Also, let hα0(θ) = ∇{fJ,α0(θ)}−1. Note that this is non-stochastic,
but depends on n and the true value of α. In order to find the asymptotic
distribution of the above term, we will make use of Lemma 8.3. Observe that
In(θ) can be written as

nIn(θ) = n |Sn(θ)|2 =
∑

j,k∈Γn

XjXk exp{ı(k − j)′θ}.

Now, if we consider the stochastic term in the integral above, we can write it as

nPn = n

∫
D

In(θ)hα0(θ) dθ =
∑

j,k∈Γn

XjXk

∫
D

exp{ı(k − j)′θ}hα0(θ) dθ

=
∑

j,k∈Γn

XjXkβn,j−k.
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Let us consider the asymptotic distribution of c′Pn for some real-valued vector
c ∈ R

p. Note that the coefficients c′βn,j−k do not depend on θ. Hence, comparing
the above expression with that of Lemma 8.3, we can set bn,j = an,j = c′βn,j

and fix θ = 0 in that theorem. Then,

σ2
n = 2

∑
j,k∈Γn

(∫
D

exp{ı(k − j)′θ}c′hα0(θ) dθ
)2

= 2c′
[ ∑
j,k∈Γn

(∫
D

exp{ı(k − j)′θ}hα0(θ)dθ
)(∫

D

exp{ı(k − j)′θ}hα0(θ)dθ
)′]

c.

Based on the assumptions we have, we can say that the integrals are finite
and on the other hand, it depends only on α0 (through h(.)). Let us now denote
the matrix in the middle of the above expression by nΣ2

n. Using the assumptions
in Section 4, one can now easily check that (8.27) and other conditions, required
to apply the lemma, are satisfied. So, using it, we get that

L

(
nc′Pn(θ)− nE[c′Pn(θ)], N

(
0, f2

J,α0
(0) · 2nc′Σ2

nc
)) n→∞−−−−→ 0. (8.14)

where L(·, ·) denotes the Levy distance. Since the above is true for all c, we can
say that L

(
nPn(θ)−nE[Pn(θ)], N(0, f2

J,α0
(0) ·2nΣ2

n)
)
→ 0. Combining this with

the expression obtained for ∂pn(α0)/∂α, we obtain

L

(√
n

(
∂pn(α0)

∂α

)
, N

(
0, 2f2

J,α0
(0)Σ2

n

))
n→∞−−−−→ 0. (8.15)

Now, for the first term, we need to take the second order derivative of the
integrand in the expression of Whittle likelihood. Then,

∂2pn(α
∗)

∂α ∂α′ =

∫
D

{In(θ)− fJ,α∗(θ)}∇2{fJ,α∗(θ)}−1 dθ − Γ(α∗)−1.

We already have proved that α̂n is consistent for α0. Using this, along with
the assumptions mentioned in Section 4 and Lemma 8.4, the first term above
goes to 0 as n → ∞ and hence,

− ∂2pn(α
∗)

∂α ∂α′ →
∫
D

∇fJ,α0(θ)∇{fJ,α0(θ)}−1 dθ = Γ(α0)
−1. (8.16)

Finally, the central limit theorem follows from (8.13), (8.15) and (8.16).

Proof of Theorem 4.2. We are going to set some notation at first.
For a Borel set A, let us use δ(A) to denote its boundary. Now, for a positive

constant ε, set MA,ε = ∪x∈δ(A)B(x, ε), where B(x, ε) denotes the closed ball
with center x and radius ε. Let A+ε = A∪MA,ε, A−ε = A∩M c

A,ε. Thus, if A is
a ball with center z and radius r, then A+ε denotes the closed ball with center z
and radius r+ ε while A−ε denotes the open ball with center z and radius r− ε.
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Let us also define the following empirical distribution for α̂l,t,b:

L0
l,b(A) =

1

|Ql,b|
∑

t∈Ql,b

I{cb(α̂l,t,b − α0) ∈ A}. (8.17)

And suppose El,b,ε denotes the event {‖cb(α̂l − α0)‖ ≤ ε}. Because of the as-
sumptions on b, we can easily say that P (El,b,ε) → 1 as n → ∞, for any ε > 0.
Further note that

I{cb(α̂l,t,b − α0) ∈ A−ε} · I{El,b,ε} ≤ I{cb(α̂l,t,b − α̂l) ∈ A} · I{El,b,ε}
≤ I{cb(α̂l,t,b − α0) ∈ A+ε},

and hence, with probability tending to one,

L0
l,b(A−ε) ≤ Ll,b(A) ≤ L0

l,b(A+ε).

Now, if we can prove that L0
l,b(A) → F (A) for any Borel set A whose bound-

aries have measure zero under F (·), then we would get that F (A−ε) − ε ≤
Ll,b(A) ≤ F (A+ε)+ ε. Letting ε → 0 such that A±ε are Borel sets whose bound-
aries have measure zero under F (·), we can then get that Ll,b(A) is a good
approximation for F (A).

In order to show that L0
l,b(A) → F (A), at first note that E[L0

l,b(A)] =

Fb(A) → F (A) and thus, we only have to show that Var(L0
l,b(A)) → 0 as

n → ∞.
We will be using m-dependence approximation to prove the required result.

Here, we deal with the case d = 2 for convenience, but the proof would hold for
any dimension. Let us write (i1, i2) or (j1, j2) for the 2-dimensional indexes i, j.
Define the sigma field Fi1−m,i1 = σ(εj : j ∈ Rd, i1 − m ≤ j1 ≤ i1) and write
Fi1 for F−∞,i1 . The m-dependence approximation, for m ≥ 0, is then defined
by the following:

X̃i := E(Xi | Fi1−m,i1). (8.18)

Now, let us define a new quantity, as follows:

L̃l,b(A) =
1

|Ql,b|
∑

t∈Ql,b

I{cb(α̃l,t,b − α0) ∈ A}. (8.19)

Here, α̃l,t,b is the Whittle likelihood estimator based on X̃t’s. Below, for
notational convenience, let us denote I{cb(α̂l,t,b − α0) ∈ A} by Zt,b, |Ql,b| by q

and Cov(Zt,b, Zt+k,b) by τk. Z̃t,b and τ̃k are defined analogously for X̃t. Now,
let Rs,m = {t ∈ Ql,b :

∣∣τ−1(s)− τ−1(t)
∣∣ ≤ m} and Rc

s,m = Ql,b −Rs,m. Then,

Var(L̃l,b(A)) =
1

q2

∑
s∈Ql,b

∑
t∈Ql,b

τ̃s−t

=
1

q2

∑
s∈Ql,b

∑
t∈Rs,m

τ̃s−t +
1

q2

∑
s∈Ql,b

∑
t∈Rc

s,m

τ̃s−t = A1 +A2 (say)
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It is easy to note that that A1 = O(m1/dq−1) and so, it goes to 0 as n → ∞,
for any fixed m. On the other hand, A2 is exactly equal to 0, since for any s,
τ̃s−t = 0 for all t ∈ Rc

s,m. The theorem is then proved in view of the fact that

Var(L0
n,b(A)) = Var(L̃n,b(A)) + o(1).

Proof of Theorem 5.1. This proof will revolve around the notion of m-de-
pendent processes, as defined by (8.18). Observe that, in this theorem, we are
dealing with the quantity

fn(θ) =
1

n

n∑
s=1

n∑
t=1

XLsXLtK

(
Ls − Lt

Bn

)
eı(Ls−Lt)

′θ

=
1

n

n∑
s=1

n∑
t=1

an,Ls−LtXLsXLt , where an,r = K(r/Bn)e
ır′θ.

Based on the assumptions, it is easy to observe that
∑

r∈Z
|an,r|2 = O(Bn).

Now, since we intend to approximate using the m-dependent process, we
should consider the following term, which is defined in a similar way as above,
but with X̃Lt ’s. So, define Yt = X̃Lt

∑t−k
s=1 an,Ls−LtX̃Ls . Then

f̃n(θ) =
1

n

n∑
s=1

n∑
t=1

an,Ls−LtX̃LsX̃Lt

=
1

n

n∑
t=1

X̃2
Lt

+
2

n

n∑
t=2

X̃Lt

t−1∑
s=max{1,(t−k)}

an,Ls−LtX̃Ls +
2

n

n∑
t=k+1

Yt.

(8.20)

The idea here is to prove the required result in three steps. At first, we
consider the last term in the above expression. Now, observe that the sequence
{Yt+rk}r≥0 are �Lp martingale differences whenever |k| > m. For convenience,
let us take |k| = 2m. On the other hand, using Lemma 8.2, we get that

‖Yt‖p = ‖X̃Lt‖p
∥∥∥∥
t−k∑
s=1

an,Ls−LtX̃Ls

∥∥∥∥
p

≤ ‖X0‖pCpΘ0,p

(t−k∑
s=1

|an,Ls−Lt |2
)1/2

= O(B1/2
n ).

Now, we will write the last term in (8.20) using the sequences of the mar-
tingale differences and then it would satisfy the following. (Here, Nj is used
to denote the maximum possible index in that sequence and it will be of the
order n.)

∥∥∥∥ 2n
n∑

t=k+1

Yt

∥∥∥∥
p

≤ 2

n

k∑
j=1

∥∥∥∥
Nj∑
i=1

Yj+ik

∥∥∥∥
p

=
2

n

k∑
j=1

n1/2O(B1/2
n ) = O[(mBn/n)

1/2].
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Let γ̃k = E(X̃0X̃k) and denote the last term in (8.20) by Wn/n. We are now
going to consider the first two terms together in view of the fact that for any l,
‖n−1

∑
t X̃tX̃t+l − γ̃l‖p/2 → 0 as n → ∞. Observe that in the first two terms,

we are essentially combining all the terms of the form X̃LtX̃Ls where |s−t| ≤ k.
So, we can say that the following holds:∥∥f̃n(θ)−Wn/n− E[f̃n(θ)−Wn/n]

∥∥
p/2

→ 0.

Combining this with the above result that ‖Wn/n‖p = O[(mBn/n)
1/2], based

on our assumption that Bn/n → 0 as n → ∞, we can conclude that

‖f̃n(θ)− E[f̃n(θ)]‖p/2 → 0 as n → ∞. (8.21)

Now, define the following:

Sn(θ) =
n∑

j=1

XLje
ıL′

jθ and S̃n(θ) =
n∑

j=1

X̃Lje
ıL′

jθ.

So, from the assumptions and using Lemma 8.2, we can say that ‖Sn(θ) −
S̃n(θ)‖p = Θm,pO(n1/2) and ‖Sn(θ)‖p + ‖S̃n(θ)‖p = O(n1/2).

Now, if K̂ is the Fourier transform of K, we can write fn(θ) with the help of
Sn in the form nfn(θ) =

∫
K̂(u)|Sn(B

−1
n u + θ)|2 du and we can use a similar

definition for f̃n(θ) using S̃n. And then, the following can be obtained.

‖fn(θ)− f̃n(θ)‖p/2 ≤ 1

n

∫
R

|K̂(u)|
∥∥|Sn(B

−1
n u+ θ)|2 − |S̃n(B

−1
n u+ θ)|2

∥∥
p/2

du

≤ 1

n

∫
R

|K̂(u)|O(n)Θm,p du = O(1)Θm,p. (8.22)

Finally, observe that ‖fn(θ) − E[fn(θ)]‖p/2 ≤ ‖fn(θ) − f̃n(θ)‖p/2 + ‖f̃n(θ) −
E[f̃n(θ)]‖p/2 + |E[fn(θ)− f̃n(θ)]|.

We already have (8.21) for the second term. Now, as Θm,p goes to 0 if we
take m → ∞, from (8.22), we can say that both first and last terms in the right-
hand-side of the above inequality will go to 0 and that completes the proof.

Proof of Theorem 5.2. This theorem is a particular case of the general qua-
dratic forms of stationary random fields and we will make use of Lemma 8.3 to
prove the theorem. Note that nfn(θ) is of the form Sn in the above-mentioned
lemma with bn,j = K(j/Bn). Using the given conditions, one can now show that∑

j b
2
n,j ∼ Bnκ and

∑
i,j b

2
n,i−j ∼ ndBnκ where κ =

∫∞
−∞ K2(x)dx < ∞. That

means the conditions of the above lemma are satisfied and hence, we can say
that √

n

Bn
· fn(θ)− E(fn(θ))

fJ (θ)
⇒ N(0, κ). (8.23)

Then, in view of the fact that E(fn(θ)) = fJ(θ) + o(1), theorem 5.1 and a
simple application of Slutsky’s theorem completes our proof.
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Proof of Theorem 6.1. At first, we will define a new covariance matrix using
the actual mean (unknown) of the process. Suppose, each Xi has mean μ and
let us define a new banded covariance matrix estimate

Σ̂0
n,Bn

=

(
γ̂0
Li−Lj

K

(
Li − Lj

Bn

))
1≤i,j≤n

,

where γ̂0
k = 1

mk

∑
i,j:Li−Lj=k(XLi − μ)(XLj − μ).

This proof will mainly use the Gershgorin circle theorem, which states that
every eigenvalue of a complex n × n matrix A lies within at least one of the
Gershgorin discs Di(aii,

∑
j �=i |aij |), where aij ’s are the elements of the matrix

A. Thus, if λi, for i = 1, . . . , n denote eigenvalues of A, then the spectral radius
satisfies the following:

ρ(A) = max
i

|λi| ≤ max
i

(
|aii|+

∑
j �=i

|aij |
)

= max
i

n∑
j=1

|aij | .

Let us now consider the spectral radius of the matrix Σ̂0
n,Bn

−E(Σ̂0
n,Bn

). The

(i, j)-th element of this matrix is K((Li−Lj)/Bn)[γ̂
0
Li−Lj

−E(γ̂0
Li−Lj

)]. Below,
we will use Jn and Jn,Bn to denote the following two sets:

Jn = {k : there exists 1 ≤ i, j ≤ n satisfying Li − Lj = k},
Jn,Bn = {k : |k| ≤ Bn and there exists 1 ≤ i, j ≤ n satisfying Li − Lj = k}.

Also, let us denote J ′
n,Bn

= Jn − Jn,Bn . Then, using the above mentioned prop-
erty of spectral radius, it can be written that

ρ
(
Σ̂0

n,Bn
− E(Σ̂0

n,Bn
)
)

≤ max
i

n∑
j=1

∣∣∣γ̂0
Li−Lj

K((Li − Lj)/Bn)− E[γ̂0
Li−Lj

K((Li − Lj)/Bn)]
∣∣∣

≤ 2
∑
k∈Jn

∣∣∣∣K
(

k

Bn

)∣∣∣∣ ∥∥γ̂0
k − E(γ̂0

k)
∥∥

≤ 2
∑

k∈Jn,Bn

∥∥γ̂0
k − E(γ̂0

k)
∥∥ . (8.24)

Note that if we relabel Xi − μ as Yi then the above expression essentially deals
with the autocovariance function and its estimate of a zero-mean stationary
process. Thus, if each Xi ∈ �Lp for some p ∈ (2, 4], then based on the results
obtained by Wu and Pourahmadi (2009) and using the assumption mk � n, we
can write that the above bound is of the order OP (B

d
nn

2/p−1Θ2
0,p). If we further

assume that the process is p-stable (see Definition 2.2) which tells us that the
term Θ0,p is finite, we can say that the bound is of the order OP (B

d
nn

2/p−1).

Now, for the covariance matrix estimate Σ̂n,Bn , we can write ρ
(
Σ̂n,Bn −

E(Σ̂n,Bn)
)
≤ ρ

(
Σ̂n,Bn−Σ̂0

n,Bn

)
+ρ

(
Σ̂0

n,Bn
−E(Σ̂0

n,Bn
)
)
+ρ

(
E(Σ̂n,Bn)−E(Σ̂0

n,Bn
)
)
.
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We have already got the limit of the second term. For the first and third
term, we can follow similar procedures as before. In case of first term, using
Gershgorin Circle Theorem, we will again get a bound of a sum of terms of the
form γ̂k − γ̂0

k, over the set Jn,Bn . Now, since X̄ −μ is OP (n
−1), we can say that

this bound is of the order OP (B
d
nn

−1). Note that this bound is less than what
we got for the second term. We can get similar results for the third term too.

Clearly, the overall bound for the spectral radius of Σ̂n,Bn − E(Σ̂n,Bn) is
OP (B

d
nn

2/p−1).

8.2. Proofs of lemmas

Lemma 8.1 (This lemma is due to El Machkouri et al. (2013)). Following
the aforementioned notation, consider Γn and let (αi)i∈Γn be a family of real
numbers. Then, for any p ≥ 2, we get

∥∥∥∥
∑
i∈Γn

αiXi

∥∥∥∥
p

≤
(
2p

∑
i∈Γn

α2
i

)1/2

Δp. (8.25)

Lemma 8.2. Let Xi ∈ �Lp for p > 1, E(Xk) = 0, α1, α2, . . . ∈ C, p′ = min{2, p},
An = (

∑n
k=1|αLk

|p′
)1/p

′
and Cp = 18p3/2(p−1)−1/2. Then, ‖

∑n
k=1 αLk

XLk
‖
p
≤

CpAnΘ0,p,
∥∥∥∑n

k=1 αLk
X̃Lk

∥∥∥
p
≤ CpAnΘ0,p and

∥∥∥∑n
k=1 αLk

(XLk
− X̃Lk

)
∥∥∥
p
≤

CpAnΘm+1,p.

Proof. Let τ : Z → Z
d be a bijection. For any i ∈ Z, for any j ∈ Z

d, define the
projection operator PiXj := E(Xj | Fi) − E(Xj | Fi−1), where Fi = σ(ετ(l); l ≤
i). Also, define T jFi = σ(ετ(l)−j ; l ≤ i). Now, it is easy to note that ‖PiXj‖ ≤
‖Xj−τ(i) −X∗

j−τ(i)‖p and hence, we get the inequality ‖PiXj‖ ≤ δj−τ(i),p.

Then, noting that Xi =
∑

j∈Z
PjXi for all i ∈ Z

d, we can make use of
Burkholder inequality and Cauchy-Schwarz inequality to get the first two results.
The proof here is similar to Proposition 1 in El Machkouri et al. (2013). And
then, the third result is a direct consequence of the first two.

Lemma 8.3. Let βj ∈ R with βj = β−j; αj = βje
ıj′θ where θ ∈ [−π, π]d. Also,

for any θ, define ω̄(θ) = 2 if θ/π ∈ Z
d. Else, define it to be 1. Consider the

quadratic form

Sn =
∑

1≤j,k≤n

αLk−LjXLjXLk
and σ2

n = ω̄(θ)
∑

1≤j,k≤n

β2
Lj−Lk

, (8.26)

where we assume that E(X0) = 0, X0 ∈ �L4,Θ0,4 < ∞. In addition, let ζ2n =∑
1≤t≤n β

2
Lt
, and let us assume that max1≤t≤n β

2
Lt

= o(ζ2n), n
dζ2n = O(σ2

n). We
further consider that

n∑
k=1

k−1∑
t=1

∣∣∣∣
n∑

j=1+k

αLk−Ljαn,Lt−Lj

∣∣∣∣
2

= o(σ4
n),

n∑
k=1

∣∣βLk
− βLk−1

∣∣2 = o(ζ2n). (8.27)
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Now, following Section 3.2, suppose J denotes the set {k∈Z
d : ∃ i, j with Li−

Lj = k} and mk is the cardinality of the set {(i, j) : Li − Lj = k}. If fJ(θ)
denotes the location adjusted spectral density, then

Sn − E(Sn)

σnfJ(θ)

L−−−−→
n→∞

N
(
0, 1

)
. (8.28)

Proof. We will make use of m-dependence approximation, defined in 8.18, to
prove this result. Once again, for simplicity, we prove the result for d = 2, but the
idea can be easily used for higher dimensions in a similar fashion. To begin with,
note that Sn is a special case of Un =

∑
s,t∈Zd

n
as,tXsXt, where Z

d
n is a regular

grid and as,t are appropriate constants. Further, we have,
∥∥∑

s X
2
s − ndγ0

∥∥ =

O(nd/2). Then, defining Zs =
∑

t �=s as,tXt and Z̃s =
∑

t �=s as,tX̃t, we write

Tn =
∑

s XsZs, T̃n =
∑

s X̃sZ̃s and T ∗
n =

∑
s XsZ̃s.

Using the previous lemma and with similar arguments as in Proposition 1 of
Liu and Wu (2010), we can show that∥∥(Tn − E(Tn)

)
−

(
T ∗
n − E(T ∗

n)
)∥∥

p

nd/2ζn
≤ Cpdm, (8.29)

where dm → 0 as m → ∞. We can get a similar inequality for
∥∥(T̃n − E(T̃n))−

(T ∗
n − E(T ∗

n)
∥∥2
p
and then, using both inequalities, we can write that ‖(Tn −

E(Tn))− (T̃n − E(T̃n))‖ = o(σn). Thus, in order to get the required result, it is
enough to find the asymptotic distribution of (T̃n − E(T̃n))/σn.

We write T̃n =
∑

s,t:|s−t|<2m as,tX̃sX̃t +
∑

s,t:|s−t|≥2m as,tX̃sX̃t. It is easy

to note that the first term is O(nd/2 max |as,t|) = o(σn). For the second term,
writing it using the coordinates of the indexes and using the previously defined
sigma fields, we will make use of the martingale central limit theorem (Hall and
Heyde (2014)) and that will give us the required result directly. The arguments
here will be similar to the one dimensional case, as was done in Liu and Wu
(2010).

Lemma 8.4. Suppose In(θ) denotes the periodogram corresponding to the data
(XLi)i=1(1)n where each Li is an element from R

d. Then, for a square integrable

function f(θ) defined on D ⊂ R
d, variance of the quantity

∫
D
In(θ)f(θ) dθ goes

to 0, as n goes to ∞.

Proof. Note that nIn(θ) is a quadratic form in XLj ’s and one can get that∫
D
nIn(θ)f(θ) dθ =

∑
j,k αLj−Lk

XLjXLk
where αk is same as the Fourier co-

efficients corresponding to the function f(θ). If we denote it by nTn and define
nT̃n in a similar way, but with X̃Lj ’s, then using similar arguments as in the
previous lemma, one can write that∥∥∥(Sn − E(Sn))− (S̃n − E(S̃n))

∥∥∥ = Op(An/
√
n),

where An = (
∑n

k=1|αLk
|2)1/2. Since αk denotes the Fourier coefficient corre-

sponding to f(θ) and since f is square integrable, we can say that An = Op(1).
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Now, nS̃n is obtained using the m-dependent approximations and so, for a
fixed m, the variance of S̃n goes to 0. Combining the above, it is straightforward
to show that the variance of

∫
D
In(θ)f(θ) dθ (which is same as Sn) goes to 0 as

n → ∞.
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