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Abstract: In this paper we investigate error bounds for convex loss func-
tions for the Lasso in linear models, by first establishing a gap in the theory
with respect to the existing error bounds. Then, under the compatibility
condition, we recover bounds for the absolute value estimation error and
the squared prediction error under mild conditions, which appear to be
far more appropriate than the existing bounds for the convex loss Lasso.
Interestingly, asymptotically the only difference between the new bounds
of the convex loss Lasso and the classical Lasso is a term solely depend-
ing on a well-known expression in the robust statistics literature appearing
multiplicatively in the bounds. We show that this result holds whether or
not the scale parameter needs to be estimated jointly with the regression
coefficients. Finally, we use the ratio to optimize our bounds in terms of
minimaxity.
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1. Introduction

Among the many techniques that have been proposed to address the estimation
of a location parameter in the high-dimensional linear model, the Lasso [12]
remains one of the most widely studied. Arguably, this method, which consists
of penalizing the sum of squared residuals with the I; norm of the vector of
coefficients, has many advantages. It leads to accurate predictions while setting
some coefficients exactly to zero, thus achieving model selection simultaneously.
Additionally, the estimates can be computed in a highly efficient manner. Since
the seminal work of [12], the classical Lasso! has been generalized in various
ways, in terms of the loss and penalty functions under consideration.

IWe will refer to the Lasso given in [12] as the classical Lasso, as opposed to the convex
loss Lasso or the robust Lasso that we study in this paper.
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One of the main reasons for considering alternative loss functions is the issue
of robustness. Indeed, it is well known that the classical Lasso can be largely
affected by contamination of the error distribution.

In this paper, we investigate estimation and prediction error bounds for the
Lasso with a general convex loss function. Our motivation comes from the ob-
servation that there is a kind of theoretical gap in the literature, in the sense
that the bounds developed for the convex loss Lasso are not related in a nat-
ural way to the ones given for the classical Lasso. Our main contribution is to
show explicitly the presence in our bounds of an additional term compared to
the classical case. We demonstrate that this same term appears in the bounds
whether or not the scale parameter needs to be estimated. Interestingly, this
extra term corresponds to the ratio found by [7] in his minimax problem, which
serves as a justification for the use of the famous Huber loss function in the
low-dimensional setting. We provide theoretical arguments for the relevance of
the ratio in terms of optimality of the bounds. To the best of our knowledge,
these findings have not appeared previously in the literature.

The outline of the paper is as follows. In Section 2, we discuss some key
results related to the classical Lasso and to a more general convex loss Lasso.
We also provide an overview of the literature, focusing on robust versions of the
Lasso, and finally we provide an account of what we believe to be problematic
with the existing error bounds, thus motivating the present paper. In Section 3,
we establish bounds for the estimation and prediction errors in the case of
a known scale parameter. In Section 4, we relax that assumption and consider
joint estimation of scale and regression parameters, inspired by Huber’s Proposal
2 [7]. The main result of the analyses carried out in Sections 3 and 4 is that the
bounds on the prediction and estimation errors contain an extra term, in the
form of a ratio, relative to the classical case. In Section 5, we give a rationale
for the importance of this ratio from a theoretical point of view. In Section 6,
we summarize our results and mention opportunities for future research.

2. Literature review and motivation

In order to motivate our paper, we provide a selective overview of the existing
literature on the linear Lasso. This mainly encompasses the classical Lasso,
the convex loss Lasso and the robust Lasso. We then show that the existing
literature is unsatisfactory in some respects. One specific problem is the lack
of a link between the choice of the loss function and the resulting prediction
or estimation error depending on the error distribution. This is most notably a
problem in justifying the choice of the loss function in robust statistics.
Throughout the paper, we consider the linear model

Y = X3° + oe,

where Y € R”, X € R™*?, 8 ¢ R?, € € R", ¢ > 0 and where p is (potentially)
larger than n.
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2.1. Classical Lasso

We now summarize the properties of the classical Lasso derived, among others,
by [1], focusing on the aspects which are most relevant for our purposes. In
doing so, our aim is to provide a basis for comparison to the bounds that we
will develop in this paper.

As briefly mentioned in the Introduction, the classical Lasso estimator is
defined as

. N . 11 2
ﬁLasso = ﬁLasso(A> € arggmn <;E ||Y - XIB||2 +A ﬁ“l) )
where A > 0 is a penalty parameter and o is the scale parameter.
We will consider the case where the design is fixed and the columns of X are

normalized, so that % (XTX) = 1. Now if we pick A = 3\/@ and

we assume € ~ N (0, I), where I is the identity matrix, we have the following
inequality with a probability bigger than 1 — 2 exp[—t2/2]:

11
o2n

[% (8° ~ Brawa) [ < 27 18°), -

This shows that the Lasso is consistent in terms of prediction when we take a

penalty parameter of order %\/ % and when H ,30H1 is small enough.

Assuming that the true parameter vector is sufficiently sparse, and impos-
ing additional conditions on the design matrix (“compatibility conditions”, see
below), we can obtain a result that is sometimes referred to as an oracle in-
equality. It states that by selecting A as above, we have the following inequality
with probability bigger than 1 — 2 exp[—t2/2]:

o [ X (8 = Braas) [, + A8 = Braes

<2020 (21)
1 %

where sq is the number of true non-zero coefficients and ¢3 is a compatibility
constant. This inequality includes two interesting results. On the one hand, it
gives us a bound for the [; estimation error:

0 N
Hﬂ - IGLasso

S0
< 4Xo?Z2.
1 3

On the other hand, we also get a bound for the prediction error:

2 S0
< 4N
)2 3

o X (8 Braees)

2.2. Convex loss Lasso

We now provide results in the more general case where we replace the squared
loss function with a convex loss function. More specifically, in a linear model
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and for a given convex loss function p, the corresponding convex loss Lasso is
defined as

BCLasso = BCLasso()‘) € arg min < Zp ( XIB) ) + A ||/8||1> ) (22)

where ¢ is the scale parameter. We note that the constant 2 is only included to
ensure that the classical Lasso is recovered when p(z) = %mz. This problem can
be seen as a particular instance of the Lasso for general convex loss which has
notably been studied by [15] and [1]. We briefly mention some relevant results
derived by these authors. Define

£ = —ZE[ (ﬂ)}—mp@],

Zy» = sup lvn (B) — vn (B")],

IB=B*|l;<oM*

where the ¢; are independent and identically distributed replicas of €, which is
assumed to have a symmetric distribution.

Assuming that there exists a K > 0 such that max; ;

XZ(-j)‘ < K, then for

H,B — BOHl < o M* small enough depending on K, we have by a Taylor expansion
the margin condition

11 0 2
E(B) 2 e~ || X (8” =B,
where ¢ ~ E [¢’ (¢)] with ¢(z) := p/(z). Under the additional assumptions that

sup, |¢ (z)] = L < +oo and that %(XTX) =1, for \g x L /logn(P) and

J :={Zy+ < AgoM*}, we have that J holds with high probability for arbitrary
symmetric error distributions if 4 is odd.
Regarding convergence, under the above conditions on 7, for A > 8\, we

have 16
2 295
1* >\ 2’
0

€ (Brasso) + A||B° = Berasso

where sg is the number of true non-zero coefficients and ¢3 is a compatibility
constant. This inequality includes two interesting results. On the one hand, it
gives us a bound for the [; estimation error:

Hﬂo - ﬁCLasso > )‘ 250 .
¢0
On the other hand, we also get a bound for the prediction error:
11 . 2 16
L (- o) = S
2n H /6 BCLasso 9 = (bo
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[9] has also studied this case and recovers similar results. Although he makes
a stronger assumption on 1 by imposing inf; 7,//(| (X,Bo)i‘ /o) > 0, this can be
relaxed by using the same ideas as [1].

2.3. Robust Lasso

The robust Lasso, for convex loss functions, can be studied as a special case of
the convex loss Lasso. In spite of this, it has also been studied independently.
For instance, [17] introduced the LAD-Lasso:

~ . 1
Bran- s € avgain (%Y - X5, + 11, )

Using an adaptive version of the LAD-Lasso, they were able to show root-n
consistency and asymptotic normality. Yet they did not investigate the growth
of p with respect to n, and they assumed a positive definite covariance matrix.

More recently, [2] and [3] investigated the high-dimensional case for the LAD-
Lasso. In both papers, under mild conditions, consistency in lo was shown.
However, since the main goal of these papers was to investigate the properties
of the adaptive LAD-Lasso (especially the model selection properties), they did
not investigate bounds on [y estimation error or on squared prediction error. In
addition, the constants appearing in the consistency theorems were in no way
specified, contrary to the classical Lasso.

Another method to make the Lasso more robust was used by [10]. They
focused on a Huberized adaptive Lasso, which can be defined as

Yi_a_(X/@)i>

g

P
oA w8l

Jj=1

A ) 2
ﬁHub—Lasso()‘> € arg;nln E ZpHub,L (
i i=1

1.2 :
when o > 0, where pgup.r (x) = {§I 1 if o] < L is the Huber p-
Llz| - $L* else
function.

This method is computationally interesting since it follows from [11] that we
only need to deal with partial linear solutions. In their paper, [10] developed the
theory for model selection and asymptotic normality, where they estimated g3,
a and o jointly. However, they did not discuss the high-dimensional case (i.e.,

where p > n).

2.4. Problems with existing bounds

The bounds derived in both the general study of the convex loss Lasso and the
robust Lasso for specific loss functions depend heavily on L = sup, |9 (z)| < co.
At first glance, this suits well to robust statistics, where one usually bounds the
influence of single observations by bounding v, implying that any reasonable
choice of ¢ would automatically satisfy sup, |¢ (x)] < oco.
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However, the classical Lasso cannot be studied under such assumptions, since
in such a case ¢ (z) = x. This means that there is no unified framework within
which both bounded and unbounded -functions can be studied. Unfortunately,
this lack of a unified framework can lead to unreasonable results for a fixed n.
For instance, under the assumption that the errors are Gaussian, suppose that
we want to approximate the classical Lasso by using the convex loss Lasso with
the Huber loss function with a large tuning parameter L. For such an L, the
corresponding convex loss Lasso is basically nearly always equal to the classical
Lasso. Yet the bounds from the convex loss Lasso become useless, despite the
fact that we know that the error of the convex loss Lasso is approximately equal
to that of the classical Lasso.

An additional cause for concern is that the bounds from the convex loss
Lasso only depend on the distribution of € through E [¢/’ (¢)]. Therefore, for a
given distribution of €, it is impossible, with the existing theory, to improve the

error bounds by selecting an appropriate p function other than by minimizing
sup, (x|

E[47 ()] ) ’
study of the classical Lasso as a special case of the convex loss Lasso.

Finally, it is imperative to jointly estimate the scale parameter o with the
location parameter B. This is because, just as the choice of p can affect the
location estimation, so does the value of the scale. Also, this joint estimation
should be studied in the high-dimensional setting, with the same asymptotic
assumptions as those for a known scale.

We believe that all these points lead to a gap in the theory which we address
in this paper, by providing a unified framework to study error bounds for differ-
ent types of loss functions satisfying a new moment condition. This framework
includes many types of loss functions (most importantly, the classical Lasso and
the Huberized Lasso) and leads to error bounds which smoothly depend on

through the term E [w (6)2:| JE[Y' (€)%

. This does not take into account the second moment and excludes the

3. Error bounds with known scale

Throughout this section, we consider the scale parameter as known. While this
assumption is obviously not realistic, it allows for easier derivations which may
be more insightful. This assumption will be relaxed in Section 4.

3.1. Set-up

We consider the general convex loss Lasso as defined in Subsection 2.2, where
for the remainder of the paper we work with a continuous, odd and monotone
increasing 1. For better readability, the assumptions on 9’ will slightly change
throughout the relevant subsections, as we now explain.

The purpose of Subsection 3.2 is to describe the construction of basic bounds.
For the sake of brevity, we impose ¢’ to be well defined and continuous here.
In Subsection 3.3, the study of the empirical process does not require the use of
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)’. For the new error bounds that we develop in Subsection 3.4, we refine our
assumptions on v’ and require 9’ to be well defined and uniformly continuous
but for a finite set not including 0, while bounded everywhere, and satisfying
E [¢' (€)] > 0 (see Assumptions 3.1 and 3.2). No further restriction is needed for
the asymptotic bounds in Subsection 3.5.

The conditions on 1)’ for the error bounds imply that we require p to be
locally strictly convex over some intervals, but not necessarily over the entire
space. In fact, p is allowed to be partially affine outside of a compact set. We
note that the assumption that ¢(0) is well defined excludes the LAD-Lasso but
still includes many other relevant instances of the convex loss Lasso such as the
Huberized Lasso.

Moreover, we consider a fixed design matrix X, and we assume that the ¢;
are i.i.d. replicas of €, whose distribution is only required to be symmetric and
continuous at the points of discontinuity of 1)’. The symmetry assumption is
essential to robust statistics in order to avoid inevitable bias in estimation (see
[8]), while the continuity assumption makes the points of discontinuity of )’
asymptotically irrelevant.

3.2. Basic bounds

We start by providing an inequality which can be interpreted as a generalization
of the basic inequality for the classical Lasso. For better readability, we denote
the prediction error for observation ¢ by

o= (x (),

Lemma 3.1. There exists t* € [0,1] such that
1 & a;\ a? - 2 X A
—S v (@ P E) L a 8] < -ZweT = (8- 8) + 8%,
n o/ o 1 n o

The generalized basic bound, just as the basic bound given in [1], contains
an empirical process component, namely %1/1 (e)T % (,80 — [3) This term can

easily be bounded as follows:

(4)
2¢(6)T ﬂ

n (2

|85

n T 1<5<p 1

e 2 (8- ﬁ)‘ < max

This in turn motivates the following definition:

(4)
2y X

n g

Jo = { max

1<j<p

< )\o}. (3.1)

For specific choices of A\g and A, we can easily bound a type of prediction error

on Jo.
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Lemma 3.2. Let 2\ < . Then there exists t* € [0, 1], such that on Jo,

—Zw( P8 S,

If p is strictly convex, we have ¢’ > 0 and so we recover a bound on the
prediction error. This type of condition on p is not very useful in robust statistics
though, since we want to work with a bounded ¥-function. We will need to rely
on sparsity and on a compatibility condition to recover stronger error bounds,
which also apply in the case where inf, ¢’ (z) = 0.

3.3. Controlling the empirical process

Before we investigate how sparsity can be useful in deriving a stronger bound
than the one given in Lemma 3.2, we elaborate on the conditions which ensure
that the set Jy defined in Equation (3.1) has sufficiently large probability.

We start by giving an easily derived bound for P[J] for a bounded -
function.

Lemma 3.3. Let X have normalized columns, i.e. % (XTX> =1, and as-
i

sume that sup, [¢ (z)| = L. Then, for Ao := 2L,/ M+(p), we have P[Jp] >
1—2exp [—t2/2].

The previous lemma does not allow us to make a connection with the results
of the classical Lasso, where 1 is the identity function and is thus obviously
unbounded. Therefore, we provide the following theorem, which gives a bound

based on E {1& (6)2:|.

k

Theorem 3.1. SuppOSe = (XTX> P =1andE [77/1( ) ] < ( ) ~*E [UJ (6)2}

for all k € N. Then, for Ao := 2\/ [ﬁ(e)z] \/ t2+2flog(p), we have P[J] > 1 —
2exp [—t?/2].

If ¢ (¢€) /L follows a Rademacher distribution, i.e. if P[¢) (¢) /L = —1] =1/2 =
P[4y (¢) /L = 1], the choice of A\ in Lemma 3.3 and in Theorem 3.1 are the same,
since in such a case we have E [w (6)2] = L2. For instance, this is the case if
Y(z) = sign(z)L and Pe = 0] = 0.

Generally the difference between sup, |¢ (z)]* = L2 and E {w (6)2} can be
arbitrarily big. It is therefore interesting to give conditions under which the
moment condition in Theorem 3.1, namely E {w (e)%} < %2_1“]E {w (6)2} ’ for

all £ € N, is satisfied. For instance, in the classical uncontaminated case, i.e.
P(x) := x and € ~ N(0,1), the moment condition is obviously satisfied since

a key property of the Gaussian distribution is that E [sz] = %2*’“. On the
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other hand, in that case, we have sup, |¢ (z)]> = 400 and E {w (6)2] =1.1In

the following lemma, we show that the moment condition is satisfied by a wide
class of ¢-functions under the assumption that € ~ N (0,52).

Lemma 3.4. Let 1) be monotone increasing, with ﬁ monotone increasing in

||, and assume that e ~ N (0, &2). Then, for all k € N, we have
(2k)!
k!

Accordingly, the Huber ¢-function, i.e. ¥ (z) := min{max{x, —L}, L} for a
given threshold L > 0, satisfies the moment condition for Gaussian errors, since

E[v(*] < Blote [y 02"

is obviously monotone increasing and —* = max< 1, L Lemma 3.4 also
¥ () L

applies to unbounded w-functions. For instance, let ¢ (z) := x if || < L and
P(x) = ax + sign(xz)(1 — a)L otherwise, for 0 < a < 1 and L > 0. This -

function is obviously monotone increasing, since a > 0, and we have that ﬁ =

max {1, m} is monotone increasing in |z| since a < 1. Therefore, this
particular ¥-function also satisfies the moment condition for Gaussian errors,
although it is unbounded.

More generally, in a case where ¢ does not follow a Gaussian distribution
or ¥ does not satisfy the conditions in Lemma 3.4, we can still check the mo-
ment condition, provided there exists L < +oo with sup, [(x)] = L. When
1 is bounded, there are only finitely many conditions that one must check.

Specifically, for ky = LE[%;,Z]-‘ and k > ko in N, we have the following:

E |y (e)ﬂi <I’< SE v (o] < (%2“& Elv@?]. 32

This means that we only need to check the moments for 2 < k < kg in order to
ensure that the moment condition is satisfied for all k.

Example 3.1. To illustrate the use of this inequality, we apply it to errors
with a t-distribution and Tukey’s biweight V-function. Let ¢ (x) = (1 — ”0”—2)2
if || < ¢ and ¥(x) = 0 otherwise, with ¢ = 4.685. Moreover, we assume
that € ~ t3 and o = 1. These choices imply that & [1/) (6)2} ~ 0.638 and
L = sup, |[¢(x)| =~ 1.341. Therefore, we have kg = 6 and thus only need to

check that E [w (6)2’“} E [w (6)2] T Rk oy (2,3,4,5):

]E[w(e)z]_2z1.881 < 3:3—52*2,

E W (6)6] E [w (5)2]_3 ~4168 < 15= 2—52*3,
E W (6)8] E [w (5)2] 20927 < 105= 3—52*4,

=

<
=~
s
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E [w (6)10} E [¢ (6)2}_5 ~ 24608 < 945 = 15—(1!2—5.

—k
Since E [1/) (e)%} E {1/} (6)2} < %24‘ for all relevant values of k, the mo-

ment condition is satisfied in this case despite the fact that the ¥-function is
non-increasing.

We note that this method can be used for arbitrary bounded odd #-functions
and symmetric error distributions. It does however require the knowledge of the
error distribution, which may reduce its use in some important cases.

In robust statistics, for instance, the distribution of e is only approximately
known [7]. In such a situation, we cannot use Lemma 3.4 or even Equation (3.2)
to check the moment condition directly. Since this is an important application of
our work, we study the moment condition for a fixed k in contamination models.
In the following lemma, we provide a method to verify the moment condition in
contamination models.

Lemma 3.5. Suppose €* ~ G, where G is a distribution function, sup,, | (x)| =
L,0< <1 andk € N. Furthermore we assume that

(21!
k!

B [v (] < o= sz [y (] (3.3)

and

! k
(1= O [w ()] + 617 < %2*’6 (1=9E [0 ()] +or2] . (34)
Then for any € ~ F, where F(z) := (1 — 6) G(x)+0H () and H is an arbitrary
symmetric distribution, we have:

E[w©*] < EVym [y ?)". (3.5)

Lemma 3.5 allows for a verification of the moment condition based only on L
and the distribution G. As shown in the Appendix (see Lemmas A.1 and A.2),
H(z) = lo<y and H(z) = 11_,<; + $1l4<, with u = argmax(z), are the
most challenging types of contaminating distributions. In fact, for H(x) = lo<g,
Equations (3.3) and (3.5) are equal, while for H(x) = %1_u§w + %1u§z, Equa-
tions (3.4) and (3.5) are equal. This means that the conditions in Lemma 3.5
are necessary, since if either Equation (3.3) or (3.4) fails then there exists a

k
distribution H so that E [1/) (e)ﬂ > CRlg-tp [1/) (6)2] .

Example 3.2. To showcase the use of Lemma 3.5, we apply it to the con-
taminated normal case with a Huber v-function as first studied by [7]. More
specifically, for a given 6 > 0, we assume € ~ F, where G is the standard nor-
mal distribution N'(0,1), H is an unknown symmetric distribution and F is as
in Lemma 3.5. We are now interested in the mazimal value of L so that Equa-

tions (3.3) and (3.4) hold for all k > 2. Obviously they are satisfied for L = 0,
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and for any value of L below this mazimal value. Moreover, for k = 2, we have
k
%24“(1 —0)F1 =3(1-6), and since E {1/) (e*)%} >E [1/) (e*)z} by Jensen’s

inequality, Equation (3.3) is only met for L = 0 when 6 > % More generally,
using the same methods as in Fxample 3.1, we can recover this mazximal value
which is always strictly bigger than 0 for § < % Table 1 shows the value of L
for which the moment condition is satisfied with equality for the various levels
of contamination § considered in [7].

TABLE 1
Mazimal values of L with respect to §.
Level ¢ 0.0008 0.0023 0.0061 0.0156 0.0376 0.0855 0.1825 0.3599

Maximal L | 4.1082 3.8167 3.5209 3.2010 2.8552 2.4652 1.9976 1.3645

3.4. New error bounds for the convex loss Lasso

In this subsection, we derive new prediction and estimation error bounds for the
convex loss Lasso. To do so, we start by exploiting the sparsity of 8° just as in
[1]. Let S C {1,...,p} and B; ¢ = B,1,es. Throughout, let Sy be the true set of
non zeros of B° and sy = |Sp| is the number of non zeros of B°.

Following [1], we say that the compatibility condition is met for the set Sy if
for some ¢ > 0 and for all @ € RP satisfying ||6.g L < 3|05, ]l;, it holds that

2 2 50
1650l < 191 Z-

where 33 = %XTX =15, XT X, is the Gram matrix and HOHQE =60730.

Assumption 3.1. There exists a monotone increasing sequence {0; }]N:'Bl with
0o = —oo and Ony1 = +oo, where |’ restricted to the intervals (0;—1,6;) is
uniformly continuous. If N > 1, then € has a continuous distribution at all the
points in © :=={0; : j € {1,...,N}}.

Assumption 3.2. inf,ge ¢’ (z) > 0 (convewity of p) and 0 < sup,gg ¥'(v) < 1
(bounded v ).

Assumption 3.1 is a restriction on the type of ¥-functions that we investigate.
We point out that this assumption is fulfilled by the Huber ¢-function and many
other w-functions. Additionally, the restriction on € still allows for a discrete
distribution; the masses just have to be away from the points {6, }jvzl

Assumption 3.2 is an assumption of convexity, while also of bounded '
Bounding 9’ by 1, as opposed to another constant, is by no means restrictive,
since if for instance 1 < sup, ¥’ (z) < oo we can work with mp instead of
p- The reason to bound v’ is that we do not want p to grow strictly faster than
a quadratic function.
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We can now provide the following theorem.

Theorem 3.2. There e:m'sts a¥, co > 0, such that if the compatibility condition
holds for So, 12AK gr-5—72% < a < o, /\— < cp and 2Xg < A, then, on JoNZ,,

[w ()] ¢2
E[y ()] — H ) 5
L N e -], = ,
o? W( )| 63
where I, is a set depending on « and A defined in the Appendix, the A; are
continuous, monotone increasing and satisfy A;(0) = 0, and max; ; XZ(-J)‘ <K.

3.5. Asymptotic results

Here we study the asymptotic implications of Theorem 3.2, where we allow both
p and n to tend to infinity. In order to recover asymptotic results, we impose a
condition on the covariates as the dimensions diverge.

Assumption 3.3. The covariates are bounded, i.e. max; ; ‘ng)‘ <K.

Assumption 3.3 is rather common in robust statistics, since it limits the
influence of single covariates and so the leverage of single covariates is limited.

Because of (XTX> ~ =mn, we must have 1 < K.
In the Appendix, under the same condition for consistency as for the classical
Lasso, namely 4/ MS—U — 0 as n — oo, we show that it is possible to let X

depend on n such that )\ tends to 0 with P [Z,] tending to 1.

IE € 2
Therefore, for \g = 2\/ U( W +2log( ) XA =2) and a = 120K
in Theorem 3.2, and by using Theorem 3.1, we recover

B[ ()]<i>2

2 S0

[v' ()] 65

with probability approximately at least 1 — 2 exp [ftz / 2} (asymptotically in n).
Consequently, we recover estimation and prediction error bounds,

S e RN TR T e

0 2 2 + 2log(p) \/E [¢02 (e

Hﬁ —ﬁH1 = 16”\/ n E[y (e )] g’
0o 2 t2 + 2log(p) E [¢? (¢)] s0

H/@ - S 160‘2 o ]E[ql)/ (6)]2 ¢_ga

with probability approximately at least 1 —2exp [—t?/2] (asymptotically in n).
In both cases, for estimation and prediction errors, we recover the same error
bound as that of the classical Lasso in [1] but for a term solely depending on
E [¢?(e)] /E [¢' (). We note that this ratio has primarily emerged from the
analysis conducted in Subsection 3.3, where our focus was on giving conditions
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for controlling the empirical process component. Obviously, the examples we
gave there can be considered as well in this asymptotic setting since they fulfil
the moment condition.

4. Error bounds with estimated scale

In most applications, ¢ is unknown and must be estimated. This section ad-
dresses joint estimation of the regression and scale parameters. In particular,
we show how the results obtained in the previous section carry over to this more
realistic setting.

4.1. Scaled convex loss Lasso estimator

Just as in [10], we propose the following estimating equation

(8.2) € argmin (% > (o (B2 wa) o ||ﬁ1> ,

B.o i=1

where a € R. It follows from [8] (equation 7.110, p. 174) that if p is convex
then the function in the equation above is convex. This was used by [13] in the
classical Lasso case. We extend it here to a general class of p-functions. The idea
is that, in the case where o is known and fixed, we recover the same definition
as in (2.2) for A\, = o .

The estimation procedure now depends on a new parameter a, which mainly
affects the estimation of 0. As we will see, &, converges in probability to o, the
solution in & of a = E [XO (%)], where xo (z) = ¥ (z) x — p (z). Consequently,
for a = E [xo (¢)], 4 converges in probability to . We will study the choice of
a from a robustness point of view in Section 5.

Just as in Section 3, the assumptions on v’ will slightly change throughout
the following subsections. The purpose of Subsection 4.2 is to describe the con-
struction of basic bounds, where once again, for the sake of brevity, we impose
1)’ to be well defined and continuous here. For the new error bounds that we de-
velop in Subsection 4.3, we refine our assumptions on 1)/, similarly to what was
done in Subsection 3.4 (see Assumptions 4.1 and 4.2). Finally, for the asymptotic
results in Subsection 4.4, no further restriction is needed.

4.2. Basic bounds

We now provide a new basic inequality in this case depending on a.

Lemma 4.1. There exists t* € [0,1] such that

B =00 =, ’éHlS_%ZG_XO((Z))(&“_%)

i=1

2 ’ .
-y ("—6) X (8°-8)+x 8,
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where Hﬁ —B°6,— 04

s mon negative and is equal to
[(tA+)

1 & o0&\ a? 1 & 0&;\ 0 (64 —04)°
n z// ( o Z) ~_1 + n X/ <~_’L) o Z - Y )
n le Ga ) Ga 1 ; "\é6.) & Ga

a
22” o&;\ o0& a; .
_~ w/ ( _ Z) 3 ’L (O’—O’a)
n = Oq Oq Oq

With G4 = 04 + 1 (64 — 04) and & = ¢; + 1%

o

It is interesting to see that if 6, = 0 = 0,, we recover the same bound as in
Lemma 3.1, by setting A, = ¢\ in the optimization.
As opposed to the case with fixed o, there are now two empirical pro-

cesses, namely = Z? 1 (a - X0 (”51>) (64 — 04) and 2'«/) (“) (,80 — B)

Similarly to Subsectlon 3.1, this motivates the following definitions:

T x (@)
2 o€ X
ja;O _1/) ( ) S )‘0} )
n Oq oq

12 ;
ae = S (o (E))[ =}

In the special case a = E [xo (€)] and consequently o, = 0, Ja:0 = Jo. More
generally, the same technics used to study Jyp can be used to study Jg;0, since

I
—N
—_
=]
A
AR

T (”) can itself be studied as a 1-function.
By definition, under the mild assumption, that E [XO ] < 00, we have
1
2

that 2 ZZ ) (a — X0 (“L)) = Op(n_%) and thus for A\ ~ n~2, J,,1 can hold

with arbltrarlly high probability.

4.83. New error bounds for the scaled convex loss Lasso

Before stating the theorem on the joint error bounds, we go through the required
assumptions for the theorem to hold. We need to alter Assumption 3.1, since
the discontinuous points now need to be scaled. This leads to the following
assumption.

Assumption 4.1. There exists a monotone increasing sequence {0; }N+1 with

0o = —oo and On11 = +o0, where " restricted to the intervals (Hj,l,H») 18

uniformly continuous. If N > 1, then € has a continuous distribution at all the
points in O, 1= {%“Gj 1 j €A1, ...,N}}.

There are two differences with respect to Assumption 3.1, namely that we
are working with 1" instead of 1’ and that the set over which e must have a
continuous distribution is ©, rather than ©.

Moreover, we alter Assumption 3.2, to impose a new assumption on .
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Assumption 4.2. inf,ge ¢ () > 0 (convexity of p), 0 < sup,go¥¢'(z) < 1
(bounded '), and sup, g ¢ (x) 2* < +00.

The additional restriction that we impose with respect to Assumption 3.1 is
that sup,gg ¢ (z) 2% < +oc0.

While the classical Lasso obviously satisfies both of these assumptions (since
in that case ¢ (x) = 1), we stress that the Huberized Lasso also satisfies the
above assumptions if P [2= |¢] = L] = 0, since in that case ¢} (z) = 0 for |z| # L.

Theorem 4.1. There exist cg,c1,ca,c3,a%,8%,> 0, such that if the compat-

ibility condition holds for Sy, W)‘)]& esK < 8, < 69 LS_OK <

"7 Elvr(22)] 4

Qs < a )\*¢2 < Co, >\10a < Clmln{ng ﬁ H /Ua, *} )‘20(1 S ]- Ve < C2,

2\ a'a+2)\ ol +2/\ Oa
. )\2* 0 ! < A, then, on ja;O N ja;l N ja;2 mIa*,é* NGa,

co ¢2

4X20, S0
(]

where L, 5. is a set depending on o, 6, and A defined in the Appendix, As
is continuous, monotone increasing and satisfies A3(0) = 0, Ju2 depends on Ao

<K.

[1// (U)} — As(as + 6, +74)

Oa

o - 8+

and while G, depends on v, defined in the Appendiz, and max; ; ’XZ(-j)
Moreover, there exist Cq,Co,Cs,Cy > 0 such that,

‘&a B

Oa

4l . 0 Cs |az| Cy
SC1>\10a+C2/\2H/6_5 Hl"’_? Z o n 22027
i i=1

a
Qx
<)

1EJ s, 64

. 5*
1—04

gE€;
Oa

where Jo, 5. = {z €{1,...,n}inf1<j<n {

gEi (.
Oa 0-7

4.4. Asymptotic results

In this subsection we study the implications of Theorem 4.1 in the asymptotic
set-up. First of all, we point out that there is an unusual condition in this the-

orem, namely Ao, < ¢ HB - ﬁOH /0a. This condition is in no way restrictive,
1

1

since, as we have we can pick A\ = o (nfz), which is a much faster rate of

convergence than the one we show.

_ 2X00a+2X\302 42104 _ 10X _ 10X« so
Set A\, = —i—(j% RS Bo' (] ¢263K and a, = B[ (55)] ¢3K.

Under the standard asymptotic assumption, namely 1"51’ % — 0asn — oo, it
0

is shown in the Appendix that P [Z,, 5, N Gq N Ta:1 N Ta2) — 1 wit
and 6, — 0, a, = 0 and v, — 0.
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E[v(2)?]
Following the ideas in Subsection 3.5, set Ay = 2\/ ()] v/ tz+271L°g(p), in

Oa

which case P [J4;0] > 1—2exp [—t?/2], under the moment condition. Therefore,
by Theorem 4.1, just as in Section 3, we recover

Bl (22))

2
O

2
O, S0

with probability approximately at least 1 — 2 exp [ftZ / 2} (asymptotically in n).
Consequently, in this case, we recover estimation and prediction error bounds,

12 4 21og(p) 9ay /B [wQ (g_s)} S0

o8]+ 2 - 8], <10

o -], < n eEfw (=) #
for-aff, < ottt B2 ()]
<l ()]

with probability approximately at least 1 — 2 exp [ftz / 2} (asymptotically in n).
Interestingly, in terms of asymptotics for 3, the error bounds that we re-
cover depend on the ¢-function and on the distribution of € only through the

ratio 02 /0’E [1&2 (?)} JE [z// (ﬂ)} 2. The main difference between the case of

a Ta
known o and this one is the scale parameter o,, where we remind the reader
gE€

that o, is the solution to a = E [XO (—)] in 7.

&
5. Minimaxity of bounds and relevance of the ratios

In this section, we first study the derived error bounds in terms of minimax-
ity, which basically amounts to studying E [¢? (¢)] /E [¢/ (¢)] for known o and

2
02/0’E [1#2 (%)} JE [w’ (ﬁ)} for estimated o in terms of minimaxity as done

Oa
by [7]. Then, we show that these ratios appear asymptotically in a couple of other
interesting settings.

5.1. Minimaxity of error bounds for known scale

Under the moment condition, the ratio E {1/1 (6)2:| JE [ (¢)]? appears in the error
bounds derived in Sections 3 and 4. Therefore, to optimize the error bounds with
respect to 1, we need to minimize E [7,/} (6)2:| JE [ (¢)]?. Then, if the correspond-

ing 1 satisfies the moment condition it is obviously the optimal v for the bound.
For instance, if € ~ F, where F is the normal distribution N'(0,1), ¢ (z) = z is
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clearly optimal, since this t-function minimizes E [w (6)2:| JE [¢ (as)]2 while also
satisfying the moment condition.

More generally, just as in [7], we define V(¢, F) = Ep [w (6)2} JEr [ ()]
As noted earlier, in robust statistics, it is assumed that we only approximately
know the true distribution F', which can be modelled as F' = (1—9§)G+d0H, where
0 is the contamination level and H is a contaminating distribution. This then
leads to a minimax problem, namely, solving miny maxp—_s\g4+su V (¥, F).

Example 5.1. We continue our study of the case where G is the normal dis-
tribution N'(0,1) as considered in Example 3.2. In this case, the solution to the
minimaz problem was derived by [7] and was shown to be the Huber 1-function,
with a tuning parameter L depending on §. In fact, we can combine these results
with the ones given in FExample 3.2 to obtain the following table.

TABLE 2
Optimal and mazimal values with respect to 6.
Level § 0.0008 0.0023 0.0061 0.0156 0.0376 0.0855 0.1825 0.3599

Maximal L | 4.1082 3.8167 3.5209 3.2010 2.8552 2.4652 1.9976 1.3645
Optimal L | 2.7000 2.4000 2.1000 1.8000 1.5000 1.2000 0.9000  0.6000

Table 2 reveals that the optimal tuning parameter L is always smaller for the
selected contamination levels than the mazimal value L for which the moment
condition is still satisfied. This implies that for reasonable contamination levels,
the Huber-y function produces minimaz error bounds under the assumption that
G is the standard normal distribution.

5.2. Minimazxity of error bounds for estimated scale

2 2

To begin, let Va(4, F) = 04(, F)?/0*Er [w () } Br [V (wtim)]

where we make the definition of o, explicit through F' and . Additionally,
~ - 2

let ) (v) = 14 (52). Consequently, we recover Ep {1// (e)} =Er [ (5¢)]* and

Er [6(e)'] = &Er [¢(50)°|. Thus, for & = /0a(4, F), we have Va(u, F) =
V() F).

With these relations in mind, we now show that finding the i-function solv-
ing miny maxg_1—sa+sm Va(¥, F') reduces to the previously studied problem
of finding the ¢-function solving min g, MaX p—(1-§)G+5H V(z/NJ,F). In fact, let
(1, F) be a solution to the minimax problem involving V. Define & through the
equation a = #2°Ep [1/;(6)6 - ﬁ(e)}, where p is the p-function corresponding to
the ¢-function ¥. Now let p(z) = 62p (£) and ¢(z) = p'(z) = &1 (£). Corre-
spondingly, we recover a = Ep [)(d€)de — p(G€)] = Er [xo(d€)], and therefore
we identify & = 0/0,(¢, F). Thus, (¢, F) is a solution to the minimax problem
involving V.
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As shown above, the minimizer ¢ depends on a only through scaling. Just as
in [7], we propose setting a = Eq [xo(€)]. In such a case, we recover o, (¢, F') =
o in the non-contaminated model (i.e., F = G). This leads to the equation

B (60 (£) e = 3% (£)| = 3*Ep [d(e)e — i(¢)] defining 5.

Example 5.2. Once again we study the case where G is the normal distribution
N(0,1). In this case, the solution to the minimaz problem involving V., the Huber
Y-function with parameter L, was studied in Example 5.1. Obviously if ¢ is the
Huber -function with parameter L, then 1 defined through ¥ (x) = &y (%)
is the Huber -function with parameter L. Thus the optimal -functions in
solving the new minimax problem are Huber 1-functions.

The worst case contamination, as shown by [7], involves any symmetric dis-
tribution with mass outside of [—L, L]. This allows us to recover the parameter
in the P-function in the minimax problem involving V, from that of the opti-
mal Y-function in the minimax problem involving V', by computing &. Table 3
contains the results for the same levels of contamination as in Example 5.1.

TABLE 3
Optimal L and corresponding & with respect to 0.
Level § 0.0008 0.0023 0.0061 0.0156 0.0376 0.0855 0.1825

V:Optimal L 2.7000 2.4000 2.1000 1.8000 1.5000 1.2000  0.9000
o for given L | 0.9973 0.9938 0.9866 0.9720 0.9439 0.8914 0.7952
Va:Optimal L | 2.6928 2.3850 2.0718 1.7496 1.4159 1.0697 0.7157

5.3. Relevance of the ratios

In this subsection we provide some theory to compare the estimation and pre-
diction errors associated to the convex loss Lasso estimators for different p-
functions. We focus on the case of known scale, noting that it is straightforward
to recover the corresponding results in the case of estimated scale.

5.3.1. Estimating equations

The general Karush-Kuhn-Tucker (KKT) conditions for convex functions will
play a key part in the analysis. Indeed, these conditions allow us to characterize
all possible solutions to the Lasso problem in a straightforward manner. More
specifically, we have that 3 is a solution if and only if

2
n

and H%XT¢ (Y — XB)

X{s@w (Y —XB) = Xsign(Bisa))

IN

A,

+oo

where S (8) ={i € {1,...,p}: B; # 0} and, for simplicity, we set o = 1.



Error bounds for the convex loss Lasso in linear models 2851

For given observations (Y, X), let B be the convex loss Lasso corresponding

toA=4/E [w (6)2} A*. This leads to the following scores:

2xTy (Y- XB) = ZXTgle)+-XTDp( X [0 B,
= 2XTy () +EW (] XX 8"~ B] + A

We will study the ratio under different sets of hypotheses.

5.3.2. Ratio in distribution

We start by making a strong assumption, namely that there exists a fixed S*
such that S* = sign (,@) with high probability. In that case, we can define S, =

S (B), which is well defined in the event that sign (,@) = §”. Furthermore, we

can assume that S (ﬁo) = Sp C S, (by assuming that the non zero elements of
B° are big enough, this follows directly). Then, by dividing the components in

S, of the scores by /E [1)2 (€)] we recover:

ear 2 X[S] P (€) EW (e)] 2 1 0o - Als.]
S - X' X — _— .
ST R (e] | VERR(@n 28] + E 42 ()

Now since {,@O — ,3} . = 0 for all j € S, by the previous equation we recover:
j

ER(] 2yry . 2Xs.) () + 1A,
I TRl L P O Ry e B

Under the extra assumption that \/n||A|| is very small, which is true for
instance if /log(p H,B ,6‘ is small, the term [wzi s can be ignored, since

its variability is overshadowed by that of 2 % Under mild conditions,

is close to a normal distribution by the central

2 Xisg (e

f\/T

limit theorem and thus does not depend on v asymptotically. Therefore, under

the distribution of

all these assumptions, the efficiency of [ﬂo — ,@} < depends only on the ratio.

In spite of the fact that the main assumption is rather strong, we do not
assume that S, = Sy. Consistency in model selection is however a special case,
i.e. if S, = Sy, in which case the ratio directly reflects the loss of efficiency.

5.8.3. Ratio for projections onto true span

We now relax some of the assumptions made in the last part, namely we only
assume that Sfs, = sign (B) ol where once again S° = sign (8°) and Sy =
0
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S (ﬁo). The above assumption is rather weak, since for instance it is satisfied
if the smallest non zero coefficient of 8% is bigger in absolute value than a
certain threshold. In that case, by dividing the components in Sy of the scores

by \/E [¢)? (¢)] we recover:

2 X[sg¥ ()  E[ ()] 2 . A
A S0 — 2 LSo] + 2xT..x (8% - 3] + [Sol
R RV ) el el G Vs
This leads to the following equations:
E [ (¢)] Ars,] 2 X[ 1% (€)

2 T 0 a2l — \xq0 _ — —
- X5 X [6 —ﬁ} = A"S[g) VE[RZ()] nVERZ()]

E [y (e)]

Relying once again on the assumption that /n (Al is small, the term

Asql

E[42 (¢)]
onto a vector in the span of X g, only depends on ¢ through the ratio asymp-
totically.

can be ignored and so the distribution of any projection of X {,80 — ,@}

6. Discussion

In this paper, we have given explicit bounds for the estimation and prediction
errors for the Lasso with a general convex loss function. We have shown that
both of these bounds are a natural extension of the well-known bounds in the
classical setting (i.e., with a squared error loss function), with an additional
term given by E [¢? (¢)] /E [¢/ (¢))°. Interestingly, this term is exactly the same
as the one found by [7] in the low-dimensional setting, underlying the minimax
property of the Huber loss function. We have provided theoretical arguments
supporting the importance of this ratio in the high-dimensional setting. Our
work establishes a clear and explicit link between the bounds for the predic-
tion and estimation errors on the one hand and the choice of the loss function
motivated by robustness considerations on the other hand. To the best of our
knowledge, such findings have never appeared in this form in the literature.

An interesting direction for future work would be to further assess the sharp-
ness of the bounds that we have obtained. This could notably give an indication
of how relevant the ratio from Huber’s minimax problem could be in other con-
texts. It would also be useful to consider the impact of having an intercept in
the model, even though we believe that our techniques can be easily adapted to
handle that case. Finally, we have excluded from our analysis the possibility of
outliers in the design matrix. It is clear that contamination of the covariates is
highly plausible in applications, perhaps even more so in the high-dimensional
setting. It would thus be of interest to examine the impact of such contamina-
tions on the bounds.
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Appendix A: Proofs and technical arguments: Section 3
A.1. Proof of Lemma 3.1

It follows directly from the following inequality
AN a; 2 p
n ;p (c+5)+ 2ol <5 ;P@ + 218l

and a Taylor expansion on %E?Zl p (ei + %), which implies 3t* € [0, 1] such
that

2n a; 2n 2 - €\ a; 1 - ’ N az
- 7 — )= = % - e - % t*)i-
S WICS R MR MO LR WA AL

A.2. Proof of Lemma 3.2

Because of 2A\¢g < A and the definition of Jy, we have

n

2 X . A .

(e = (6" —ﬁ)‘ <Z|l8"- 4. -
o 2 1

By using Lemma 3.1, this in turn implies that on Jy we have

. 3 a0
B 1§§)‘H'B

1< a;\ a? A R
v (a0 3) S <5 [0 -, el - I

A.3. Proof of Lemma 3.3

Define V) = 1 Lap(e)” XV = L LS 4 (&) X7, Since sup, ¢ (z)] <
L, we have w(].fi)XZ(rj) € [—Xl(j), XZ(:j)] and so by Hoeffding’s inequality as in [6]

2nt?

plvo) 2] < z2ep|-— 2L
S [2x ]

2nt?
= 2exp |———F———
2 (XTX)
L V)
o
= 2exp|——|.
eXp_ 2:|

We can now bound maxi<;<p fV(j)| in probability by using the union bound

P [max ’V(j)‘ > /2 —|—210g(p)] < pP [‘V(j)’ > /12 +210g(p)]

1<j<p
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2+ 210g(p):|

< 2pexp {— 5

t2
2 —.
exp[ 2:|

The lemma follows directly from Jp := {maxlgjgp ’V(j)| 2% < /\0} .

A.4. Proof of Theorem 3.1

Let U; = % and W; ~ N (0, 1) iid. For fixed j, we define V)| respectively

ZU) as the linear combinations of U;, respectively W;, with X Z(-j ).

) 1 & . 1 & )
V(]) - ‘/;(j) —- UZXEJ)

A 1 < , 1 & ,
AC) A . WiX(»]).

Because of the normalized columns, we have Z() ~ A (0,1), from which we
know that E [(Z(j))%} = (2k)!/(2%(k)!). Thus we have the following equation:

0 +oo {(Z(j))%} 12k 4o (2K
1)1 I e i A R W 2
E [exp |120]] = 3 (2k)! > a1 = P /2]
k=0 k=0
IHE (V)] < E[(29)™] vk > 0, then E [exp [tV )] < E [exp [t2]],
since the uneven moments are all 0 in both cases (this is because ¢; has a sym-

metric distribution and v is odd). With the help of enumerative combinatorics
Wwe recover

E [(V(j))Zk] =nk 1Sll<21m§n Cok,ar,...,am [(Vzgﬁyl} B {(Vl(nz))am}

(2Kk)!

ar!...cam!”

where 1 <m <2k, )", a; =2k, a; > 0 and cop.0,,....a,, =

N 2k
Now since we have E [U?*] < E[W2*], it follows that E [(V;(J))Q } <

E [(Zi(j))%] and thus that E [(V(j))%} <E [(Z(j))%}. This in turn implies
for t > 0:
E [exp [tV(j)” <E [exp [tZ(j)H = exp [t2/2] .
We now have the following by Markov’s inequality for ¢ > 0:
E [exp [tV]] _ P [£2/2]

= eX _2 .
o S ewpy P

P [V(j) > t} <
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Consequently by the union bound we have
: 2 +21
P [max ’V(J)’ > /12 + 210g(p)] < 2pexp {qtog(p)] = 2exp [7t2/2] .
1<j<p 2
The theorem follows directly from the definition of V4), since we have
E[v(e7]

2———— < g

(@)
v o/n <

Jo := ¢ max
1<j<p

A.5. Proof of Lemma 3.4

Without loss of generality we set ¢ = 1. In the case ¥(x) = x the inequality

is obviously satisfied. More generally, let ¥;(xz) = (1 — t)¢(z) + tx, where ¥
—k

respects the conditions of the lemma. If we show that E [wt (e)%} E [7/% (6)2:|

is monotone increasing in ¢ € [0, 1], then by the above remark the lemma follows
directly.

Let g : [0,1] — R where g(t) = E [wt (E)Zk} E {7/115 (6)2}
9g(t)

ot

k
. We then have

—k

2UE [@z& % e o (e)]} E [d}t (6)2}
—k—1

~2KE [0 (| E [ (7] EWi (e~ (9]
= B[y 0]
E [?/)t (f)%}

X te%_lg— || - ———
[E[w() = ()] o]

E i () [e =4 (6)]]]

2k —k

= ]

2k
x%EWAQ%“k—wﬂdﬂ—@kﬁL%lEWMdk—wddq-
E 1 (¢)°]

In order to show that 3%?) > 0, we study the expression

E [ {T/Jt (6)%_1 - M¢t (6)] e — (6)]]
E [0 (7] |

which is equal to
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For k = 1, the above expression is obviously 0. Since x/¢(x) is monotone
increasing in |z| and even, there exists £ > 0 such that for all z € [-Z,Z]:
x B[t (€)e] : & oAle. _=x B[t (€)e]
e < E[v: (0] while for all z € [—&, Z]%: e > B0
Let k> 1, Fo (€) = leg—z,5) and Fy (¢) = 1 — Fp (¢). We then have

o [ . Elye(e)e] | | —
E |:7Z}t (6) [¢t(€) N E[wt(e)z]H -

B [0 07 [t~ Hoa] |+ [ 0 (07 [t - o]

By definition of # and the fact that ¢ (z)** 2 is monotone increasing in |z, we
have

E | Fo (&) r (0 |—— — E [1h¢ (€) €]

i) g {1/}15 (6)2}

Y

By adding the terms, we recover E [wt ()" [ e Eli(o)d]

(0 E[wt(5)2}:|:| > 0. Thus

Bga(tt) > 0 and so the lemma follows.

A.6. Proof of Lemma 3.5

Lemma A.1. Suppose 0 < § <1, k€N, k> 2 and let f : R>9 = R defined
by:
2k)! k
fla)=(1—-0E [¢ (6)2’“} +da2k — %2*1&: [(1 — ) (e) + 5a2} .
Then, if %2_’“5’“_1 < 1, f is monotone decreasing on [0,00). On the other
hand, if%2_k6k_l > 1, there exists a* > 0 such that f is monotone decreasing
on [0,a*] and monotone increasing on (a*,+00).
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Proof. We study the derivative of f:

difzf(a) = 2kéa®r! — %Q_IWE {(1 — ) (e)2 + 5a2] o 2kba
— 9%ksa (a2k—2 _ %2—1@}3 [(1 — (e + 6@2]k—1> .

For a fixed 0 < § < 1, we can define P(a) = (%)' kR [( — &) (e)® + 5a2] )

where P(a) = Z?Zl cja?’=2 and ¢; > 0. By inspecting the polynomial coef-
ficients, we recover that ¢, = (Qk 27k§k=1 Furthermore, we recognize that
4 f(a) = 2kéa (a**~2 — P(a)) and so the sign of -L f(a) for a > 0 is equal to
the sign of a?=2 — P(a).

Since P(0) > 0, a®*~2 — P(a) must be locally negative near a = 0. For a > 0
we have:

k
sign (a2k_2 - P(a)) = sign (1 — a‘2k+2P(a)) =sign | 1— Z Cja2(j—k)
j=1
k—1
= sign|1—cp— cha_Q(k_J)
j=1
Therefore, if ¢ = EHo=kgh=1 > 1 then sign (a2 — P(a)) = —1 for

all @ > O On the other hand, if ¢ = (% 27k§k=1 < 1, by using the fact

that Z 1 cj a—2(k=J) ig positive, strictly monotone decreasing in a > 0 and
tendlng to 0 as a tends to +oo, as well as the fact that 1 — ¢, > 0, there exists

a unique a* > 0 such that sign (a**~2 — P(a)) = —1 for 0 < a < a* and
sign (a**72 — P(a)) = 1 for a* < a. The lemma now follows directly from these
observations. g

Lemma A.2. Suppose 0 < 6 <1, k€N, k> 2 and let F : RY;, — R, where
F(ay,...,a,) is defined by a

n n k
(198 [0 (™) +5 a?p — 2ot ((1 ~ O [1(e)?] + 6Za3pi> ,

where p; >0 and >, p; = 1.
Then maximizing F under the constraint that Zl taip; <L for a given
L > 0 leads to either (a1,...,an) = (L,..., L) or (a1,...,a,) = (0,...,0).

Proof. We study the Lagrangian of F":

L(ay,...,an, A :F(al,...,an)—l—/\Zaipi.
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We now study the partial derivative of L:

k-1
oL 2k)! -
B 2kda?* " p; — %27%‘] (1—0)Y(e)* +6 Z a?pj 2kda;p; + A\p;
i : Jj=1
k—1
— i |20 [a2t=2 = B okg [(1 410y a?p; A
=Di ai |a; 7l ( v (e)” + Z a;p; +
! =

Now %L = 0 implies that all the a; must be equal. Therefore, the problem of
optimizing F(a1, ..., a,) under this constraint is equivalent to optimizing f(a)

in Lemma A.1 under the same constraint, where we fix (a1,...,a,) = (a,...,a)
and the corresponding constraint is a < L. The lemma now follows directly from
Lemma A.1. O

It is well known that any continuous distribution can be approximated by
a discrete one, by assigning sufficiently small probability mass to a sufficiently
large number of points. The lemma follows directly from this observation along
with Lemma A.2, which shows that the worst possible contaminating distribu-
tion (the most challenging for the moment condition) is either a point mass at
0 or at the maximizing value of 1.

A.7. Probability bounds

Let ﬁ)w/ = % Dy H;/[’;)(f(‘e))]XZTXZ7 which is well defined by Assumption 3.1.

Lemma A.3. Let EAJ—EAJW < X and HBSS
+oo

compatibility condition holds for Sy, then,

| < 310s,l,- Suppose the

‘eT (z - ﬁ:d,,) 0‘ <161 |05, ]2 -
Proof. We start by making the following observations:

o (5-20)0] = (2-2)e]_ ol
((=5)0)) = 3

= Y (=-3%w) 65 <Alol, .
Combining both inequalities we have ‘HT (f] - 21&’) 0‘ <A ||0||?, while on the

i=1 Y
other hand

2 2
16117 1

HOSOH?JFQHHS()HlHOSS 1+||053
2 2 2 2
105,17 + 61007 + 91105, [I7 =16 [0, ] -

IN

The lemma follows directly from these observations. O
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Clearly, Lemma A.3 implies that under the assumptions that the compatibil-

ity condition holds, || — 3, < X and 165 L <3110s,]l;, we have
+oo
1 2 S0 2 So
Os < ——~— 0|2 2 —y0)% 22,
|| SoH1 =1_ 16)\80/(;5(2) H sz’ ¢g H ||2,¢,, ¢?\

with d)?\ = ¢2 (1 — 165\;—%). This means that for 5\;—% small enough we approx-

imately recover the same compatibility constant as that of 3. By definition,
even for fixed X, ¥, is non degenerate with high probability and so we now
introduce the set
< 5\} :
“+o0

_ The following lemma shows that A is met with high probability for small
A, assuming bounded covariates and that Assumptions 3.1 and 3.2 hold. For
readability, we set © = {6; : j € {1,...,N}}.

Lemma A.4. Let \ = qu/m%@\/maxxﬂp% HX(j)
== 4

4
, then we have
P[A] > 1 —2exp [—1?/2], where Ly = sup,_¢ ‘% - 1’.

A= {Hﬁ)ﬁw/

Proof. We have (ﬁ] - ﬁ:w’)kl =1y, (1 - ]Eq/[’z;(,e(ﬁ))]) XZ(-k)XZ(-l) and so it fol-

lows from Hoeffding’s inequality as in [6] that for ¢ > 0:

F H (2 - 2¢’>kl‘ = E} < 2exp 72([,1!),)2 o L HX(J')Hj :
Indeed,
S () ()" = (3 () 35 () < e e

*n

B 2(L,/)? max; 1 ||X(-7) Hj

and so P H(ﬁl —ﬁ]¢/)kl‘ > f} < 2exp[

show by the union bound that

]. We can now

JEEN N R (GRS R
< p*2exp |- N

N4l
2(Lw/)2 maxj % HX(J)H
4
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The lemma follows directly from

A2n

2exp |2log(p) — =2exp [-7/2] . O

14
9(Ly)2 max; 1 HX(J)H
4

As one would expect, we recover that in the case of the classical Lasso we
can take A = 0 with probability 1, since in that case Ly = 0.

A.8. Proof of Theorem 3.2

In this subsection, we relax the continuity assumption on v’, by only imposing
Assumptions 3.1 and 3.2 on 7'

Let ¢}, (z) = == (y/(9; 4 k) — ¢/ (6, — k) + ' (6; — k) if 3j € {1,..., N}
s.t. |z —0;] <k, and ¢} (x) = ¢'(x) otherwise. For 0 < k < inf;, 45, |0;, — 0},],
1y, is well defined, continuous, non negative and bounded by 1. Set pj and ), as
the p and 1 functions corresponding to ;.. Consequently, pj converges pointwise
to p and therefore there exists ¢, > 0 such that limy_,o ¢ = 0 satisfying:

1< i 5 1< 0
o o) el <L a1
Accordingly, just as in Lemma 3.1, there exists t* € [0, 1] such that:
1 — a;\ a? . 2 X -
=3 k(a0 a8 < —Zwi @ = (8°-B) +2[18°), + .
n o/ o 1 n o

By continuity, we have inf;c(o 19’ (ei + t%) = limy_,oinf; ¥}, (ei + t%),
where we abuse the notation somewhat by only taking the infinimum over ©
in the first part and restrict ¢t € [0, 1]. Since 9, converges pointwise to 1, we
recover:

1 & : / Qg Cl? ~ 2 T X 0 ~ 0
w2t (e D) S B, < —Zw @7 T (8- ) Al
(A1)
Lemma A.5. Let 2\g < A. Then on Jy, we have

) < 3A HBSO - B2,

L .

2 . , a;\ a? P
- Z;lrtlfw (61' + t;) = +A Hﬁsg
Proof. The proof is the same as in [1] (Lemma 6.3., proof on page 105). We do

provide it again for a self-sufficient reading. By using Inequality (A.1) on Jy we
have

2 . , a;\ a? -
U G

=28, - 2|85

1 2\ HBSO

1

1

)
1



Error bounds for the convex loss Lasso in linear models 2861

where we used H[ﬂHl = HBSO ) + Hﬁsg
87 =B, = |85, = Bsu|, + [Bss], vt 18°0, = 11, .- T copettr i
plies that the right side of the above inequality is equal to A ‘ ﬂ%o -8B soll,

2A (H ,8?90 Hl — 13 So 1). The lemma follows directly from the triangle inequal-
ity. O

. On the other hand, we also have
1

+

We now turn our attention to producing a joint estimation and prediction
error bound on the event Jy N A.

Lemma A.6. Suppose the compatibility condition holds for So. Then on JoNA,
we have for 2Ag < A:

%giglw’(emt%)%— Zzﬁ _z+AHB_ﬁOH1S4A2W,Q(G)];—%

Proof. The proof is basically the same as the one from [1] (Theorem 6.1, proof
on page 107). We provide it again for a self-sufficient reading. With the help

of Lemma A.5 and Lemma A.3, we have that 23" | inf, ¢/ (e; 4+ t%) Z—z +
A H,@ — ﬁOH1 satisfies the following;:

‘ me (e +t—) AN H,@SO B3|, +» Hﬁsc
< 4\ Hﬁso 5|,
= 4*%2 [wlwe)] (5-p) B LIREL (5 )
- (o) BRIy
< %XE Y (ei)z_z +4A2%;—%,
where we use the inequality 4v/uv < u + 4v, for u,v > 0. |

It is once again interesting to point out that we recover the classical bounds,
as given in Equation (2.1), for p(z) = 32, since in that case, for A = 0, P[A] = 1
and ¢’ = 1.

In the case where N > 1 in Assumption 3.1, we need to introduce some new
notation to deal with the points of discontinuity of ¢’. For o > 0, we define
P, (ei) = =9 (&) if infr1<;<n {le&; — 05|} < a and ¢, (¢;) = ¢’ (¢;) otherwise.
Clearly, it follows from Assumption 3.2 that lim, o E [¢), (€)] = E[¢' (¢)]. Let

EA]% = 1 ZZ 1 ]Ew oles) XTX“ and so for a = 0, we recover the definition
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of 3. On the other hand, in the case where N = 0, we set ZAJ% =
Furthermore we set

< Z\} .
oo
We point out that P [Z,] can be studied in exactly the same way as P [A].
Finally let h : R>g — R>(, where

h(z)= sup sup 2 (x4 y) =y ()]
JE{L,.. . N} (z,a4y)€I2,|y|<=

T, = {Hz_ﬁ:w,

From Assumption 3.1, it follows directly that this function is well defined, con-
tinuous, non negative, bounded and monotone increasing in z with h(0) = 0.

Lemma A.7. Suppose the compatibility condition holds for Sy and %la’l <a.
Then on Jo N ANZI,, we have for 2 g < A:

E [ ()] =

O'

S0

o L+ 1 nn [ 8], < 00

E[ @] [18°=Al,

o

where v1 = 165 A

Proof. We begin by defining Z* = 1 if infi<j<n {le; — 0|} < aand ZF =0
otherwise. Thus for %‘a‘ < a, we have by definition that Z* = 0 implies that
if ¢; € I, then ¢; + % € I;.

This and the definition of h implies that we have

n . 2
23" o c+12) -] % 2
2 S / @ Zza |a1| ?
25 o (2]

This in turn implies that 1 3" | [2inf, ¢/ (¢; +t%) — ¢/ (¢;)] Z—Z is bounded
from below by

1w , a? 1 sup; |a;| 3 2
2 N1 -2z % Ly (22 H 0
B2V ) 0220 5 (2220 o -

In turn, by using Lemma A.3 and by definition of ¢/ , we can bound the first of
these two terms from below by

8

L o, 10 o]

sup;|a, |
o

Now since h( ) < h(a) by the assumption %la]‘ < a, the lemma

follows directly from combining these inequalities with Lemma A.6. O
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Finally, we set the values 0 < a” and 0 < A°. Firstly, let 0 < o such that
for all @ < a® : E[¢), ()] > 3E [y’ (€)]. On the other hand, because of the
monotonicity of E[¢/, (¢)] with respect to a, we have E [/, (¢)] < E [ (€)].
Furthermore let a® > 0 small enough such that i (a®) < 1E [¢' (¢)].

Lemma A.8. Suppose the compatibility condition holds for Sp, EOM((G‘)’] ;8 <

o < o, 640734 < 4, and Hﬁ [3H < 10A g2y S Then on Jy N AN,

for 2Xg < A,
2

g S0
o8], < gy o7
Proof. Under the conditions we recover
3 1
E[w; (@)= hia) > TEW ()~ h(a®) > B (0] >
AE [y E [, (€)] so 640 ~ 4
—165 -5 Hﬂ -B|, = 1-1603 [w'(e)]qs_iZl_TAdTiZE
Therefore the lemma follows from Lemma A.7. O

We now combine these results to prove Theorem 3.2. Here the main idea is to
use the margin condition on convex loss functions as in [1]. Let 8° = (1—t)3°+¢3

for t € [0,1] and a! = (X (,6'0 —,Bt)) By convexity, 23" | p (ez a) +
A HﬁtHl can be bounded by

=0 2o 28 o[ 350 (o %) 2]

i=1

which itself is bounded by 2 3" | p(€;) + A Hﬂoﬂl. As a consequence,

X

—Z inf ¢/ (e—i-t Z>w+)\u,@t” <—g¢(€) _(ﬁo_ﬁt)"‘)‘HgOH
o2 1= n o 1

< #€(0,1]

Therefore, assuming ||,6 - Bt H1 < 10X g5 W (E)] ¢2, 10/\LE[¢ 26) ¢2 < a < al,

640)\(1)—% < 3 £ and that the compatibility condition holds for Sy, we have on

A

JoNANT, for 209 < XA < X0 H,BO B8 ||1 < SAgran [w ( ) ¢2 This is because
Lemma A.8 follows from Inequality (A.1) and the compatlblhty condition.
* o?  sq _ H* : 0 ot

For H* = 10>\E[w/(e)] ¢% and t = 7 Pz it follows that ||6 B H1 <

. So by the above observation it follows that on Jy N A N Z, we have

Hﬁ -B° ||1 < 5)\]E[¢ Gk 39 = H*. On the other hand we have

o - 8, = 2097 = 2l < 5 =5 [+ - 2] ).
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This in turn implies that H,@O —,éH < H* and so by Lemma A.8 we have

H,@O—ﬁul < H 5)\ 6)] ¢2 and sup; |a;]| <LHB ,BH <5L)\ (6)] ¢2.
We can plug this mto the mequahty in Lemma A.7 and it then follovvs for
2)\0 § A

ERLOLHE o0 1 -], <005,
where ~; = 16’\ E[‘/’ (E H 3° ,6 H The theorem now follows directly from:
= 16%E HB BH < 163]]4:[1/:;2( 2 5A1E[QZ’2(6)] 7 < 80)\¢—2.

Appendix B: Proofs and technical arguments: Section 4

B.1. Proof of Lemma 4.1

Let Q(B,0) = 2320, (p (%) n a) o+ A, ||B]l;. From the definition of

(B,&a) we have @ (B,&a) <@ (ﬁo ) By a Taylor expansion there exists
(xB),

€ 0,1] such that 237", (p (T) + a) G is equal to

=Yl + e+ =3 (a0 () (70 =)

+%§¢<Q>X; (5°-5) + Hfa—ﬁ%a |

T(t )

Here we point out that, since the function is convex, ‘ — O'H > 0.

The lemma follows directly from combining both these equatlons.

B.2. Technical arguments on scale error bound

We begin with a technical lemma.

Lemma B.1. Let €,a,0,7 € R such that f : [0,1] = R with f(t) = % and

h:[0,1] = R with h(t) = ' (f(t)) are well defined. Suppose h is differentiable,
then 3t € [0,1] s.t
- a

h(1) = h(0) = 4" (f(D))

— " (f() F(H—=

Uu—|—f'y 0'@—|-t’}/-

Proof. This is a direct consequence of the mean value theorem. O
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Here we provide an extremely useful result to bound |6, — o,| locally, where
we assume 1)’ to be well defined and continuous.

Lemma B.2. There exists t*= € [0, 1] such that

ai i (0 () =) + 2 2w (5) e
Ly () me

with 64 = 04 + 1t (64 — 04) and & = €; + t =

Oq —0q =

)

Proof. By a Taylor expansion on t — + 2?21 X0 (%)’ there exists
€ [0,1] such that = 3" | xq (‘"“”“7) equals

1 Z o€; 1 i , o€ + tMa; a;
X0 n Xo o+t (64 —04) ) 0o+ 12 (64 —04)

=1

, ( o€ 4+t a; ) o€ 4+t a; (6 )
- = E Xo = Ogq — Oq) -
s oo+ 17 ( ( e

Ua_Ja) Oa—‘y-t)‘ (Oa—Ua))

The lemma follows from the fact that - 3" | xo (e +al) =a. O

We now relax the assumptions on ', by only imposing Assumptions 4.1
and 4.2. By using the same technique as in Subsection A.8, we recover that
|64 — 04| is bounded from above by

L (o (52) = o) |+ £ 2 sup v (32) B
noo. o0& oeitta;)?
5 2oy infe ( Ga ) (aa(+t(;rffcza))2

Sup; g

. By

where o€; = o¢; + ta;, 6, = 04 + t(64 — 04), and the supremum and infimum
are taken over [0, 1], under the constraint that ‘g—il is in ©¢ so that everything
is well defined.

To recover a local error bound we study the three sums in the upper bound
in Equation (B.1) separately.

For the first term, we have sup, 6,
on the set Ji., by definition.

i (Xo (‘;) - a)‘ < Sup; 64001

The second term is ’l Z? 1 sup, ¢’ (f) g& ‘ If1<N,let ¥y, 5. (ﬁ) =
0 if 1Hf1<;<N{ } < and wa*) (%) =9 (%)
otherwise. On the other hand, if N = 0, we set ¢, 5. (“‘) =)/ ("“). Fur-

thermore, we define
< )\2}

VARG

T€;
Oa

O

(4)
O€; Uer

>vhs (%)
ll 0-(1 0-(1

Jo.a = { max —
@ {1<_7<pn
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In the case where N > 1, we define D = 20y + 1, whereas for N = 0 we
define D; = 0. Moreover, let Dy = sup,qe ¢ (), D3 = SUPggo " (x)x and
Dy = sup, g ¢ (z)2?. By Assumption 4.2, we have that for all i € {1,...,4} :
Di < 400.

Lemma B.3. Under the assumptions that Ze=%l < § < 1 gpq swplail <

Oa — — 4 Oa —

L <3 1, we have on Ja.q, %Zn L sup, ¢’ (aq) ‘g—iiai 18 bounded from above by

/\20(1 ]. n |ai|3 D1
1- *)an o nz ladl +
i=1 1€Jay, 6,
|5’a - Ua| D4 1 - D3 D36* 1 - a?
Pa “al 72 - @ 1 - -,
Oa 175*nz|1|+ +175*+(175*)2 nZaa
=1 i=1

where Ja*,é* = {Z S {1 n} 11’lf1<J<N { 75* (;i"’ < 123* }}
Proof. Let i € Ja, 5., then by definition 35 € {1,..,N} with |29 —0;| —
|5 < 1% eon < 4 we have |29 — ;] — §|2] < § and
so |24 < %01\/ + % This implies that sup, Uaf_;z;ji"%)‘ < 1_15* [% + %} <

4 3 [30n + 3] + %% = 20n + 1 = D;. Therefore, by using sup,ge ¢’ (z) < 1, we
have sup, ¢’ (“1) ‘ggi a; < D |a;].

Let i € JS 5. , then by the choices of 0* and o*, t — " (#%) is

well defined and continuous over [0, 1]. Consequently, by Lemma B.1, for any
t € [0, 1], there exists t* € [0, 1] such that ¢’ ( g6 tia ) geitta; yai equals

0at+t(6a—0a) ) 0att(Ga—0a

w/ oe; +ta; ta?
o +t(6a—04)) 00 +t(6q —04)
oe; +ta; O€;
+ 9 ~ - a;
v (aa—l—t(oa—aa)) 0o +1(6g —04) "
o\ ta (o€ o6
= (a) 5. TY (a) 5
_|_¢// <O~'_é1) |:t;i . Ugit(cz'a - Ua)] O'gz' itt*aiai
Oq
(o0& ta? s (o€ o€ , [(O€ t2t*a?
=¥ (&a>&_a+w (aa) 7. %Y (é )5— (54)?
a a a

L <aez> a_gi {@ N 2t (64 — aa)a?] oy (O’_é) (06:)2 t(6q — 04)a

Ga/) Oq L0a 0q0q Oq

where 0¢; = oe; + ta;, 06, = o€; + tt*a;, 5o = 0q + t(64 — 04) and G, =
04 + tt*(64 — 04). Taking the sum over all ¢ € Jg. 5. divided by n, the first
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2

term is bounded from above by 1 3" ﬁ, by using &= < L= and

SUp,¢e ¢’ (x) < 1. Bounding the second term follows from the definition of J1.q4,
which implies ‘% ZzeJ; . g (061) Gra;| < B - ﬂoHl.

Combining all these remarks with the definitions of D5, D3 and Dy, we have
that 1|30 ¢/ (061) Zig,| — L Dicg.. . lail = 1\3—%2 B— '80H1 is bounded
from above by

60 — 04| Ds 1 ”‘ |
7__26,
Oa 1—906,n 4 '
=1
n |3

Ds 1 a? 1 |a;
+{1+1 e }zzg— AT

i=1 a

A20g
76*

The lemma follows directly from these observations. O

Here we introduce notation to bound 2 377 | inf, 1’ (“’) % from be-
low. Now, by the assumption that v/’ is locally continuous and the assumption

[1// (“)} > 0, for a,,d0, > 0 small enough there exists by, by such that

- , . . , .
o 1= infy <p<p, (5)<5. ¥ (—lj”ré) and ¢ ;=P [bl + %5 < zfaz < by — —126*} are

strictly positive. We set D = E {%";—5211,13692 ,
) a* o€; a*

Ga = 1,...,n}:0b <= < by — d
w05 {ZE{ ’I’L} 1+1_5*—Ja—2 1_5*}an
1 o?e? (14 6,)2

o = = - : b ba|)oy—5 > D
G, 1+0.)2n 'er: 2 ([b1] + [b2])ex =0,z 2
T Qe , O

1105 } and 0 < 0; < ¢ buch that for all 4, < &,

and all o, < oy we have lim,, oo P[G1,4] = 1.

Finally, let 0 < a < min{

By using the above definitions and remarks, we can bound @ locally,

sup, |a|
o

under the assumptions that |&“0__‘7“| and are small enough.

Lemma B.4. There exist 1, a1,C1,Co,Cs,Cyq > 0, such that zflo‘la;a“l <6, <

(51 and %‘ai‘ <a, < aq, then7 on gl;a ﬂ'~71:a ﬁjQ:ay

12 — 7] < Cihiog + Cadg Hﬁ —ﬂOH + Cs Z |al| Ca z": a7
- @ 1 n Oa n '

o2
Oq — o

1€Jay 5,

Proof. By using Lemma B.2 and Assumption 4.2:

, (0 (0&;)? 5 ., [0& a? 0\ o€;a; , (o0& o2
v (5—a> (&a)Q 2 £y (5_11) (J) +2t7/) (Ua> (&a)2 + <&—a) (511)2
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= 2.2

o€\ o%€; |oe;a;l

> / i i _9 e
= ( ) a)?  0a)?

(@
2.2 2
o o'e (146
> 2 AT
> T3s)F of 2(laf + [bl)e TR

for i € Ga,s. and t € [0,1]. Consequently, on Gi,,, we have that 0 < D <
%Z?:1 infy; ¢’ geqtta; ) (o€itta:)” It now follows from Lemmas B.3

0att(6a—0a) ) (0at+t(6a—0a))?"

and B.2 that
1 /\1 )\20',1
Aa_ a < = 1 5 5
umaol < |0 BI02 g 4 2
Dy 6o —0a| Di 1
2 el TS _5*52 i
1€Ja, 5, i=1
Dy Db, 11 < a? 1 o
1 bl 2y il
e S PPV S e e
i=1 i=1
By plugging in 6, = § and |a7 < o, 1% |a’| <1 |’:|2 in the above inequality and
using 1 — 2240, > %, we recover the constants C; for the lemma. O

B.3. Technical arguments on bounds between norms

Here we provide a bound for the off diagonal elements of ||| 1.

Lemma B.5. Let ‘U“U_a“l < 0 < 41 and SUPZ““‘ < a, < ay. Then there
exist Q1 > 0 and Q2 > 0 such that on G, ﬂ jl 0 N J2:a, M0g|6a — 04| +

250 sup, ("E’> 98 9 (G, — 04) is bounded from above by

Oa Oa

o2 2

n
_E_i
=1

Q

a

+ QQA%U(:;

|Ja 6|1Z 2

(l

where Q1 and Q2 are constants depending only on Dy, Do, D3 and Dy.

Proof. By Lemma B.3, §, < % and sup; |a;| < o4 we have

)Uezal_[2+D1+1+4D3+4D2] Xaoa ||B — 50H

Oq

1 - ’ O'gi
S e (4
n < t Oq
i=1
n

1 1 2 1 <~ a2
DY |ai|+E;Z—:+a*E;§—;

a
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<FEi [ A0,

5 1 1 a?
B-p 7 3 i

1€ oy 54 =1

+ Eaou |0A'a - Ua| 5

where By = 8+2D1+8Dy+8D3, Fs = 2Dy. Thus % Sor sup, ¢ (‘(’;l
is bounded from above by

By
V7

Similarly by Lemma B.4, we have

>\2Ua

s 1 1 & a? |60 — 04
0 § : 2 : 7 a a

/6_/6 - ai - — E (l*i.
Hl n ‘ | n < oa 2

1EJ oy, 8%

|60 — 0al

\/U_a S Cl)\l\/ 0aq0q

+C2 +C3+Cy
NG

ES)\I V0a0Oa

)\2 Oq

. 1 1~ a?
g5 X lml+n

g
1€ =1 @

IN

Ey
_|_
NG

where F3 = 2C7 and E4 = Cy + C5 + C4.

)\2 Oq

R RS Sl o
1 n. ¢ né= o, ’

1€Jay 5,

n (& & ai (s n (&) & _as | 18a=ol
Zi:lSUPt"/’ (5;) 5. 5. (Ga —0a)| < 2‘Z¢Z1SUPt¢ (5;) 5;\/;7 Joa

as
Qs 8x b

2
2,2 1 | Jaw sl 1
a repeated use of 2uv < u”+v*° and [5 > i€ a5 |ai|] < TSE E:iEJ
imply the lemma.

Building upon Lemma B.5, we provide an upper bound in terms of ||-||; in
the location space. Let J, = Jo,a N J1;0 N J2:a-

30
Lemma B.6. Let ‘””;”“l < 5, < 6y, S“pl““‘ < a, < al and I8 o’ﬁ I,
QL Then 1+6 }LZZ 11nft'¢/<‘751) L, Q1 Zz ) Ua |:‘]o¢* 6| +a :|
Q22303 on Gi,a N Tq 15 bounded from above by
o 8- 8], + 2. 18l

where Q1 and Q2 are the same as in Lemma B.5.

(/\an + A

Proof. We follow the same arguments as in Subsection A.8. Consequently we
work with pj instead of p in Lemma 4.1 and with ¢ > 0. Furthermore by
Lemma 4.1 and the definitions of \g and \;, there exists t*= € [0, 1] such that

H/é_ﬂoa&a_o'a 1 So—a)\OHﬁ_ﬂoHl

A 18] + ek

- Ua)\l |6a - Ua| + )\*
T(t )
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is bounded

tA)

On the other hand, we have that lim sup,,_,, H,@ — 8% 6,0,
r

from below by

1+5 nz nf ¢’ (UEZ) —i——zsupw (UQ) Z?z; (64— 0a)-

(L a

Thus the lemma follows directly from Lemma B.5 and 3" | 2 g O

m\>|

B.4. Proof of Theorem 4.1

Here we extend on the definition of Z, Subsection 3.4, by defining;:

SX*},
—+oo

where Ew/ is defined analogously to EAJ%. Once again, just as for Z,, we

T = {22,

point out that P[Z,, s.] can be studied in exactly the same way as P[A].
To begin we find a lower bound for = 7  inf; ¢/ (%) i

Oa
Lemma B.7. Let @ < 8, < % and %Ial < ay < %. Then on I, s.,
- 2
LS inf o/ (‘;—E> 2 s bounded from below by

A
/ g€ DQOé* D35* -
[E {%*75* <0)} T1os 1-6] o
-
— 16\,E [z/;a* 5 <E)] LSS LY
’ Oq O

Proof. We first start by bounding inf; ¢’ (‘”z ) from below.

We define 2% = 1if i € J,, 5. and Z**°* = 0 otherwise. This implies
that if Z®** = 1 we have the obvious bound: inf, ¢’ (‘;—a) > 0. On the
other hand, if ZZ-O‘*";* = 0, by Lemma B.1 there exits a £ € [0,1] such that

* * ZotMe (5, — ot
g (aa—i;ir(t;ailoa)) g (06L> " <U€L) [tkéaal _ %_e:t (?a O'a)i|, where & =
€+t % and G0 = 0q+1t* (64—0,). This implies, in the case where Zf‘*’é* =0,
oei+t M a; o€ x -
that ‘wl (Ua+t>‘—*‘r(t5’ag0n,)) w/ ( )‘ S D2 1?5* + D3 1i5* .
Therefore, generally we have the following bound:

/w <061> (1 z5 v (Z—€> - {Dzl f*é* + Dy fé}

o AN Qe 0
- ¢a*,6*<o,a> |:D21—5*+D31—(5*:|.

Vv
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Now by using Lemma A.3, we can bound + "7 Vs (t;ez) Z—? from below
by
G R G P I
21t N oot s o]
o by 1
The lemma follows directly from this. O
30
Lemma B.8. Let |0’a700_‘ < 6 < (5 sup7\a1\ < Oy < %1 and M L

o

Then on Gi.o N Jq ﬂIa* 5. we have

E[aﬁ<;ﬂ

1160

\wo Bl + 2 8] < 80~ B, + ol

where 9 = D21

—|—Q1(1—|—5 ) [l‘]“*“ l +a } and v3 = Aoy +
)\2034_16)\*MH _ H +QLa§1,

? o 8" -5, Is°=A[l,
Proof. This follows from the combination of Lemmas B.6 and B.7. O

Let 0 < 62 < 6; and 0 < a2 < «; satisfy the following inequality:

s (2]

9 , [ o€ 9D,02  9D30? o -

Oq

where ()1 is a combination of the D;, defined in Lemma B.6 in the Appendix.
Furthermore, let 0 < \? satisfy the following:

0 0

where K* = (Cy + C3 + Cy) K, with Cy, C3 and Cy as in Lemma B.4 is used to
bound the error in scale estimation.

Lemma B.9. Suppose the compatibility condition holds for Sy, Wi’;"“l <. <

50; sup;|a;i| < a, < a0 Hﬁ_/BOH < min{EIOA*Ua S0 &}7320)\*50 <
1

N[=

o (gl @[> & =

e Ja By (2 Aooa+2A A10q
Ua)\lQ2 < H oo ||1 and | ;yé*l < [12(Ql )] Then, fO’/‘ 2 001+§23<)7\' +2\10 < )\

on G, N Jo N1y, s, we have that %% is bounded from below by
0]

Ta

B [V, (52)] B[ ()] s

Oa

Jo° - 8]+ >

where 4 = 2?32‘3* + 2?_3(% + 2Q1w +2Q102.
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Proof. As 320\, ;% < 1, the assumption on A, implies 0 < 2Xgo, + 2M\302 +

. . 2000, +27202 42010,
2X10, < A,. Furthermore the same assumption, i.e. 2207et222%a 1200 )

1—320X.

implies that

lv ()] 10
2000 + 22202 + 2\ 0, + 322, i a0 <\,
R,
This in turn implies that Ao, + A302 + % + 16)\ Hﬁ 5H
‘,30 — ,BH . We can then plug this in the
1

equation of Lemma B.8 and we recover

%)\*, by the assumptions on A\; and

E[am(%ﬂ
e O N TR RSNLAR
By the same technlques as in Lemma A.5, we then have:
E {Wa*,&* (g_z)] - 72 o a2 NF < A
i 1B =Bl B, = x % = s

By the choices of §° and a® and the assumption on , we have vy <

‘Ja*ﬁ*‘
n

E[w&*,é* (Z—s ] Therefore we can use the compatibility condition as in

Lemma A.6. In fact by using the same techniques as in Lemma A.6, we have

that e B g0 )" 4 167 — B saisfies the following
A T Y R Y
< — B,
fa A ey

X260, s

Consequently m o is bounded from below by
oa 0

B Vo (50)] — w2 E V(& : :
it [ ()] - e 2B () 10 g

Oq

The lemma follows directly from ﬁ’}/g = 4. O
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Before providing the proof of Theorem 4.1, we introduce new notation. Sim-
ilarly to the definition of h in Subsection 3.4, we define:

ho(Qe, 0y ) = 2R [¢f (“)} _ 2w

a 1+ 6.
oDso +6,D
+2 T 420 (o + ).

We obviously have h, > 0. Moreover, by the choices of a? and §°, we have for
all a,, < a? and 8, < 89 that hy(ou, 0s,7.) < %]E [w’ (%)} + 2Q17v« and so if
%@ijﬂ we would have hy(au, 0x,7i) < %E [1/)’ (%)]

We now introduce a set, needed specifically for the convergence of the scale
parameter. Let o be the solution of 1 3" | y( (2) = a. This would be the
estimate of o, in case the true location parameter were known. We can define:

or— 04 50
ga;2 = {| < | < } .
O 2

Since =37 | X0 (<) is monotone decreasing, by the law of large numbers we
obviously have lim, o P [Go;2] = 1 for any fixed 8% > 0.
Finally, we define the set of observations close to non differentiable points:

J,
ga;3:{| = SV*}
n

As an observation, for a differentiable ¢ (e.g. the classical case), we have 0 =

Jo . . Jon 60
% Otherwise, for a more general ¥, we have limyaxfa, 5. }3—0 E [%] =

Ve <

0 and therefore for e, and §, small enough P[G,.3] can be assumed big for
relatively small ~,. To simplify the notation a bit, we define the sets G, =
Ga:1 NGa:2 N Gg.3. The proof is very similar to that of Theorem 3.2 with a few
subtleties. Here again we use the convexity of the objective function in order to
use previous lemmas on the minimizers.

Defining 8° = B8+t [ﬁ — ,6'0} , we have H,@t — ,6'0H1 =t Hﬁ — ,BoHl. Moreover,
we define ¢} (¢) as the minimizer of the objective function for a fixed location
B'. Let t* € [0,1] such that H,@t* — ﬂOH = \102Q2. Accordingly we must have

1

|8 =8, < ey

We now show that [Ze()=cal ) 9al < §0 for t € [0,¢*]. This is indeed true for £ = 0,

since we are on Gg2. Furthermore if for any ¢ € [0,t*] we have M <Y,

then by Lemma B.4 and the choice of the constant )\2, we must have M <

0

%,smce

log(t) — ol t a0 Cs lat| | Cu <~ (ah)?

LA P Co\ — — 4+ — L
o S OnoatCakell8 =B+ T2 B TR+ R S,

i€Jay,s. O i=1
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1
< Ciaoa+ — |[[8° = 8|, [CoAooa + C5K + CuKal]
o5 1 o5 o5 &
C1—0 4 10X Y
4C1

The statement then follows from the intermediate value theorem since o (t) is
continuous on [0, 1]. One may thus apply Lemma B.9, and because of the choice
of the constants we recover

< 4\ Oa S0

|8 -8 < T (=] 4

Tq S0

For the same reasons as before, we have H,BO — ,@H <4\ ——2~—73%. By plug-
1 B[yr(25)] 98

ging these results in Lemma B.9, the proof is complete.
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