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Abstract

We consider the 1d Schrödinger operators with random decaying potentials in the
sub-critical case where the spectrum is pure point. We show that the point process
composed of the rescaled eigenvalues in the bulk, together with those zero points of
the corresponding eigenfunctions, converges to a Poisson process.
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1 Introduction

The 1d Schrödinger operators with random decaying potentials are known to have
rich spectral properties depending on the decay order of the potentials (e.g., [8, 6]).
Recently, the level statistics problem of this operators are studied and turned out to be
related to the β-ensembles which appear in the random matrix theory[5, 9, 7, 11]. In
this paper we consider the following Hamiltonian.

H := − d2

dt2
+ a(t)F (Xt) on L2(R)

where the function a ∈ C∞(R) is a decay factor satisfying a(−t) = a(t), being non-
increasing for t > 0, and

a(t) = t−α(1 + o(1)), a′(t) = O(t−α−1), t→∞, α > 0.

The assumption on a′ is technical but we need it to estimate some error terms. F (Xt) is
a random factor where F ∈ C∞(M), M is the d-dimensional torus, and

〈F 〉 :=

∫
M

F (x)dx = 0.
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Poisson statistics for Schrödinger Operators

{Xt}t∈R is the Brownian motion on M . Since the potential a(t)F (Xt) is compact w.r.t. the
free Laplacian −d2/dt2, the essential spectrum of H is equal to σess(H) = [0,∞) which
is [8] (1) α > 1/2: absolutely continuous, (2) α < 1/2: pure point with (sub)exponentially
decaying eigenfunctions, and (3) α = 1/2: there exists a non-random number Ec ≥ 0

such that the spectrum is pure point on [0, Ec] and singular continuous on [Ec,∞).
The purpose of this paper is to study the local fluctuation of the eigenvalues in the

positive energy axis. In order for that, let HL := H|[0,L] be the restriction of H on
the interval [0, L] with Dirichlet boundary condition, and let {Ej(L)}j≥j0 (0 < Ej0(L) <

Ej0+1(L) < · · · ) be the set of positive eigenvalues of HL. Take the reference energy
E0 > 0 arbitrary, and consider the point process

ξL :=
∑
j≥j0

δ
L(
√
Ej−
√
E0)

where we take the square root of each eigenvalues which corresponds to the unfolding
with respect to the integrated density of states N(E) = π−1

√
E. For a Borel measure

µ on Rd, we denote by Poisson(µ) the Poisson process on Rd with intensity measure µ.
Similarly, for a constant c > 0, we denote by Poisson(c) the Poisson distribution with
parameter c. The first theorem of this paper is

Theorem 1.1. Let α < 1/2. Then ξL converges in distribution to the Poisson process of
intensity dλ/π 1

ξL
d→ Poisson

(
dλ

π

)
, L→∞.

Remark 1.2. When we consider two reference energies E1, E2, E1 6= E2, then the cor-
responding point processes ξ1, ξ2 jointly converge to the independent Poisson processes
of intensity dλ/π.

Remark 1.3. Together with results in [7, 11], we have 2

(1) α >
1

2
=⇒ ξL → clock process

(2) α =
1

2
=⇒ ξL → Sineβ process

(3) α <
1

2
=⇒ ξL → Poisson process

Such kind of results have been known for discrete models: [5] proved (1)-(3) above
for CMV matrices, [3] proved “clock behavior” (similar to (1)) for Jacobi matrices, and
[9] proved (2) for 1d discrete Schrödinger operators. Hence our result is a continuum
analogue of them. The model-independent nature of those results is due to the fact
that the Prüfer phases of those models obey the similar equations and thus have similar
behavior. The global fluctuation of eigenvalues is studied in [13] which also shows
different behavior in above three cases.

Remark 1.4. Let H ′L := (− d2

dt2 + L−αF (Xt))|[0,L] be the Hamiltonian with decaying
coupling constant under the Dirichlet boundary condition. The method of proof of
Theorem 1.1 also works for H ′L so that together with results in [11] we have 3

(1) α >
1

2
=⇒ ξL → clock process

1 We consider the vague topology on the space of point measures on R. Hence ξL
d→ ξ is equivalent to

limL→∞E[e−ξL(f)] = E[e−ξ(f)] for any f ∈ C+
c (R).

2 In (2), β = β(E0) := 8E0/C(E0) where C(E) := 〈∇g√E ,∇g√E〉, g√E := (L+2i
√
E)−1F . β(E) is equal

to the reciprocal of the Lyapunov exponent of H.
3 In (2), τ = τ(E0) = C(E0)/(2E0) = 4/β(E0) [12].
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Poisson statistics for Schrödinger Operators

(2) α =
1

2
=⇒ ξL → Schτ process

(3) α <
1

2
=⇒ ξL → Poisson

(
dλ

π

)
[9] proved (2) for 1d discrete Schrödinger operators.

Remark 1.5. It would be interesting to study the behavior of eigenvalues near the
bottom edge of the essential spectrum (i.e., to study ξL for E0 = 0), for which the
technique in this paper does not apply. For recent development in this respect, we refer
to [2].

To see the outline of proof, we introduce the Prüfer variable as follows. Let xt be the
solution to the Schrödinger equation Hxt = κ2xt, x0 = 0, which is represented in the
following form. (

xt
x′t/κ

)
= rt(κ)

(
sin θt(κ)

cos θt(κ)

)
, θ0(κ) = 0.

Set

ΘL(λ) := θL

(√
E0 +

λ

L

)
− θL

(√
E0

)
φL(E0) := {θL(

√
E0)}π, where {x}π := x−

⌊x
π

⌋
π.

Since, by Sturm’s oscillation theorem, E = Ej(L) if and only if θL(
√
E) = jπ, the Laplace

transform of ξL has the following representation.

E
[
e−ξL(f)

]
= E

[
exp

(
−
∑
k

f
(
Θ−1
L (kπ − φL(E0))

))]
(1.1)

where ξL(f) =

∫
R

f(x)ξL(dx), f ∈ C+
c (R).

Thus our aim is to study the joint limit of (ΘL(λ), φL(E0)). Here we replace L by n and
consider the family Hnt (t ∈ [0, 1]) of Hamiltonians. We will show that the following limits
exist.

Θ̂t(λ)
d
= lim
n→∞

Θnt(λ), φ̂t
d
= lim
n→∞

φnt(E0).

In the first equation, both sides are regarded as the non-decreasing function(with the
weak topology as a measure)-valued processes in t. Then we have the following theorem.

Theorem 1.6.
(1) For any t ∈ (0, 1], φ̂t is uniformly distributed on [0, π).
(2)

Θ̂t(λ) = π

∫
[0,t]×[0,λ]

P̂ (dsdλ′)

where P̂ = Poisson
(
π−11[0,1](s)dsdλ

′) is the Poisson process on R2 whose intensity
measure is equal to π−11[0,1](s)dsdλ

′.

Remark 1.7. The statement in Theorem 1.6(2) is conjectured in [5] for CMV matrices.
On the other hand, for the Anderson model H = −4 + Vω(x) on l2(Zd), the following
facts are known [4, 10]. Let HL := H|{1,··· ,L}d be the restriction of H on the box of
size L, with {Ej(L)}j≥1 being its eigenvalues. Let xj(L) ∈ Rd be the localization center
corresponding to Ej(L). If E0 lies in the localized region, we have∑

j

δ(Ld(Ej(L)−E0), L−1xj(L))
d→ Poisson

(
n(E0)1[0,1]d(x)dE × dx

)
(1.2)
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Poisson statistics for Schrödinger Operators

where n(E0) := d
dEN(E)|E=E0

is the density of states at E = E0.
The jump points of the function t 7→ bΘnt(λ)/πc are (modulo some errors) related to

the zero points of the eigenfunction such that the corresponding eigenvalue is less than
λ. Since the eigenfunction decays sub-exponentially and since the set of jump points of
the function t 7→ Θ̂t(λ)/π has the monotonicity in λ to be described in eq.(1.5), those
jump points are close to the localization center of each eigenfunctions. Hence we believe
that the statement like eq.(1.2) holds also for our case and that Theorem 1.6 (2) is related
to this speculation.

We shall explain the idea of proof. The Pfrüfer phase satisfies the integral equation
(2.1) by which we compute the equation satisfied by Θnt(λ). By using “Ito’s formula”
(2.3) we can show that, up to error terms,

dΘnt(λ) ∼ λdt+ n
1
2−αRe

[(
e2iΘnt(λ) − 1

)
t−αdZt

]
where Zt = Xt + iYt is the complex Brownian motion. At this point, we have a general
picture: (1) α > 1/2: second term vanishes which implies the convergence to the clock
process, (2) α = 1/2: Θnt(λ) converges to the solution to a SDE, and (3) α < 1/2: the
diffusion term will be dominant so that Θnt(λ) should be in a vicinity of πZ in order to
have (e2iΘnt(λ)−1) small. Here we note that Θnt(λ) > 0 for λ > 0 and E[Θnt(λ)] = λt+o(1)

(Proposition 2.4). By the change of variables

t = sγ , γ :=
1

1− 2α
, s ∈ [0, 1],

we have

dΘnsγ (λ) ∼ λγsγ−1ds+ n
1
2γRe

[
(e2iΘnsγ (λ) − 1)dZ̃s

]
.

Here we recall the definition of the Sineβ-process [14]. Let αt(λ) be the solution to
the following SDE.

dαt(λ) = λ · β
4
e−

β
4 tdt+Re

[(
eiαt(λ) − 1

)
dZt

]
(1.3)

α0(λ) = 0.

Then the function t 7→ bαt(λ)/2πc is non-decreasing and the limit α∞(λ) := limt→∞ αt(λ)

satisfies α∞(λ) ∈ 2πZ, a.s. Then Sineβ-process on the interval [λ1, λ2] is defined by

Sineβ [λ1, λ2]
d
=
α∞(λ2)− α∞(λ1)

2π
.

Allez-Dumaz [1] showed that Sineβ
d→ Poisson(dλ/2π) as β → 0. This fact can easily be

generalized to other processes where the drift term in the corresponding SDE (1.3) is
replaced by functions f with mild conditions[12]. Moreover, by a scaling t 7→ β

4 t, eq.(1.3)
becomes

dαt(λ) = λe−tdt+
2√
β
Re
[(
eiαt(λ) − 1

)
dZt

]
α0(λ) = 0

so that, by setting β = n−
1
γ , we can use the idea of [1]: to study the hitting time of Θnt(λ)

to the set πZ, we consider

R(nt) := log tan
Θnt(λ)

2
,
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SDE of which has a diffusion term with constant coefficient so that we may use compari-
son argument. In fact, modulo error terms, we have (Propositions 3.1, 4.1)

dR(ntγ) ∼
(
λγtγ−1 coshR(ntγ) +

C2
n

2
tanhR(ntγ)

)
dt+ CndMt (1.4)

where Cn = C(E0, F )n
1
2γ , d〈M〉t = (1 + o(1)) dt,

and C(E0, F ) is a positive constant depending on E0, F . Here we use assumptions on
a, a′ to estimate error terms. By a time-change, we can suppose that Mt is a Brownian
motion. We divide the interval [0, 1] into small random ones Ik = [τk/N, τk+1/N ] and
consider the stationary processes S± which are the solution to the following SDE’s on
each Ik’s.

dS+(t) ∼
(
λγ
(τk+1

N

)γ−1

coshS+(t) +
C2
n

2
tanhS+(t)

)
dt+ CndMt

dS−(t) ∼
(
λγ
(τk
N

)γ−1

coshS−(t) +
C2
n

2
tanhS−(t)

)
dt+ CndMt.

On each Ik, we can bound R(ntγ) by S± from above and below:

S−(t) ≤ R(ntγ) ≤ S+(t).

We can explicitly compute the explosion times of S± which converge to Exp
(
λ̃/π

)
as n → ∞, where λ̃ := λγ (τk+1/N)

γ−1 (Proposition 5.1). By an argument like the
convergence of Riemannian sums to the integral, we can show that the jump points of
the function s 7→ bΘnsγ (λ)/πc converge to Poisson

(
π−1γsγ−11[0,1](s)ds

)
(Proposition 5.7).

Hence for an interval J ⊂ R, ξL(J) converges to the Poisson distribution with parameter
π−1|J |. It then suffies to show that the collection of random variables ξL(J1), · · · , ξL(Jn)

converge jointly to the independent ones for disjoint intervals J1, J2, · · · , Jn. For λ1 < λ2,
let Pλ1 , Pλ2 , Pλ1,λ2 be the limit of those point processes composed by the jump points
of functions s 7→ bΘnsγ (λ1)/πc, bΘnsγ (λ2)/πc and b(Θnsγ (λ2)−Θnsγ (λ1))/πc respectively.
Then Pλ1 , Pλ2 , Pλ1,λ2 turn out to be the Fs-Poisson processes under a suitable choice of
the filtration Fs (Lemma 5.10). Letting Pλ1 , Pλ2 , Pλ1,λ2 be the set of atoms, we show
(Lemmas 5.11, 5.12)

Pλ1
⊂ Pλ2

, Pλ1
∩ Pλ1,λ2

= ∅ (1.5)

from which the independence of Pλ1
and Pλ1,λ2

follows.

Finally we show that limn→∞Θnt(λ)/π ∈ Z, a.s. which proves Theorem 1.6(2). The
statement in Theorem 1.6(1) is essentially proved in our previous paper [7] where the
condition 〈F 〉 = 0 is used. Theorem 1.1 follows from eq.(1.1) and Theorem 1.6.

The rest of this paper is organized as follows. In Section 2, we study the behavior of
Θnt(λ) and derive some properties of the expectation of Θnt(λ) and the monotonicity of
the function t 7→ bΘnt(λ)/πc. In Section 3, we derive the Ricatti equation (1.4) satisfied
by R(nt). In Section 4, we estimate R(ntγ) from above and below by solutions R± to
simple SDE’s. In Section 5, following the argument in [1], we consider the stationary
approximation S± of R± and compute the explosion time of them. Then we show that
the jump points of the function t 7→ bΘnt/πc converge to a Poisson process and that
the processes Pλ1

and Pλ1,λ2
mentioned above are independent. In Section 6, we prove

Theorems 1.1, 1.6. Sections 7, 8 are appendices. In what follows, C, C ′ are positive
constants which may change from line to line in each argument.
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2 Behavior of Θnt(λ)

In this section we introduce notations and derive some basic properties of the relative
Prüfer phase Θnt(λ). Let θ̃t(κ) be defined by

θt(κ) = κt+ θ̃t(κ)

which satisfies the following integral equation.

θ̃t(κ) =
1

2κ
Re

∫ t

0

(
e2iθs(κ) − 1

)
a(s)F (Xs)ds. (2.1)

Set

κ0 :=
√
E0

κc := κ0 +
c

n
, n > 0, c ∈ R

r
(n)
t (m) := e2miθt(κc) − e2miθt(κ0), m ∈ Z

An(t) := − c

2κc · κ0
Re
(
e2iθt(κc) − 1

)
F (Xt)

(4f)(m) :=
1

2
(f(m+ 1) + f(m− 1))− f(m).

By (2.1) we have

Θnt(c) = θnt(κc)− θnt(κ0)

= ct+
1

2κ0
Re

∫ nt

0

r(n)
s (1)a(s)F (Xs)ds+

1

n

∫ nt

0

An(s)a(s)ds. (2.2)

Remark 2.1. For large n, we can find t0 > 0 such that for t ≥ t0, we have c > An(nt)a(nt).

Then by eq.(2.2), for t ≥ t0, once Θ
(n)
t (λ) enters to an interval ((k+1)π, (k+2)π) for some

k ∈ N, it never returns to (kπ, (k + 1)π). In other words, the function t 7→ bΘnt(λ)/πc is
non-decreasing.

Here we make use of the following identity which is a consequence of Ito’s formula
[8]: for f ∈ C∞(M) and κ 6= 0,

eiκsf(Xs)ds = d
(
eiκs(Rκf)(Xs)

)
− eiκs(∇Rκf)(Xs)dXs (2.3)

f(Xs)ds = 〈f〉ds+ d((R0f)(Xs))−∇(R0f)(Xs)dXs (2.4)

where Rκf := (L+ iκ)−1f, R0f := L−1(f − 〈f〉).

L is the generator of Xt. Eq.(2.3) and the integration by parts yields the following
equation.

Lemma 2.2. Let b ∈ C∞([0,∞)), ϕ ∈ C∞(M), and let gmκ0
ϕ := R2mκ0

ϕ = (L+2miκ0)−1ϕ.
Then we have∫ t

0

b(s)r(n)
s (m)ϕ(Xs)ds = (−2mi) · 1

2κ0

∫ t

0

b(s)(4r(n)
s )(m)a(s)F (Xs)g

mκ0
ϕ (Xs)ds

+
[
b(s)r(n)

s (m)gmκ0
ϕ (Xs)

]t
0

−
∫ t

0

b′(s)r(n)
s (m)gmκ0

ϕ (Xs)ds

−2mi · 1

n

∫ t

0

b(s) (c+An(s)a(s)) e2miθs(κc)gmκ0
ϕ (Xs)ds

−
∫ t

0

b(s)r(n)
s (m)∇gmκ0

ϕ (Xs)dXs.
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Putting m = 1, ϕ = F , and b(t) = a(t) in Lemma 2.2, we have

Lemma 2.3.

Θnt(c) = ct+M
(n)
t +O

(n)
t + δ

(n)
t

where

M
(n)
t = − 1

2κ0
Re

∫ nt

0

a(s)r(n)
s (1)∇gκ0

F (Xs)dXs

O
(n)
t =

1

2κ0
Re

(
− 2i

2κ0

∫ nt

0

a(s)2(4r(n)
s )(1)F (Xs)g

κ0

F (Xs)ds

)
δ

(n)
t =

1

2κ0
Re

{[
a(s)r(n)

s (1)gκ0

F (Xs)
]nt

0
−
∫ nt

0

a′(s)r(n)
s (1)gκ0

F (Xs)ds

+(−2i)
1

n

∫ nt

0

a(s) (c+An(s)a(s)) e2iθs(κc)gκ0

F (Xs)ds

}

+
1

n

∫ nt

0

a(s)An(s)ds.

Moreover,

lim
n→∞

δ
(n)
t = 0.

By using Lemmas 2.2, 2.3 we can prove the following Proposition which is necessary
to study the behavior of E[Θnt(λ)].

Proposition 2.4. Suppose that ∫ ∞
0

a(s)j0ds <∞

for some j0 ≥ 1. Then for t > 0, we have

Θnt(c) = ct+ M̃
(n)
t + o(1), n→∞

where M̃ (n)
t is a martingale.

Proof. Note that limn→∞ r
(n)
s (m) = 0. If j0 ≤ 2, O(n)

t = o(1) which already proves the

statement of Proposition 2.4 with M̃ (n)
t = M

(n)
t . If j0 ≥ 3, we apply Lemma 2.2 for O(n)

t

so that

O
(n)
t =

1

2κ
Re

(
− 2i

2κ

∫ nt

0

a(s)24r(n)
s (1)F (Xs)g

κ
F (Xs)ds

)

= Re
∑
m=1,2

Cm

∫ nt

0

a(s)3r(n)
s (m)G(n)

m (Xs)ds+ (martingale) + o(1)

where G(n)
m is uniformly bounded. Iterating this process until we have a(s)j0 yields

O
(n)
t =

∑
m

cm

∫ nt

0

a(s)j0r(n)
s (m)G(n)

m (Xs)ds+ (martingale) + o(1).

EJP 22 (2017), paper 69.
Page 7/31

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP91
http://www.imstat.org/ejp/


Poisson statistics for Schrödinger Operators

3 Ricatti equation

For a function κ 7→ f(κ) we introduce

∆f := f(κc)− f(κd), 0 ≤ d < c, κx := κ0 +
x

n
.

This definition is different from that in Section 2. To study the hitting time of Θnt(λ) to
the set πZ, or that of (Θnt(λ

′)−Θnt(λ)) in general, we consider

R(t) := log tan
∆θt

2
.

Note that

coshR(s) =
1

sin ∆θs
, sinhR(s) = −cos ∆θs

sin ∆θs
. (3.1)

Here we recall that, for Sineβ-process, the corresponding process R̃(t) := log tan (αt(λ)/4)

with αt(λ) being the solution to eq.(1.3) satisfies

dR̃(t) =
1

2

(
λ
β

4
e−

β
4 t cosh R̃(t) + tanh R̃(t)

)
dt+ dBt. (3.2)

The following Proposition implies that R(nt) is close to the solution to a SDE which is
similar to eq.(3.2).

Proposition 3.1.

R(nt)−R(0) =
c− d
n

∫ nt

0

coshR(s) ds

+
1

2κ0
Re

[
−〈Fgκ0

〉
κ0

] ∫ nt

0

a(s)2 tanhR(s) ds+Mt + E(nt) (3.3)

where M is a martingale with

d〈M〉t =

(
1

2κ0

)2

2〈ψκ0〉na(nt)2(1 + o(1))dt, n→∞ (3.4)

ψκ0
:= [gκ0

, gκ0
], gκ0

:= R2κ0
F = (L+ 2iκ0)−1F, [f, g] := ∇f · ∇g.

The last term E(nt) in eq.(3.3) is an negligible error compared to 1st and 2nd terms of
RHS in eq.(3.3), and has the following form.

E(nt) =

∫ nt

0

cosh(R(s))b(s)c1(s)ds+

∫ nt

0

tanh(R(s))a(s)3c2(s)ds+ e(n)(t) + C

where C is a non-random constant and

b(s) =
1

n
a(s) + a′(s) + a(s)j0 , j0 := min{j ∈ N | 1− jα < 0}

c1(s), c2(s) : bounded functions

e(n)(t) ≤ C ′n−α.

Proof. First of all, we introduce a notation A ≈ B meaning that A − B is a sum of
an negligible error E(nt) and a martingale N whose quadratic variation is negligible
compared to that of M in eq.(3.4):

A ≈ B def⇐⇒ A−B = E(nt) +Nt, d〈N〉t ≤ C · na(nt)3dt.
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By the integral equation (2.1), we have

R(nt)−R(0) =

∫ nt

0

1

sin(∆θs)

d

ds
(θs(κc)− θs(κd)) ds

=

∫ nt

0

1

sin(∆θs)

{
c− d
n

+
1

2κc
Re
(
e2iθs(κc) − 1

)
a(s)F (Xs)

− 1

2κd
Re
(
e2iθs(κd) − 1

)
a(s)F (Xs)

}
ds

=

∫ nt

0

1

sin(∆θs)

c− d
n

ds

+

∫ nt

0

1

sin(∆θs)

1

2κ0
Re
(
e2iθs(κc) − e2iθs(κd)

)
a(s)F (Xs)ds

+

(
1

2κc
− 1

2κ0

)∫ nt

0

1

sin(∆θs)
Re
(
e2iθs(κc) − 1

)
a(s)F (Xs)ds

−
(

1

2κd
− 1

2κ0

)∫ nt

0

1

sin(∆θs)
Re
(
e2iθs(κd) − 1

)
a(s)F (Xs)ds

=: I + · · ·+ IV.

By (3.1), I is equal to the 1st term of RHS in eq.(3.3). Since κ−1
c − κ−1

0 = O(n−1), the
integrands of III, IV are equal to cosh(R(s)) · a(s)n−1 multiplied by bounded functions
so that III, IV ≈ 0. Hence it suffices to compute the 2nd term II which has the following
form:

II =
1

2κ0
Re[∆J ] =

1

2κ0
Re[J(κc)− J(κd)]

where J(κ) :=

∫ nt

0

1

sin(∆θs)
e2iθs(κ)a(s)F (Xs)ds.

In order to compute J(κ) we introduce

J(k; j;H)(κ) :=

∫ nt

0

1

sin(∆θs)
e2ikθs(κ)a(s)jH(Xs)ds

for k ∈ Z, j ≥ 1, and H ∈ C∞(M). By Proposition 7.3(1) we have

∆J = ∆J(1; 1;F ) ≈ 1

κ0
〈F · gκ0〉

∫ nt

0

cos(∆θs)a(s)2ds

− 2i

2κ0

{
1

2
∆J(2; 2;Fgκ0)−∆J(1; 2;Fgκ0)

}
+Nt (3.5)

where we set gκ0 := R2κ0F . N is a martingale such that

〈N,N〉t = o

(∫ nt

0

a(s)2ds

)
〈N,N〉t = 4〈ψ〉

∫ nt

0

a(s)2ds(1 + o(1)), ψ := [gκ0
, gκ0

]

as n → ∞. By (3.1), the 1st term of RHS in eq.(3.5) is equal to the 2nd term of RHS
in eq.(3.3). For the 2nd term of RHS in eq.(3.5), we use Theorem 7.3(2). Noting
that J(0; j;H) is independent of κ so that ∆J(0; j;H) = 0, we can repeatedly use
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Theorem 7.3(2) for (j0 − 1) - times to obtain the sum of negligible terms of the form:
∆J(k; j0;H) ≈ 0. Therefore

∆J(2; 2;Fgκ0) ≈ 0, ∆J(1; 2;Fgκ0) ≈ 0.

Set M to be the sum of (2κ0)−1ReN and all other martingales appeared in the above
argument, after taking real part and multiplying (2κ0)−1. Then M satisfies eq.(3.4).

4 A comparison argument

In this section we consider R̃ := R − e(n), carry out scaling and time-change, and
bound from above and below by the diffusions R± which obey simple SDE’s (4.1), (4.2).
We first prepare some notations. Let

R̃(nt) := R(nt)− e(n)(t).

e(n)(t) is an error term appeared in Proposition 3.1. Moreover set

γ :=
1

1− 2α
> 1,

δ = Cn−α, ε = Cn−β ,

β := min{α, j0α− 1} = j0α− 1, C > 0,

cosh+(r) := sup
|s−r|<δ

cosh s, cosh−(r) := inf
|s−r|<δ

cosh s

tanh+(r) := sup
|s−r|<δ

tanh s, tanh−(r) := inf
|s−r|<δ

tanh s

tanh+,ε(r) :=

{
(1 + ε) tanh+(r) (r > −δ)
(1− ε) tanh+(r) (r < −δ)

tanh−,ε(r) :=

{
(1− ε) tanh−(r) (r > δ)

(1 + ε) tanh−(r) (r < δ)

Cn :=
1

κ0

(
〈ψκ0〉

2

)1/2

γ
1
2n

1
2γ .

We consider diffusions R± which are the solutions to

dR+ =

(
λ(1 + ε) cosh+R+γt

γ−1 +
C2
n

2
tanh+,εR+

)
dt+ CndWt (4.1)

dR− =

(
λ(1− ε) cosh−R−γt

γ−1 +
C2
n

2
tanh−,εR−

)
dt+ CndWt (4.2)

where Wt is a standard Brownian motion starting at 0. Then we have a following bound
on R̃.

Proposition 4.1. There is a time change τ(t) with

τ ′(t) = 1 + o(1), n→∞

uniformly with respect to ω ∈ Ω such that

R−(t) ≤ R̃(nτ(t)γ) ≤ R+(t) (4.3)

provided the initial values coincide.

Proof. We consider R(ntγ) instead of R(nt) and change variables: s = nvγ in eq.(3.3).

R(ntγ) = λ

∫ t

0

cosh(R(nvγ)) · γvγ−1dv
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+
1

2κ0
Re

(
−〈Fgκ0

〉
κ0

)∫ t

0

na(nvγ)2 tanh(R(nvγ)) · γvγ−1dv

+Mntγ + E(ntγ)

d〈M,M〉ntγ =

(
1

2κ0

)2

· 2〈ψκ0
〉 · na(ntγ)2 · γtγ−1(1 + o(1)) dt, n→∞.

We note 〈ψκ0〉 = −2Re〈Fgκ0〉 and let

Dn :=
1

κ0

(
〈ψκ0〉

2

)1/2

, Cn := Dn

(
γn1−2α

)1/2
= Dnγ

1
2n

1
2γ .

Then

R(ntγ) = λ

∫ t

0

cosh(R(nvγ))γvγ−1dv

+
D2
n

2

∫ t

0

tanh(R(nvγ)) · na(nvγ)2 · γvγ−1dv +Mntγ + E(ntγ)

d〈M,M〉ntγ = C2
n(1 + o(1)) dt, n→∞.

Let Nt := Mntγ/Cn and take

τ(t) := inf {s | 〈N〉s > t} .

Then Wt := Nτ(t) is a Brownian motion, τ ′(t)
n→∞→ 1 + o(1) uniformly with respect to

ω ∈ Ω, and

R(nτ(t)γ) = λ

∫ τ(t)

0

cosh(R(nvγ))γvγ−1dv

+
D2
n

2

∫ τ(t)

0

tanh(R(nvγ)) · na(nvγ)2 · γvγ−1 dv + CnWt + E(nτ(t)γ).

Let

R̃(nt) := R(nt)− e(n)(t), Ẽ(nt) := E(nt)− e(n)(t).

Then

R̃(nτ(t)γ) = λ

∫ τ(t)

0

cosh
(
R̃(nvγ) + e(n)(vγ)

)
γvγ−1dv

+
D2
n

2

∫ τ(t)

0

tanh
(
R̃(nvγ) + e(n)(vγ)

)
· na(nvγ)2 · γvγ−1dv

+CnWt + Ẽ(nτ(t)γ) + C. (4.4)

Take t0 > 0 small enough. The contribution from Ẽ(ntγ) for t ≤ t0 is bounded which we
ignore. For t ≥ t0,

Ẽ(ntγ) =

∫ t

0

cosh
(
R̃(nvγ) + e(n)(vγ)

)
b(nvγ)c1(nvγ)nγvγ−1 dv

+

∫ t

0

tanh
(
R̃(nvγ) + e(n)(nvγ)

)
a(nvγ)3c2(nvγ)nγvγ−1 dv

dẼ(ntγ) ≤ cosh(R(ntγ))

{
1

n
a(ntγ) + a′(ntγ) + a(ntγ)j0

}
c1(ntγ)nγtγ−1dt

+| tanh(R(ntγ))|a(ntγ)3c2(ntγ)nγtγ−1dt
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≤ C cosh(R(ntγ))

(
1

n
· (ntγ)−α + (ntγ)−α−1 + (ntγ)−αj0

)
nγtγ−1dt

+C| tanh(R(ntγ))|(ntγ)−3αnγtγ−1dt

≤ Cn−β cosh(R(ntγ))tγ−1dt+O(n1−3α)| tanh(Rntγ )|t(1−3α)γ−1dt

where β := min{α, j0α−1} = j0α−1. Thus in eq.(4.4), Ẽ(nτ(t)γ) is lower order compared
to the 1st and the 2nd terms, and then by the comparison theorem, we have

R−(t) ≤ R̃(nτ(t)γ) ≤ R+(t).

5 Allez-Dumaz analysis

In this section, we show, along the argument in [1], that (i) the marginal ξL(I) (I =

[λ1, λ2]) of ξL converges to Poisson distribution, and (ii) the joint limit of ξL(I1), · · · , ξL(IN )

are independent.
Propositions and lemmas in this section can be proved in the same manner as in [1] by

putting β = n−
1
γ , but we give proofs of them in Appendix II for the sake of completeness.

5.1 Preliminary: explosion time of stationary approximation

In this subsection we study the explosion time of the stationary approximation S± of
R± which are the solution to another SDE’s (5.1) where the coefficient γtγ−1 in the drift
term in eq.(4.1), (4.2) are replaced by 1:

dS± =

(
λ(1± ε) cosh±(S±) +

C2
n

2
tanh±,ε(S±)

)
dt+ CndWt. (5.1)

If |S±| > δ, the drift term of these SDE’s are just the constant multiples of the shift of
cosh, tanh, so that the analysis in [1] also works. Because the potential corresponding to
the drift term in SDE (5.1) has a barrier between the local minimum in the well and the
local maximum, we have a “memory-loss effect” so that the explosion time converges to
the exponential distribution. More precisely, let ζ± be the explosion time of S± and let

t(±)
n (r) := E[ζ±|S±(0) = r]

g(±)
n (r) := E[e−ξ·

λ
π ·ζ± |S±(0) = r]

be the expectation value and the Laplace transform of ζ± conditioned S±(0) = r respec-
tively. We then have

Proposition 5.1.

lim
r↓−∞

lim
n→∞

t(±)
n (r) =

π

λ

lim
r↓−∞

lim
n→∞

g(±)
n (r) =

1

1 + ξ
.

5.2 Poisson convergence for marginals

In this subsection, we prove that the marginal ξL(I) of ξL on an interval I converges
to a Poisson distribution by showing that the jump points of the function t 7→

⌊
Θnτ(t)γ

⌋
converges to a Poisson process. This will be done by dividing the time interval [0, 1]

into small random ones Ik and approximating R± by S± on each Ik’s. In order that
such approximation work, we need to show that {Θnτ(t)γ (λ)}π is sufficiently small on
sufficiently large portion of the time interval, which is guaranteed by Lemma 5.4. In
order to prove Lemma 5.4, we need some estimates on the explosion time for

R(n)(t) := R̃(nτ(t)γ)
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which are done in Lemmas 5.2, 5.3. Lemmas 5.5, 5.6 are rephrase of Lemmas 5.2, 5.4
respectively. Since τ ′(t) = 1 + o(1) uniformly in ω ∈ Ω, all statements in this subsection
are also valid for R̃(ntγ). Let

Tr := inf
{
s
∣∣∣ R(n)(s) = r

}
be the hitting time of R(n) to r ∈ R ∪ {+∞}. We denote by Pr0, t0 the law of R(n)

conditioned R(n)(t0) = r0. If t0 = 0, we simply write Pr0, t0 = Pr0 .

Lemma 5.2. Let 0 < ε < 1, c > γ + 1
2 . Then we can find a constant c′ > 0 such that

P
ε logn

1
γ

(
T+∞ <

5c

C2
n

log n
1
γ

)
≥ 1− n−

c′
γ .

Idea of proof: (i) we derive the probability of the event that R(n) reaches c log n
1
γ

before hitting ε
2 log n

1
γ , by the time 4c

C2
n

log n
1
γ . Since the drift term is bounded from below

by 1
4C

2
ndt, this is possible provided the Brownian motion term satisfies Cn inf{Wt | 0 ≤

t ≤ 4c
C2
n

log n
1
γ } ≥ − ε

2 log n
1
γ which happens with probability ≥ 1 − n−

c′
γ . (ii) Once R(n)

reaches c log n
1
γ , it explodes by the time c

C2
n

log n
1
γ which can be proved by studying the

explosion time of an ODE explicitly.

Lemma 5.3.

P
− 1

4 logn
1
γ

(
T+∞ <

5c+ 1

C2
n

log n
1
γ

)
≥ n−

1
2γ .

Idea of Proof: on account of Lemma 5.2 with ε = 1/4, it is sufficient to estimate the

probability P
− 1

4 logn
1
γ

(
T

1
4 logn

1
γ
< 1

C2
n

log n
1
γ

)
which can be done similarly by the idea (i)

for Lemma 5.2.

Lemma 5.4. Let

Ξn(t) := E−∞

[∫ t

0

1

(
R(n)(u) ≥ −1

4
log n

1
γ

)
du

]
.

Then we can find a constant C such that

Ξn(t) ≤ Cn−
1
2γ log n

1
γ .

Idea of Proof: by Lemma 5.3, if R(n)(u) ≥ − 1
4 log n

1
γ , we have T+∞ < 5c+1

C2
n

log n
1
γ , that

is, it will explode by the time 5c+1
C2
n

log n
1
γ , with a good probability. Hence the quantity

inside the expectation in the definition of Ξn(t) is bounded from above by the number

of explosions multiplied by 5c+1
C2
n

log n
1
γ . On the other hand, the expectation value of the

number of explosions is bounded from above.
We shall study the distribution of the jump points of the function t 7→

⌊
Θnτ(t)γ (λ)/π

⌋
.

The corresponding point process is defined by

µ̃
(n)
λ :=

∑
k

δζ̃λk

where ζ̃λk := inf
{
t ∈ [0, 1]

∣∣ Θnτ(t)γ (λ) ≥ kπ
}
.

Then the statements of Lemma 5.2, 5.4 have the following form.

Lemma 5.5. Let 0 < ε < 1 c > γ + 1
2 . Then conditioned on {Θ0(λ)}π = π − 2 arctann−

ε
γ ,

we have

P

(
ζ̃λ1 <

5c

C2
n

log n
1
γ

)
≥ 1− n−

c′
γ .
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Lemma 5.6. Let

Ξn(t) := E

[∫ t

0

1
(

Θnτ(u)γ (λ) ≥ 2 arctann−
1
4γ

)
du

]
.

Then we can find a constant C such that

Ξn(t) ≤ Cn−
1
2γ log n

1
γ .

We can now prove that the jump points of the function t 7→
⌊
Θnτ(t)γ (λ)/π

⌋
converges

to a Poisson process.

Proposition 5.7.

µ̃
(n)
λ

d→ Poisson

(
λ

π
γtγ−11[0,1](t)dt

)
and the same statement also holds for the point process µ(n)

λ whose atoms consist of

ζλk := inf {t ∈ [0, 1] | Θntγ (λ) ≥ kπ} .

Idea of Proof: Let

Ik :=

[
Tk
N
,
Tk+1

N

]
where Tk :=

k∑
i=1

τi, τi = unif

(
1

2
,

3

2

)
.

Let S(n)
± be the solution to the following SDE’s where the constant λ in SDE (5.1) is

replaced by γ
(
Tk+1

N

)γ−1

, γ
(
Tk
N

)γ−1
respectively:

dS
(n)
± =

(
λ±k (1± ε) cosh±(S

(n)
± ) +

C2
n

2
tanh±,ε(S

(n)
± )

)
dt+ CndBt, t ∈ Ik

where λ+
k = γ

(
Tk+1

N

)γ−1

, λ−k = γ

(
Tk
N

)γ−1

with initial values S(n)
±
(
Tk
N

)
:= R(n)

(
Tk
N

)
on each Ik. We remark that, once S(n)

± explode

to +∞, it starts at −∞ again and so on. Let Θ
(n)
± defined by

S
(n)
± = log tan

Θ
(n)
±
2

,

in other words, Θ
(n)
± := 2 arctan eS

(n)
± . Then by eq.(4.3) and using comparison theorem

between S± and R±,

Θ
(n)
−,t(λ) ≤ Θnτ(t)γ (λ) ≤ Θ

(n)
+,t(λ).

Thus we can estimate the number of jump points of
⌊
Θnτ(t)γ (λ)/π

⌋
from above and

below by those of
⌊
Θ

(n)
±,t(λ)/π

⌋
. By Lemma 5.6 and by the definition of Tk, on each

starting point of the interval Ik, we can suppose Θnτ(t)γ (λ) ≤ 2 arctann−
1
4γ with a good

probability, so that by Proposition 5.1, the explosion time of Θ
(n)
± converges to the

exponential distribution on each intervals, which proves the statement of Proposition 5.7
for Θnτ(t)γ (λ). Since τ ′(t) = 1 + o(1) uniformly in ω ∈ Ω, the same statement also holds

for µ(n)
λ .
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Remark 5.8. Let λ < λ′ and let

µ
(n)
λ,λ′ :=

∑
k

δ
ζλ,λ

′
k

where ζλ,λ
′

k := inf {t ∈ [0, 1] |Θntγ (λ′)−Θntγ (λ) ≥ kπ} .

We can apply all the arguments in previous sections for Θntγ (λ′)−Θntγ (λ) yielding

µ
(n)
λ,λ′

d→ Poisson

(
λ′ − λ
π

γtγ−11[0,1]dt

)
.

5.3 Limiting coupled Poisson process

For 0 < λ < λ′, let Pλ := limn→∞ µ
(n)
λ , Pλ′ := limn→∞ µ

(n)
λ′ , Pλ,λ′ := limn→∞ µ

(n)
λ,λ′ be

the limiting Poisson processes described in Proposition 5.7 and Remark 5.8. In this
subsection, we show that (i) they are realized jointly as Ft-Poisson processes under
suitable filtration(Lemma 5.10), (ii) the sets Pλ, Pλ′ , Pλ,λ′ of corresponding atoms satisfy
Pλ ⊂ Pλ′ (Lemma 5.11), and (iii) Pλ ∩ Pλ,λ′ = ∅ (Lemma 5.12). The independence of
Pλ, Pλ,λ′ (and thus independence of finite number of marginals of ξL on intervals) then
follows from those observations. But first of all we need to show that the “fractional part”
of Θ(λ), Θ(λ′) also obey the same ordering as λ, λ′ for sufficiently large portions in time
(Lemma 5.9). We recall {x}π := x− bx/πcπ.

Lemma 5.9. Let 0 < λ < λ′ and

Υn(t) := E

[∫ t

0

1 ({Θnuγ (λ′)}π ≤ {Θnuγ (λ)}π) du

]
then we can find a constant C such that

Υn(t) ≤ Cn−
c′
γ .

Idea of Proof: let

Eu := {{Θnuγ (λ′)}π ≤ {Θnuγ (λ)}π} , u ∈ [0, 1]

ζu := sup
{
ζλ
′

k

∣∣∣ ζλ′k ≤ u} , ζλ
′

k := inf {t ∈ [0, 1] | Θntγ (λ′) ≥ kπ}

u0 := u− 5c

C2
n

log n
1
γ , c > γ +

1

2
.

On the event Eu, we consider the following three possibilities.
(i) the latest jump of the function t 7→ bΘntγ (λ′)/πc before u occurs after u0

(ii) the latest jump of bΘntγ (λ′)/πc before u occurs before u0, and

{Θnuγ0
(λ)}π ≤ 2 arctann−

1
4γ ,

(iii) the latest jump of bΘntγ (λ′)/πc before u occurs before u0, and

{Θnuγ0
(λ)}π > 2 arctann−

1
4γ .

Then
(i) the probability of the event (i) is bounded from above by n−

1
2γ log n

1
γ ·E[µnλ[0, t]].

(ii) Let ζ̃2π be the explosion time of Θntγ (λ, λ′) := Θntγ (λ′) − Θntγ (λ) for which we
can carry out the arguments in previous sections. Then in Case (ii) we must have

ζ̃2π ≥ 5c
C2
n

log n
1
γ of which the probability is bounded from above by n−

c′
γ

(iii) Lemma 5.6 gives the bound on the probability of Case (iii).

In what follows, we set λ < λ′ < λ′′. Since the set of triples {(µ(n)
λ , µ

(n)
λ′ , λ

(n)
λ′,λ′′), n ≥ 0}

is tight as a set of Radon measures on R+, we can find a subsequence (nk) such that

(µ
(nk)
λ , µ

(nk)
λ′ , λ

(nk)
λ′,λ′′)→ (Pλ, Pλ′ , Pλ′,λ′′)
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where Pλ, Pλ′ , Pλ′,λ′′ are Poisson processes which turn out to be independent of the
choice of convergent subsequences.

Lemma 5.10. Let

F := (Ft)t≥0

Ft := σ (Pλ(s), Pλ′(s), Pλ′,λ′′(s); 0 ≤ s ≤ t) .

Then Pλ, Pλ′ , Pλ′,λ′′ are the (Ft)-Poisson processes whose intensity measures are equal
to π−1λγtγ−11[0,1](t)dt, π

−1λ′γtγ−11[0,1](t)dt, and π−1(λ′′−λ′)γtγ−11[0,1](t)dt respectively.

Let Pλ, Pλ′ , Pλ′,λ′′ be the set of atoms of Pλ, Pλ′ , Pλ′,λ′′ respectively.

Lemma 5.11. If λ < λ′, Pλ ⊂ Pλ′ a.s.

Idea of Proof: suppose that there are no atoms of µ(n)
λ′ near the atom ξ of µ(n)

λ for
large n. Then we should have {Θntγ (λ′)}π < {Θntγ (λ)}π near ξ of which the probability
is estimated from above by Lemma 5.9.

Lemma 5.12. We have Pλ ∩ Pλ′,λ′′ = ∅. Hence by Lemma 5.10, Pλ and Pλ′,λ′′ are
independent.

Idea of Proof: we shall show Pλ ∩ Pλ,λ′ = ∅. Otherwise, we can find an atom ξ

of µ(n)
λ,λ′ near those of µ(n)

λ for large n. If we have {Θntγ (λ′)}π < {Θntγ (λ)}π near ξ,
this probability is estimated from above by Lemma 5.9. If, on the contrary, we have
{Θntγ (λ′)}π ≥ {Θntγ (λ)}π, then bΘntγ (λ′)/πc jumps twice in a neighborhood of ξ. Since
the jump points of bΘntγ (λ′)/πc converges to a Poisson process, the probability of such
events are relatively small.

By using these lemmas, we can show

Proposition 5.13. Let ν(n) be a point process on R defined by

ν(n)[λ1, λ2] =

⌊
Θn(λ2)−Θn(λ1)

π

⌋
then

ν(n) d→ Poisson

(
dλ

π

)
.

6 Proof of Theorems

6.1 Proof of Theorem 2

The first statement (1) of Theorem 1.6 can proved in the same manner as [7] Proposi-
tion 7.1: the only major difference is to show

lim
t→∞

∫ t

1

s−3α exp

(
−
∫ t

s

u−2αdu

)
ds = 0

which is straightforward. For the second statement (2) of Theorem 1.6, we summarize
the facts obtained in previous sections.

(1) Let

ζ(n)(λ) :=
∑
j

δ
τ
(n)
j (λ)

where τ
(n)
j (λ) := inf {t ∈ [0, 1] |Θnt(λ) = jπ} .

Then by Proposition 5.7

ζ(n)(λ)→ Qλ := Poisson

(
λ

π
1[0,1]dt

)
.
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In other words, the function t 7→ bΘnt(λ)/πc converges to a Poisson jump process.
(2) By Proposition 2.4, E[Θnt(λ)]→ λt.
(3) For 0 < λ < λ′, let

ζ(n)(λ, λ′) =
∑
j

δ
τ
(n)
j (λ, λ′)

where τ
(n)
j (λ, λ′) := inf {t ∈ [0, 1] |Θnt(λ

′)−Θnt(λ) = jπ} .

Then

ζ(n)(λ, λ′)→ Qλ,λ′ := Poisson

(
λ′ − λ
π

1[0,1]dt

)
and Qλ and Qλ,λ′ are independent.

By (1), (2), we have

E

[⌊
Θnt(λ)

π

⌋]
→ λ

π
t, E

[
Θnt(λ)

π

]
→ λ

π
t

so that, writing

Θλ(t)

π
=

⌊
Θλ(t)

π

⌋
+ ε

(n)
t , ε

(n)
t ≥ 0

we have E[ε
(n)
t ]→ 0 which implies ε(n)

t → 0 in probability 4. It follows that t 7→ Θnt(λ)/π

also converges to a Poisson jump process, and in particular,

Θ̂t(λ) := lim
n→∞

Θnt(λ)

takes values in πZ for a.e. t. Moreover, by Remark 2.1 and Lemma 5.11, Θ̂t(λ) is non-
decreasing with respect to (t, λ), so that it is a distribution function of a point process η
on R2 whose marginals on rectangles have Poisson distribution. Let

N(t1, t2;λ1, λ2) =
(

Θ̂t2(λ2)− Θ̂t1(λ2)
)
−
(

Θ̂t2(λ1)− Θ̂t1(λ1)
)

be the number of atoms of η in [t1, t2]× [λ1, λ2]. By Lemma 5.12,

N(t1, t
′
1;λ1, λ

′
1), · · · , N(tn, t

′
n;λn, λ

′
n)

are independent obeying Poisson
(
π−1(λ′j − λj)

(
t′j − tj

))
, j = 1, 2, · · · , n which proves

the statement (2) of Theorem 1.6.

6.2 Proof of Theorem 1.1

By Proposition 5.13, we have

(Θn(ci)−Θn(di), i = 1, · · · , k)
d→ (Θ̂1(ci)− Θ̂1(di), i = 1, · · · , k)

for any k ∈ N, ci, di ∈ R and Θ̂1(·) is a Poisson jump process. By [7] Lemma 9.1,

Θn(·) d→ Θ̂1(·)
4 In [14], they showed that, for β ≤ 2, αt(λ) converges to α∞(λ) from above which is consistent with this

argument.
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as a non-decreasing function valued process. By Skorohod’s theorem, we may suppose
that

Θn(c)→ Θ̂1(c), a.s.

at any continuity point of Θ̂1(c). Fix a.s. ω ∈ Ω, K ∈ N, ε > 0 and let τ1, τ2, · · · be the
jump points of Θ̂1(·). Then for large n,

|Θn(τk − ε)− (k − 1)π| < ε

|Θn(τk + ε)− kπ| < ε, k = 1, 2, · · · ,K.

By the monotonicity of Θn(·), if Θn(τk − ε) < y < Θn(τk + ε), we have

|(Θn)−1(y)− τk| < ε

so that, if (k − 1)π + ε < y < kπ − ε, we have

|(Θn)−1(y)− τk| < ε.

Let Ξ(y) be the inverse of the Poisson jump process Θ̂1(·) (it may be set to take arbi-
trary values at the discontinuity points). Since φ̂t is uniformly distributed on [0, π), its
distribution never have a atom at 0 so that, taking n→∞ in (1.1), we have

E[e−ξL(f)]→ E

[
exp

(
−
∑
n∈Z

f (Ξ(nπ + θ))

)]
= E[e−ζP (f)]

where ζP = Poisson(π−1dλ).

7 Appendix I

In this section we prepare some estimates necessary to prove Proposition 3.1. The
basic strategy of our computation is that, for the terms whose integrand contains a factor
of the form eiκsH(Xs)ds (κ 6= 0), we use eq.(2.3) and perform the integration by parts
to obtain the terms whose integrands are multiplied by a(s) or a′(s) so that they have
better decay. We may continue this process as many times we need to finally obtain the
negligible terms. On the other hand, for the terms with H(Xs)ds (that is, κ = 0), we use
eq.(2.4) instead to obtain the 2nd term of RHS in eq.(3.3).

We first consider the following quantity which often appears in the computation of
J(k; j;H).

K(k, l; j;H) :=

∫ nt

0

sin(∆θs)e
2ikθs(κc)+2ilθs(κd)a(s)jH(Xs)ds,

k, l ∈ Z, j ∈ N, H ∈ C∞(M).

Lemma 7.1. Suppose (k, l) 6= (0, 0) and j ≥ 2. Then

K(k, l; j;H)

≈ − 2ik

2κ0

{
1

2
·K(k + 2, l; j + 1;FR2(k+l)κ0

H) +
1

2
·K(k − 2, l; j + 1;FR2(k+l)κ0

H)

−K(k, l; j + 1;FR2(k+l)κ0
H)

}

− 2il

2κ0

{
1

2
·K(k, l + 2; j + 1;FR2(k+l)κ0

H) +
1

2
·K(k, l − 2; j + 1;FR2(k+l)κ0

H)

−K(k, l; j + 1;FR2(k+l)κ0
H)

}
.
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Proof. We note

2ikθs(κc) + 2ilθs(κd) = 2i(k + l)κ0s+
2i(ck + dl)

n
s+ 2ikθ̃s(κc) + 2ilθ̃s(κd).

Using (2.3) with κ = 2(k + l)κ0 and f = H, we have

K(k, l; j;H)

=

∫ nt

0

sin(∆θs) exp

[
2i(ck + dl)

n
s+ 2ikθ̃s(κc) + 2ilθ̃s(κd)

]
a(s)je2i(k+l)κ0sH(Xs)ds

=

∫ nt

0

sin(∆θs) exp

[
2i(ck + dl)

n
s+ 2ikθ̃s(κc) + 2ilθ̃s(κd)

]
a(s)j

×
{
d
(
e2i(k+l)κ0sR2(k+l)κ0

H(Xs)
)
− e2i(k+l)κ0s∇R2(k+l)κ0

H(Xs)dXs

}
For simplicity, we set

H̃ := R2(k+l)κ0
H.

Integration by parts yields

K(k, l; j;H)

=
[
sin(∆θs)e

2ikθs(κc)+2iθs(κd)a(s)jH̃(Xs)
]nt

0

−
∫ nt

0

cos(∆θs)

×

{
c− d
n

+
1

2κc
Re
[
e2iθs(κc) − 1

]
a(s)F (Xs)−

1

2κd
Re
[
e2iθs(κd) − 1

]
a(s)F (Xs)

}
×e2ikθs(κc)+2ilθs(κd)a(s)jH̃(Xs)ds

−
∫ nt

0

sin(∆θs)

×

{
2i(ck + dl)

n
+

2ik

2κc
Re
(
e2iθs(κc) − 1

)
a(s)F (Xs) +

2il

2κd
Re
(
e2iθs(κd) − 1

)
a(s)F (Xs)

}
×e2ikθs(κc)+2ilθs(κd)a(s)jH̃(Xs)ds

−
∫ nt

0

sin(∆θs)e
2ikθs(κc)+2ilθs(κd)(a(s)j)′H̃(Xs)ds

−
∫ nt

0

sin(∆θs)e
2ikθs(κc)+2ilθs(κd)a(s)j∇H̃(Xs)dXs

=: K1 + · · ·+K5.

Then K1 = O(n−α) ≈ 0. Since j ≥ 2, K2, K4 is included in E(nt) and thus negli-
gible: K2,K4 ≈ 0. K5 is a martingalge with negligible quadratic variation: 〈K5〉 =

O
(∫ nt

0
a(s)2jds

)
so that K5 ≈ 0. Therefore

K(j; k, l;H) ≈ K3.

In the integrand of K3, the 1st term has O(n−1) factor and thus negligible. In the 2nd
and 3rd terms, we can replace 2ik/2κc, 2il/2κd by 2ik/2κ0, 2il/2κ0 respectively which
produces negligible O(n−1) error. Hence
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K3

≈ −
∫ nt

0

sin(∆θs)

×

{
2ik

2κ0
Re
(
e2iθs(κc) − 1

)
a(s)F (Xs) +

2il

2κ0
Re
(
e2iθs(κd) − 1

)
a(s)F (Xs)

}
×e2ikθs(κc)+2ilθs(κd)a(s)jH̃(Xs)ds

= − 2ik

2κ0

{
1

2
·K(k + 2, l; j + 1;F · H̃) +

1

2
·K(k − 2, l; j + 1;F · H̃)−K(k, l; j + 1;F · H̃)

}

− 2il

2κ0

{
1

2
·K(k, l + 2; j + 1;F · H̃) +

1

2
·K(k, l − 2; j + 1;F · H̃)−K(k, l; j + 1;F · H̃)

}
.

Lemma 7.2. Suppose (k, l) 6= (0, 0) and j ≥ 2. Then

K(k, l; j;H)−K(l, k; j;H) ≈ 0.

Proof. We compute each terms by Lemma 7.1. If we have terms of the form K(0, 0; j +

1;H ′), it equally comes from the 1st and 2nd terms and cancels each other. Therefore
the terms of the form K(k′, l′; j + 1;H ′) with (k′, l′) 6= (0, 0) only remain so that we can
continue to use Lemma 7.1 at least for (j0 − j) - times so that the quantity in question is
equal to the sum of the terms of the form K(k′, l′; j0;H ′) which are negligible.

Here we recall the definition of J(k; j;H):

J(k; j;H)(κ) :=

∫ nt

0

1

sin(∆θs)
e2ikθs(κ)a(s)jH(Xs)ds

where k ∈ Z, j ≥ 1, and H ∈ C∞(M). We compute J(k; j;H) by using Lemmas 7.1, 7.2.

Proposition 7.3.
(1) j = 1, k = 1:

∆J(k; j;H) ≈ 1

κ0
〈F ·R2kκ0

H〉
∫ nt

0

cos(∆θs)a(s)j+1ds

− 2ik

2κ0

{
1

2
∆J(k + 1; j + 1;FR2kκ0

H)−∆J(k; j + 1;FR2kκ0
H)

}
+Mt (7.1)

where M is a martingale whose quadratic variation satisfies

〈M,M〉t = o

(∫ nt

0

a(s)2jds

)
〈M,M〉t = 4〈ψ〉

∫ nt

0

a(s)2jds(1 + o(1)), ψ := [R2kκ0
(H), R2kκ0

(H)].

(2) j ≥ 2, k 6= 0:

∆J(k; j;H) ≈ − 2ik

2κ0

{
1

2
∆J(k + 1; j + 1;FR2kκ0

H) +
1

2
∆J(k − 1; j + 1;FR2kκ0

H)

−∆J(k; j + 1;FR2kκ0
H)

}
. (7.2)
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Proof. We use (2.3) with k = 2kκ0. Setting H̃ := R2kκ0
H for simplicity, we have

J(k; j;H)(κx) =

[
1

sin(∆θs)
e2ikθs(κx)a(s)jH̃(Xs)

]nt
0

+

∫ nt

0

cos(∆θs)

sin2(∆θs)

{
c− d
n

+
1

2κc
Re
(
e2iθs(κc) − 1

)
a(s)F (Xs)

− 1

2κd
Re
(
e2iθs(κd) − 1

)
a(s)F (Xs)

}
e2ikθs(κx)a(s)jH̃(Xs)ds

−
∫ nt

0

1

sin(∆θs)

{
2ik · x

n
+

2ik

2κx
Re
(
e2iθs(κx) − 1

)
a(s)F (Xs)

}
×e2ikθs(κx)a(s)jH̃(Xs)ds

−
∫ nt

0

1

sin(∆θs)
e2ikθs(κx)(a(s)j)′H̃(Xs)ds

−
∫ nt

0

1

sin(∆θs)
e2ikθs(κx)a(s)j∇H̃(Xs)dXs

=: J1 + · · ·+ J5.

We estimate ∆J1, · · · ,∆J5 separately. It will turn out that ∆J1, ∆J4 are negligible, ∆J2

is equal to the 1st term of RHS in (7.1) modulo error, ∆J3 is equal to the 2nd term of
RHS in (7.1) or is equal to RHS in (7.2).

(1) J1: By an elementary equality

e2iθ1 − e2iθ2 = 2i sin(θ1 − θ2)eiθ1+iθ2 (7.3)

we have

∆J1 =

[
1

sin(∆θs)
· 2i sin(k∆θs)e

ik(θs(κc)+θs(κd))a(s)jH̃(Xs)

]nt
0

.

Therefore ∆J1 = O(n−jα) + C ≈ 0.
(2) J2: we separate the discussion into the following two cases.
(i) j ≥ 2: as in the proof of Lemma 7.1, we may ignore the term with (c− d)/n factor and
replace 1/2κc, 1/2κc by 1/2κ0:

J2 ≈
∫ nt

0

cos(∆θs)

sin2(∆θs)

1

2κ0
Re
(
e2iθs(κc) − e2iθs(κd)

)
e2ikθs(κx)a(s)j+1(F · H̃)(Xs)ds.

And we compute ∆J2 using (7.3):

∆J2 ≈
∫ nt

0

cos(∆θs)

sin2(∆θs)

1

2κ0
Re
(
e2iθs(κc) − e2iθs(κd)

)(
e2ikθs(κc) − e2ikθs(κx)

)
×a(s)j+1(F · H̃)(Xs)ds

=

∫ nt

0

cos(∆θs)

sin(∆θs)
· sin(k∆θs)

1

2κ0
Re
[
2iei(θs(κc)+θs(κd))

] (
2ieik(θs(κc)+θs(κd))

)
×a(s)j+1(F · H̃)(Xs)ds

which is negligible if j ≥ 2: ∆J2 ≈ 0.
(ii) j = 1, k = 1: we further decompose as follows.
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∆J2 ≈
1

κ0

∫ nt

0

cos(∆θs)
(

1− e2i(θs(κc)+θs(κd))
)
a(s)j+1(F · H̃)(Xs)ds

=: ∆J2−1 + ∆J2−2.

For ∆J2−1, we use (2.4):

∆J2−1 =
1

κ0

∫ nt

0

cos(∆θs)a(s)j+1
{
〈F · H̃〉 − d

(
R0(F · H̃)

)
−∇R0(F · H̃)dXs

}
=: ∆J2−1−1 + · · ·+ ∆J2−1−3.

∆J2−1−1 already has the desired form. For ∆J2−1−2, integration by parts yields

∆J2−1−2 =
1

κ0

{[
cos(∆θs)a(s)j+1R0(F · H̃)(Xs)

]nt
0

+

∫ nt

0

sin(∆θs)

{
c− d
n

+
1

2κc
Re
(
e2iθs(κc) − 1

)
a(s)F (Xs)

− 1

2κd
Re
(
e2iθs(κd) − 1

)
a(s)F (Xs)

}
a(s)j+1R0(F · H̃)(Xs)ds

−
∫ nt

0

cos(∆θs)(a(s)j+1)′R0(F · H̃)(Xs)ds.

As in the proof of Lemma 7.1, 1st and 3rd terms are negligible ; in the 2nd term, the
term with (c− d)/n factor is also negligible and 1/2κc, 1/2κd may be replaced by 1/2κ0

up to negligible error:

∆J2−1−2 ≈
1

κ0

∫ nt

0

sin(∆θs)
1

2κ0
Re
(
e2iθs(κc) − e2iθs(κd)

)
a(s)j+2F ·R0(F · H̃)(Xs)ds

=
1

κ0
· 1

2κ0
Re

{
K(2, 0 ; j + 2 ; F ·R0(F · H̃))−K(0, 2 ; j + 2 ; F ·R0(F · H̃))

}
≈ 0.

In the last step, we used Lemma 7.2. For ∆J2−1−3,

〈∆J2−1−3,∆J2−1−3〉 = O

(∫ nt

0

a(s)2j+2

)
= o

(∫ nt

0

a(s)2j

)
so that ∆J2−1−3 ≈ 0. Therefore, we have

∆J2−1 ≈ ∆J2−1−1 =
1

κ0
〈F · H̃〉

∫ nt

0

cos(∆θs)a(s)j+1ds.

For ∆J2−2, we use (2.3) with κ = 4κ0, perform the integration by parts, estimate as
before, and use Lemma 7.2:

∆J2−2 = − 1

κ0

{[
cos(∆θs)e

2i(θs(κc)+θs(κd))a(s)j+1R4κ0(F · H̃)(Xs)
]nt

0

+

∫ nt

0

sin(∆θs)

{
c− d
n

+
1

2κc
Re
(
e2iθs(κc) − 1

)
a(s)F (Xs)

− 1

2κd
Re
(
e2iθs(κd) − 1

)
a(s)F (Xs)

}
e2i(θs(κc)+θs(κd))
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×a(s)j+1R4κ0
(F · H̃)(Xs)ds

−
∫ nt

0

cos(∆θs)

{
2i · c+ d

n
+

1

2κc
Re
(
e2iθs(κc) − 1

)
a(s)F (Xs)

+
1

2κd
Re
(
e2iθs(κd) − 1

)
a(s)F (Xs)

}
e2i(θs(κc)+θs(κd))

×a(s)j+1R4κ0
(F · H̃)(Xs)ds

−
∫ nt

0

cos(∆θs)e
2i(θs(κc)+θs(κd))(a(s)j+1)′R4κ0

(F · H̃)(Xs)ds

−
∫ nt

0

cos(∆θs)e
2i(θs(κc)+θs(κd))a(s)j+1∇R4κ0

(F · H̃)(Xs)dXs

}

≈ − 1

κ0

∫ nt

0

sin(∆θs)
1

2κ0
Re
(
e2iθs(κc) − e2iθs(κd)

)
e2i(θs(κc)+θs(κd))

×a(s)j+2F ·R4κ0
(F · H̃)(Xs)ds

= − 1

κ0
· 1

2κ0
· 1

2

×

{
K(4, 2; j + 2;F ·R4κ0

(F · H̃)) +K(0, 2; j + 2;F ·R4κ0
(F · H̃))

−K(2, 4; j + 2;F ·R4κ0
(F · H̃))−K(2, 0; j + 2;F ·R4κ0

(F · H̃))

}
≈ 0.

To summarize:

∆J2 ≈
1

κ0
〈F · H̃〉

∫ nt

0

cos(∆θs)a(s)j+1ds.

(3) J3: after cutting out negligible terms we have

J3 ≈ −
∫ nt

0

1

sin(∆θs)

2ik

2κ0
Re
(
e2iθs(κx) − 1

)
e2ikθs(κx)a(s)j+1(F · H̃)(Xs)ds

= − 2ik

2κ0

∫ nt

0

1

sin(∆θs)

(
e2i(k+1)θs(κx) + e2i(k−1)θs(κx)

2
− e2ikθs(κx)

)
×a(s)j+1(F · H̃)(Xs)ds

= − 2ik

2κ0

{
1

2
J(k + 1; j + 1;FH̃)(κx) +

1

2
J(k − 1; j + 1;FH̃)(κx)

−J(k; j + 1;FH̃)(κx)

}
.

(4) J4: this is clearly negligible:

∆J4 = −
∫ nt

0

1

sin(∆θs)
· 2i sin(k∆θs)e

ik(θs(κc)+θs(κd))(a(s)j)′H̃(Xs)ds ≈ 0.

(5) J5: using (7.3) we have

∆J5 = −
∫ nt

0

1

sin(∆θs)
2i sin(k∆θs)e

ik(θs(κc)+θs(κd))a(s)j∇H̃(Xs)dXs
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We consider the following two cases.
(i) k = 1: setting

ϕ := [H̃, H̃], ψ := [H̃, H̃],

we have

〈∆J5,∆J5〉 = (−4)

∫ nt

0

e2i(θs(κc)+θs(κd))a(s)2jϕ(Xs)ds

〈∆J5,∆J5〉 = 4

∫ nt

0

a(s)2jψ(Xs)ds.

to which we apply (2.3), (2.4) respectively. By the same argument as in the estimate of
∆J2,∆J3 we have

〈∆J5,∆J5〉 = o

(∫ nt

0

a(s)2jds

)
〈∆J5,∆J5〉 = 4〈ψ〉

∫ nt

0

a(s)2jds(1 + o(1)), n→∞.

(ii) k ≥ 2: by a direct computation, it is easy to see

〈∆J5,∆J5〉, 〈∆J5,∆J5〉 = O

(∫ nt

0

a(s)2jds

)
so that ∆J5 ≈ 0 for j ≥ 2.

8 Appendix II

In Appendix II, we provide the proofs of Proposition 5.1 and statements in Section 5
for the sake of completeness, all of which are done by tracing those in [1].

Proof of Proposition 5.1. We discuss the computation of t(+)
n (r) only, for t(−)

n (r) can be
treated similarly. We write eq.(5.1) as in the following manner:

dS+ = −W+(S+)dt+ CndWt

where −W+(r) := λ(1 + ε) cosh+ r +
C2
n

2
tanh+,ε r.

Then

−V+(r) := λ(1 + ε) {sinh(r ± δ)∓ sinh δ} 1(±r > 0)

+
C2
n

2
(1± ε) log

cosh(r + δ)

cosh δ
1(±r > −δ)

satisfies V ′+(r) = W+(r) for r 6= 0,−δ. We first derive the critical points r = an, bn such
that W+(r) = 0:

an = δ + log
λ̃

C2
n

+O(C−2
n )

bn = − 2λ̃

C2
n

cosh(2δ)(1 +O(C−2
n ))− δ

where λ̃ := (1 + ε)λ/(1− ε). Moreover we have

V+(an + y) = −λ(1 + ε)

{
λ̃

2C2
n

ey+δ±δ+O(C−2) − C2
n

2λ̃
e−y+δ±δ+O(C−2

n ) ∓ sinh δ

}
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×1(±(an + x) > 0)

−C
2
n

2
(1± ε)

{
log

(
λ̃

2C2
n

ey+2δ+O(C−2
n ) +

C2
n

2λ̃
e−y−2δ+O(C−2

n ))

)
− log cosh δ

}
×1(±(an + x) > −δ)

V+(bn + x) = −λ(1 + ε)

{
sinh

(
x− δ ± δ − 2λ̃

C2
n

cosh(2δ)(1 +O(C−2
n ))

)
∓ sinh δ

}
×1(±(bn + x) > 0)

−C
2
n

2
(1± ε)

{
log cosh

(
x− 2λ̃

C2
n

cosh(2δ)(1 +O(C−2
n ))

)
− log cosh δ

}
×1(±(bn + x) > −δ).

Since t(+)
n (r) satisfies

C2
n

2
f ′′ −W+(r)f ′ = −1, f(∞) = 0,

we have

t(+)
n (r) =

2

C2
n

∫ ∞
r

dx

∫ x

−∞
dy exp

{
2

C2
n

(V+(x)− V+(y))

}
.

Substituting above equations, we have

t+n (r)=
2

C2
n

∫ ∞
r−b

dx

exp

[
− 2

C2
n

λ(1 + ε)

{
sinh

(
x− δ ± δ − 2λ̃

C2
n

cosh(2δ)(1 +O(C−2
n ))

)
∓ sinh δ

}

×1(±(bn + x) > 0)

]

·

 cosh δ

cosh
(
x− 2λ̃

C2
n

cosh(2δ)(1 +O(C−2
n ))

)


1±ε

1(±(bn + x) > −δ)

×
∫ (b−a)+x

−∞
dy

exp

[{
λ · λ̃(1 + ε)

C4
n

ey+δ±δ+O(C−2
n ) − λ(1 + ε)

λ̃
e−y+δ±δ+O(C−2

n ) ∓ 2

C2
n

· λ(1 + ε) · sinh δ

}

×1(±(an + x) > 0)

]

·

(
λ̃

2C2
n

ey+2δ+O(C−2
n ) +

C2
n

2λ̃
e−y−2δ+O(C−2

n )

)1±ε

· 1

(cosh δ)1±ε · 1(±(an + x) > −δ)

Noting that ε→ 0, λ̃→ λ, an → −∞, bn → 0 as n→∞, we have

t(+)
n (r)

n→∞→ 1

λ

∫ ∞
r

dx

coshx

∫ ∞
−∞

dy e−y−e
−y

=
1

λ

∫ ∞
r

dx

coshx
.

Thus

lim
r↓−∞

lim
n→∞

t(+)
n (r) =

π

λ
.
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The statement for the Laplace transform is derived by the same way as in the proof of
Proposition 2.2 [1].

Proof of Lemma 5.2. LHS of the inequality in question is bounded from below by

LHS ≥ P
ε logn

1
γ

(
T
c logn

1
γ
<

4c

C2
n

log n
1
γ ∧ T

ε
2 logn

1
γ

)
×P

c logn
1
γ , 4c

C2
n

logn
1
γ

(
T+∞ <

c

C2
n

log n
1
γ

)
=: (1)× (2).

which we estimate separately.
(1) If ε

2 log n
1
γ < r < c log n

1
γ , the drift term of the SDE for R− satisfies (drift term) ≥

1
2C

2
n tanh r ≥ 1

4C
2
n so that the first factor (1) is bounded from below by the probability of

the following event.

E :=

 inf
0<t<4 c

C2
n

logn
1
γ

CnBt ≥ −
ε

2
log n

1
γ


where Bt is a Brownian motion with B0 = 0. By the reflection principle, we have

P (E) = P

(
Cn

∣∣∣∣B( 4c

C2
n

log n
1
γ

)∣∣∣∣ ≤ ε

2
log n

1
γ

)
≥ 1−

(
n−

1
γ

)c′
.

(2) Let

Ẽ :=

 sup

0≤t≤ c
C2
n

logn
1
γ

Cn|B(t)| < ε

2
log n

1
γ

 .

Then P
(
Ẽ
)
≥ 1−

(
n−

1
γ

)c′′
for some c′′ > 0, and under the event Ẽ , G(t) := R(t)−CnB(t)

satisfies

G′(t) ≥ λ

2
eG(t) · e− ε2 logn

1
γ · γ ·

(
4c

C2
n

log n
1
γ

)γ−1

+
C2
n

2
tanh(G(t) + CnB)

≥ C ·
(
n−

1
γ

)γ−1+ ε
2

eG(t) − C2
n

2
.

Therefore the explosion time of G satisfies T+∞ ∼
(
n−

1
γ

)c−(γ−1+ ε
2 )

.

Proof of Lemma 5.3. LHS of the inequality in question is bounded from below by

LHS ≥ P
− 1

4 logn
1
γ

(
T

1
4 logn

1
γ
<

1

C2
n

log n
1
γ

)
×P

1
4 logn

1
γ , 1

C2 logn
1
γ

(
T+∞ < 5

c

C2
n

log n
1
γ

)
=: (1)× (2).

The second factor (2) has been estimated in Lemma 5.2. For the first factor (1), since

R(n)(t) ≥ −C
2
n

2 t+ CnBt we have

(1) ≥ P

(
−C

2
n

2
· 1

C2
n

log n
1
γ + CnB 1

C2
n

logn
1
γ
≥ 1

2
log n

1
γ

)
≥ C

(
n−

1
γ

)1/2

.
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Proof of Lemma 5.4. Conditioning at time u and using the Markov property, we have

P−∞

(
R(n)(u) ≥ −1

4
log n

1
γ

)
≤ P−∞

(
R(n)(u) ≥ −1

4
log n

1
γ , T+∞ <

5c+ 1

C2
n

log n
1
γ

)
+P−∞

(
R(n)(u) ≥ −1

4
log n

1
γ , T+∞ ≥

5c+ 1

C2
n

log n
1
γ

)
≤ P−∞

(
R(n)(u) ≥ −1

4
log n

1
γ , T+∞ <

5c+ 1

C2
log n

1
γ

)
+

(
1−

(
1

n
1
γ

)1/2
)
P−∞

(
R(n)(u) ≥ −1

4
log n

1
γ

)
.

Hence

P−∞

(
R(n)(u) ≥ −1

4
log n

1
γ

)
≤
(
n

1
γ

)1/2

P−∞

(
R(n)(u) ≥ −1

4
log n

1
γ , T+∞ <

5c+ 1

C2
n

log n
1
γ

)
≤ (n

1
γ )1/2P−∞

(
[u, u+

5c+ 1

C2
n

log n
1
γ ] contains at least one explosion

)
.

Let k := ]
{

explosions of R(n) in [0, t]
}

with {ζj}kj=1 being the explosion points, we have∫ t

0

1

(
∃i : ζi ∈

[
u, u+

5c+ 1

C2
n

log n
1
γ

])
du ≤ 5c+ 1

C2
n

· log n
1
γ · (k + 1).

It thus suffices to take the expectation of both sides and use the following inequality:
E[]

{
explosions of R(n) in [0, t]

}
] ≤ E[Θnt(λ)/π] ≤ Cλt/π.

From now on, for the sake of simplicity, we use the following notation.

Θ
(n)
λ (u) := Θnuγ (λ), Θ

(n)
λ,λ′(u) := Θ

(n)
λ′ (u)−Θ

(n)
λ (u).

Proof of Proposition 5.7. It suffices to show,

(1) E[µ
(n)
λ (I)]→ λ

π

∫
I

γtγ−11[0, 1]dt

(2) P
(
µ

(n)
λ (I) = 0

)
→ exp

(
−λ
π

∫
I

γtγ−11[0, 1]dt

)
for the finite union I ⊂ [0, 1] of disjoint intervals. Let

Ck :=

{{
Θ

(n)
λ

(
Tk
N

)}
≤ 2 arctan

(
n−

1
γ

)1/4
}
, C :=

2N+1⋂
k=1

Ck.

Then by Lemma 5.6,

P (Cc) ≤
2N+1∑
k=0

P

({
Θ

(n)
λ

(
Tk
N

)}
> 2 arctan

(
n−

1
γ

)1/4
)

≤ 2E

[∫ 3N+3

0

1

(
Θ

(n)
λ

( u
N

)
> 2 arctan

(
n−

1
γ

)1/4
)
du

]
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≤
(
n−

1
γ

)1/2

N log n
1
γ → 0, n→∞.

(1) We may take I = [0, t]. Upper bound simply follows from

E[µ
(n)
λ [0, t]] = E

[
Θ

(n)
λ (t)

π

]
≤ 1

π
λ

∫ t

0

γsγ−1ds =
λtγ

π
.

For the lower bound, we consider

N±k := ]
{

jumps of Θ
(n)
λ,± in Ik

}
Nk := ]

{
jumps of Θ

(n)
λ in Ik

}
.

Then

E
[
µ

(n)
λ [0, t]

]
≥

2Nt+1∑
k=0

E

[
N−k 1

(
Tk
N

< t

)∣∣∣∣Ck]−∑
k

E

[
N−k 1

(
Tk
N

< t

)∣∣∣∣Ck]P(Cck),

the 2nd term of which vanishes as n→∞:

2nd term ≤ E
[
]
{

jumps of Θ
(n)
λ in [0, 3t]

}]
× sup

k

P(Cck)

P(Ck)

≤ E
[
]
{

jumps of Θ
(n)
λ in [0, 3t]

}]
× P(Cc)

1−P(Cc)
→ 0.

For the 1st term, we note that E[N−k |Ck] = π−1λγ
(
Tk
N

)γ−1 · τk+1

N by Proposition 5.1. Hence
by the convergence of the Riemannian sum to the integral,

∑
k

E[N−k |Ck] =
λ

π

∑
k

γ

(
Tk
N

)γ−1

· τk+1

N
1

(
Tk
N

< t

)
→ λ

π

∫ t

0

γsγ−1ds

as N →∞.
(2) We first suppose I = [t1, t2]. Since

P
(
µ

(n)
λ [t1, t2] = 0

)
≤ E

∏
k≥0

P
[
N−k = 0

∣∣Ck, (τi)i] 1

(
Tk+1

N
≥ t1,

Tk
N
≤ t2

)+ P(Cc)

and since

P
[
N−k = 0

∣∣Ck]→ E

[
exp

(
−τk+1

N
· λ
π
· γ
(
Tk+1

N

)γ−1
)]

we have

lim supP
(
µ

(n)
λ [t1, t2] = 0

)
≤ E

∏
k≥0

exp

(
−λ
π
γ

(
Tk+1

N

)γ−1

· τk+1

N

)
1

(
Tk+1

N
≥ t1,

Tk
N
≤ t2

) .
Taking N → ∞ proves (2) for I = [t1, t2]. General case easily follows from the Markov
property.
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Proof of Lemma 5.9. We decompose P(Eu) as follows.

P(Eu) ≤ P (Eu ∩ {ζu ∈ [u0, u]}) + P (Eu ∩ {ζu < u0})

≤ P (Eu ∩ {ζu ∈ [u0, u]}) + P

 ⋂
s∈[u0,u]

Es


≤ P ({ζu ∈ [u0, u]}) + P

 ⋂
s∈[u0,u]

Es ∩

{
{Θ(n)

λ (u0)} ≤ 2 arctann−
1
4γ

}
+P

({
{Θ(n)

λ (u0)} ≥ 2 arctann−
1
4γ

})

≤ P ({ζu ∈ [u0, u]}) + n−
c′
γ + P

({
{Θ(n)

λ (u0)} ≥ 2 arctann−
1
4γ

})
(8.1)

where we used the monotonicity of bΘ(n)
λ,λ′c in the 2nd inequality. In the last inequality, we

used the fact that, when {Θ(n)
λ (u0)}π ≤ 2 arctann−

1
4γ , we necessarily have {Θ(n)

λ,λ′(u0)}π ≥
π − 2 arctann−

1
4γ . Hence by Lemma 5.5 we have

P

 ⋂
s∈[u0,u]

Es ∩

{
{Θ(n)

λ (u0)} ≤ 2 arctann−
1
4γ

} ≤ n− c′γ ,
proving the last inequality in (8.1). Now we integrate both sides of (8.1) and use Lemma
5.6 for the 1st and 3rd terms of RHS.

For the proof of Lemmas 5.11, 5.12, let (ξλi ), (ξλ
′

i ), (ξλ
′,λ′′

i ) be the atoms of Pλ,

Pλ′ , Pλ′,λ′′ respectively. Also, let (ζλi ), (ζλ
′

i ), (ζλ
′,λ′′

i ) be the atoms of µ(n)
λ , µ(n)

λ′ , µ(n)
λ′,λ′′

respectively.

Proof of Lemma 5.11. For N ∈ N, let

pnN := P

(
∃i : ζλi < t, ∀j ≥ i, |ζλi − ζλ

′

j | >
1

2N

)
.

It is then sufficient to show lim supn→∞ pnN = 0. Let (Tk)k be the random division of
intervals used in the proof of Proposition 5.7. Then we have

pnN ≤ P

(
∃k ≤ [2Nt] + 1 :

⌊
Θ

(n)
λ

π

⌋
jumps on

[
Tk
N
,
Tk + 2

N

]
but not

⌊
Θ

(n)
λ′

π

⌋)

≤
[2Nt]+1∑
k=1

P

({
Θ

(n)
λ′

(
Tk
N

)}
π

≤
{

Θ
(n)
λ

(
Tk
N

)}
π

)

where we used the monotonicity of bΘ(n)
λ,λ′/πc. It thus suffices to use Lemma 5.9.

Proof of Lemma 5.12. As in the proof of Lemma 5.11, it is sufficient to show

pnN := P

(
∃i, j ∈ N : ζλi < t, ζλ,λ

′

j < t, |ζλi − ζ
λ,λ′

j | < 1

2N

)
satisfies lim supN→∞ lim supn→∞ pnN = 0.

pnN ≤ P

(
∃i, j ∈ N, ∃k ≤ [2Nt] + 1,

Tk
N
≤ ζλi , ζ

λ,λ′

j ≤ Tk + 2

N

)
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= P

(
∃k ≤ [2Nt] + 1 :

⌊
Θ

(n)
λ

π

⌋
,

⌊
Θ

(n)
λ′ −Θ

(n)
λ

π

⌋
both jump on

[
Tk
N
,
Tk + 2

N

])

≤
[2Nt]+1∑
k=1

P

({
Θ

(n)
λ′

(
Tk
N

)}
π

≤
{

Θ
(n)
λ

(
Tk
N

)}
π

)

+
∑

P

(⌊
Θ

(n)
λ′

π

⌋
jumps more than 2-times on

[
Tk
N
,
Tk + 2

N

])
(8.2)

where we used the monotonicity of bΘ(n)
λ,λ′/πc in the last inequality. The 1st term in

RHS of (8.2) has been estimated in the proof of Lemma 5.11. For the 2nd term, we use
Proposition 5.7.

lim sup
n→∞

[2Nt]+1∑
k=1

P

(
µnλ′

[
Tk
N
,
Tk + 2

N

]
≥ 2

)

≤ C
[2Nt]+1∑
k=1

E

[
exp

[
−λ
π

∫ Tk+2

N

Tk
N

γuγ−1du

]
·

(
−λ
π

∫ Tk+2

N

Tk
N

γuγ−1du

)2]
= O(N−1).
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