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Moment convergence of balanced Pólya processes
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Abstract

It is known that in an irreducible small Pólya urn process, the composition of the urn
after suitable normalization converges in distribution to a normal distribution. We
show that if the urn also is balanced, this normal convergence holds with convergence
of all moments, thus giving asymptotics of (central) moments.
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1 Introduction

A Pólya urn process is defined as follows. Consider an urn containing balls of different
colours, with s possible colours which we label 1 . . . , s. At each time step, we draw a ball
at random from the urn; we then replace it and, if its colour was i, we add rij further
balls of colour j, for each j = 1, . . . , s. Here

R := (rij)
s
i,j=1 (1.1)

is a given matrix, called the replacement matrix. The state of the urn at time n is
described by a vector Xn = (Xn1, . . . , Xns), where Xnj is the number of balls of colour j.
We start with some given (deterministic) X0, and it is clear that Xn evolves according to
a Markov process.

As usual, we assume that rij > 0 when i 6= j, but we allow rii to be negative, meaning
removal of balls, provided the urn is tenable, i.e., that it is impossible to get stuck. (See
(2.2)–(2.3), and see Remark 1.8 for an extension that allows some negative rij .)

Urn processes of this type have been studied by many different authors, with varying
generality, going back to Eggenberger and Pólya [5]; see for example Janson [8], Flajolet,
Gabarró and Pekari [6], Pouyanne [14], Mahmoud [12], and the further references given
there.
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Moment convergence of balanced Pólya processes

In the present paper we study only the balanced case, meaning that the total number
of balls added each time is deterministic, i.e., that the row sums of the matrix (1.1) are
constant, say m; we assume further that m > 0.

We define, for an arbitrary vector (x1, . . . , xn), |(x1, . . . , xn)| :=
∑n
i=1 |xi|. In particular,

the total number of balls in the urn is |Xn|. Note that when the urn is balanced, this
number is deterministic, with |Xn| = |X0|+ nm.

In the description above, it is implicit that the numbers rij are integers. However,
it has been noted many times that the process is also well-defined for real rij , see e.g.
[8, Remark 4.2], [9] and [14] (cf. also [11] for the related case of branching processes);
this can be interpreted as an urn containing a certain amount (mass) of each colour,
rather than discrete balls. We give a detailed definition of this, more general, version in
Section 2, and use it in our results below.

Results on the asymptotic distribution of Xn as n→∞ have been given by many
authors under varying assumptions, using different methods. It is well-known that the
asymptotic behaviour of Xn depends on the eigenvalues of R, or equivalently of its
transpose A = Rt, see e.g. [8, Theorems 3.22–3.24]. By the Perron–Frobenius theory
of positive matrices (applied to R+ cI for some c > 0), R has a largest real eigenvalue
λ1, and all other eigenvalues λ satisfy Reλ < λ1. We say that an eigenvalue λ is large if
Reλ > 1

2λ1, small if Reλ 6 1
2λ1 and strictly small if Reλ < 1

2λ1. Similarly, we say that
the Pólya process (or urn) is small (strictly small ) if λ1 is simple and all other eigenvalues
are small (strictly small); a process is large whenever it is not small. We call a Pólya
process critically small if it is small but not strictly small, i.e., if the process is small
and R admits an eigenvalue λ such that Reλ = λ1/2. We define, letting Λ be the set of
eigenvalues,

σ2 :=

{
max

{
Reλ : λ ∈ Λ \ {λ1}

}
, λ1 is a simple eigenvalue;

λ1, λ1 is not simple.
(1.2)

Thus the Pólya urn is strictly small if σ2 < λ1/2, critically small if σ2 = λ1/2, and large if
σ2 > λ1/2.

In the main results we assume that the urn is irreducible, i.e., that the matrix R
is irreducible. (In other words, every colour is dominating in the sense of [8].) Then,
the largest eigenvalue λ1 is simple. (Thus the second case in (1.2) does not occur.) As
said above, we also assume the urn to be balanced, with all row sums of R equal to
m, and then λ1 = m, with a corresponding right eigenvector (1, . . . , 1). Furthermore,
there exists a positive left eigenvector v1 of R with eigenvalue m; we assume that v1 is
normalized by |v1| = 1, and then v1 is unique.

If the urn is irreducible and small, then Xn is asymptotically normal [8, Theorems
3.22–3.23]. More precisely, if v1 is the positive eigenvector of R defined above, and ν = 0

if the urn is strictly small and ν > 1 is the integer defined in Theorem 1.2 below if the
urn is critically small, then, as n→∞,

Xn − nλ1v1√
n logν n

d−→ N(0,Σ), (1.3)

where the asymptotic covariance matrix Σ can be computed from R. (See e.g. [8, Lemma
5.3 and Lemma 5.4 with (2.15) and (2.17)].) On the other hand, by [8, Theorems 3.24]
and, in particular, [14, Theorems 3.5–3.6], if the urn is large, then there exist (complex)
random variables Wk, (complex) left eigenvectors vk of R and an integer ν > 0 such that,
a.s. and in any Lp,

Xn = nλ1v1 +
∑

k:Reλk=σ2

nλk/λ1 logν nWkvk + o
(
nσ2/λ1 logν n

)
. (1.4)
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Moment convergence of balanced Pólya processes

In general, there will be oscillations (coming from complex eigenvalues λk) and Xn will
not converge in distribution (after any non-trivial normalization). Mixed moments of the
limit distributions Wk in (1.4) can be computed, see [14]. However, there is in general no
explicit description of the limit laws for a large urn. See [2], [4], [3] and Mailler [13] for
some recent improvements on these distributions. Note also that (1.4) is valid as soon as
the urn is large and λ1 a simple eigenvalue, the urn being irreducible or not (see [14]).

Results of this type have been proven by several authors, under varying assumptions,
using several different methods. The proofs in Janson [8] use an embedding in a
continuous-time multi-type branching process, a method that was introduced by Athreya
and Karlin [1]. This method leads to general results on convergence in distribution, but
not to results on the moments. A different method was developed by Pouyanne [14],
where algebraic expressions were obtained for (mixed) moments of various components
of Xn, and asymptotics were derived. For large urns, the resulting moment estimates
and some simple martingale arguments give the limit results, with convergence a.s. and
in Lp, and thus convergence of all moments (after suitable normalization). The method
applies also to small urns, and yields limits for the moments. In principle, it should
be possible to use the resulting expressions and the method of moments to show (1.3).
However, the expressions for the limits are a bit involved, and it seems difficult to do
this in general.

The purpose of the present paper is to show moment convergence for small urns by
combining these two methods. We use the convergence in distribution (1.3) proven in
[8], and we use the estimates of moments proven in [14] to show that any moment of the
left-hand side of (1.3) is bounded as n→∞; these together imply moment convergence
in (1.3). (We thus do not have to calculate the limits provided by [14] exactly; it suffices
to find bounds of the right order of magnitude.) This yields the following theorems,
which are our main results.

All limits and o(. . . ) in this paper are as n→∞.

Theorem 1.1. Suppose that the urn is balanced, irreducible and strictly small. Then
(1.3) holds, with ν = 0, with convergence of all moments. In particular, EXn = nλ1v1 +

o
(
n1/2

)
and the covariance matrix Var(Xn) = nΣ + o(n).

Theorem 1.2. Suppose that the urn is balanced, irreducible and critically small. Let
1 + d be the dimension of the largest Jordan block of R corresponding to an eigenvalue
λ with Reλ = λ1/2 (d > 0). Then (1.3) holds, with ν = 2d + 1, with convergence of
all moments. In particular, EXn = nλ1v1 + o

(
(n logν n)1/2

)
and the covariance matrix

Var(Xn) =
(
n logν n

)
Σ + o(n logν n).

Corollary 1.3. Suppose that the urn is balanced, irreducible and small, so (1.3) holds.
Let w = (w1, . . . , ws) be any vector in Rs and let Yn := 〈w,Xn〉 =

∑s
i=1 wiXni. Then

EYn = nλ1〈w, v1〉 + o
(
(n logν n)1/2

)
and VarYn =

(
γ + o(1)

)
n logν n, where γ = wtΣw.

Moreover, if γ 6= 0, then
Yn − EYn√

VarYn

d−→ N(0, 1) (1.5)

with convergence of all moments.

The remainder of this section is devoted to remarks and problems that can be skipped
on a first reading.

Remark 1.4. For the mean and variance, similar results are also proven in [10] by a
related but somewhat different method (under somewhat more general assumptions);
that method does not seem to generalise easily to higher moments.

Remark 1.5. If the urn is strictly small, then it can be verified from [8, Lemma 5.4 and
(2.13)–(2.15)] that γ = 0 in Corollary 1.3 only in the trivial case when w = cu1 + u0 with
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Moment convergence of balanced Pólya processes

c ∈ R, u1 = (1, . . . , 1) and Ru0 = 0, which implies that 〈u0, Xn〉 is constant and thus
Yn = 〈w,Xn〉 = Y0 + ncm is deterministic, see [10, Theorem 3.6].

On the other hand, in the critically small case, the rank of Σ is typically only 1 or 2,
and there are non-trivial vectors w such that γ = 0 and thus Var(Yn) = o(n logν n).

Remark 1.6. More precise error estimates in Theorems 1.1 and 1.2 can be obtained
from the proofs below. In particular, for the expectation we have in the strictly small
case EXn = nλ1v1 +O

(
nσ2/λ1 logν1 n

)
+O(1) for some ν1. See also [10].

Remark 1.7. It is possible to let balls of different colours have different activities, say
ai > 0 for balls of colour i, with the probability of a ball being drawn proportional to its
activity [8]. The condition that the urn is balanced is now that the total activity added
each time is a constant. In the case when all activities are positive, this is easily reduced
to the standard case ai = 1 by using the real version above; we just multiply the number
of balls of colour i by ai (both in the urn and in the replacement matrix). In general,
where there are “dummy balls” of activity 0, which thus never are drawn (see e.g. [8] for
the use of such balls), the results above still hold, assuming that the urn is irreducible if
dummy balls are ignored. (Note that we get another Pólya process by ignoring dummy
balls, and that the non-zero eigenvalues remain the same.) This can be shown by the
same proofs as given below; we only have to modify the definitions of balanced in (2.4)
and of A and Φ in (2.5) and (2.6) by replacing the vectors `k used there by ak`k, and
note that it is easy to verify that the results in [14] still hold (with the corresponding
modification of Φ∂ defined there).

Remark 1.8. The condition rij > 0 when i 6= j (and (2.2)–(2.3) below) is customary but
can be relaxed if we assume that the urn is tenable for some other reason. (Typically
because balls of two different colours always occur together in a fixed proportion, and
are added or subtracted together.) See [14, Example 7.2.(5)] for a typical example and
[7, Remark 6.3] for another. As remarked in [14, page 295], the results in [14] that we
use hold in this case too, and it follows that all moment estimates in the present paper
hold. Also (1.3) holds, at least under some supplementary assumptions, see [8, Remark
4.2], and then the results above hold. (In the examples from [14] and [7] just mentioned,
(1.3) holds because there is an equivalent urn with random replacements that satisfies
the conditions of [8].)

Remark 1.9. It is possible to let the replacement vectors (rij)
s
j=1 be random, see

[8]: with our notations of Section 2, assume that random V -valued increment vec-
tors W1, . . . ,Ws are given and that they admit moments of order p, p ≥ 2 being an integer
or∞. In this case, the conditional transition probabilities (2.1) keep the same form, and
Xn+1 = Xn+W

(n)
K , where, given K = k, W (n)

K is a copy of Wk, independent of everything
that has happened so far. The tenability assumptions (2.2)–(2.3) must be modified: it is
sufficient that `j(Wk) > 0 a.s. for all j, k; more generally (2.2) should hold a.s., while for
each k either `k(Wk) > 0 a.s. or there exists dk > 0 such that a.s. `k(Wk) ∈ {−d, 0, d, . . . }
while `k(X0), `k(Wi) ∈ {d, 2d, . . . } for j 6= k. Assume further that the urn is almost surely
balanced, which means that (2.4) is a.s. satisfied (replacing wk by Wk).

Then, our results extend to this case, the moment convergence being valid up to
order p.

To see this, note first that in this random replacement context, all results of [8] hold.
The techniques developed in [14] and the arguments given in the present paper remain
also valid after the following adaptations: the replacement operator (2.5) is now

A(v) :=

s∑
k=1

`k(v)EWk (1.6)

while the transition operator (2.6), restricted to polynomials f of degree not more than p,
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Moment convergence of balanced Pólya processes

becomes

Φ(f)(v) :=

s∑
k=1

`k(v)E
(
f(v +Wk)− f(v)

)
. (1.7)

Remark 1.10. For an example of applications of the results above on random tree
processes (m-ary search trees and preferential attachment trees), one can refer to [7,
Remark 3.3].

Problem 1.11. As said above, we consider in this paper only balanced urns. It is a
challenging open problem to extend the results to non-balanced urns.

2 Preliminaries

We follow [14] and use the following coordinate-free description of the urn process. It
is easily seen to be equivalent to the traditional description in Section 1, with rij = `j(wi)

and allowing these numbers to be real and not necessarily integers.
Let V be a real vector space of finite dimension s > 1 and let `1, . . . , `s be a basis of

the dual space V ′; let V+ := {v ∈ V : `j(v) > 0, j = 1, . . . , s} \ {0} be the positive orthant.
Let X0 and w1, . . . , ws be given vectors in V , with X0 ∈ V+.

Given Xn ∈ V+, for some n > 0, we let Xn+1 := Xn + wK , where the random index K
is chosen with conditional probability, given Xn,

P(K = k | Xn) =
`k(Xn)∑s
j=1 `j(Xn)

. (2.1)

This defines the Pólya process (Xn)∞0 (as a Markov process), provided the process is
tenable, i.e., Xn ∈ V+ for all n.

The standard sufficient set of conditions for tenability, used by many authors, is in
our formulation: for all j, k = 1, . . . , s,

`j(wk) > 0 if j 6= k, (2.2)

`k(wk) > 0 or `k(X0)Z+

s∑
i=1

`k(wi)Z = `k(wk)Z. (2.3)

We assume (2.2)–(2.3) for simplicity, but as said in Remark 1.8, the results hold more
generally under suitable conditions.

In the present paper, we also assume that the process is balanced, which in this
context means

s∑
k=1

`k(wj) = m, j = 1, . . . , s, (2.4)

for some fixed m. We assume further m > 0, and we may without loss of generality
assume m = 1, since we may divide all Xn and wk (or, alternatively, all `j) by m.

We shall also use the following notation from [14], where further details are given.
The replacement matrix R (or rather its transpose) now corresponds to the replace-

ment operator A : V → V defined by

A(v) :=

s∑
k=1

`k(v)wk. (2.5)

We choose a basis (vk)s1 in the complexification VC that yields a Jordan block de-
composition of A, and let (uk)s1 be the corresponding dual basis in V ′C. We may assume
that these vectors are numbered such that u1 and v1 correspond to the eigenvalue
λ1 = m = 1, and, moreover, for each k either uk ◦ A = λkuk (so uk is an eigenvector of
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the dual operator A′) or uk ◦ A = λkuk + uk−1, for some eigenvalue λk. Since the urn
is supposed to be irreducible, λ1 = 1 is a simple eigenvalue; furthermore, the balance
condition (2.4) (with m = 1) implies that

∑s
j=1 `j ∈ V ′ is an eigenvector of A′ with

eigenvalue 1; hence we may assume that u1 =
∑s
j=1 `j . This means that v1 is normalized

by
∑s
j=1 `j(v1) = 1.

Let λ := (λ1, . . . , λs), the vector of eigenvalues of A (repeated according to algebraic
multiplicity).

Let πk denote the projection of VC onto Cvk defined by πk(v) := uk(v)vk. Note that∑s
k=1 πk = I.
For a multi-index α = (α1, . . . , αs) ∈ Zs>0, let uα :=

∏s
i=1 u

αi
i ; this is a homogeneous

polynomial function on V sC . We call such multi-indices α powers, and we say that α is a
small power if only linear forms ui corresponding to small eigenvalues appear in uα, i.e.,
if Reλi 6 1

2 when αi > 0; we define strictly small power in the same way.
Let Φ be the linear operator in the space of (complex-valued) functions on V defined

by

Φ(f)(v) :=

s∑
k=1

`k(v)
(
f(v + wk)− f(v)

)
. (2.6)

Then, using (2.1), E f(Xn+1 | Xn) = f(Xn) +
∑s
j=1 `j(Xn) · Φ(f)(Xn), and thus the

expected evolution of any function f of Xn is described by Φ. Note also that Φ is
the infinitesimal generator of the Markov branching process defined by (Xn)n after
embedding in continuous time (see [1, 8, 2, 3]).

We order the multi-indices by the degree-antialphabetic order, see [14], and define
Sα := span{uβ : β 6 α}. Then Sα is a finite-dimensional space of polynomials, and Sα is
Φ-stable [14, Proposition 3.1]. Thus Sα has a decomposition into generalized eigenspaces
ker(Φ−z)∞ :=

⋃
n ker(Φ−z)n, and we define the reduced polynomial Qα as the projection

of uα onto ker(Φ− 〈λ, α〉)∞ in this decomposition. Then, for any α ∈ Zs>0, {Qβ : β 6 α}
is a basis in Sα [14, Proposition 4.8(2)]. Furthermore, the following statement follows
from the more precise [14, Proposition 5.1].

When α is any power, we denote by να the index of nilpotence of Qα for Φ− 〈λ, α〉,
defined by

1 + να = min
{
p > 1 :

(
Φ− 〈λ, α〉

)p(
Qα
)

= 0
}
. (2.7)

Since Qα belongs to the generalized eigenspace space ker
(
Φ − 〈λ, α〉

)∞
, this index is

finite. In particular, να = 0 if and only if Qα is an eigenfunction of Φ.

Proposition 2.1. For any α ∈ Zs>0,

EQα(Xn) = O
(
nRe〈λ,α〉 logνα n

)
, (2.8)

where να is the index of nilpotence of Qα defined in (2.7).

Our proofs use the whole machinery of [14]. We define a polyhedral cone Σ and, for
every power α, a polyhedron Aα (to be precise, the set of integer points in a convex
polyhedron). Let δj denote the multi-index α with αi = δij , i.e., a single 1 in the j-th
place. The cone1 Σ can be defined by its spanning edges, as the Minkowski sum

Σ :=
∑

(i,j)∈{1,...s}2, i6=j

R>0 (2δi − δj) (2.9)

or equivalently as an intersection of half-spaces:

Σ :=
⋂

I⊆{1,...,s}

{x ∈ Rs : δ∗I (x) > 0} (2.10)

1There should be no risk of confusion with the covariance matrix Σ in (1.3); we denote this cone too by Σ in
order to fit with the notation in [14].
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where
δ∗I (x1, . . . , xs) =

∑
16i6s

xi +
∑
i∈I

xi (2.11)

for every subset I of {1, . . . , s}; the equivalence between the two definitions is proven in
[14]. (Moreover, it suffices to consider I with 1 6 #I 6 s−1 in (2.10); these I correspond
to the faces of Σ, see [14].)

When α ∈ Zs>0, the polyhedron Aα is defined as

Aα = (α−Dα) ∩Zs>0 (2.12)

where α −Dα denotes {α − d : d ∈ Dα} and Dα is2 the set of Z≥0-linear combinations
of all vectors δk − δk−1 such that uk is not an eigenfunction of A′. Note that for such k,
λk−1 = λk; hence, if α′ ∈ Aα, then∑

k:λk=z

α′k =
∑

k:λk=z

αk for every z ∈ C; (2.13)

as a consequence, |α′| = |α| and 〈λ, α′〉 = 〈λ, α〉. Note also that always α ∈ Aα, and that
if A is diagonalizable, then Dα = {0}, and thus Aα = {α}.

We use the following theorem, proven in [14]. It describes more precisely the action
of Φ on the generalized eigenspace ker (Φ− 〈λ, α〉)∞, which has {Qβ : 〈λ, β〉 = 〈λ, α〉} as
a basis. Aα − Σ denotes {α′ − σ : α′ ∈ Aα, σ ∈ Σ}.
Theorem 2.2 ([14, Proposition 4.8(5) and Theorem 4.20]). Let α ∈ Zs>0.

(i)
(
Φ− 〈λ, α〉

)(
Qα
)
∈ span{Qβ : β < α, 〈λ, β〉 = 〈λ, α〉}.

(ii) The subspace
S′α := span{uβ : β ∈ (Aα − Σ) ∩Zs>0} (2.14)

is Φ-stable, and
S′α = span{Qβ : β ∈ (Aα − Σ) ∩Zs>0}. (2.15)

In particular,
(
Φ− 〈λ, α〉

)(
Qα
)
∈ S′α.

(iii) As a consequence, (
Φ− 〈λ, α〉

)(
Qα
)
∈ span

{
Qβ : β ∈ Kα

}
, (2.16)

where
Kα :=

{
β ∈ (Aα − Σ) ∩Zs>0 : β < α, 〈λ, β〉 = 〈λ, α〉

}
. (2.17)

3 Proofs

Recall that we for convenience, and without loss of generality, assume λ1 = m = 1.

3.1 Powers and nilpotence indices

We begin with the strictly small case, which is rather simple.

Lemma 3.1. If α is a strictly small power, then Re〈λ, β〉 6 |α|/2 for any β ∈ Zs>0∩(Aα−Σ),
with equality only if β = cδ1 with c = |α|/2.

Proof. Let α′ ∈ Aα and σ ∈ Σ such that β = α′ − σ. Also, let I := {k : Reλk > 1
2} and

recall (2.11). Since each βk > 0 and each Reλk 6 1,

Re〈λ, β〉 =
∑
k

βk Reλk 6
∑

k:Reλk<
1
2

1
2βk +

∑
k:Reλk> 1

2

βk (3.1)

2The definition of Dα corrects a minor error in [14].
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= 1
2δ
∗
I (β) = 1

2δ
∗
I (α′)− 1

2δ
∗
I (σ). (3.2)

Since α is a strictly small power, (2.13) implies that α′ ∈ Aα also is a strictly small
power and that δ∗I (α′) = |α′| = |α|. Furthermore, the definition (2.10) of Σ by its faces
guarantees that δ∗I (σ) > 0. Hence, Re〈λ, β〉 6 1

2 |α|.
Finally, suppose that equality holds. This implies equality in (3.1), which can hold

only if βk = 0 when Reλk 6= 1, which means that β = cδ1 with c = β1. Furthermore, then
|α|/2 = 〈λ, β〉 = c〈λ, δ1〉 = cλ1 = c.

The rest of this subsection is devoted to the critically small case, where we have to
pay special attention to eigenvalues λ with Reλ = 1

2 ; such eigenvalues are called critical.
Recall that we have chosen a basis (v1, . . . , vs) that yields a Jordan block decomposition
of A. A set of indices J ⊆ {1, . . . , s} that corresponds to a Jordan block is called a
monogenic block of indices [14]; if the corresponding eigenvalue is critical, J is called a
critical monogenic block.

The support of a power or another vector α = (α1, . . . , αs) ∈ Zs is supp(α) := {k :

αk 6= 0}. The power (vector) α is called critical if αk 6= 0 =⇒ Reλk ∈ {1, 1
2}, and α is

called strictly critical if αk 6= 0 =⇒ Reλk = 1
2 . Furthermore, α is called monogenic

when its support in contained in some monogenic block J , and α is called a quasi-
monogenic power when supp(α) ⊆ {1} ∪ J for some monogenic block J . We consider
only critical monogenic blocks, i.e., blocks associated to a critical eigenvalue. (Note
that a power α = cδ1 is critical and quasi-monogenic, and associated to any monogenic
block J ; otherwise J is determined by α.)

Recall that Kα is the set of powers defined in (2.17).

Lemma 3.2. Assume that the urn is critically small.

(i) Let α be a critical power and let β ∈ (Aα − Σ) ∩Zs>0. Then, Re〈λ, β〉 6 Re〈λ, α〉, with
equality only if β is critical.

(ii) If α is a critical power, then any β ∈ Kα is critical.

Proof. (i): Let β := α′ − σ with α′ ∈ Aα and σ ∈ Σ. Then

〈λ, β〉 = 〈λ, α′〉 − 〈λ, σ〉 = 〈λ, α〉 − 〈λ, σ〉. (3.3)

Furthermore, since α is critical, it follows from (2.13) that α′ too is critical. Hence for an
index k with Reλk <

1
2 , we have α′k = 0 and thus βk = −σk so σk 6 0. Since the urn is

critically small, it follows that

Re〈λ, σ〉 = σ1 +
∑

k:Reλk<
1
2

σk Reλk +
∑

k:Reλk= 1
2

1
2σk

> σ1 +
∑

k:Reλk<
1
2

1
2σk +

∑
k:Reλk= 1

2

1
2σk =

1

2
δ∗{1}(σ) > 0,

(3.4)

where the last inequality comes from (2.10). Hence, (3.3) yields Re〈λ, β〉 6 Re〈λ, α〉;
moreover, equality holds only if Reλk <

1
2 implies σk = 0 and thus βk = α′k = 0, i.e., β is

critical. (Equality also requires δ∗{1}(σ) = 0.)
(ii): Let α be a critical power. If β ∈ Kα, then β ∈ (Aα − Σ) ∩Zs>0 and equality holds

in (i). Then β is critical.

As a consequence of Lemma 3.2 and Theorem 2.2, the space C of polynomial functions
on V defined by

C := span
{
Qα : α critical

}
(3.5)
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is Φ-stable; thus, when α is a critical power, να is also the index of Qα for the nilpotent
endomorphism induced by Φ− 〈λ, α〉 on C. This property is the basic fact that allows us
to prove Proposition 3.3 which constitutes the key argument of Theorem 1.2.

Proposition 3.3. Assume that the urn is critically small. If α is a quasi-monogenic
critical power associated with a Jordan block of size 1 + r, r > 0, then να 6

(
r + 1

2

)
|α|.

The remainder of this section is devoted to the proof of Proposition 3.3. We assume
that α is a critical power with supp(α) ⊆ {1} ∪ J for some monogenic block J , and we
may without loss of generality assume that J = {2, . . . , r + 2} for some r > 0, since we
otherwise may permute the Jordan blocks of the chosen basis. In this case, we define for
vectors γ with supp(γ) ⊆ {1} ∪ J ,

M(γ) :=

r+2∑
k=1

kγk − 2

r+2∑
k=1

γk + Re〈λ, γ〉 =

r+2∑
k=2

(
k − 3

2

)
γk. (3.6)

Note that M(γ) is a linear function of γ.

Lemma 3.4. Assume that α is a quasi-monogenic critical power with monogenic block
J = {2, . . . , r + 2}, r > 0. Let α′ ∈ Aα \ {α}. Then, α′ is also a critical quasi-monogenic
power with monogenic block J and M(α′) 6M(α)− 1.

Proof. By (2.12) and (2.13), only the inequality is non-trivial. Furthermore, (2.12) implies
that α′ can be written, with J ′ := {k : k, k − 1 ∈ J} = {3, . . . , r + 2},

α′ = α−
∑
k∈J′

εk
(
δk − δk−1

)
(3.7)

where the εk are nonnegative integers, not all 0 since α 6= α′. Then, since M
(
δk−δk−1

)
=

1 for k ∈ J ′,

M(α′) = M(α)−
∑
k∈J′

εkM
(
δk − δk−1

)
= M(α)−

∑
k∈J′

εk 6M(α)− 1. (3.8)

Lemma 3.5. Assume that the urn is critically small. Let α be a quasi-monogenic critical
power with monogenic block J = {2, . . . , r + 2}, r > 0. Assume that β ∈

(
α − Σ

)
∩ Zs>0

satisfies Re〈λ, β〉 = Re〈λ, α〉 and β 6= α. Then, β is also a critical quasi-monogenic power
with monogenic block J and M(β) 6M(α)− 1.

Proof. When i, j ∈ {1, . . . , s} are distinct, denote by δ(i,j) the s-dimensional vector δ(i,j) =

2δi − δj . These vectors span Σ, see (2.9). We divide the proof into three steps.

1© Let i, j be distinct indices in {1, . . . , s}. Then δ∗{1}(δ(i,j)) > 0 with equality if and
only if j = 1.

Indeed, by (2.11), δ∗{1}(δ(i,j)) = 2 + 2δi1 − 1− δj1 and the result follows.

2© Let σ = α−β ∈ Σ. Then, σ is a linear combination of δ(k,1), k ∈ J , with nonnegative
coefficients.

Indeed, Lemma 3.2 guarantees that β is critical, so that σ is also critical. Consequently,
by (2.11), δ∗{1}(σ) = 2 Re〈λ, σ〉. Furthermore, by the assumption, Re〈λ, σ〉 = Re〈λ, α〉 −
Re〈λ, β〉 = 0. Hence, δ∗{1}(σ) = 0.

Since σ is a linear combination of vectors δ(i,j) with nonnegative coefficients (defini-
tion (2.9) of Σ by edges), 1© proves that all j that appear are equal to 1. Thus

σ =

s∑
k=2

εkδ(k,1) (3.9)
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where the εk are nonnegative (real) numbers. Furthermore, if k > 2 and k /∈ J , then
0 = αk > αk − βk = σk = 2εk > 0 and thus εk = 0.

3© It follows from 2© that supp(σ) ⊆ {1}∪J , and thus this is also true for β, proving the
assertion that β is critical and quasi-monogenic with monogenic block J . Furthermore,
by (3.9) and (3.6),

M(σ) =

r+2∑
k=2

εkM(δ(k,1)) =

r+2∑
k=2

εk(2k − 3) >
r+2∑
k=2

εk = −σ1 > 1 (3.10)

since σ1 is an integer and the sum is nonnegative and nonzero (because β 6= α). Conse-
quently, M(β) = M(α)−M(σ) 6M(α)− 1.

Lemma 3.6. Assume that the urn is critically small. Let α be a quasi-monogenic critical
power with monogenic block {2, . . . , r + 2}, r > 0. Then να 6M(α).

Proof. Let J = {2, . . . , r + 2} be a critical monogenic block and fix ` ∈ 1
2Z>0. Let

I` :=
{
α ∈ Zs>0 : supp(α) ⊆ {1} ∪ J, Re〈λ, α〉 = `

}
. (3.11)

We show by induction on α (using the degree-antialphabetical order) that the inequality
να 6M(α) is true for every α ∈ I`. Note that I` is finite and thus well-ordered.

Take any α ∈ I` and suppose by induction that νβ 6 M(β) for any β ∈ I` such that
β < α. By Theorem 2.2, (2.16)–(2.17) hold. In particular, by the definition of the index of
nilpotence,

να 6

{
0, Kα = ∅,
1 + max{νβ : β ∈ Kα}, Kα 6= ∅.

(3.12)

In particular, if Kα = ∅, then να = 0 6M(α).

Assume Kα 6= ∅ and let β ∈ Kα. Then β = α′ − σ with α′ ∈ Aα and σ ∈ Σ. By
Lemmas 3.4 and 3.5, α′ and β are also critical quasi-monogenic powers with monogenic
block J . Thus β ∈ I`. Furthermore, if α′ 6= α, then Lemmas 3.4 and 3.5 also yield
M(β) 6 M(α′) 6 M(α) − 1, while if α′ = α, then Lemma 3.5 yields M(β) 6 M(α) − 1.
Hence, in any case, M(β) 6 M(α) − 1. By the inductive assumption, we thus have
νβ 6M(β) 6M(α)− 1.

Consequently, (3.12) shows that if Kα 6= ∅, then να 6 1 + (M(α)− 1) = M(α), which
completes the induction.

Remark 3.7. Since να is an integer, in fact, να 6 bM(α)c. Strict inequality is possible.
For example, if λ2 = 1

2 +it is a critical eigenvalue with t 6= 0, then Q2δ2 is an eigenfunction
of Φ and thus ν2δ2 = 0.

Proof of Proposition 3.3. Let J be a Jordan block of size 1 + r associated to α. As said
above, we may assume that J = {2, . . . , r + 2}. Then, by Lemma 3.6 and (3.6),

να 6M(α) =

r+2∑
k=2

(
k − 3

2

)
αk 6

(
r + 1

2

)
|α|. (3.13)

Remark 3.8. The upper bound in Proposition 3.3 is reached only for α = |α|δmax J where
J is a critical Jordan block. Moreover, it is reached only when |α| is even, explaining why
the odd moments of Xn are asymptotically negligible after normalization.
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3.2 Moments

Lemma 3.9. If α is a strictly small power, then Euα(Xn) = O
(
n|α|/2

)
.

Proof. Since uα ∈ S′α by definition (2.14), it follows from (2.15) that we have a decompo-
sition

uα =
∑

β∈Zs>0
∩(Aα−Σ)

qα,βQβ (3.14)

for some constants qα,β .
If β ∈ Zs>0 ∩ (Aα − Σ) and β 6= (|α|/2)δ1, then Re〈λ, β〉 < |α|/2 by Lemma 3.1.

Furthermore, by [14, Proposition 5.1], for some νβ > 0,

EQβ(Xn) = O
(
nRe〈λ,β〉 logνβ n

)
= o
(
n|α|/2

)
. (3.15)

On the other hand, if β = (|α|/2)δ1 (and thus |α| is even), then Qβ is an eigenfunction
of Φ and by [14, Proposition 5.1(1)], (3.15) holds with νβ = 0, so

EQβ(Xn) = O
(
n〈λ,β〉

)
= O

(
n|α|/2

)
. (3.16)

In fact, in this case Qβ = u1(u1 + 1) · · · (u1 + |α|/2− 1) so Qb(Xn) is deterministic, and a
polynomial in n of degree |α|/2, see [14, Remark 4.10].

Lemma 3.10. Assume that the urn is critically small. Let, as in Theorem 1.2, 1 + d be
the largest dimension of a critical Jordan block of the replacement matrix R. Then, if α
is a strictly critical power α,

Euα(Xn) = O
(
n log2d+1 n

)|α|/2
. (3.17)

Proof. Decomposing uα = uα1 . . .uαt where the αk are monogenic critical powers,
thanks to the Cauchy–Schwarz inequality applied t − 1 times, it suffices to show the
lemma when α is strictly critical and monogenic.

Suppose thus that α is strictly critical and monogenic. Note that, since α is strictly
critical, Re〈λ, α〉 = |α|/2. As above, we use the decomposition (3.14) of uα; we now split
it as

uα =
∑

β∈Aα−Σ,Re〈λ,β〉=Re〈λ,α〉

qα,βQβ +
∑

β:Re〈λ,β〉<Re〈λ,α〉

qα,βQβ . (3.18)

When Re〈λ, β〉 < Re〈λ, α〉, Proposition 2.1 yields EQβ(Xn) = o
(
n|α|/2

)
. To deal with the

first sum in (3.18), suppose that β ∈ Aα − Σ satisfies Re〈λ, β〉 = Re〈λ, α〉. Then, thanks
to Lemmas 3.4 and 3.5, β is also critical and quasi-monogenic so that Proposition 3.3
asserts that νβ ≤ (d+ 1

2 )|α|. Thus Proposition 2.1 yields

EQβ(Xn) = O
(
nRe〈λ,β〉 log(d+ 1

2 )|α| n
)

= O
(
n

1
2 |α| log(d+ 1

2 )|α| n
)
. (3.19)

Putting the small o and the big O together, one gets the result.

3.3 Proofs of Theorems 1.1 and 1.2, and of Corollary 1.3

Proof of Theorems 1.1 and 1.2. Assume that the urn is small. Let PI :=
∑
k:Reλk<

1
2
πk

and PII :=
∑
k:Reλk= 1

2
πk, so that idCs = π1 + PI + PII . Remember that πk(v) = uk(v)vk.

• We first deal with PI . Let JI := {k : Reλk <
1
2}. Then, for any v ∈ Cs,

∣∣PI(v)
∣∣2 =

∣∣∣∣∑
k∈JI

uk(v)vk

∣∣∣∣2 =
∑
k,j∈JI

〈vk, vj〉uk(v)uj(v). (3.20)
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Taking the `-th power and expanding, we see that for any ` > 1, there exists a set of
strictly small powers β with |β| = 2`, and constants cβ , such that, for all v,∣∣PI(v)

∣∣2` =
∑
β

cβu
β(v). (3.21)

Hence, Lemma 3.9 yields

E
∣∣PI(Xn)

∣∣2` =
∑
β

cβ Euβ(Xn) = O
(
n`
)
. (3.22)

• For PII , we argue as in (3.20) and obtain an identity similar to (3.21), now for a set
of strictly critical powers β with |β| = 2`. Hence, Lemma 3.10 yields

E
∣∣PII(Xn)

∣∣2` =
∑
β

c′β Euβ(Xn) = O
(
n log2d+1 n

)`
. (3.23)

• Finally, because of the balance assumption (2.4) (with m = 1), π1(Xn) is nonrandom
and

π1(Xn) = u1(Xn)v1 =
(
u1(X0) + n

)
v1 = nv1 +O(1). (3.24)

When the urn is strictly small (Theorem 1.1), PII = 0 and thus

Xn = π1(Xn) + PI(Xn) = nv1 + PI(Xn) +O(1), (3.25)

and (3.22) implies

E |Xn − nv1|2` = O
(
n`
)
. (3.26)

When the urn is critically small (Theorem 1.2), we instead have

Xn = π1(Xn) + PI(Xn) + PII(Xn) = nv1 + PI(Xn) + PII(Xn) +O(1), (3.27)

so that (3.22) and (3.23) imply

E |Xn − nv1|2` = O
(
n log2d+1 n

)`
. (3.28)

In other words, if X̃n denotes X̃n := (Xn − nv1)/n1/2 when the urn is strictly small and

X̃n := (Xn − nv1)/

√
n log2d+1 n when the urn is critically small, then E |X̃n|2` = O(1),

for every positive integer `. Consequently, if 0 6 p < 2`, then the sequence E |X̃n|p
is uniformly integrable. Since ` is arbitrary, this sequence is uniformly integrable for

every fixed p > 0. Furthermore, by [8, Theorems 3.22 and 3.23], X̃n
d−→ N(0; Σ), for

some covariance matrix Σ. The uniform integrability just shown implies that any mixed
moment E X̃α

n converges to the corresponding moment of N(0,Σ).

Proof of Corollary 1.3. The estimates for EYn and VarYn follow directly from the results
for EXn and Var(Xn) in Theorem 1.1 or 1.2. Furthermore, (1.3) yields

Yn − nλ1〈w, v1〉√
n logν n

d−→ N(0, γ), (3.29)

and (1.5) follows when γ 6= 0. Moreover, the moment convergence in (1.3) asserted in
Theorems 1.1 and 1.2 implies moment convergence in (3.29), and thus in (1.5).
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